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Abstract

The asymptotic behaviour for t!1 of the solutions to a one-dimensional

model for thermo-visco-plastic behaviour is investigated in this paper. The

model consists of a coupled system of nonlinear partial di�erential equations,

representing the equation of motion, the balance of the internal energy, and

a phase evolution equation, determining the evolution of a phase variable.

The phase evolution equation can be used to deal with relaxation processes.

Rate-independent hysteresis e�ects in the strain-stress law and also in the

phase evolution equation are described by using the mathematical theory of

hysteresis operators.

1 Introduction

In this paper, an initial-boundary value problem for a system of partial di�eren-

tial equations involving hysteresis operators is considered, and the asymptotic be-

haviour of the solutions to this system is investigated. The system has been derived

in [KSS01b] to model one-dimensional thermo-visco-plastic developments connected

with solid-solid phase transitions taking also into account the hysteresis e�ects ap-

pearing on the macroscopic scale as a consequence of e�ects on the micro- and/or

mesoscale.

To describe such developments, one is considering the evolution of the displacement

u, of the absolute temperature �, and of a phase variable w, which is usually a so-

called generalized freezing index, see [KS00c]. For a wire of unit length, the evolution

of these �elds is determined by the following system:

�utt � �uxxt = �x + f(x; t); a.e. in 
1; (1.1)

� = H1[ux; w] + �H2[ux; w]; a.e. in 
1; (1.2)

(CV � + F1[ux; w])t � ��xx = �u
2
xt + �uxt + g(x; t; �); a.e. in 
1; (1.3)

�wt = � ; a.e. in 
1; (1.4)

 = H3[ux; w] + �H4[ux; w]; a.e. in 
1; (1.5)

u(0; t) = 0; �uxt(1; t) + �(1; t) = 0; �x(0; t) = �x(1; t) = 0; a.e. in (0;1);

(1.6)

u(�; 0) = u0; ut(�; 0) = u1; �(�; 0) = �0; w(�; 0) = w0; a.e. in 
; (1.7)

with 
1 := 
� (0;1) and 
 := [0; 1].

The equation (1.1) is the equation of motion, (1.3) is the balance of internal en-

ergy, and (1.4) is the phase evolution equation. By the constitutive law (1.2), the

1



elastoplastic stress � is determined, and the constitutive law (1.4) de�nes the ther-

modynamic force  . The boundary condition (1.6) means that the wire is �xed

at x = 0, stress-free at x = 1, and thermally insulated at both ends. Here, x de-

notes the space variable, t denotes the time, and the indices x and t denote the

di�erentiation with respect to space and time, respectively.

The mass density �, the viscosity �, the speci�c heat CV , the heat conductivity

�, and the kinetic relaxation coe�cient � are supposed to be positive constants.

The initial data for the displacement, the velocity, the temperature, and the phase

variable considered in (1.7) are denoted by u0, u1, �0, and w0, respectively. Finally,

the nonlinearities Hi, 1 � i � 4, and F1 are hysteresis operators (see below), where

one needs to take into account ux(x; �)j[0;t] and w(x; �)j[0;t] to compute Hi[ux; w](x; t)

and F1[ux; w](x; t).

These operators are supposed to re�ect some memory in the material on the macro-

scale, resulting from e�ects in the micro/mesoscale. Such e�ects can lead to hystere-

sis loops, as they are for example observed in the macroscopic strain-stress relation

(" - �, where " = ux is the linearized strain) determined from measurements in

uniaxial load-deformation of materials like shape memory alloys. The curves show

a strong dependence on the temperature, but many of them are rate-independent,

i.e., they are independent of the speed with which they are traversed.

There are other approaches to model hysteretic behaviour by considering systems

similar to parts of (1.1)�(1.5), where the operators F1 and Hi, for 1 � i � 4, are

superposition operators. These models are derived by considering a free energy,

which is a superposition operator, involving a potential which has (one or more)

concave parts. The concave parts of the potential correspond to instable physical

states, and these instabilities are supposed to produce the observed hysteresis e�ects.

Such approaches have successfully been used and investigated in a number of papers,

see, e.g., [BS96, DH82, RZ97, Vis96] and the references therein, but the modelling

by non-convex free energies has its limits, since a non-convex part of the potential

alone does not ensure that hysteresis loops are present, see, e.g., [Mül01]. Moreover,

the simple superposition operator cannot represent all the complicated hysteresis

curves that are observed in experiments.

Hence, to describe such structures, the more general hysteresis operators have been

introduced and used in a number of papers, see, e.g., the monographs [BS96, Kre96,

KP89, Vis94] to this subject and the references therein. For a �nal time T > 0, an

operator H : C[0; T ]! Map[0; T ] := fv : [0; T ]! Rg is a hysteresis operator if it is

rate-independent and causal according to the following de�nitions. The operator H
is called rate-independent, if for every v 2 C[0; T ] and every continuous increasing

(not necessary strictly increasing) function � : [0; T ] ! [0; T ] with �(0) = 0 and

�(T ) = T it holds that

H[v Æ �](t) = H[v](�(t)); 8 t 2 [0; T ]: (1.8)

An operator H : D(H)(� Map[0; T ]) ! Map[0; T ] is said to be causal, if for every
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Figure 1: An example for the evolution of ("(t);Sr[�0r ; "](t)), starting in ("(0); �0r).

v1; v2 2 D(H) and every t 2 [0; T ] we have the implication

v1(�) = v2(�); 8 � 2 [0; T ] ) H[v1](t) = H[v2](t): (1.9)

An example for a hysteresis operator is the so-called stop operator, which is also know

as Prandtl's normalized elastic-perfectly plastic element. To de�ne this operator, we

consider some yield limit r > 0, an initial stress �0r 2 [�r; r], and a �nial time

T > 0. For any input function " 2 W
1;1(0; T ), we have (see, e.g., [BS96, KP89,

Kre96, Vis94]) a unique solution �r 2 W 1;1(0; T ) to the variational inequality

�r(t) 2 [�r; r]; 8 t 2 [0; T ]; �r(0) = �
0
r ; (1.10)

("t(t)� �r;t(t)) (�r(t)� �) � 0; 8 � 2 [�r; r]; a.e. in (0; T ): (1.11)

This de�nes the stop operator

Sr : [�r; r]�W
1;1(0; T )!W

1;1(0; T ) : (�0r ; ") 7! �r: (1.12)

An example for the evolution of the input and the output for the stop operator

is presented in Figure 1. Connected to the stop operator Sr is another important

hysteresis operator, the so-called play operator Pr de�ned by

Pr : [�r; r]�W
1;1(0; T )!W

1;1(0; T ) : (�0r ; ") 7! "� Sr[�0r ; "]: (1.13)

For all �0r ; �
0;1
r ; �

0;2
r 2 [�r; r] and all "; "1; "2 2 W

1;1(0; T ), these operators satisfy

(see, e.g., [BS96, KP89, Kre96])

Sr[�0r ; "]

C[0;T ]
� r;

��Sr[�0r ; "]��2 = �Sr[�0r ; "]�t "t; a.e. in (0; T ); (1.14)
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��Sr[�0;1r ; "1](t)� Sr[�0;2r ; "2]
��

� j"1(t)� "2(t)j+max

�
max
0���t

j"1(�)� "2(�)j ;
���0;1r � �

0;1
r

��� ; 8 t 2 [0; T ];
(1.15)

�
1

2
S2
r [�

0
r ; "]

�
t

+
���rPr[�

0
r ; "]

�
t

�� = Sr[�0r ; "]"t; a.e. in (0; T ): (1.16)

The inequality (1.15) allows to extend the stop and the play operator to Lipschitz

continuous operators on [�r; r] � C[0; T ]. These operators are not di�erentiable,

which is quite typical for hysteresis operators, since nontrivial hysteresis operators

are at best Lipschitz continuous or only locally Lipschitz continuous in suitable

functions spaces, but they are not di�erentiable. This leads to problems for the

mathematical investigation of equations involving hysteresis operators. To overcome

this di�culties, one is applying inequalities and equalities similar to (1.16). Using the

notation of [BS96, Chapter 2.5], this equation means that 1
2
S2
r [�

0
r ; �] is the clockwise

admissible potential and rPr[�
0
r ; �] is the corresponding dissipation operator for the

operator Sr[�0r ; �].

Let Map[0;1) := fv : [0;1) ! Rg. An operator H : D(H)(� Map[0;1) �
Map[0;1))! Map[0;1) is said to be causal, if for every ("1; w1); ("2; w2) 2 D(H)

and every t � 0 we have the implication

"1(�) = "2(�); w1(�) = w2(�); 8 � 2 [0; t] ) H["1; w1](t) = H["2; w2](t):

(1.17)

Moreover, the operator H generates an operator H mapping ("; w) with "; w : 
�
[0; T ] ! R such that ("(x; �); w(x; �)) 2 D(H) for a.e. x 2 
 to the function on


� [0; T ] de�ned by

H["; w](x; t) = H["(x; �); w(x; �)](t); 8 t 2 [0; T ]; for a.e. x 2 
: (1.18)

In the sequel, we will no longer distinguish between H and the generated operator

H. This holds especially for H1; : : : ;H4, and F1, since for these operators the

same notation will be used for the causal operators discussed in the assumptions in

the next section and the operators generated from these operators, which are the

operators considered in the system (1.1)�(1.7).

The hysteresis phenomena described by hysteresis operators are often related to

changes between di�erent con�gurations within the wire. In the system above, these

con�gurations are described by the phase parameter w, and the evolution of these

con�gurations is described by the phase evolution equation (1.4). Such an equation

allows to take also into account relaxation processes that appear in addition to the

rate independent hysteresis loops, which are modeled by the hysteresis operators.

Let recall some results for systems with hysteresis operators similar to the one

above. In [GKS00, KS98a, KS00b, KS00c, KS02, KSZ00], a multi-dimensional

phase transition is considered without taking mechanical e�ects into account. This

corresponds to investigate (1.3)�(1.5) without a dependence on u or �. The one-

dimensional thermoelastoplastic hysteresis without considering relaxation processes
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in the phase transition, i.e., (1.1)�(1.3) with no dependence on w, has been studied

in [KS97, KS98b].

For the complete system (1.1)�(1.7) above with an additional Ginzburg term uxxxx

on the left-hand side of (1.1) and boundary condition u = uxx = 0 on @
 for u, the

global existence and uniqueness of a solution has been shown in [KSS01a].

The system (1.1)�(1.7) has been derived and investigated in [KSS01b]. Therein,

the existence, uniqueness, and regularity of a strong solution has been proved (see

Theorem 2 in Section 2.3), and it has also been shown that the Clausius-Duhem

inequality and therefore the second principle of thermodynamics is satis�ed for the

solution.

In present work, we are dealing with the asymptotic behaviour for t ! 1 for the

system under consideration. After discussing the assumptions in Section 2.1, the

results are presented in Theorem 1 in Section 2.2. The a-priori estimates derived in

Section 3 are used in Section 4 to prove this theorem.

2 Asymptotic behaviour of solutions

2.1 Assumptions

The assumptions used in the investigation of the asymptotic behaviour of the solu-

tion to (1.1)�(1.7) are now presented and discussed. Let Cloc[0;1) denote the set

of all functions from [0;1) to R that are in C[0; T ] for all T > 0. For t � 0, the

seminorm j�j[0;t] on Cloc[0;1) and on C[0; T ] for T � t is de�ned by

jf j[0;t] = max
0�s�t

jf(s)j : (2.1)

We will use the following assumptions:

(H1) We have u0 2 H
2(
), u1 2 W

1;1(
), �0 2 H
1(
), w0 2 H

1(
), and there is

some Æ > 0 such that �0(x) � Æ for all x 2 
. Moreover, the compatibility condition

u0(0) = u1(0) = 0 is satis�ed.

(H2) We assume that g : 
� (0;1)� R! R is a Carathèodry function such that

there are functions g1; g2 : 
1 ! [0;1), with

g1 2 L1(
1) \ L
2(
1); g2 2 L1(0; T ;L1(
)) \ L

2(0; T ;L1(
));

�g2(x; t)s � g(x; t; s) � g1(x; t) + g2(x; t)s; 8 (x; t) 2 
1; s � 0:

(H3) The operatorsH1; : : : ;H4 ;F1 : Cloc[0;1)�Cloc[0;1)! Cloc[0;1) are causal

and map W
1;1
loc (0;1) �W

1;1
loc (0;1) into W

1;1
loc (0;1). The operators map C[0; T ] �

C[0; T ] continuously into C[0; T ] for all T > 0, and for all "; w 2 Cloc[0;1) it holds

F1["; w](t) � 0; 8 t � 0:
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(H4) There exist causal operators F2 : W
1;1
loc (0;1) � W

1;1
loc (0;1) ! W

1;1
loc (0;1),

D1;D2 : W
1;1
loc (0;1)�W

1;1
loc (0;1) ! L

1
loc(0;1), G : W

1;1
loc (0;1) ! W

1;1
loc (0;1), and

a non-decreasing function k1 such that for all "; w 2 W 1;1
loc (0;1) it holds

i)

jD1["; w]j = "tH1["; w] + (G[w])tH3["; w]� (F1["; w])t ; a.e. in (0;1);

jD2["; w]j = "tH2["; w] + (G[w])tH4["; w]� (F2["; w])t ; a.e. in (0;1):

ii)

j(G[w])t (t)j
2 � k1

�
jwj[0;t]

�
wt(t) (G[w])t (t); for a.e. t 2 (0;1):

(H5) We have F1;0;F2;0 2 L
1(
) such that for all "; w 2 W

1;1
loc (0;1;L2(
)) with

"(�; 0) = u0;x and w(�; 0) = w0 a.e. on 
 it holds that

F1["; w](�; 0) = F1;0; F2["; w](�; 0) = F2;0; a.e. in 
:

(H6) There are non-decreasing functions k2; k3; k4 : [0;1) ! [0;1) such that for

all "; w 2 Cloc[0;1) it holds:

i)

max
1�i�4

jHi["; w](t)j � k2

�
j"j[0;t] + jwj[0;t]

�
; 8 t � 0:

ii)

�F2["; w](t) � k3

�
j"j[0;t] + jwj[0;t]

�
(1 + F1["; w](t)) ; 8 t � 0:

iii) If "; w 2 W 1;1
loc (0;1) then

max
1�i�4

j(Hi["; w])t (t)j+ j(F1["; w])t (t)j

� k4
�
j"j[0;t] + jwj[0;t]

��
j"t(t)j+

q
wt(t) (G[w])t (t)

�
; for a.e. t 2 (0;1):

(H7) We have f 2 L
1(0;1;L2(
)) and there exists functions f1 2 L

2(
), F 2
L
2(0;1;H1(
)) \ H

1(0;1;L2(
)) \ L
1(
1), and positive constants K0; K1 such

that

f � f1 2 L1(0;1;L2(
)); F (x; t) =

Z x

1

f(�; t) d� ; for a.e. (x; t) 2 
1;

kf1kL1(
) j"(t)j � (1�K0) jF1["; w](t)j+K1; 8 "; w 2 Cloc[0;1); t � 0: (2.2)
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For the formulation of the remaining assumptions, we use the following notations,

which are well de�ned by (H1):

"0;min := minfu0;x(x) : x 2 
g; "0;max := maxfu0;x(x) : x 2 
g; (2.3)

w0;min := minfw0(x) : x 2 
g; w0;max := maxfw0(x) : x 2 
g: (2.4)

(H8) For each "� > 0, there exists "� � "0;min, "+ � "0;max, w� > 0, w� � w0;min,

and w+ � w0;max such that for all "; w 2 Cloc[0;1) and all t � 0 holds:

i) If "(t) � "+,

"0;min � "(0) � "0;max; "� � "� � "(�) � "+ + "�; 8 � 2 [0; t]; (2.5)

w0;min � w(0) � w0;max; w� � w� � w(�) � w+ + w�; 8 � 2 [0; t]; (2.6)

hold then we have

H1["; w](t) � kFkL1(
1) ; H2["; w](t) � 0: (2.7)

ii) If "(t) � "�, (2.5), and (2.6) hold then we have

H1["; w](t) � �kFkL1(
1) ; H2["; w](t) � 0: (2.8)

iii) If w(t) � w+, (2.5), and (2.6) hold then we have

H3["; w](t) � 0; H4["; w](t) � 0: (2.9)

iv) If w(t) � w�, (2.5), and (2.6) hold then we have

H3["; w](t) � 0; H4["; w](t) � 0: (2.10)

(H9) For every "; w 2 W 1;1
loc (0;1) with " and w bounded andZ

1

0

(jD1["; w](t)j+ jD2["; w](t)j) dt <1;

there exists "1 2 R such that limt!1 "(t) = "1.

(H10) For every "; w as in (H9) there exists w1 2 R such that limt!1 w(t) = w1.

Remark 2.1. There are important cases where the operators Hi are decoupled

and may include some contribution from a superposition operator. Considering

causal operators ~H1; : : : ;
~H4 : Cloc[0;1)) ! Cloc[0;1) and non-negative func-

tions h1; : : : ; h4 2 C
2
loc(R), we can de�ne the operators H1; : : : ;H4 by setting for

all "; w 2 Cloc[0;1) and all t � 0

Hi["; w](t) :=

(
h
0

i("(t)) +
~Hi["](t); for i = 1; 2;

h
0

i(w(t)) +
~Hi[w](t); for i = 3; 4:

(2.11)

7



If we have clockwise admissible potentials for ~H1; : : : ;
~H4, i.e., if we have causal

operators ~F1; : : : ;
~F4 : Cloc[0;1)! Cloc[0;1) which are mapping W

1;1
loc (0;1) in

W
1;1
loc (0;1) and causal operators ~D1; : : : ;

~D4 : W
1;1
loc (0;1)! L

1
loc(0;1) with��� ~Di[v]

��� = vt
~Hi[v];�

�
~Fi[v]

�
t

a.e. in (0;1); 8 v 2 W 1;1
loc [0;1); i = 1; : : : ; 4;

(2.12)

then (H4) holds with G being the identity and F1;F2;D1;D2 de�ned by

F1["; w](t) :=h1("(t)) + ~F1["](t) + h3(w(t)) + ~F3[w](t); (2.13)

F2["; w](t) :=h2("(t)) + ~F2["](t) + h4(w(t)) + ~F4[w](t); (2.14)

D1["; w](t) :=

��� ~D1["](t)

���+ ��� ~D3[w](t)

��� ; D2["; w](t) :=

��� ~D2["](t)

��� + ��� ~D4[w](t)

��� ;
(2.15)

for all "; w 2 Cloc[0;1) and t � 0.

If h1(r) = h
�

1r
2 with some positive constant h�1 then the corresponding operator

H1 models a linear elasticity with a hysteretic modi�cation.

Remark 2.2. A su�cient condition for (H8) to be satis�ed is that the two following

assumptions (H11) and (H12) hold. These assumptions are especially useful,

if the operators H1; : : : ;H4 are decoupled as in the Remarks 2.1, 2.4�2.6. The

notation of an outward pointing operator used in these assumptions is introduced

and discussed in the forthcoming paper [KK].

The more general formulation in (H8) is helpful, if the operators are coupled, e.g.,
if they are derived from multi-dimensional stop or Prandtl-Ishlinskii operators

(see, e.g., [Kre96, KS00c, KS01, KS02]).

(H11) For each "� > 0, there exists "� � "0;min and "+ � "0;max such that for all

w 2 Cloc[0;1) with w0;min � w(0) � w0;max the operator mapping " 2 Cloc[0;1)

to H1["; w] 2 Cloc[0;1) is pointing outwards with bound kFkL1(
1) in the "�-

neighbourhood of ["�; "+] for initial values in ["0;min; "0;max] and that the same holds

for H2 just with bound 0, that is to say for all " 2 Cloc[0;1) and all t � 0 holds:

i) If "(t) � "+ and (2.5) hold then we have (2.7).

ii) If "(t) � "� and (2.5) hold then we have (2.8).

(H12) There are w� > 0, w� � w0;min, and w+ � w0;max such that for all " 2
Cloc[0;1) with "0;min � "(0) � "0;max the operators Cloc[0;1) 3 w 7! H3["; w]

and Cloc[0;1) 3 w 7! H4["; w] are pointing outwards with bound 0 in the w�-

neighbourhood of [w�; w+] for initial values in [w0;min; w0;max], that is to say for all

w 2 Cloc[0;1) and t � 0 holds

i) If w(t) � w+ and (2.6) hold then we have (2.9).

ii) If w(t) � w� and (2.6) hold then we have (2.10).
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Remark 2.3. If we use ~H3 = ~H4 � 0 in Remark 2.1 thenH3 andH4 are superposition

operators and the assumption (H12) holds if and only if there are w� > 0,

w� � w0;min, and w+ � w0;max such that

� For all s 2 [w+; w+w�] holds h
0

3(s) � 0 h
0

4(s) � 0.

� For all s � [w� � w�; w�] holds h
0

3(s) � 0; h
0

4(s) � 0.

Similar assumption has been used in [And80, Peg87, RZ97]. A direct transla-

tion of this assumption leads to an assumption similar to (H12), but with (2.6)

replaced by w� � w� � w(t) � w+ + w�. This is a stronger assumption then

(H12) and will be denoted by (H12+). There are important hysteresis operators

satisfying (H12), but not (H12+).

In a similar way, one can consider a stronger version (H11+) of (H11), where
"� � "� � "(t) � "+ + "� is used instead of (2.5).

Remark 2.4. If for the functions and operators in Remark 2.1 there are positive

constants K2;1; : : : ; K2;4 such that��� ~Hi[v](t)

��� � K2;i; 8 t � 0; v 2 Cloc[0;1); 1 � i � 4; (2.16)

� lim
r!�1

h
0

1(r) > K2;1 + kFkL1(
1) ; � lim
r!�1

h
0

i(r) > K2;i; 8 2 � i � 4;

(2.17)

then the assumptions (H11+) and (H12+) are satis�ed, and (H11), (H12),
and (H8) hold therefore. Moreover, the condition (2.2) in (H7) is satis�ed if the

other assumptions in (H7) hold.

Remark 2.5. Consider yield limits ri;j 2 R, initial values �0i;j 2 [�ri;j; ri;j], and
weights �i;j > 0 . De�ning ~Hi[�] as the sum

P
j �i;jSri;j [�

0
i;j; �], one has by (1.16)

that (2.12) holds with ~Fi being the sum
P

j �i;jS
2
ri;j

[�0i;j; �]=2 and ~Di being the

sum
P

j �i;j j(rPr[�
0
r ; �])tj. For Hi as in Remark 2.1, one can use (1.14), (1.15),

and (H1) to show that (H3)�(H5) are satis�ed.

Moreover, we have (2.16) and the inequalities in (2.17) hold for appropriate func-

tions hi . The last remark then yields that even the strong formulations (H11+)
and (H12+) of (H11) and (H12) are satis�ed. For h3 � h4 �, i.e., H3 and

H4 being the weighted sum of stop operators depending on w, this would not

work, and one can easily see that (H12+) will not hold in this case. But, by

investigating the behaviour of the stop operator one can show that (H12) holds,
see also [KK]. But, if h1 � 0 or h2 � 0, i.e., if H1 and H2 are the weighted sum

of stop operators depending on ", one can consider (H11) for some "� which

is bigger then the double of all the involved yield limits ri;j and observes that

(H11) is not satis�ed.

For all functions hi, the assumptions (H9) and (H10) are not satis�ed for the

corresponding operators H1; : : : ;H4, since for oscillations that are smaller then

all involved yield limits ri;j , the play operators stay constant after the �rst oscil-

lation.
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Remark 2.6. For i = 1; : : : ; 4, we consider a non-negative weight function �i 2
L
1(0;1) and a function �0i 2 W 1;1(0;1) such that �0i (r) 2 [�r; r] for all r � 0,

j(�0i )rj � 1 a.e. on (0;1), and �0r (r
0) = 0 for all r0 � Ri for some Ri > 0. Now,

we de�ne ~Hi : Cloc[0;1)! Cloc[0;1) as the Prandtl-Ishlinskii operator

~Hi[v] :=

Z
1

0

�i(r)Sr[�0i (r); v] dr ; 8 v 2 Cloc[0;1): (2.18)

A clockwise admissible potential for this operator is de�ned by ~Fi : Cloc[0;1)!
Cloc[0;1) with

~Fi[v] :=
1

2

Z
1

0

�i(r)S2
r [�

0
i (r); v] dr ; 8 v 2 Cloc[0;1); (2.19)

since Proposition 2.5.5. in [BS96] yields that (2.12) holds for

~Di[v] :=

���� @@t
Z
1

0

r�i(r)Pr[�
0
r ; v] dr

���� ; 8 v 2 W 1;1
loc [0;1): (2.20)

De�ning now Hi and Fi as in Remark 2.1, and using well know properties of the

stop operator one can show that (H3)�(H6) hold.

Applying (2.15), (2.20), and properties of the play operator, we see that (H9)
holds, if and only if Z s

0

r (�1(r) + �2(r)) dr > 0; 8 s > 0: (2.21)

For (H10), we get a analogous condition, just with �1 + �2 replaced by �3 + �4.

If one wants to ensure as in Remark 2.1 that (H11) and (H12) are satis�ed, one
has to require that (2.16) holds, which is equivalent to the conditionZ

1

0

r�i(r) dr < K2;i < +1; 8 1 � i � 4: (2.22)

If this condition is satis�ed, we see that (H11) and (H12) holds for appropriate
functions hi, but this argumentation can not be applied if Hi = ~Hi for some

i 2 1; : : : ; 4.

In [KK], it is proved that (H12) holds forH3 := ~H3 andH4 := ~H4, independently

of (2.22). Moreover, there it is shown that for H1 := ~H1 the condition in (H11)
holds if and only if

R
1

0
r�1(r) dr =1, and that an analogous equivalence holds

for H2 := ~H2.

2.2 The asymptotic result

The following theorem is the main result of this paper:
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Theorem 1. Assume that (H1)�(H8) are satis�ed and that a solution (u; �; w) to

(1.1)�(1.7) is given such that

u 2 H2
loc(0;1;L2(
)) \ H

1
loc(0;1;H2(
)); (2.23)

� 2 H1
loc(0;1;L2(
)) \ L

2
loc(0;1;H2(
)); (2.24)

w 2 H2
loc(0;1;L2(
)) \ H

1
loc(0;1;H1(
)); (2.25)

�(x; t) > 0; 8 x 2 
; t � 0: (2.26)

a) We have a constant �� > 0 such that

lim
t!1

kuxt(�; t)kL2(
) = lim
t!1

kut(�; t)kC(
) = 0; (2.27)

�(�; t) ���!
t!1

� F1; in L
2(
); (2.28)

lim
t!1

k�x(�; t)kL2(
) = lim
t!1



�x(�; t)� �(t)



C(
)

= 0; (2.29)

�(x; t) � ��; 8 x 2 
; t � 0; (2.30)

with

F1(x) :=

Z x

1

f1(�) d� ; �(t) :=

Z



�(x; t) dx ; 8 x 2 
; t � 0: (2.31)

b) If G is the identity operator, then we have

lim
t!1

kwt(�; t)kL2(
) = lim
t!1

k (�; t)kL2(
) = 0; (2.32)

lim
t!1

k(F1[ux; w])t (�; t)kL2(
)
=

4X
i=1

lim
t!1

k(Hi[ux; w])t (�; t)kL2(
)
= 0: (2.33)

c) If H1 � H3 � F1 � 0, g � 0, and f � 0, then we have

�(�; t) ���!
t!1

k�0kL1(
) +
�

2CV

ku1k
2

L2(
) ; in L
1(
); (2.34)

lim
t!1

kH2[ux; w](�; t)kL2(
) = 0: (2.35)

d) If H1 � H3 � F1 � 0, g � 0, f � 0, and G is the identity operator, then we

have

lim
t!1

kH4[ux; w](�; t)kL2(
) = 0: (2.36)

e) If (H9) holds then there exists a u1 2 W 1;1(
) such that

u(�; t) ���!
t!1

u1 weakly-star in W
1;1(
); (2.37)

ux(�; t) ���!
t!1

u1;x; a.e. in 
: (2.38)
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f) If (H10) holds then there exists a w1 2 L1(
) such that

w(�; t) ���!
t!1

w1 weakly-star in L
1(
) and a.e. in 
: (2.39)

Remark 2.7. We see that (2.27) yields that for t!1 the viscous part of the stress

tends to zero, and by (2.28) the stress tends to �F1, which is the potential

corresponding to the limit f1 for t ! 1 of the applied force f . Moreover, by

(2.29), we see that the temperature becomes more and more uniform in space.

Under the additional conditions in part c) of Theorem 1, the convergence of

the temperature for t ! 1 is shown, and if H2 and H4 are special operators,

like, e.g. stop operators, one could also show some convergence for u and w, by

adapting the argument in [RZ97, Lemma 4.5]. In the general case it is still an

open questions, if one can show convergence, or if up to t ! 1 oscillations can

appear. This is similar to [RZ97], where the system (1.1)�(1.3) with H1; H2; and

F1 being nonlinear superposition operators of ux has been considered. Also in

this paper there is no convergence result for � or ux in the general case.

Remark 2.8. If (H8) does not hold then one can still get some of the results in

Theorem 1, if some additional assumptions are satis�ed.

i) If (H4)ii) and (H6) with k1; : : : ; k4 replaced by positive constants hold then
one can still show the results a)�d).

ii) If (H11), (H4)ii) with k1 replaced by a positive constant, and (H6)without
the jwj[0;t]-term in the evaluation of k2; k3; k4 hold then one can prove that

the results a)�e) are satis�ed.

iii) If (H12) and (H6) without the j"j[0;t]-term in the evaluation of k2; k3; k4
hold then one can prove the results a)�d) and f).

Remark 2.9. In many applications, the operator G in (H4) is the identity, see, e.g.,
[Kre00, KS97, KS98b, KS00c, KS01, KS02, KSZ01], such that the results b) and

d) in Theorem 1 can be applied.

If G is not the identity operator, one could get still some informations about

the limiting behaviour of G[w]t and therefore about the behaviour of the time

derivatives of F1[ux; w] and Hi[ux; w], if for w 2 W
2;1
loc (0; T ) the �second order

energy inequality� (see [Kre96, Section II. 4])

@

@t
(wt (G[w])t) � wtt (G[w])t

holds a.e. on (0;1). In this case, only minor changes in the proof would be

necessary. But, to the knowledge of the author, in all cases where an operator G
as in (H4) is derived, which is not the identity, the operator is a stop operator,

see [KS98a, KS00b, KS00c, KS00a, KSZ01]. In this case, G[w] is only of bounded
variation, and the second order inequality holds only in the sense of distribution.

To be able to deal with G of this kind, one would have to use methods similar to

[KSZ00].
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2.3 Existence of solutions

Before proving the asymptotic result, it will be recalled that there is a solution to

the problem under considerations satisfying the regularity and positivity demands

presented in Theorem 1, at least if some additional assumptions are satis�ed. This

assumption will be

(H13) It holds f 2 H1
loc(0;1;L2(
)).

(H14) There is a function g0 2 L
1

loc(
1) such that for every T > 0 there is a

positive constant K3;T����@g@�
���� � K3;T a.e. in 
� (0; T )� R; g0(x; t) � 0; a.e. in 
1;

g(x; t; �) = g0(x; t); 8 (x; t; �) 2 
� (0;1)� (�1; 0]:

(H15) For every T > 0 there are positive constants K4;T ; : : : ; K9;T such that for all

"; "1; "2; w; w1; w2 2 Cloc[0;1) it holds:

i) We have for all t 2 [0; T ]:

jH2["; w](t)j+ jH4["; w](t)j � K4;T ;

max
1�i�4

jHi["1; w1](t)�Hi["2; w2](t)j � K5;T

�
j"1 � "2j[0;t] + jw1 � w2j[0;t]

�
:

ii) If "; "1; "2; w; w1; w2 2 W
1;1
loc (0;1) then the inequality in (H4)ii) with k1

�
jwj[0;t]

�
replaced by K6;T holds for a.e. t 2 (0; T ) and

max
1�i�4

j(Hi["; w])t (t)j � K7;T (j"t(t)j+ jwt(t)j) ; for a.e. t 2 (0; T );

j(F1["; w])t (t)j � K8;T (j"t(t)j+ jwt(t)j) ; for a.e. t 2 (0; T ); (2.40)

jF1["1; w1](t)�F1["2; w2](t)j � K9;T

�
j"1(0)� "2(0)j+ jw1(0)� w2(0)j

+

Z t

0

(j"1;t(�)� "2;t(�)j+ jw1;t(�)� w2;t(�)j) d�
�
; 8 t 2 [0; T ]: (2.41)

Thanks to Theorem 2.1 in [KSS01b], we have

Theorem 2. Assume that (H1)�(H3), (H4)i), and (H13)�(H15) hold. Then

the system (1.1)�(1.7) has a unique strong solution (u; �; w) such that (2.23)�(2.25)

hold. This solution satis�es also (2.26).

Remark 2.10. If H1 as in (2.11) is modelling a linear elasticity with a bounded

hysteretic modi�cation as in the Remark 2.1, then one has F1["; w](t) = h
�

1"
2(t)+

: : : . Hence, in general the estimates (2.40) and (2.41) in (H15)ii) are not

satis�ed, and the existence result in [KSS01b] can therefore not be applied. To
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be able to use this result, one has to approximate the linear elastic term 2h21" for

big " by a bounded function. This is a somehow unexpected feature of combining

these assumptions, since the authors of [KSS01b] want that their assumptions also

include the case of linear elasticity, and avoid to use the assumption that H1 is

bounded. They also do not assume explicitly that H3 is bounded, but combining

the estimate (2.40) with (H4)i) and the continuity of F1 on C[0; T ]�C[0; T ] (see

(H3)), one can show that for all "; w 2 W 1;1
loc [0;1) holds

max (jH1["; w](t)j ; jH3["; w](t)j) � K8;T ; 8 t 2 [0; T ]:

Hence, at least formally, the existence result in [KSS01b] can only be applied if

the operators H1 and H3 are bounded. But, if we examine the proof of the global

existence result in [KSS01b], then we see that in the a-priori estimates therein

the assumptions corresponding to (H15)ii) are used after the uniform estimates

for ux and w have been derived. Hence, this a-priori estimates can also be used,

if one is considering a weakened version of (H15), where K8;T and K9;T are

replaced by k5;T

�
j"j[0;t] + jwj[0;t]

�
and k6;T

�
j"1j[0;t] + j"2j[0;t] + jw1j[0;t] + jw2j[0;t]

�
,

respectively, with non-decreasing functions k5;T ; k6;T : [0;1)! [0;1). A careful

examination of the local existence proof in [KSS01b, Section 3] should allow

to �nd a way do deal also with this weakened assumption, such that one can

show also the existence of solutions to (1.1)�(1.7) for unbounded H1 and H3. In

[KSS01a] the authors of [KSS01b] consider such an assumption for a modi�ed

version of the system (1.1)�(1.7).

Remark 2.11. For non-negative functions h1; : : : ; h4 2 C
2
loc(R) with h

0

1; : : : ; h
0

4 2
W

1;1(R) and operators ~H1; : : : ;
~H4 as in Remark 2.5 or as in Remark 2.6 with

non-negative weight functions �1; : : : ; �4 2 L1(0;1) satisfying (2.22) one can use

(1.14) and (1.15) to show that (H15) holds. If one is using the weakened version

of (H15) (see Remark 2.10), one needs only h02; h
0

4 2 W
1;1(R), h001; h

00

3 2 L
1(R),

and (2.22) for i = 2 and i = 4.

3 Uniform a-priori estimates

In this section, it will be assumed that (H1)�(H8) are satis�ed and that a solution

(u; �; w) to (1.1)�(1.7) is given, such that (2.23)�(2.26) hold. To prepare the proof

of the asymptotic results in the next section, some a-priori estimates are derived

that are uniform with respect to time.

Before this is done, we consider the balance law for the energy and a immediate

consequence:

Remark 3.1. Multiplying (1.1) by ut and adding the result to balance law (1.3) for

the internal energy, we get the balance law for the energy�
CV � +

�

2
u
2
t + F1[ux; w]

�
t
� ��xx = (ut(�utx + �))

x
+ g + utf; a.e. in 
1:

(3.1)
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For t > 0, we integrate this equation over 
 � (0; t), and use Green's formula,

(1.6), (1.7), (H1), and (H5), to show that

CV �(t) +
�

2
kut(�; t)k

2

L2(
) = I0 + I1(t); 8 t � 0 (3.2)

holds for the � de�ned in (2.31),

I0 :=CV k�0kL1(
) +
�

2
ku1k

2

L2(
) +

Z



F1;0(x) dx > 0; (3.3)

I1(t) :=

Z t

0

Z



(g(x; �; �(x; �)) + ut(x; �)f(x; �)) dx d�

�
Z



(F1[ux; w](x; t)) dx ; 8 t � 0: (3.4)

In the sequel, for 1 � p <1, the notation k�kp will be used as abbreviation for the

L
p(
)-norm, and k�k

1
will denote the C(
)-norm, i.e., the maximum norm on 
.

Moreover, Ci, for i 2 N, will always denote generic positive constants, independent
of time, space, and the considered solution.

Thanks to (2.23)�(2.26) and (H3), we can assume without losing generality that

� and � are continuous (maybe unbounded) functions on 
1 = 
 � [0;1), such

that (1.2) and (1.5) hold for all (x; t) 2 
1. Because of (1.7), (2.3), (2.4), we can

apply the assumption (H8) for "(�) := ux(x; �) and w(�) := w(x; �). For the sake

of notational convenience, we assume in the remaining part of this section without

losing generality that � = � = CV = � = � = 1.

In the following estimates, some ideas from [KSS01b, RZ97, SZZ98] are used.

Lemma 3.2. There are two positive constants C1; C2 such that

sup
0�t

(k�(�; t)k1 + kut(�; t)k2 + kF1[ux; w](�; t)k1) � C1; (3.5)Z
1

0

�
kg(�; t; �(�; t))k1 + kg(�; t; �(�; t))k21

�
dt �C2: (3.6)

Proof. Let

	(t) :=

Z



(F1[ux; w](x; t)� f1(x)u(x; t) +K1) dx ; 8 t � 0: (3.7)

Now, we get from (3.2) by using (2.31), (2.26), (3.3), (3.4), Hölder's inequality,

Young's inequality, (H1), (H2), (H5), and (H7) that for all t � 0�
k�(�; t)k1 +

1

2
kut(�; t)k

2

2 +	(t)

�
< C3 +

Z t

0

�
kg1(�; �)k1 + kg2(�; t)k1 k�(�; �)k1

+
1

2
kf(�; �)� f1k2 +

1

2
kf(�; �)� f1k2 kut(�; �)k

2

2

�
d� : (3.8)
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By (3.7), Hölder's inequality, (1.6), (H3), and (H7), we have

	(t) � K0 kF1[ux; w](�; t)k1 ; 8 t � 0:

Hence, because of (3.8), we can apply Gronwall's Lemma (see below), (H2), and
(H7) to show that that (3.5) and (3.6) are satis�ed.

The following version of Gronwall's Lemma can be derived from Proposition 1.4.2

in [BS96].

Lemma 3.3 (Gronwall's Lemma). Let a 2 L
1
loc(0;1) and c 2 L

1(0;1) denote

non-negative functions. If a function v 2 Cloc[0;1) satis�es

0 � v(t) � c(t) +

Z t

0

a(�)v(�) d� ; for a.e. t 2 (0;1);

then

0 � v(t) � kckL1(0;1) exp

�Z t

0

a(�) d�

�
; 8 t � 0:

To prepare the following estimates, we now consider the transformation due to

Andrews [And80], which is also used, e.g., in [Peg87, RZ97, KSS01b], and introduce

functions p; q; ~� : 
1 ! R that are de�ned by

p(x; t) :=

Z x

1

ut(�; t) d� ; q(x; t) := ux(x; t)� p(x; t); 8 (x; t) 2 
1; (3.9)

~�(x; t) := �(x; t) + F (x; t); 8 (x; t) 2 
1; (3.10)

with F as in (H7). Recalling (1.1)�(1.7) and (H7), we see that

pt � pxx = ~�; a.e. in 
1; (3.11)

p(1; t) = px(0; t) = 0; a.e. in (0; T ); p(x; 0) =

Z x

1

u1(�) d� ; a.e. in 
;

(3.12)

qt = �~�; a.e. in 
; (3.13)

q(x; 0) = u0;x(x)�
Z x

1

u1(�) d� ; a.e. in 
: (3.14)

Lemma 3.4. There are positive constant C4; C5 such that

sup
0�t

(kpx(�; t)k2 + kp(�; t)k
1
) �C4; (3.15)

sup
0�t

(kux(�; t)k1 + kw(�; t)k
1
+ ku(�; t)k

1
+ kq(�; t)k

1
) �C5: (3.16)
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Proof. In the light of the estimate for ut in (3.5) and the de�nition of p in (3.9),

we see that (3.15) holds. Considering (H8) for "� := 2C4 + 1, we get "� < "0;min,

"0;max < "+, w� < w0;min, and w+ > w0;max such that the remaining conditions in

(H8) are satis�ed. Now,

ux(x; t) 2 ["� � 2C4; "+ + 2C4]; w(x; t) 2 [w�; w+]; 8 (x; t) 2 
1: (3.17)

is proved by contradiction. Suppose that (3.17) does not hold. Then there is some

Æ 2 (0;minfw�; 1g) such that ux � "� � 2C4 � Æ and/or ux � "+ + 2C4 + Æ and/or

w � w� � Æ and/or w � w+ + Æ somewhere in 
1. We have ux(x; 0) = u0;x(x) 2
["�; "+] and w(x; 0) = w0(x) 2 [w�; w+] for all x 2 
 because of (2.3) and (2.4).

Since (2.23) and (2.25) yield that w and ux are continuous on 
1, we get x1 2 
,

t1 > 0 such that

(ux(x1; t1) 2 f"� � 2C4 � Æ; "+ + 2C4 + Æg and/or w(x1; t1) 2 fw+ + Æ; w� � Æg) ;
(3.18)

"� � 2C4 � Æ < ux(x; t) < "+ + 2C4 + Æ; 8 t 2 [0; t1); x 2 
; (3.19)

"� � 2C4 � Æ � ux(x; t1) � "+ + 2C4 + Æ; 8 x 2 
; (3.20)

w� � Æ < w(x; t) < w+ + Æ; 8 t 2 [0; t1); x 2 
; (3.21)

w� � Æ � w(x; t1) � w+ + Æ; 8 x 2 
: (3.22)

Hence, we see that (2.5) with " := ux(x; �) and (2.6) with w := w(x; �) hold for all

x 2 
 and t � t1, and it remains only to check the �rst condition in (H8)i)�iv) if
one wants to apply one the corresponding inequalities (2.7)�(2.10). Since ux and w

are uniformly continuous on 
� [0; t1], there is some open neighborhood U � 
 of

x1 such that

jux(x; t)� ux(x1; t)j+ jw(x; t)� w(x1; t)j �
Æ

8
; 8 x 2 U; t0 2 [0; t1]: (3.23)

Now, we consider the case ux(x1; t0) = "+ + 2C4 + Æ. Since ux is continuous on


� [0; t1] and ux(x1; 0) � "+, we get some t0 2 (0; t1) such that

"+ +
Æ

2
= ux(x1; t0); "+ +

Æ

2
< ux(x1; t) < "+ + 2C4 + Æ; 8 t 2 (t0; t1): (3.24)

Combining this with (3.23), we conclude that ux(x; t) � "+ for all x 2 U; t 2 (t0; t1).

In the light of (2.7) in (H8)i), we see that

kFkL1(
1) � H1[ux; w](x; t); 0 � H2[ux; w](x; t); 8 x 2 U; t 2 (t0; t1): (3.25)

Applying (1.2) and that � > 0 on 
1 by (2.26), we observe that � � �F; a.e. in
U � (t0; t1). Thanks to (3.13) and (3.10), we deduce that qt � 0 a.e. in U � (t0; t1).

This leads toZ
U

(q(x; t1)� q(x; t0)) dx d� =

Z
U

Z t1

t0

qt(x; t) dt dx � 0:

17



On the other hand, using (3.9), (3.15), (3.23), (3.24), and ux(x1; t0) = "+ + Æ

2
, we

conclude thatZ
U

(q(x; t1)� q(x; t0)) dx �
Z
U

�
ux(x; t1)� C4 � (ux(x; t0) + C4)

�
dx

�
Z
U

�
ux(x1; t1)�

Æ

8
�
�
ux(x1; t0) +

Æ

8

�
� 2C4

�
dx �

Z
U

Æ

4
dx > 0:

Hence, we have derived a contradiction. By an analogous argumentation, we get a

contradiction, if ux(x1; t1) = "� � 2C4 � Æ.

Now, we will deal with the case w(x1; t1) = w+ + Æ. Applying the continuity of w,

we get some t0 2 (0; t1) such that

w(x1; t0) = w+ +
Æ

2
; w+ +

Æ

2
< w(x1; t) < w+ + Æ; 8 t 2 (t0; t1): (3.26)

Combining this with (3.23) we see that w(x; t) � w+ for all x 2 U; t 2 (t0; t1).

Therefore, we conclude from (2.9) in (H8)iii) that

H3[ux; w](x; t) � 0; H4[ux; w](x; t) � 0; 8 x 2 U; t 2 (t0; t1): (3.27)

Since � > 0 a.e. on 
1 by (2.26), we deduce now from (1.5) and (1.4) that wt � 0

a.e. in U � (t0; t1): This leads toZ
U

(w(x; t1)� w(x; t0)) dx =

Z
U

Z t1

t0

wt(x; t) dt dx dx � 0:

Since w(x1; t1) = w+ + Æ, (3.26), and (3.23) yield that the integral on the left-hand

side has to be positive, we have derived a contradiction. An analogous argumentation

to get a contradiction can be used if w(x1; t1) = w� � Æ.

Hence, we have derived a contradiction for all cases we have to consider by (3.18).

Therefore, we have proved (3.17). Recalling (1.6) and (3.9), we get also uniform

bounds for u and q, and (3.16) is proved.

Lemma 3.5. There are positive constant C6; : : : C10 such that

max
1�i�4

sup
0�t

(kHi[ux; w](�; t)k1) � C6; (3.28)

0 � sup
0�t

Z 1

0

(�F2[ux; w](x; t)) dx � C7; (3.29)

max
1�i�4

j(Hi[ux; w])tj+ j(F1[ux; w])tj � C8

�
juxtj+

q
wt (G[w])t

�
(3.30)

� C9 (juxtj+ jwtj) ; a.e. in 
1; (3.31)

j�j+ jwtj � C10(1 + �); a.e. in 
1: (3.32)

18



Proof. Because of (3.16), we have uniform bounds for ux and w. Thanks to (H6)
and (3.5), we see that (3.28)�(3.30) are satis�ed. Recalling (3.16) and (H4)ii), we
deduce that

0 � wt(t) (G[w])t (t) � C11wt(t)
2
; for a.e. t 2 (0;1):

From (3.30), we get therefore (3.31). Combining (1.2), (1.5), (1.4), and (3.28), we

�nd that (3.32) holds.

Lemma 3.6. We have a.e. on 


(F1[ux; w])t � �(x; t)uxt

= � j(G[w])
t
wtj � jD1[ux; w]j � � (H2[ux; w]uxt + (G[w])

t
H4[ux; w]) : (3.33)

Proof. We apply (H4)i) and (1.2) to conclude that a.e. on 
1 holds

(F1[ux; w])t � �(x; t)uxt = (G[w])tH3[ux; w]� jD1[ux; w]j � �H2[ux; w]uxt:

Now, applying (1.5), (1.4), and (H4)ii) leads to (3.33).

Lemma 3.7. We have a positive constant C12 such thatZ
1

0

 



�x� (�; t)





2

2

+





uxtp
�
(�; t)






2

2

+





(G[w])t wt

�
(�; t)






1

+ kD2[ux; w](�; t)k1

!
dt

+ sup
0�t

kln �(�; t))k1 � C12: (3.34)

Proof. Testing (1.3) by �1=� and using (1.6), (3.33), (H2), and (H4)i), we observe
that

�
@

@t

Z



ln �(x; t) dx +

Z



 �
�x(x; t)

�(x; t)

�2

+
u
2
xt(x; t)

�(x; t)

!
dx

��
@

@t

Z



F2[ux; w](x; t) dx �
Z



j(G[w])t (x; t)wt(x; t)j+ jD1[ux; w](x; t)j
�(x; t)

dx

+

Z



(� jD2[ux; w](x; t)j+ jg2(x; t)j) dx :

Now, we integrate this equation over time and observe that (3.34) follows by applying

(3.29), (H2), (H5), (3.5), and the inequality

jln sj � s� ln s+ C13; 8 s > 0;

that can be shown by elementary analysis.

Lemma 3.8. We have a positive constant C14 such thatZ
1

0

�
kuxt(�; t)k

2

1 + kut(�; t)k
2

1
+ kp(�; t)k2

1
+ k(G[w])t (�; t)k

2

1

+ k(F1[ux; w])tk
2

1
+




�p� �
x
(�; 1)




2
1

�
dt � C14: (3.35)
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Proof. Since � > 0 a.e. on 
1, we can apply Schwarz's inequality and (3.5) to show

that for all t > 0

kuxt(�; t)k1 =
Z



juxt(x; t)jp
�(x; t)

p
�(x; t) dx � C15





uxtp
�
(�; t)






2

: (3.36)

Recalling now (3.34) leads to the estimate for uxt in (3.35). Using that, by (1.6) and

(2.23), ut(y; t) =
R y

0
uxt(x; t) dx for all y 2 
, we get the estimate for ut. Combining

this estimate with (3.9) leads to the estimate for p.

Applying (3.30), (H4)ii), (3.34), and Young's inequality, we deduce that

Z
1

0

 



(G[w])tp
�

(�; t)





2

2

+





(F1[ux; w])tp
�

(�; t)





2

2

!
dt � C16:

Considering now (3.36) with uxt replaced by (G[w])
t
, we get the estimate for (G[w])

t

in (3.35), and the estimate for (F1[ux; w])t is derived analogous. Thanks to Schwarz's

inequality, we have




�p� �
x
(�; t)





1
=

Z



j�x(x; t)jp
�(x; t)

dx �




 j�xj� (�; t)






2




p�(�; t)



2
:

In the light of (3.5) and (3.34), we see that also the estimate for
p
�x in (3.35) is

shown.

Lemma 3.9. For � and I1 as in (2.31) and (3.4) there are positive constant C17,

C18, and C19 such that

jI1(t)j � C17; C18 < �(t) < C19; 8 t � 0; (3.37)

�(�; t)� �(t)



1
� k�x(�; t)k1 � k�x(�; t)k2 ; 8 t � 0: (3.38)

Proof. Combining (3.4), (3.6), (1.7), (3.5), and Hölder's inequality, we see that

jI1(s)j � C20 +

����
Z



(u(x; s)� u0(x))f1(x) dx

����+
Z s

0

kf(�; t)� f1(t)k2 kut(�; t)k2 dt :

Recalling (3.16), (3.5), (H7), and (H1), we get the uniform bound for I1 in (3.37).

Since s 7! � ln s is a convex function on (0;1), we get by (2.26) and Jensen's

inequality that

� ln

Z



�(x; t) dx � �
Z



ln (�(x; t)) dx ; 8 t � 0:

Invoking now (3.34), (2.31), and (3.5), we get (3.37). The �rst inequality in (3.38)

follows the from the de�nition in (2.31), and the second by applying Schwarz's

inequality and
R


1 dx = 1.
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Lemma 3.10. We have a positive constant C21 such that

Z
1

0

 
k�x(�; t)k

2

2 +





 @@x
�
(ut)

2
�
(�; t)






2

2

+

�
@I1(t)

@t

�2
!

dt

+ sup
0�t

(kut(�; t)k4 + k�(�; t)k2) � C21: (3.39)

Proof. We test (3.1) by � + 1
2
u
2
t and (1.1) by �u3t where � > 0 will be �xed later.

Summing the resulting equations and using (1.6) and (3.4), we observe that for all

t � 0

1

2

@

@t





�(�; t) + 1

2
u
2
t (�; t)






2

2

+ k�x(�; t)k
2

2 +
�

4

@

@t
kut(�; t)k

4

4 + (1 + 3�) kut(�; t)utx(�; t)k
2

2

� �(t)
@I1(t)

@t
+ I2(t) + I3(t) + I4(t); (3.40)

with

I2(t) :=

Z



�
� (F1[ux; w])t (x; t) + g(x; t; �(x; t)) + ut(x; t)f(x; t)

�
�
�(x; t)� �(t)

�
dx ; (3.41)

I3(t) := �
Z



�
1

2
(F1[ux; w])t u

2
t + 2�xututx + ut��x + (1 + 3�)u2tutx�

�
dx ; (3.42)

I4(t) :=

Z



(g + (1 + 2�)utf)
1

2
u
2
t dx : (3.43)

In the sequel, the generic constants Ci will be independent of �. Applying (3.41),

Hölder's inequality, (H7), (3.38), and Young's inequality, we get

I2(t)

�
�
k(F1[ux; w])t (�; t)k1 + kg(�; t; �(�; t)k1 + kut(�; t)k1 kf(�; t)k1

� 

�(�; t)� �(t)



1

�
1

6
k�x(�; t)k

2

2 + C22

�
k(F1[ux; w])t (�; t)k

2

1
+ kg(�; t; �(�; t))k21 + kut(�; t)k

2

1

�
: (3.44)

Invoking (3.42), (3.31), (3.32), Hölder's inequality, and Young's inequality, we de-

duce that

I3(t) �C23

�
(1 + �)



utx(�; t)u2t (�; t)

1 + 

u2t (�; t)

1 + 

u2t (�; t)�(�; t)

1�
+ 2 k�x(�; t)ut(�; t)utx(�; t)k1 + C24 kut(�; t)�x(�; t)k1
+ C25 k�x(�; t)ut(�; t)�(�; t)k1 + (1 + �)C26



u2t (�; t)utx(�; t)�(�; t)

1
�C27

�
kut(�; t)utx(�; t)k

2

2 +
�
1 + �

2
�
kut(�; t)k

2

2 +
�
1 + �

2
�
kut(�; t)k

2

1
k�(�; t)k22

�
+

1

6
k�x(�; t)k

2

2 : (3.45)
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Using (3.43), (H2), Hölder's inequality, (3.5), (H7), (3.38), (3.37), and Young's

inequality, we conclude

2I4(t)

�kg1(�; t)k2 kut(�; t)k2 kut(�; t)k1 +
�
�(t) +



�(�; t)� �(t)



1

�
kg2(�; t)k1 kut(�; t)k

2

2

+ (1 + 2�) kut(�; t)k2 kf(�; t)k2 kut(�; t)k
2

1

�
1

6
k�xk

2

2 + C28

�
kg1(�; t)k

2

2 + kg2(�; t)k1 + kg2(�; t)k
2

1

�
+ C29(1 + �

2) kut(�; t)k
2

1
:

(3.46)

Because of (3.2) and Young's inequality, we have

�(t)
@I1(t)

@t
� I0

@I1(t)

@t
+

1

2

@

@t
(I1(t))

2
+

1

4
kut(�; t)k

4

2 +
1

4

�
@I1(t)

@t

�2

: (3.47)

From (3.4), we get by using Hölder's inequality, Young's inequality, (H7), and (H2)
that�

@I1(t)

@t

�2

� C30

�
kg(�; t; �(�; t))k21 + kut(�; t)k

2

2 + k(F1[ux; w])t (�; t)k
2

1

�
: (3.48)

Now, we integrate the sum of (3.40) and (3.48) over time, and use (1.7), (H1),
(3.44)�(3.48), (3.6), (H2), (3.5), (3.35), (3.37), and � > 0 a.e. on 
 to show that

1

2
k�(�; s)k22 +

�

4
kut(�; s)k

4

4

+

Z s

0

 
1

2
k�x(�; t)k

2

2 + (1 + 3�) kut(�; t)utx(�; t)k
2

2 +
3

4

�
@I1(t)

@t

�2
!

dt

� C31

�
1 + �

2 +

Z s

0

�
kut(�; t)utx(�; t)k

2

2 +
�
1 + �

2
�
kut(�; t)k

2

1
k�(�; t)k22

�
dt

�

holds for all s > 0. Next, we de�ne � := C31, apply Gronwall's Lemma, and recall

(3.35) to show that (3.39) is satis�ed.

Lemma 3.11. There are positive constants C32; C33 such thatZ
1

0

�
kuxt(�; t)k

2

2 + k(G[w])t (�; �)wt(�; t)k1 + kD1[ux; w](�; �)k1
�
dt � C32; (3.49)Z

1

0

�
kpxx(�; t)k

2

2 + k(p+ q)t(�; t)k
2

2 + kut(�; t)k
2

1
+ k(F1[ux; w])t (�; t)k

2

2

+

4X
i=1

k(Hi[ux; w])t (�; t)k
2

2
+ k(G[w])

t
(�; t)k2

2

�
dt � C33: (3.50)
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Proof. Integrating (1.3) over 
, and applying (1.6), (2.31), (3.33), and (H4)i), we
derive

kuxt(�; t)k
2

2 �
@�(t)

@t
+ kg(�; t; �(�; t))k1 � k(G[w])t (�; t)wt(�; t)k1 � kD1[ux; w](�; t)k1

�
Z



�
�(x; t)� �(t)

�
(H2[ux; w](x; t)uxt(x; t) + (G[w])t (x; t)H4[uw; w](x; t)) dx

� �(t)
@

@t

Z



F2[ux; w](x; t) dx :

Wemultiply this inequality by 1=�(t) and use (3.28), Hölder's inequality, and Young's

inequality to prove

1

�(t)

�
kuxt(�; t)k

2

2 + k(G[w])t (�; t)wt(�; t)k1 + kD1[ux; w](�; t)k1
�

�
@ ln �(t)

@t
+

1

�(t)
kg(�; t; �(�; t))k1 �

@

@t

Z



F2[ux; w](x; t) dx

+
C34

�(t)

�

�(�; t)� �(t)


2
1
+ kuxt(�; t)k

2

1 + k(G[w])
t
(�; t)k2

1

�
:

Integrating this inequality over time, and using (3.6), (3.37), (3.38), (3.35), and

(3.39), we observe that (3.49) is proved. The estimates in (3.50) follow by applying

(3.9), (1.6), (3.30), (H4), and (3.16).

Lemma 3.12. There is positive constant C35 such thatZ
1

0

�
k~�(�; �)k22 + kpt(�; �)k

2

2

�
d� � C35: (3.51)

Proof. Let J(x; t) : 
1 ! R be de�ned by

J(x; t) := H2[ux; w](x; t)

�
�(t)� �(x; t) +

1

2
kut(�; t)k

2

2 +

Z x

1

(f1(�)� f(�; t)) d�

�
+ ~�(x; t); a.e. on 
: (3.52)

Utilizing (3.11) two times, we get

(~�(x; t))
2
= pt(x; t)~�(x; t)� pxx(x; t)~�(x; t)

= pt(x; t)J(x; t) + (~�(x; t) + pxx(x; t)) (~�(x; t)� J(x; t))� pxx(x; t)~�(x; t):

Integrating this equation over 
, and using Young's inequality, (3.52), (3.28), and

(3.38), we observe that

1

2
k~�(�; t)k22 �

@

@t

Z



p(x; t)J(x; t) dx �
Z



p(x; t)
@J(x; t)

@t
dx

+ C36

�
kpxx(�; t)k

2

2 + k�x(�; t)k2 + kut(�; t)k
4

2 + kf(�; t)� f1(�; t)k21
�
: (3.53)
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Applying (3.52), (3.10), (1.2), (H7), and (3.2), we observe that

J(x; t) = H1[ux; w](x; t) +H2[ux; w](x; t) (I1(t) + I0) +

Z x

1

f1(�) d� : (3.54)

Hence, using (3.28), (3.37), (H7), Hölder's inequality, Young's inequality, (3.35),
(3.50), and (3.39), we get uniform bounds for J and, for all s � 0,

�
Z s

0

Z



p(x; t)
@J(x; t)

@t
dx dt �

Z s

0

 
kp(�; t)k2

1
+





@J(�; t)@t






2

2

!
dt � C37:

Integrating now (3.53) with respect to time and using (3.15), (3.50), (3.39), (3.5),

(3.35), and (H7), we have shown the estimate for ~� in (3.51). Combining this

estimate with (3.11) and (3.50), we get the estimate for pt.

Lemma 3.13. Let � 2 L2
loc(0;1;H2(
)) \ H

1
loc(0;1;L2(
)) be the solution to the

parabolic initial-boundary value problem

�t � �xx = ~�t; a.e. in 
1; (3.55)

�x(0; t) = �(1; t) = 0; 8 t � 0; �(�; 0) � 0: (3.56)

Then we have a positive constant C38 such that, for all t � 0,

k�(�; t)k2
1
� C38

 
1 + max

0���t
k�(�; �)k3=2

1
+

�Z t

0

k�t(�; �)k
2

2

�3=4
!
: (3.57)

Proof. Multiplying (3.55) by �, integrating over 
� (0; T ), performing partial inte-

grations, and using (3.56), we get for all t > 0

1

2
k�(�; t)k22 +

Z t

0

k�x(�; �)k
2

2 d� =

Z t

0

Z



~�t(x; �)�(x; �) dx d�

=

Z



~�(x; t)�(x; t) dx �
Z t

0

Z



~�(x; �)�t(x; �) dx d� : (3.58)

Because of (3.10), (3.32), (3.39), and (H7), we have a uniform upper bound for

k~�(�; t)k2. Hence, we get from (3.58) by applying Hölder's inequality, Young's in-

equality, and (3.51) that

1

4
k�(�; t)k22 +

Z t

0

k�x(�; �)k
2

2 d� � C39

�Z t

0

k�t(�; �)k
2

2 d�

�1=2

: (3.59)

Formally, we test (3.55) with �t , use (3.56), integrate over time, and apply Young's

inequality to deduce thatZ t

0

k�t(�; �)k
2

2 d� + k�x(�; t)k
2

2 �
1

2

Z t

0

k�t(�; �)k
2

2 d� +
1

2

Z t

0

k~�t(�; �)k
2

2 d� : (3.60)
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For a rigorous derivation of this inequality, one has to consider (3.55) with ~�t replaced

by some smooth approximation, perform this computation for the corresponding

solutions and consider afterwards the limit.

Inserting (3.59) into the left-hand side of (3.60) and using (3.10), (1.2), (3.35),

Hölder's inequality, Young's inequality, (3.28), (3.50), and (H7), we observe that

1

42C2
392

k�(�; t)k42 + k�x(�; t)k
2

2 �
1

2

Z t

0

k(H1[ux; w] + �H2[ux; w] + F )t (�; �)k
2

2
d�

� C40 + C41 max
0���t

k�(�; �)k2
1
+ C42

Z t

0

k�t(�; �)k
2

2 d� : (3.61)

Thanks to the Gagliardo-Nirenberg inequality (see below) and Young's inequality,

we conclude that

k�(�; t)k2
1
�
�
C43 k�x(�; t)k

1=2

2 k�(�; t)k1=22 + C44 k�(�; t)k2
�2

� C45

�
1 + k�x(�; t)k

3=2

2 + k�(�; t)k32
�
:

Now, we apply (3.61) and Young's inequality to prove that (3.57) holds.

The following version of the Gagliardo-Nirenberg inequality is a special case, more

general formulations can be fond, e.g., in [BS96, Zhe95].

Lemma 3.14 (Gagliardo-Nirenberg inequality). For all p � 1 there are positive

constants C46; C47 such that

kvk
1
� C46 kvxk

2=(p+2)

2 kvkp=(p+2)

p + C47 kvkp ; 8 v 2 H1(
): (3.62)

Lemma 3.15. There is a positive constant C48 such that

kuxt(�; t)k
2

1
� C48

 
1 + max

0���t
k�(�; �)k2

1
+

�Z t

0

k�t(�; �)k
2

2 d�

�3=4
!
: (3.63)

Proof. Let z1; z2 : 
1 ! R be the solutions to the parabolic initial-boundary value

problems

zi;t � zi;xx = 0; a.e. in 
1; 8 i 2 f1; 2g; (3.64)

zi(1; t) = zi;x(0; t) = 0; for a.e. t > 0; 8 i 2 f1; 2g; (3.65)

z1(x; 0) = u1;x(x; 0); z2(x; 0) = ~�(x; 0) a.e. in 
: (3.66)

Let z3 : 
1 ! R be de�ned by

z3(x; t) =

Z x

1

Z y

0

z1(�; t) d� dy +

Z t

0

(z2(x; �) + �(x; �)) d� ; 8 (x; t) 2 
1: (3.67)
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Recalling (3.64), (3.65), (3.66), (3.55), (3.56), and (H1), we observe that

z3;t = z1 + z2 + �; z3;xx = z1 + z2 + � � ~�; a.e. in 
1; (3.68)

z3(1; t) = 0 = z3;x(0; t); for a.e. t � 0; z3(x; 0) =

Z x

1

u1(�) d� ; 8 x 2 
:

Hence, we see that z3 is a solution to the linear parabolic initial-boundary value

problem considered in (3.11), (3.12). Since p is the unique solution to this problem,

we have p = z3 a.e. on 
1. Therefore, recalling uxt = pxx and (3.68), we have

uxt = z3;xx = z1 + z2 + � � ~�; a.e. in 
1: (3.69)

Using (3.66), (H1), (3.10), (1.2), (1.6), (H6), and (H7), we get uniform bounds for

z1(�; 0) and z2(�; 0). Applying the maximum principle for linear parabolic equations,

we get uniform bounds for z1 and z2. Because of (3.10), (H7), and (3.32), we have

~� � C49 + C50�; a.e. in 
1:

Thus, applying (3.69), (3.57), and Young's inequality, yields that (3.63) holds.

Lemma 3.16. There is a positive constant C51 such that

sup
0�t

k�x(�; �)k2 +
Z t

0

k�t(�; �)k
2

2 d� � C51: (3.70)

Proof. Testing (1.3) by �t , using (1.6), (H2), Young's inequality, Hölder's inequal-
ity, and (3.32), we see that

1

2
k�t(�; t)k

2

2 +
1

2

@

@t
k�x(�; t)k

2

2

�
1

2



u2xt(�; t) + �uxt(�; t)� (F1[ux; t])t (�; t) + g(�; t; �(�; t))


2
2

� C52 kuxt(�; t)k
2

2

�
kuxt(�; t)k

2

1
+ 1 + k�(�; t)k2

1

�
+ C53 k(F1[ux; t])t (�; t)k

2

2

+ C54 kg1(�; t)k
2

2 + C55 kg2(�; t)k
2

2 k�(�; t)k
2

1
: (3.71)

Integrating this equation over time, using (1.7), (H1), (H2), Hölder's inequality,
(3.49), (3.50), and (3.63), we see thatZ s

0

k�t(�; t)k
2

2 dt + k�x(�; s)k
2

2 � C56 + C57 max
0�t�s

�
kuxt(�; t)k

2

1
+ k�(�; t)k2

1

�

� C58 + C59

�Z s

0

k�t(�; t)k
2

2 dt

� 3

4

+ C60 max
0�t�s

k�(�; t)k2
1
: (3.72)

Thanks to the Gagliardo Nirenberg inequality and (3.5), we have

k�(�; t)k
1
� C61 k�x(�; t)k

2=3

2 k�(�; t)k1=31 + C62 k�(�; t)k1 � C63 + C64 k�x(�; t)k
2=3

2

Using this inequality to estimate the right-hand side of (3.72), and applying Young's

inequality afterwards, we see that (3.70) holds.
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Lemma 3.17. There are positive constants C65; C66 such that

sup
0�t

(k�(�; t)k
1
+ kuxt(�; t)k1 + k�(�; t)k

1
+ kwt(�; t)k1) � C65; (3.73)Z

1

0

�
k�t(�; t)k

2

2 + k t(�; t)k
2

2 + k~�t(�; t)k
2

2

�
dt � C66; (3.74)Z

1

0

(jD1[ux(x; �); w(x; �)](t)j+ jD2[ux(x; �); w(x; �)](t)j) dt <1; for a.e.x 2 
:

(3.75)

Proof. Using (3.38) and (3.70), we get the estimate for � in (3.74) and applying in

addition (3.63) and (3.32) leads to the remaining estimates in (3.73). Invoking (1.2),

(1.5), (3.50), (3.73), (3.70), and (3.28), we get the estimates for �t and  t. Utilizing

also (3.10), (H7), and (3.35), we derive the estimates for ~�t. Combining (3.34) and

(3.49) and using Fubini's theorem, we see that (3.75) holds.

4 Proof of the asymptotic results

As in the last section, it will be assumed that (H1)�(H8) are satis�ed, and that a

solution (u; �; w) to (1.1)�(1.2) is given, such that (2.23)�(2.26) holds.

For proving the asymptotic results in Theorem 1 with an argumentation similar to

[RZ97, Section 4], the following modi�cation of [SZ93, Lemma 3.1] will be used. In

the original formulation, it was assumed that the inequality in (4.1) holds for all t

in the considered interval, but the proof in [SZ93] can also be used if this inequality

holds only for a.e. t in the considered interval.

Lemma 4.1. Suppose that y and h are non-negative functions on (0;1), with y0

locally integrable, such that there are positive positive constants A1; : : : ; A4 such that

y
0(t) � A1y

2(t) + A2 + h(t); for a.e. t 2 (0;1); (4.1)Z
1

0

y(t) dt � A3;

Z
1

0

h(t) dt � A4: (4.2)

Then

lim
t!1

y(t) = 0: (4.3)

Lemma 4.2. We have (2.28) and

lim
t!1

kpx(�; t)k2 = lim
t!1

kut(�; t)k2 = 0; (4.4)

lim
t!1

k~�(�; t)k2 = lim
t!1

kqtk2 = 0: (4.5)

Proof. Testing (3.11) with �pxx, applying (3.12) and Young's inequality, we see that

1

2

@

@t
kpx(�; t)k

2

2 + kpxx(�; t)k
2

2 �
1

2
kpxx(�; t)k

2

2 +
1

2
k~�(�; t)k22 ; for a.e. t 2 (0;1):
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Since ut = px a.e. in 
1, we see by recalling (3.35) and (3.51) that we can apply

Lemma 4.1 to show that (4.4) holds. We have, by Young's inequality,

@

@t
k~�(�; t)k22 = 2

Z



~�(x; t)~�t(x; t) dx � k~�(�; t)k22 + k~�t(�; t)k
2

2 ; for a.e. t 2 (0;1):

Invoking (3.51), (3.74), and Lemma 4.1, we get the convergence result for ~� in (4.5).

Since (3.13), (3.10), and (H7) yield that qt = �~�, we also have the result for qt in

(4.5). Combining (4.5), (3.10), (H7), and the de�nition on F1 in (2.31), we get

(2.28).

Lemma 4.3. We have

lim
t!1

kpt(�; t)k2 = lim
t!1

kpxx(�; t)k2 = lim
t!1

kuxt(�; t)k2 = lim
t!1

kut(�; t)k1 = 0: (4.6)

Proof. Di�erentiating (3.11) with respect to t, testing it afterwards by pt, and ap-

plying (3.11) and Young's inequality, we see that

@

@t
kpt(�; t)k

2

2 + kpxt(�; t)k
2

2 �
1

2
kpt(�; t)k

2

2 +
1

2
k~�t(�; t)k

2

2 ; for a.e. t 2 (0;1):

Using (3.51), (3.74), and Lemma 4.1, we get the convergence result for pt in (4.6).

By (3.11), we can combine this with (4.5) to prove the convergence result for pxx in

(4.6). Recalling also (3.9), we get the convergence result for uxt and using (1.6), we

obtain the result for ut.

Lemma 4.4. We have

lim
t!1

k�x(�; t)k2 = lim
t!1



�(�; t)� �(t)



1

= 0: (4.7)

Moreover, we have some constant �� > 0 such that (2.30) holds.

Proof. Combining (3.71) with (3.73), we get for a.e. t 2 (0;1)

1

2

@

@t
k�x(�; t)k

2

2 � C67

�
kuxt(�; t)k

2

2 + k(F1[ux; t])t (�; t)k
2

2
+ kg1(�; t)k

2

2 + kg2(�; t)k
2

2

�
:

Because of (3.39), (3.49), (3.50), and (H2), we can now use Lemma 4.1 to get the

convergence result for �x. Recalling (3.38), we obtain the result for ���. Combining
this with (3.37), we get some t0 > 0 such that

�(x; t) > C18=2; 8 x 2 
; t � t0:

Moreover, (2.24) and (2.26) yield that � is continuous and positive on 
� [0; t0], and

therefore also bounded from below by a positive constant C 0 on this set. Setting

�� := min(C18=2; C
0), we see that (2.30) holds.

Lemma 4.5. If G is the identity operator, then we have (2.33) and

lim
t!1

kwt(�; t)k2 = lim
t!1

k (�; t)k2 = 0: (4.8)
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Proof. Testing the time derivative of (1.4) by wt and using Young's inequality, we

see that for a.e. t 2 (0;1)

@

@t
kwt(�; t)k

2

2 �
Z



wt(x; t) t(x; t) dx �
1

2
kwt(�; t)k

2

2 +
1

2
k t(�; t)k

2

2 :

By assumption, we have wt = (G[w])
t
and can therefore apply (3.50), (3.74), Lemma

4.1, and (1.4) to show that (4.8) holds. Using now (H6)iii) and (4.6), we get also

(2.33) .

Lemma 4.6. Assume that H1 � H3 � F1 � 0, g � 0, and f � 0. Then, we have

�(�; t) ���!
t!1

k�0k1 +
�

2CV

ku1k
2

2 ; in L
1(
): (4.9)

and (2.35). If G is the identity operator then we have (2.36).

Proof. Thanks to the assumptions, (3.4), (3.10), (1.2), (H7), and (H5), we see that
I1 � 0, that I0=CV is equal to the right�hand side of (4.9), and that ~� = �H2[ux; w].

Invoking (3.2), (4.6), (4.7), (4.5), and (H1), we get (4.9) and (2.35). If G is the

identity operator then it follows from (4.8),  = �H4[ux; w], and (4.9) that (2.36)

holds.

Lemma 4.7. If (H9) holds then there is a u1 2 W
1;1(
) such that (2.37)�(2.38)

hold.

Proof. Owing to (3.75) and (H9), we have a function "1 : 
! R such that

ux(x; t) ���!
t!1

"1(x); for a.e. x 2 
: (4.10)

Invoking (3.16), compactness, and properties of weak-star and weak convergence,

we see that

ux(�; t) ���!
t!1

"1; weakly-star in L
1(
): (4.11)

De�ning now u1(x) :=
R x

0
"1(�) and using (1.6), we conclude that u1 2 W

1;1(
)

and (2.37)�(2.38) hold.

Lemma 4.8. If (H10) holds then there is a w1 2 L1(
) such that (2.39) holds.

Proof. Thanks to (3.75), (H10), (3.16), compactness, and properties of weak con-

vergence, we get a w1 2 L1(
) such that (2.39) holds.

This completes the proof of Theorem 1.
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