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Abstract

The asymptotic behaviour for ¢ — oo of the solutions to a one-dimensional
model for thermo-visco-plastic behaviour is investigated in this paper. The
model consists of a coupled system of nonlinear partial differential equations,
representing the equation of motion, the balance of the internal energy, and
a phase evolution equation, determining the evolution of a phase variable.
The phase evolution equation can be used to deal with relaxation processes.
Rate-independent hysteresis effects in the strain-stress law and also in the
phase evolution equation are described by using the mathematical theory of
hysteresis operators.

1 Introduction

In this paper, an initial-boundary value problem for a system of partial differen-
tial equations involving hysteresis operators is considered, and the asymptotic be-
haviour of the solutions to this system is investigated. The system has been derived
in [KSS01b] to model one-dimensional thermo-visco-plastic developments connected
with solid-solid phase transitions taking also into account the hysteresis effects ap-
pearing on the macroscopic scale as a consequence of effects on the micro- and/or
mesoscale.

To describe such developments, one is considering the evolution of the displacement
u, of the absolute temperature @, and of a phase variable w, which is usually a so-
called generalized freezing indez, see [KS00c|. For a wire of unit length, the evolution
of these fields is determined by the following system:

PUs — Plgee = 05 + f(z,t), a.e. in Q, (1.1)
o = Hilug, w] + OHa[u,, w], a.e.in N, (1.2)
(Cy0 + Filug, w]), — kbpe = pul, + ouz + g(z,t,0), ae. in O, (1.3)
vw; = —1, a.e. in Qg (1.4)
Y = Halug, w] + OHyugy, w], a.e.in N, (1.5)
u(0,t) =0, pugn(l,t)+o(l,t) =0, 6,(0,t)=0,(1,t)=0, a.e. in (0,00),
(1.6)
u(-,0) =ug, wu(-,0)=1uqy, 6(-,0) =06y, w(-,0)=wy, ae.in Q,  (1.7)

with Q. :=Q x (0,00) and Q := [0, 1].

The equation (1.1) is the equation of motion, (1.3) is the balance of internal en-
ergy, and (1.4) is the phase evolution equation. By the constitutive law (1.2), the
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elastoplastic stress o is determined, and the constitutive law (1.4) defines the ther-
modynamic force ¥. The boundary condition (1.6) means that the wire is fixed
at x = 0, stress-free at £ = 1, and thermally insulated at both ends. Here, z de-
notes the space variable, ¢ denotes the time, and the indices z and ¢ denote the
differentiation with respect to space and time, respectively.

The mass density p, the viscosity u, the specific heat Cy,, the heat conductivity
k, and the kinetic relaxation coefficient v are supposed to be positive constants.
The initial data for the displacement, the velocity, the temperature, and the phase
variable considered in (1.7) are denoted by ug, u1, 6y, and wy, respectively. Finally,
the nonlinearities H;, 1 < i < 4, and F; are hysteresis operators (see below), where
one needs to take into account us(z, )|, and w(z, )|, 4 to compute H;[u,, wl(z, )
and F[ug,, w](z,t).

These operators are supposed to reflect some memory in the material on the macro-
scale, resulting from effects in the micro/mesoscale. Such effects can lead to hystere-
sis loops, as they are for example observed in the macroscopic strain-stress relation
(¢ - o, where € = wu, is the linearized strain) determined from measurements in
uniaxial load-deformation of materials like shape memory alloys. The curves show
a strong dependence on the temperature, but many of them are rate-independent,
i.e., they are independent of the speed with which they are traversed.

There are other approaches to model hysteretic behaviour by considering systems
similar to parts of (1.1)—(1.5), where the operators F; and H,;, for 1 < i < 4, are
superposition operators. These models are derived by considering a free energy,
which is a superposition operator, involving a potential which has (one or more)
concave parts. The concave parts of the potential correspond to instable physical
states, and these instabilities are supposed to produce the observed hysteresis effects.
Such approaches have successfully been used and investigated in a number of papers,
see, e.g., |[BS96, DH82, RZ97, Vis96| and the references therein, but the modelling
by non-convex free energies has its limits, since a non-convex part of the potential
alone does not ensure that hysteresis loops are present, see, e.g., [Miil01]. Moreover,
the simple superposition operator cannot represent all the complicated hysteresis
curves that are observed in experiments.

Hence, to describe such structures, the more general hysteresis operators have been
introduced and used in a number of papers, see, e.g., the monographs [BS96, Kre96,
KP89, Vis94| to this subject and the references therein. For a final time 7" > 0, an
operator #H : C[0,T] — Map|0,T] := {v : [0,T] — R} is a hysteresis operator if it is
rate-independent and causal according to the following definitions. The operator H
is called rate-independent, if for every v € C[0,T] and every continuous increasing
(not necessary strictly increasing) function « : [0,7] — [0,7] with «(0) = 0 and
a(T) =T it holds that

Hv o a(t) = H[v](a(t), Yte[o,T]. (1.8)

An operator H : D(H)(C Map|0,T]) — Map|0, 7] is said to be causal, if for every
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Figure 1: An example for the evolution of (g(t), S,[0?,¢€](t)), starting in (£(0), o?).
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v1,v2 € D(H) and every ¢ € [0, 7] we have the implication
v1(7) =wve(7), VT € [0,T] = H[vi](t) = H[va](2). (1.9)

An example for a hysteresis operator is the so-called stop operator, which is also know
as Prandtl’s normalized elastic-perfectly plastic element. To define this operator, we
consider some yield limit » > 0, an initial stress ¢° € [—r, 7], and a finial time
T > 0. For any input function e € Wb(0,T), we have (see, e.g., [BS96, KP89,
Kre96, Vis94]) a unique solution o, € W1(0,T) to the variational inequality

o.(t) € [-r,r], Vte[0,T], o,(0)=o0?, (1.10)
(ee(t) — 0y4(t)) (0,.(¢) =) >0, Vnpe[-rr], ae in (0,7). (1.11)

This defines the stop operator
S, i [-r,r] x WHH0,T) — W (0,T) : (00,¢) + o,. (1.12)

An example for the evolution of the input and the output for the stop operator
is presented in Figure 1. Connected to the stop operator S, is another important
hysteresis operator, the so-called play operator P, defined by

P, [-r,r] x WHH0,T) — WH(0,T) : (02,¢) > & — S,[0?, €] (1.13)

For all ¢?,0%!,06%2 € [—r,r| and all €,e1,e, € WH(0,T), these operators satisfy

T r T

(see, e.g., [BS96, KP89, Kre96])

HS’"[UT[‘)’g]HC[O,T} <, ‘Sr[ag,e]‘Q = (S;]0),¢]),e, ae.in (0,T), (1.14)



|Selopt, el (t) — Siloy?, ]|
(1.15)

< |ew(t) — ea(t)| + max {Orgagt le1() — ea(7)], ot — ot

}, Vtelo,T],

<%Sf[a£,s]> + | (rPyloy,€]),| = Siloy,€ler, ae.in (0,7). (1.16)

The inequality (1.15) allows to extend the stop and the play operator to Lipschitz
continuous operators on [—r,r] x C[0,T]. These operators are not differentiable,
which is quite typical for hysteresis operators, since nontrivial hysteresis operators
are at best Lipschitz continuous or only locally Lipschitz continuous in suitable
functions spaces, but they are not differentiable. This leads to problems for the
mathematical investigation of equations involving hysteresis operators. To overcome
this difficulties, one is applying inequalities and equalities similar to (1.16). Using the
notation of [BS96, Chapter 2.5], this equation means that 1S?[o?, -] is the clockwise
admissible potential and rP,[0?,-] is the corresponding dissipation operator for the
operator S,[a?, -].

Let Map[0,00) := {v : [0,00) — R}. An operator H : D(H)(C Mapl0,00) x
Mapl0, 00)) — Map|0, co) is said to be causal, if for every (e1,w;), (€2, w2) € D(H)
and every t > 0 we have the implication

81(7’) :62(7'), ’wl(T) :’wg(T), V1€ [O,t] = ’H[sl,wl](t) :H[Sz,’wz](t).
(1.17)
Moreover, the operator H generates an operator 7 mapping (¢, w) with €, w :  x
[0,7] — R such that (e(z,:),w(z,-)) € D(H) for a.e. z € Q to the function on
Q x [0, T] defined by

Hle, w|(z,t) = Hle(z, ), w(z,)](t), VYte[0,T], fora.e.xzec (1.18)

In the sequel, we will no longer distinguish between 7 and the generated operator
H. This holds especially for #;,...,Hs, and Fi, since for these operators the
same notation will be used for the causal operators discussed in the assumptions in
the next section and the operators generated from these operators, which are the
operators considered in the system (1.1)—(1.7).

The hysteresis phenomena described by hysteresis operators are often related to
changes between different configurations within the wire. In the system above, these
configurations are described by the phase parameter w, and the evolution of these
configurations is described by the phase evolution equation (1.4). Such an equation
allows to take also into account relaxation processes that appear in addition to the
rate independent hysteresis loops, which are modeled by the hysteresis operators.

Let recall some results for systems with hysteresis operators similar to the one
above. In [GKS00, KS98a, KS00b, KS00c, KS02, KSZ00|, a multi-dimensional
phase transition is considered without taking mechanical effects into account. This
corresponds to investigate (1.3)—(1.5) without a dependence on u or o. The one-
dimensional thermoelastoplastic hysteresis without considering relaxation processes
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in the phase transition, i.e., (1.1)—(1.3) with no dependence on w, has been studied
in [KS97, KS98b].

For the complete system (1.1)—(1.7) above with an additional Ginzburg term ;g4
on the left-hand side of (1.1) and boundary condition u = u,, = 0 on 99 for u, the
global existence and uniqueness of a solution has been shown in [KSS01a].

The system (1.1)—(1.7) has been derived and investigated in [KSSO1b]. Therein,
the existence, uniqueness, and regularity of a strong solution has been proved (see
Theorem 2 in Section 2.3), and it has also been shown that the Clausius-Duhem
inequality and therefore the second principle of thermodynamics is satisfied for the
solution.

In present work, we are dealing with the asymptotic behaviour for ¢ — oo for the
system under consideration. After discussing the assumptions in Section 2.1, the
results are presented in Theorem 1 in Section 2.2. The a-priori estimates derived in
Section 3 are used in Section 4 to prove this theorem.

2 Asymptotic behaviour of solutions

2.1 Assumptions

The assumptions used in the investigation of the asymptotic behaviour of the solu-
tion to (1.1)—(1.7) are now presented and discussed. Let Cj,.[0,00) denote the set
of all functions from [0,00) to R that are in C[0,T] for all T > 0. For ¢ > 0, the
seminorm || 4 on Clec[0,00) and on C[0,T] for T' > t is defined by

|flio = max [f(s)]- (2.1)

0<s<t

We will use the following assumptions:

(H1) We have ug € H*(2), u1 € W'>(Q), 0y € H'(Q), wo € H'(Q), and there is
some § > 0 such that 6y(z) > ¢ for all z € Q. Moreover, the compatibility condition
u0(0) = u1(0) = 0 is satisfied.

(H2) We assume that g : Q x (0,00) x R — R is a Carathéodry function such that
there are functions g1, g> : Qs — [0, 00), with

g€ TH0w) 0 I(Q), g2 € D0, T3 I¥(Q) 1 I(0,T: L¥(Q)),
—go(z,t)s < g(z,t,5) < gi(z,t) + go(z, t)s, V(z,t) € Voo, s > 0.

(H3) The operators Hi, ..., Hs, F1 : Cioc[0, 00) X Cioc[0, 00) — Cioc [0, 00) are causal
and map W1 (0, 00) x W,-1(0, 00) into W,2!(0,00). The operators map C[0,T] x

C|0,T] continuously into C[0,T] for all T" > 0, and for all e,w € Cj,.[0, 00) it holds

File,w](t) >0, Vt>0.



(H4) There exist causal operators Fy : W2 (0,00) x W' (0,00) — W20, 00),
Dy, Dy : W1 (0,00) x W1 (0,00) — LL(0,00), G : W1 (0,00) — W2H(0, 00), and

loc loc

a non-decreasing function k; such that for all e,w € W,>(0, 00) it holds

i)
|Dile, w]| = etale, w] + (Glw]), Hsle, w] — (File, w]),, ae. in (0,00),
|Dsle, w]| = etsle, w] + (Glw]), Hale, w] = (Fole, wl),, ae.in (0,00).

ii)
Glw), (0 < b ([l ) wilt) (Glu]), (1), for ae.t € (0,00).

(H5) We have Fi g, Fop € L'(Q) such that for all e,w € W21 (0, 00; L*(R)) with
e(+,0) = up, and w(:,0) = wy a.e. on Q it holds that

fl[E,w](',O):fLo, fg[é‘,w](',O):fg,g, a.e. in €.

(H6) There are non-decreasing functions ko, k3, k4 : [0,00) — [0, 00) such that for
all e,w € C),c[0, 00) it holds:

i)

max [#ile, w](t)] < ks (Jeloq + oy ), Yt 0.

1<i

ii)
~Fale, wl(t) < ko (Il + lwlog) (1+ File,wl(®), V=0,
iii) If e, w € W, (0, 00) then

max |(Hile, w]), ()| + |(File, w]), (¢)]

1<i<4

< ks (Il + [0, (|st<t>| () (Glw)), (t)) . foraet e (0,00)

(H7) We have f € L*(0,00; L?>(Q)) and there exists functions f,, € L*(Q), F €
L*(0,00; HY(Q)) N H(0, 00; L?(Q)) N L*®(Q), and positive constants K, K such
that

[ fo € IN0, 00 I2(Q),  Fl,t) = / Cf(6,0de,  forae. (z,1) € O,
1
ool [ < (1= Ko) [File,wl(8)] + Ki, Ve, w € Cioel0,00),¢ > 0. (2.2)



For the formulation of the remaining assumptions, we use the following notations,

which are well defined by (H1):
€0.min ‘= min{ug(z) : z € Q}, €0,max = max{ug.(z) : = € Q}, (2.3)

Wy min = min{wy(z) : 2 € A},  Womax 1= max{wy(z) : = € Q}. (2.4)

(H8) For each ex > 0, there exists € < €gmin; €4 = €0.max, Wa > 0, W < Wo min,
and w, > Wy max such that for all e, w € Co[0,00) and all ¢ > 0 holds:

i) Ife(t) > ey,

€0,min < €(0) < €omax, € —en <e(7) <ep4ea, V70,4, (2.5)
Wo.min < W(0) < Womax, w- —wa <w(r) <wy+wa, V7eDL, (2.6)

hold then we have

Hale, w](®) > [|F iy Hole, w](t) > 0. (2.7

ii) If e(t) < e_, (2.5), and (2.6) hold then we have

Hale, w](t) < = [1F oy Hole, w)(t) <0 (2.8

iii) If w(t) > wy, (2.5), and (2.6) hold then we have

Hsle,w](t) >0, Hale,w](t) > 0. (2.9)

iv) If w(t) <w_, (2.5), and (2.6) hold then we have

Hsle,w](t) <0, Hule,w](t) <O0. (2.10)

(H9) For every e,w € W, (0, 00) with € and w bounded and

/Ooo (ID1[e, w](8)] + |Dafe, w](2)]) dt < oo,

there exists €., € R such that lim; ,., €(t) = £4-

(H10) For every e, w as in (H9) there exists w., € R such that lim; ,o, w(t) = Weo.

Remark 2.1. There are important cases where the operators H; are decoupled
and may include some contribution from a superposition operator. Considering
causal operators Hi, ..., Ha : Cloc]0,00)) — Cioc[0,00) and non-negative func-
tions hy,...,hy € C2_(R), we can define the operators Hy,...,H4 by setting for

loc

all e,w € C},c[0,00) and all ¢ > 0

[ Rie®) + Hile](8), for i=1,2,
Hile, wl(t) = {h;(w(t))wli[w](t), for i—34 2
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If we have clockwise admissible potentials for Hy, ..., Ha, ie., if we have causal
operators Fiyoo oy Fui Cioe[0,00) — C’IOC[O 00) Wthh are mapping I/V1 (0 o0) in
W21(0,00) and causal operators Dy, ..., Dy : W1 (0, 00) — L (0, oo) with

loc loc loc

‘ﬁi[v]‘ = v/H;[v], — (ﬁ[v])t a.e. in  (0,00), Vo€ W0,00),i=1,...,4,

loc

(2.12)
then (H4) holds with G being the identity and F;, F», Dy, Do defined by
File, wl(t) = ha(e(t)) + File)(t) + hs(w(t)) + Fafuw] (), (2.13)
Fale, w](t) 1= ha(e(t)) + Fale](t) + ha(w(t)) + Fafuw] (), (2.14)
Dile, wl(t) i= |Dilel(t)] + [Dolwl(t)|,  Dale, wlt) = [Blel(t)| + [ Dalu](1)]

for all e, w € Cj,[0,00) and ¢ > 0.

If hy(r) = hir? with some positive constant A} then the corresponding operator
H1 models a linear elasticity with a hysteretic modification.

Remark 2.2. A sufficient condition for (H8) to be satisfied is that the two following
assumptions (H11) and (H12) hold. These assumptions are especially useful,
if the operators Hi,...,H, are decoupled as in the Remarks 2.1, 2.4-2.6. The
notation of an outward pointing operator used in these assumptions is introduced
and discussed in the forthcoming paper [KK].

The more general formulation in (H8) is helpful, if the operators are coupled, e.g.,
if they are derived from multi-dimensional stop or Prandtl-Ishlinskii operators
(see, e.g., [Kre96, KS00c, KS01, KS02|).

(H11) For each ep > 0, there exists e_ < €gmin and €4 > €pmax such that for all
W € Cloc[0,00) with Womin < w(0) < Wy max the operator mapping € € Cj,c[0, 00)
to Hile,w] € Ciocl0,00) is pointing outwards with bound ||F|| <) in the ea-
neighbourhood of [e_, €] for initial values in [0 min, €0,max] and that the same holds
for Hs just with bound 0, that is to say for all € € C},.[0,00) and all ¢ > 0 holds:

i) If (t) > e, and (2.5) hold then we have (2.7).
ii) If €(t) < e_ and (2.5) hold then we have (2.8).

(H12) There are wa > 0, w- < Womin, and Wi > Womax such that for all € €
Cloc[0,00) with g min < €(0) < €pmax the operators Ci,[0,00) > w — Hsle, w]
and Cj,.[0,00) > w — Hyle,w] are pointing outwards with bound 0 in the wa-
neighbourhood of [w_, w] for initial values in [wp min, Wo,max|, that is to say for all
w € Coc[0,00) and ¢ > 0 holds

i) If w(t) > wy and (2.6) hold then we have (2.9).
ii) If w(t) < w_ and (2.6) hold then we have (2.10).



Remark 2.3. If we use H3 = H4 = 0 in Remark 2.1 then H3 and 7, are superposition
operators and the assumption (H12) holds if and only if there are wa > 0,
W_ < Wy min, and wy > Wo max such that

e For all s € [wy,w,wa] holds hy(s) >0 h)(s) > 0.
e For all s < [w_ — wa,w_] holds hi(s) <0, h)(s) <O0.

Similar assumption has been used in [And80, Peg87, RZ97]. A direct transla-
tion of this assumption leads to an assumption similar to (H12), but with (2.6)
replaced by w_ — wa < w(t) < wy + wa. This is a stronger assumption then
(H12) and will be denoted by (H12+). There are important hysteresis operators
satisfying (H12), but not (H12+).

In a similar way, one can consider a stronger version (H11+) of (H11), where
e_ —en <e(t) <e, +en is used instead of (2.5).

Remark 2.4. 1If for the functions and operators in Remark 2.1 there are positive
constants Ky ,..., Ky 4 such that

"ﬂi[v](t)‘ < Ky, Yt>0,0 € Cie[0,00), 1 < i < 4, (2.16)
+ lim hi(r) > Kan + || Fll = a.) » + lim hi(r) > Koy, V2 <i<A4,
(2.17)

then the assumptions (H11+) and (H12+) are satisfied, and (H11), (H12),
and (H8) hold therefore. Moreover, the condition (2.2) in (HT) is satisfied if the
other assumptions in (H7) hold.

Remark 2.5. Consider yield limits r; ; € R, initial values 0?’]- € [—rij,rij], and

weights ¢;; > 0 . Defining #;[-] as the sum > BiiSri; [0);, ], one has by (1.16)
that (2.12) holds with F; being the sum Y. ¢;,;S% [0;,°]/2 and D; being the
sum Y. ¢i; |(rPr[o),-]),]. For H; as in Remark 2.1, one can use (1.14), (1.15),
and (H1) to show that (H3)—(HS5) are satisfied.

Moreover, we have (2.16) and the inequalities in (2.17) hold for appropriate func-
tions h; . The last remark then yields that even the strong formulations (H11+-)
and (H12+) of (H11) and (H12) are satisfied. For hy = hy =, i.e., H3 and
H, being the weighted sum of stop operators depending on w, this would not
work, and one can easily see that (H12+) will not hold in this case. But, by
investigating the behaviour of the stop operator one can show that (H12) holds,
see also [KK]|. But, if hy =0 or hy =0, i.e., if #; and H, are the weighted sum
of stop operators depending on &, one can consider (H11) for some €5 which
is bigger then the double of all the involved yield limits 7; ; and observes that
(H11) is not satisfied.

For all functions h;, the assumptions (H9) and (H10) are not satisfied for the
corresponding operators Hi, ..., Ha, since for oscillations that are smaller then
all involved yield limits ; ;, the play operators stay constant after the first oscil-
lation.



Remark 2.6. For ¢ = 1,...,4, we consider a non-negative weight function ¢; €
L'(0,00) and a function o) € W1>(0, c0) such that o} (r) € [—r,r] for all r > 0,
|(6?),] < 1 a.e. on (0,00), and o?(r') = 0 for all ' > R; for some R; > 0. Now,
we define H, : Cloc[0,00) = Cloc[0, 00) as the Prandtl-Ishlinskii operator

H[v] == /000 ¢i(r)S, [0} (r),v]dr, Vv € Cief0, 00). (2.18)

A clockwise admissible potential for this operator is defined by F; : Cloc|0,00) —
Cloc|0, 00) with

Fi[v] == %/000 ¢i(r)S2[o)(r),v]dr, Vv € Cioe[0,0), (2.19)

since Proposition 2.5.5. in [BS96| yields that (2.12) holds for

D;[v] := %/000 réi(r)Pu[o,v]dr |, Vv e W0, 00). (2.20)

loc

Defining now H; and F; as in Remark 2.1, and using well know properties of the
stop operator one can show that (H3)—(H6) hold.

Applying (2.15), (2.20), and properties of the play operator, we see that (H9)
holds, if and only if

/057‘ (61(r) + 6o(r)) dr >0, Vs> 0. (2.21)

For (H10), we get a analogous condition, just with ¢; + ¢ replaced by ¢3 + ¢s4.
If one wants to ensure as in Remark 2.1 that (H11) and (H12) are satisfied, one
has to require that (2.16) holds, which is equivalent to the condition

/ r¢i(r)dr < Ky; < 400, V1<i<A4. (2.22)
0

If this condition is satisfied, we see that (H11) and (H12) holds for appropriate
functions h;, but this argumentation can not be applied if H; = H; for some
iel,... 4

In [KK], it is proved that (H12) holds for Hz := Hs and H, 1= H,4, independently
of (2.22). Moreover, there it is shown that for 7{; := ?; the condition in (H11)
holds if and only if [;°r¢;(r)dr = oo, and that an analogous equivalence holds

for H2 = Hg.

2.2 The asymptotic result

The following theorem is the main result of this paper:
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Theorem 1. Assume that (H1)—-(H8) are satisfied and that a solution (u,0,w) to
(1.1)—(1.7) is given such that

u € Hp, (0,005 L2(Q)) N Hy, (0, 00; H*(92)), (2.23)
0 € Hy,.(0,00; L*(2)) N Li,. (0, 00; H*(2)), (2.24)
w e Hloc(07 ;5 L2( )) N Hloc(oa o, Hl(Q))7 (225)
0(z,t) >0, Vret>D0. (2.26)

a) We have a constant 0, > 0 such that
1 (e, 1) 2y = Jim e, 8)lo@) = 0 (2.27)
o(t) — = Fo, in L*(Q), (2.28)

—00

Tim (82, D)l 2oy = Jim [|8 (-, £) — B(8) | oy = O (2.29)
0(z,t) >0, YzeQ,t>0, (2.30)

with

:[sz(g)dg, o(t) ::/Qe(x,t)dx, VreQ,t>0  (231)

b) If G is the identity operator, then we have

Jim [Jw, (-, )| gy = Jim [[9(-, )] 12 () = 0, (2.32)
N [[(Fifug, w]), (8] 12 th [(Hiluz, wl), (5 )| 2y = 0. (2.33)

¢c) fHi=Hs=F,=0,9g=0, and f =0, then we have

p 2 . 0o
0(st) —— [16oll 1oy + 20, luill7ey, in L=(), (2.34)
Jim [[H[ug, w](-,)]| 20 = 0. (2.35)

d) fHi=Hs=F1=0,9g=0, f=0, and G is the identily operator, then we
have
Jim [Pl ] Ol = 0. (2:30)

e) If (H9) holds then there exists a u,, € WH*(Q) such that

u(-,t) 7 Ueo weakly-star in  WhH™(Q), (2.37)
—00
Ug (-, t) 7 Uy G-C in Q. (2.38)
—00

11



f) If (H10) holds then there exists a wo, € L>(Q2) such that

w(-,t) I W weakly-star in  L*(Q) and a.e. in Q. (2.39)
—00

Remark 2.7. We see that (2.27) yields that for ¢ — oo the viscous part of the stress
tends to zero, and by (2.28) the stress tends to —F,,, which is the potential
corresponding to the limit f,, for ¢ — oo of the applied force f. Moreover, by
(2.29), we see that the temperature becomes more and more uniform in space.

Under the additional conditions in part c) of Theorem 1, the convergence of
the temperature for ¢ — oo is shown, and if H, and H, are special operators,
like, e.g. stop operators, one could also show some convergence for u and w, by
adapting the argument in [RZ97, Lemma 4.5|. In the general case it is still an
open questions, if one can show convergence, or if up to ¢ — oo oscillations can
appear. This is similar to [RZ97], where the system (1.1)—(1.3) with H;, H,, and
F1 being nonlinear superposition operators of u, has been considered. Also in
this paper there is no convergence result for # or u, in the general case.

Remark 2.8. If (H8) does not hold then one can still get some of the results in
Theorem 1, if some additional assumptions are satisfied.

i) If (H4)ii) and (H6) with k1, . .., k4 replaced by positive constants hold then
one can still show the results a)—d).

ii) If (H11), (H4)ii) with k; replaced by a positive constant, and (H6) without
the |w|[07t]—term in the evaluation of ks, k3, k4 hold then one can prove that
the results a)—e) are satisfied.

iii) If (H12) and (H6) without the [e], ,-term in the evaluation of ko, k3, ks
hold then one can prove the results a)-d) and f).

Remark 2.9. In many applications, the operator G in (H4) is the identity, see, e.g.,
[Kre00, KS97, KS98b, KS00c, KS01, KS02, KSZ01], such that the results b) and
d) in Theorem 1 can be applied.

If G is not the identity operator, one could get still some informations about
the limiting behaviour of Gw]; and therefore about the behaviour of the time
derivatives of Fi[uy, w] and H;[u,, w], if for w € W21 (0,T) the “second order
energy inequality” (see [Kre96, Section II. 4])

9 (w0, (Glu]),) < we (G),

ot
holds a.e. on (0,00). In this case, only minor changes in the proof would be
necessary. But, to the knowledge of the author, in all cases where an operator G
as in (H4) is derived, which is not the identity, the operator is a stop operator,
see [KS98a, KS00b, KS00c, KS00a, KSZ01]. In this case, G[w] is only of bounded
variation, and the second order inequality holds only in the sense of distribution.
To be able to deal with G of this kind, one would have to use methods similar to

[KSZ00).
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2.3 Existence of solutions

Before proving the asymptotic result, it will be recalled that there is a solution to
the problem under considerations satisfying the regularity and positivity demands
presented in Theorem 1, at least if some additional assumptions are satisfied. This
assumption will be

(H13) It holds f € HL (0, 00; L2(Q2)).

H14) There is a function gy € L (€)s) such that for every T > 0 there is a
g loc Yy
positive constant Ksr

8
‘a_g < Ksr aein Qx(0,T)xR, go(z,1) >0, ae in Qo

g9(z,t,0) = go(z,t), V(z,t,0) € Q x(0,00) x (—00,0].

(H15) For every T' > 0 there are positive constants K4, ..., K97 such that for all
£,€1, €2, W, wy, ws € Cy[0, 00) it holds:

i) We have for all ¢t € [0, T7:

[ Hale, w](t)] + |Hale, w](t)| < Ky,
max [ Hiler, wi](t) — Hilez, wal ()| < Ks.r <|€1 — &2fjpq + w1 — wgl[o,tﬁ :

loc

replaced by Kg 7 holds for a.e. ¢t € (0,T") and

i) Ife, €1, €2, w, wy, wy € W1 (0,00) then the inequality in (H4)ii) with k, (|w|[0’t]>

max |(Hile, wl), ()] < Koz (lex(t)] + [we (1)), for ae.t € (0,T),

|(File,w]), (t)] < Ksr (ee(t)]| + |we(t)]), forae.t e (0,T), (2.40)

| Filer, wil(t) — Files, wal(t)| < K9,T<|51(0) —€2(0)] + [w1(0) — wa(0)]
—I—/O (le1t(T) — €2.4(7)| + |w14(T) — wai(T)|) d7'>, Vte[0,T]. (2.41)

Thanks to Theorem 2.1 in [KSS01b], we have

Theorem 2. Assume that (H1)-(H3), (H4)i), and (H18)-(H15) hold. Then
the system (1.1)—=(1.7) has a unique strong solution (u, 0, w) such that (2.23)—(2.25)
hold. This solution satisfies also (2.26).

Remark 2.10. If H; as in (2.11) is modelling a linear elasticity with a bounded
hysteretic modification as in the Remark 2.1, then one has Fi[e, w](t) = hie?(t) +
. Hence, in general the estimates (2.40) and (2.41) in (H15)ii) are not
satisfied, and the existence result in [KSS01b| can therefore not be applied. To
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be able to use this result, one has to approximate the linear elastic term 2h2e for
big € by a bounded function. This is a somehow unexpected feature of combining
these assumptions, since the authors of [KSS01b] want that their assumptions also
include the case of linear elasticity, and avoid to use the assumption that H; is
bounded. They also do not assume explicitly that H3 is bounded, but combining
the estimate (2.40) with (H4)i) and the continuity of F; on C[0,T] x C[0,T] (see
(H3)), one can show that for all &, w € W,>![0, 00) holds

max (|Ha[e, w](8)], [Hsle, w](t)]) < Ker, Vte[0,T].

Hence, at least formally, the existence result in [KSS01b| can only be applied if
the operators H; and H3 are bounded. But, if we examine the proof of the global
existence result in [KSS01b|, then we see that in the a-priori estimates therein
the assumptions corresponding to (H15)ii) are used after the uniform estimates
for u, and w have been derived. Hence, this a-priori estimates can also be used,
if one is considering a weakened version of (H15), where Kgr and Ko are

replaced by kst (|5|[o,t] + |w|[0,t]> and kg,r (|51|[o,t] + [ealjg g + lwilpg + |w2|[0,t}>’
respectively, with non-decreasing functions ks 1, ke : [0,00) — [0,00). A careful
examination of the local existence proof in [KSS01b, Section 3] should allow
to find a way do deal also with this weakened assumption, such that one can
show also the existence of solutions to (1.1)—(1.7) for unbounded #; and #3. In
[KSS01a| the authors of [KSSO01b| consider such an assumption for a modified
version of the system (1.1)—(1.7).

Remark 2.11. For non-negative functions hy,...,hy € C2_(R) with h,... k) €
W (R) and operators H,,...,H, as in Remark 2.5 or as in Remark 2.6 with
non-negative weight functions ¢, ..., ds € L'(0, 00) satisfying (2.22) one can use
(1.14) and (1.15) to show that (H15) holds. If one is using the weakened version
of (H15) (see Remark 2.10), one needs only hj, k), € WH2(R), h], b} € L*(R),

and (2.22) for ¢ = 2 and i = 4.

3 Uniform a-priori estimates

In this section, it will be assumed that (H1)—(HS8) are satisfied and that a solution
(u,8,w) to (1.1)—(1.7) is given, such that (2.23)—(2.26) hold. To prepare the proof
of the asymptotic results in the next section, some a-priori estimates are derived
that are uniform with respect to time.

Before this is done, we consider the balance law for the energy and a immediate
consequence:

Remark 3.1. Multiplying (1.1) by u; and adding the result to balance law (1.3) for
the internal energy, we get the balance law for the energy

(CV9 + guf + Filt, w]) — Ky = (we(puye +0)), + 9+ wf, ae in Q.
t
(3.1)
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For t > 0, we integrate this equation over  x (0,t¢), and use Green’s formula,
(1.6), (1.7), (H1), and (H5), to show that

C(0) + & e, D)l 2y = To + 1(e), Y220 (3.2)
holds for the § defined in (2.31),
o =Cy [0y + 5 sl + [ Frol@de >0, (33)
Q

I(t) := /0 /Q(g(:z:,T, 0(z, 7)) +u(z, 7)f(z,7)) dz dr

—/ (Filug, wl(z,t)) dz, Vi>0. (3.4)

In the sequel, for 1 < p < oo, the notation |[|-[|, will be used as abbreviation for the
LP(Q)-norm, and ||-||_, will denote the C(Q2)-norm, i.e., the maximum norm on Q.
Moreover, C};, for i € N, will always denote generic positive constants, independent
of time, space, and the considered solution.

Thanks to (2.23)—(2.26) and (H3), we can assume without losing generality that
o and ¢ are continuous (maybe unbounded) functions on Q,, = Q x [0, 00), such
that (1.2) and (1.5) hold for all (z,t) € Q. Because of (1.7), (2.3), (2.4), we can
apply the assumption (H8) for e(-) := u,(z,-) and w(-) := w(z,-). For the sake
of notational convenience, we assume in the remaining part of this section without
losing generality that p=pu=Cy =k =v =1.

In the following estimates, some ideas from [KSS01b, RZ97, SZZ98| are used.

Lemma 3.2. There are two positive constants Cy,Cy such that

sup (100 2)l + s, ), + |l wl(- OlL) < G, (3.5)
| gt 06,001 + gt 6, D)IE) d <o (3.6)

Proof. Let
¥(1) = [ (Bl ul(e.t) ~ fule)ule )+ K0) da, Viz0. (3)

Now, we get from (3.2) by using (2.31), (2.26), (3.3), (3.4), Holder’s inequality,
Young’s inequality, (H1), (H2), (H5), and (HT7) that for all ¢t > 0

(10,00 + 5 01+ 9)) < €+ [ (loatr)l + laate ) 10,

1 1
o G 7) = feolla + 5 I 7) = Fooll ||ut(',T)||§> dr . (3.8)
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By (3.7), Holder’s inequality, (1.6), (H3), and (H7), we have
U(t) > Ko || Falus, wl(, )l VE>0.

Hence, because of (3.8), we can apply Gronwall’s Lemma (see below), (H2), and
(HT7) to show that that (3.5) and (3.6) are satisfied. O

The following version of Gronwall’s Lemma can be derived from Proposition 1.4.2
in [BS96|.

Lemma 3.3 (Gronwall’s Lemma). Let a € L] _(0,00) and ¢ € L*°(0,00) denote

loc
non-negative functions. If a function v € C),.[0,00) satisfies

0 < v(t) < ct) + /Ota(T)v(T) dr, forae.tc (0,00),

then .
0 < 0(t) < [|ell 0,0y €XP (/ o) dT> Wi
0

To prepare the following estimates, we now consider the transformation due to
Andrews [And80], which is also used, e.g., in [Peg87, RZ97, KSS01b], and introduce
functions p, q,7 : o, — R that are defined by

p(z,t) = /lz u(§,0)dE,  q(z,t) == ug(z,t) — p(z,t), V(z,t) € N, (3.9)
&(z,t) = o(z,t) + F(z,t), V(2,t) € Qoo (3.10)

with F' as in (H7). Recalling (1.1)—(1.7) and (HT), we see that

Pt = DPaz =0, a.e. in (g, (3.11)
p(1,8) = pa(0,) =0, ae.in (0,T), p(z,0) :/zul(f) de, aein 0
1 (3.12)
g = —0, a.e.in Q, (3.13)
a(2,0) = o (x) — /zul(g)df, ae in Q. (3.14)
1

Lemma 3.4. There are positive constant Cy, Cs such that

Sup ([[pa (4 £)llz + IP( )loe) < Cs, (3.15)

sup (lJua (s D)l + [0 ()l + 1ul )l + (- D)) < Cs. (3.16)
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Proof. In the light of the estimate for u; in (3.5) and the definition of p in (3.9),
we see that (3.15) holds. Considering (H8) for €5 := 2Cs + 1, we get e < €0 min,

€0,max < €4, W— < Womin, and W4 > Wo max such that the remaining conditions in
(H8) are satisfied. Now,

Uy(z,t) € [e- —2Cy, e, +2Cy], w(z,t) € [w_,wy], VY(z,t) € V. (3.17)

is proved by contradiction. Suppose that (3.17) does not hold. Then there is some
§ € (0, min{wa, 1}) such that u, <e_ —2Cy — ¢ and/or u, > e, +2C4 + § and/or
w < w_ — 4 and/or w > w, + & somewhere in Q. We have u,(z,0) = up,(z) €
[e ,e.] and w(z,0) = wy(z) € [w_,w,] for all z € Q because of (2.3) and (2.4).
Since (2.23) and (2.25) yield that w and u, are continuous on Q,, we get z; € Q,
t; > 0 such that

(ug(z1,t1) € {e. —2Cy — 6,6, +2C4 + 6} and/or w(z,t) € {wy + 0, w_ — §}),

e —2C; — 6 < ug(z,t) <ep +2Cy+ 6, Vte[0,t),z €N,

e —2C; — 6 <wuy(z,t)) <e, +204+6, VzeQ,

w_ —§ <w(z,t) <w,+6, Vte[0,t),z e,
w -0 <w(zt)<w, +d§ Vrel. (3.22)
Hence, we see that (2.5) with ¢ := uz(z,-) and (2.6) with w := w(z,-) hold for all
z €  and t < t;, and it remains only to check the first condition in (H8)i)-iv) if
one wants to apply one the corresponding inequalities (2.7)—-(2.10). Since u, and w

are uniformly continuous on € x [0,¢,], there is some open neighborhood U C 2 of
z; such that

|ug(z,t) — ug(z1,t)]| + |w(z,t) — w(z,t)| < =, VzeUt €[0,t]. (3.23)

| &

ﬁow, we consider the case uz(z1,ty) = €4 + 2Cy + . Since u, is continuous on
Q x [0,¢;] and u,(z1,0) < e, we get some ¢y € (0,%;) such that

8 8
ert 5= uz (1, o), e+ + 5 < uz(z1,t) <ep+2Cs+0, Vite (to,t1). (3.24)

Combining this with (3.23), we conclude that u,(z,t) > e, for all z € U, t € (o, t1).
In the light of (2.7) in (H8)i), we see that

1)l ey < Halug, wl(z,t), 0 < Halug,wl(z,t), Yz €U, te (to,t). (3.25)

Applying (1.2) and that # > 0 on Q by (2.26), we observe that ¢ > —F), a.e. in
U X (tp,t1). Thanks to (3.13) and (3.10), we deduce that ¢; < 0 a.e. in U X (to, t1).
This leads to

/U(Q(x,tl) —q(z, b)) dz dr = /U/t:1 q:(z,t)dt dz < 0.
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On the other hand, using (3.9), (3.15), (3.23), (3.24), and u,(z1,%) = e, + &, we
conclude that

/U(q(x,tl) —q(z,ty)) dz > / (uz(z, t1) — Cs — (ug(z, to) + Cy)) dz

U
2/ <um(:z:1,t1)—é — (ux(:z:l,tg)+§> —2C’4> dz > /édx > 0.
" 8 8 4

Hence, we have derived a contradiction. By an analogous argumentation, we get a
contradiction, if u,(z1,t) =e_ — 2Cy — 6.

Now, we will deal with the case w(z,¢) = wy + §. Applying the continuity of w,
we get some ¢y € (0,t;) such that

d
’U)(.’El,t()) =wi+ - ’U)++§ < U)(.’El,t) < ’U)_|_+(5, Vte (to,tl). (326)

27

Combining this with (3.23) we see that w(z,t) > wy for all z € U,t € (to,t1).
Therefore, we conclude from (2.9) in (H8)iii) that

Hslug, w|(z,t) >0, Haug, wl(z,t) >0, VzeUte (t,t). (3.27)

Since # > 0 a.e. on Q4 by (2.26), we deduce now from (1.5) and (1.4) that w; <0
a.e. in U X (tg, ;). This leads to

/U(w(x,tl) —w(z,ty)) dz = /U/tt wy(z, ) dt dz de < 0.

Since w(z1,t1) = wy + 4§, (3.26), and (3.23) yield that the integral on the left-hand
side has to be positive, we have derived a contradiction. An analogous argumentation
to get a contradiction can be used if w(z1,t) =w_ — 4.

Hence, we have derived a contradiction for all cases we have to consider by (3.18).
Therefore, we have proved (3.17). Recalling (1.6) and (3.9), we get also uniform
bounds for u and ¢, and (3.16) is proved. a

Lemma 3.5. There are positive constant Cs, . ..Cho such that

max sup (IHilue, w](, 8)ll) < Cs, (3.28)
1
0< Sup/ (—Folua, w](z,4)) do < Cy,  (3.29)
0<t Jo
max |(#i[us, w]),| + |(Frlus, w])| < Cs <|uxt| + /W (g[w])t> (3.30)
S Cg (|u$t| + |wt|) , a.e. in Qoo, (331)
lo| + |wi| < Cro(14+6), ae in Q. (3.32)
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Proof. Because of (3.16), we have uniform bounds for u, and w. Thanks to (H6)
and (3.5), we see that (3.28)—(3.30) are satisfied. Recalling (3.16) and (H4)ii), we
deduce that

0 < wyi(t) (G[w]), (t) < Crywy(t)?, for a.e.t € (0,00).

From (3.30), we get therefore (3.31). Combining (1.2), (1.5), (1.4), and (3.28), we
find that (3.32) holds. O

Lemma 3.6. We have a.e. on Q

(Filug, w]), — o(z,t)um
= — [(G[w]), wi| — [D1[ua, w]| — O (Ha[ue, wlue + (Glw]), Haluz, w]).  (3.33)

Proof. We apply (H4)i) and (1.2) to conclude that a.e. on Q. holds
(Frluz, w]), = o(z, )uzr = (Gw]), Halte, w] — |Di[te, w]| — OHa[tte, w]uar.
Now, applying (1.5), (1.4), and (H4)ii) leads to (3.33). O

Lemma 3.7. We have a positive constant Cio such that

2 2

/°°<\ e | en| +|Een 1+||Da[uz,w1<-,t>||1> a
+sup 1000, )], < Cia (3:30

Proof. Testing (1.3) by —1/6 and using (1.6), (3.33), (H2), and (H4)i), we observe
that

— %/ln@(x,t) dz +/Q ((99””((;”5)>2+ “;Eixt?) dz
<__/f2 (g, w](z,£)d /| (2, ywi(z,t)| + |Dr[us, wi(z, t)] |

0(z,t)
—I—/Q(_ |Dy[ug, w)(z,t)| + |g2(z, t)|) dz .

Now, we integrate this equation over time and observe that (3.34) follows by applying
(3.29), (H2), (H5), (3.5), and the inequality

Ins| <s—Ins+Ci3, Vs>0,
that can be shown by elementary analysis. O

Lemma 3.8. We have a positive constant C14 such that

[ (e 01 + e 1 + e )1 + @D €O
+ | (Filua w I + || (VE) 1)

2
) dt < Cuy. (3.35)
1
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Proof. Since 6 > 0 a.e. on {2, we can apply Schwarz’s inequality and (3.5) to show
that for all ¢ > 0

o)l = [ %%we(x,t) do <0 ") L (630)

Recalling now (3.34) leads to the estimate for u,; in (3.35). Using that, by (1.6) and
(2.23), ui(y, t) = [} uae(z,t) dz for ally € Q, we get the estimate for u;. Combining
this estimate with (3.9) leads to the estimate for p.

Applying (3.30), (H4)ii), (3.34), and Young’s inequality, we deduce that
(fl [’U,z, w])t

A (H%( o, |2t

Considering now (3.36) with u,, replaced by (Gw]), , we get the estimate for (G[w)),
n (3.35), and the estimate for (F;[u,, w]), is derived analogous. Thanks to Schwarz’s
inequality, we have

2

("t)

iy

) dt < Clyg.

2

10:(z, )] 4 |9 |
6 t 6(-,¢
[(v0), 00l = [, e = <15 0], Iveeal,
In the light of (3.5) and (3.34), we see that also the estimate for v/, in (3.35) is
shown. O

Lemma 3.9. For 0 and I, as in (2.31) and (3.4) there are positive constant Cyr,
Cis, and Chg such that

|14 (t )| < Ciy, Cig<0(t) <Chg, Vt>0, (3.37)
10¢-,t) = 0@t)|| , < 116=(- )l < 10(-,8)]l,, VE>0. (3.38)

Proof. Combining (3.4), (3.6), (1.7), (3.5), and Hoélder’s inequality, we see that

[11(s)] < Cy +

[ (wte.5) = wo(a) fu(o) do

#1560 = Ol )l .

Recalling (3.16), (3.5), (H7), and (H1), we get the uniform bound for I; in (3.37).
Since s — —Ins is a convex function on (0,00), we get by (2.26) and Jensen’s
inequality that

—ln/ﬁ(x,t)dx < —/ln(ﬁ(x,t)) dz, Vit>0.
Q Q

Invoking now (3.34), (2.31), and (3.5), we get (3.37). The first inequality in (3.38)
follows the from the definition in (2.31), and the second by applying Schwarz’s
inequality and [,1dz =1. 0O
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Lemma 3.10. We have a positive constant Cy; such that

/ (Hex(-,wni ¥ Haﬂ () (1) } <815t(t)>2) "

+sup (flue( Dl + 100, D)]l5) < Can- (3.39)

Proof. We test (3.1) by 0 + su? and (1.1) by au? where a > 0 will be fixed later.
Summing the resulting equations and using (1.6) and (3.4), we observe that for all
t>0

0 H )|+ 10O + § 5 T + 1+ 30) e O )
< 0(t) m (t) + I3(t) + L(2), (3.40)
with
fﬂ):A@4ﬂmﬂ&@mmm@¢m%m+m@@ﬂ%m
(0(z,t) — 6(t)) dz, (3.41)
I3(t) := —/ (l (Filug, w]), u? + 20,y + w0y + (1 + 3a)ufuma> dz, (3.42)
Iy(t) == /Q (g+(1+ 2a)utf) ut dz . (3.43)

In the sequel, the generic constants C; will be independent of a. Applying (3.41),
Holder’s inequality, (HT), (3.38), and Young’s inequality, we get

I5(t)
< (I1(Fulua, w]), GOV, + gt 0C, )y + luel Ol 1F G 1) 10C,8) — 08|
% 105(-, )15 + Caa (Il (Filuw, w]), (0T + g2, 9(',t))||1 + ||ut(',t)||io) . (3.44)

Invoking (3.42), (3.31), (3.32), Holder’s inequality, and Young’s inequality, we de-
duce that

I5(t) < Co (1 + @) [Jusa(, ), ), + [ )], + [ 0C, )]])
+ 210, )ue(c, )uea (-, )y + Coa [luel, £)0a(:, )||1

+ Cos ||9z('7t)ut('a t)9(-, )”1 (1 + 0‘)026 H“t “tw %y H1
< Cor (Jlue(-, Yuea (-, )l + (1 + ) [Jue(-, )5 + u+a)mw,mwwu0M)
+ 10,013 (3.45)
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Using (3.43), (H2), Holder’s inequality, (3.5), (H7), (3.38), (3.37), and Young’s
inequality, we conclude
214(t)
<lgr(, t)lly e, )l e, )10 + (OC) + [[0C, 1) = O] ) ga(, )l e, I3
+ (L4 20) [Jue (-, )|y 17 Co )z e, O

1
=3 162115 + Cas (Il (5 D) ll3 + llg2(, )l + 11920 DI1%) + Cao(1 + ) [fue(-, )l -

(3.46)
Because of (3.2) and Young’s inequality, we have
_ BL(t) _ 8L 10 > 1 oL (1)’
< . - . .
o) 21 < P 2D g L ol g (O (3.47)

From (3.4), we get by using Holder’s inequality, Young’s inequality, (H7), and (H2)
that

(Z2) < o (IgCt. 06 DI + [, DI + IFilaes ) () - (348

Now, we integrate the sum of (3.40) and (3.48) over time, and use (1.7), (H1),
(3.44)—(3.48), (3.6), (H2), (3.5), (3.35), (3.37), and € > 0 a.e. on Q2 to show that

1 2 (6 4
5 160G, 8)llz + 7 el 8)ls

+AT%M¢M+@HMMWWNW24@%»>M

< Cy (1 +a®+ /Os(llut(-,t)utz(-, Bl + (1 +a®) flu(, Ol 19C,)]15) dt)

holds for all s > 0. Next, we define a := Cj31, apply Gronwall’s Lemma, and recall
(3.35) to show that (3.39) is satisfied. O

Lemma 3.11. There are positive constants Cso, C33 such that

/ (o O3 + (G, (- Dwe )l + 1D fus, w](-,7)II,) At < Czy (3.49)
/ (Ilpm s+ 1+ @)l D)l + e 1)1 + | (Filua, w)), (1)1

+ Z (Falua, w]), (5 )15 + [[(Gw]), (',t)lli) dt < Css. (3.50)

=1
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Proof. Integrating (1.3) over €2, and applying (1.6), (2.31), (3.33), and (H4)i), we
derive

s 01 < 224,100, ), — Gl (- e B, — s, w1
— /Q (0(z,t) — 0(t)) (Ho[us, w)(z, t)um(z, t) + (Glw)), (z, t)Haluw, w](z, t)) dz
- E(t)%/ﬂg[uz,w](x,t) dz

We multiply this inequality by 1/0(¢) and use (3.28), Holder’s inequality, and Young’s
inequality to prove

0
+mwmm%@m—aéﬂmewm

(106, 2) =B, + e, 01 + (Gl (501

Integrating this inequality over time, and using (3.6), (3.37), (3.38), (3.35), and
(3.39), we observe that (3.49) is proved. The estimates in (3.50) follow by applying
(3.9), (1.6), (3.30), (H4), and (3.16). O

Lemma 3.12. There is positive constant Css such that
| 05D+ I 1) dr < C (351)
Proof. Let J(z,t) : Qo — R be defined by
3(e,0)i= Hafue,ul(a,0) ( 80) = 00,6+ 5 )3+ [ (n(©) — 161 a6 )
+6(z,t), ae.on Q. (3.52)

Utilizing (3.11) two times, we get

(6(x,1)* = p(z, 1)6 (2, t) — pas(z, 1) (z, 1)
= pi(z, t)J(z,t) + (6(z,t) + peu(z, t)) (6(z,t) — J(2,1)) — Duu(z, t)F (2, 2).

Integrating this equation over €2, and using Young’s inequality, (3.52), (3.28), and
(3.38), we observe that

3l6Col8 < 5 [ e ode - [ o e
+ i (Ipaa, O + 10D+ e, D2+ 7€) = ol )IE) - (3.53)
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Applying (3.52), (3.10), (1.2), (HT), and (3.2), we observe that
J(z,t) = Hi[ug, w](z, t) + Halug, w](z,t) (I1(t) + Ip) + /11 Joo(€) dE. (3.54)

Hence, using (3.28), (3.37), (H7), Holder’s inequality, Young’s inequality, (3.35),
(3.50), and (3.39), we get uniform bounds for J and, for all s > 0,

[ [ oot c1a<[(wumiﬂP%ﬁ2

2
Integrating now (3.53) with respect to time and using (3.15), (3.50), (3.39), (3.5),
(3.35), and (HT), we have shown the estimate for & in (3.51). Combining this
estimate with (3.11) and (3.50), we get the estimate for p;. O

) dt < Csy.

Lemma 3.13. Let ¢ € L2 _(0,00; H*(Q2)) N H.

L (0,00; L?(Q)) be the solution to the
parabolic initial-boundary value problem

Ct - wa = &t, a.e. in Qoo, (355)
C(0,2) =¢(1,8) =0, Vi=>0, ¢(0)=0. (3.56)

Then we have a positive constant Czg such that, for allt > 0,

Mum&samﬁ+@%w |W2(/n@ HQ )- (3.57)

Proof. Multiplying (3.55) by ¢, integrating over Q x (0,7"), performing partial inte-
grations, and using (3.56), we get for all t > 0

SIc0E+ [t dr = [ [ sdancen e dr
_ /Q(}(x,t)g(x,t) dz —/Ot/Q&(x,T)gt(x,T) dz dr . (3.58)

Because of (3.10), (3.32), (3.39), and (HT7), we have a uniform upper bound for
|&(-,t)|l,- Hence, we get from (3.58) by applying Holder’s inequality, Young’s in-
equality, and (3.51) that

1 t t 1/2
LI+ [t nlzar <cu([latnlar) . @)

Formally, we test (3.55) with (;, use (3.56), integrate over time, and apply Young’s
inequality to deduce that

t 1 t 1 t
i ar el <5 [ 16t a5 [ a0l dr. @00
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For a rigorous derivation of this inequality, one has to consider (3.55) with &; replaced
by some smooth approximation, perform this computation for the corresponding
solutions and consider afterwards the limit.

Inserting (3.59) into the left-hand side of (3.60) and using (3.10), (1.2), (3.35),
Holder’s inequality, Young’s inequality, (3.28), (3.50), and (HT), we observe that

ICC, Ol + 116, ) / |, 0] + Oty w] + F), (-, 7) |2 dr

42059 ”2 =9

< Cuo + Cay max |00, 7) % +c42/ 10,72 dr . (3.61)
STS 0

Thanks to the Gagliardo-Nirenberg inequality (see below) and Young’s inequality,
we conclude that

2
16CAI% < (Cus Gl DIF IS O + Caa IS0,
< Cig (141G DI + 16C, 1)) -

Now, we apply (3.61) and Young’s inequality to prove that (3.57) holds. O

The following version of the Gagliardo-Nirenberg inequality is a special case, more
general formulations can be fond, e.g., in [BS96, Zhe95].

Lemma 3.14 (Gagliardo-Nirenberg inequality). For allp > 1 there are positive
constants Cyg, Cy7 such that

[Vl < Cus llvally’ 2 0]/ + Cyr 0], Vv e HY(Q). (3.62)

Lemma 3.15. There is a positive constant Cyg such that

3/4
- 1)1 < Ci <1+0r23§t||9 ([ er) ) (363)

Proof. Let z1, 29 : Qo — R be the solutions to the parabolic initial-boundary value
problems

Zit — Zigz =0, a.e. in Q, Vie{l, 2}, (3.64)
5(1,8) = 2,(0,8) =0, foraet>0, Vie{l,2}, (3.65)
21(z,0) = uy,(,0), 2(z,0)=5(z,0) ae. in Q. (3.66)

Let 23 : Qo — R be defined by

z;;(x,t):/lm/oyzl(f,t)df dy+/0t (2a(@,7) + (2, 7)) dr, ¥ (2,1) € Q. (3.67)
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Recalling (3.64), (3.65), (3.66), (3.55), (3.56), and (H1), we observe that
r=2n+2+( Zg=zn+2+(—0, aein Q, (3.68)
25(1,8) = 0= 25.,(0,1), forae.t>0, z(z,0)— / w(€)de, Ve
1
Hence, we see that z3 is a solution to the linear parabolic initial-boundary value

problem considered in (3.11), (3.12). Since p is the unique solution to this problem,
we have p = z3 a.e. on Q. Therefore, recalling u,; = py, and (3.68), we have

Upt = 2300 =21+ 22 +(C— 6, ae in Q. (3.69)
Using (3.66), (H1), (3.10), (1.2), (1.6), (H6), and (HT7), we get uniform bounds for

z1(+,0) and 25(+,0). Applying the maximum principle for linear parabolic equations,
we get uniform bounds for z; and z;. Because of (3.10), (HT7), and (3.32), we have

o S C49 + 0509, a.e. in Qoo
Thus, applying (3.69), (3.57), and Young’s inequality, yields that (3.63) holds. [

Lemma 3.16. There is a positive constant Cs, such that
t
Solip||9z(-,7)||2+/ 16:(-, )5 d7 < Ci. (3.70)
<t 0

Proof. Testing (1.3) by 6, using (1.6), (H2), Young’s inequality, Holder’s inequal-
ity, and (3.32), we see that

18 )
5ot 102(-,1)]]5

< & 2 1) + 0ae( 1) — (Filua, 1), (1) + 9, 1,600, 2)]

< Csa [[use (-, 1) I3 (et (-, 112 + 1+ 100, 0)11%,) + Cos |(Filua, t]), ¢, )15
+ Csallga ()3 + Css g2, )15 10C, )15, - (3.71)

1
6.0+

Integrating this equation over time, using (1.7), (H1), (H2), Holder’s inequality,
(3.49), (3.50), and (3.63), we see that

/0 16:(-,1)l[3 dt + [16a(-, 5)[l; < Cs6 + Csz max (a1 + 110C,8)112)
3
s 4
S 058 + 059 </ ||9t(,t)||; dt) + 060 gr<1ta<x ||9(,t)||io . (372)
0 <t<s

Thanks to the Gagliardo Nirenberg inequality and (3.5), we have
10C 8[| < Cor 1020132 10, E)1Y* + Coa 0C, )y < Cos + Coa |0 (-, 8)[|5°

Using this inequality to estimate the right-hand side of (3.72), and applying Young’s
inequality afterwards, we see that (3.70) holds. O
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Lemma 3.17. There are positive constants Cgs, Cgg such that

up ([0 8) [l + Nluat(:, t) | + lo (s )l + [lwe(, 8)ll o) < Ces, (3.73)

0<t

/Ooo (loeC, Oz + N1, E)ll5 + 166, Oll3) dt < Cos, (3.74)

/000 (|D1[us(z, -), w(z, )](t)] + | D2fuz(z, -), w(z,-)](t)]) dt < oo, for a.e.z € Q.
(3.75)

Proof. Using (3.38) and (3.70), we get the estimate for § in (3.74) and applying in
addition (3.63) and (3.32) leads to the remaining estimates in (3.73). Invoking (1.2),
(1.5), (3.50), (3.73), (3.70), and (3.28), we get the estimates for o; and ;. Utilizing
also (3.10), (HT), and (3.35), we derive the estimates for ;. Combining (3.34) and
(3.49) and using Fubini’s theorem, we see that (3.75) holds. O

4 Proof of the asymptotic results

As in the last section, it will be assumed that (H1)—(H8) are satisfied, and that a
solution (u, 0, w) to (1.1)—(1.2) is given, such that (2.23)-(2.26) holds.

For proving the asymptotic results in Theorem 1 with an argumentation similar to
[RZ97, Section 4], the following modification of [SZ93, Lemma 3.1] will be used. In
the original formulation, it was assumed that the inequality in (4.1) holds for all ¢
in the considered interval, but the proof in [SZ93| can also be used if this inequality
holds only for a.e. ¢ in the considered interval.

Lemma 4.1. Suppose that y and h are non-negative functions on (0,00), with y'

locally integrable, such that there are positive positive constants Ay, ..., Ay such that
y'(t) < A1y?(t) + Az + h(t), for a.e.t € (0,00), (4.1)
/ y(t)dt < As, / t)dt < Ay. (4.2)
0
Then
Jim y(t) = 0. (4.3)

Lemma 4.2. We have (2.28) and

Jim (12 D)l = Jim (- D), = 0 (4.4
Jim (16, ), = Jim fla], =0, (1.5

Proof. Testing (3.11) with —p,, applying (3.12) and Young’s inequality, we see that

10 1

o 9o CoE + a2 < 5 Mpae )+ 5 15 ), for ae.t € (0,00).
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Since u; = p, a.e. in ,, we see by recalling (3.35) and (3.51) that we can apply
Lemma 4.1 to show that (4.4) holds. We have, by Young’s inequality,

o, . . . . -
5,03 =2 / 5(, 03, 0)de < 50, 0)[2 + 6:(, )12, for ae.t € (0, 00).

Invoking (3.51), (3.74), and Lemma 4.1, we get the convergence result for 6 in (4.5).
Since (3.13), (3.10), and (H7) yield that ¢ = —&, we also have the result for ¢; in
(4.5). Combining (4.5), (3.10), (HT7), and the definition on F,, in (2.31), we get
(2.28). 0

Lemma 4.3. We have

lim [ )l = i 2, 8)ll, = lim [luge(-,2)], = Jim [lue(,8)]lo = 0. (4.6)

Proof. Differentiating (3.11) with respect to ¢, testing it afterwards by p;, and ap-
plying (3.11) and Young’s inequality, we see that

0 2 2 1 2 1 ~ 2
g7 POl + lpae ()l < 5 Moo )l + 5 llGe( )l for ace.t € (0, 00).

Using (3.51), (3.74), and Lemma 4.1, we get the convergence result for p; in (4.6).
By (3.11), we can combine this with (4.5) to prove the convergence result for p,, in
(4.6). Recalling also (3.9), we get the convergence result for u,; and using (1.6), we
obtain the result for u;. OJ

Lemma 4.4. We have
Jim 04, 8)l, = Jim [}6(.,9) - 8(9)]|, 0. (4.7)
Moreover, we have some constant 0, > 0 such that (2.30) holds.

Proof. Combining (3.71) with (3.73), we get for a.e. t € (0, c0)

19
557 1020 Oll5 < Cor (Il (-, Oll; + [|(Filtia ), (5Ol + llgn (5 E)15 + g2, D)l5) -

Because of (3.39), (3.49), (3.50), and (H2), we can now use Lemma 4.1 to get the
convergence result for 6,. Recalling (3.38), we obtain the result for 6 —f. Combining
this with (3.37), we get some ¢, > 0 such that

9($,t)>018/2, V(L'Eﬁ,tzto.

Moreover, (2.24) and (2.26) yield that @ is continuous and positive on Q x [0, ¢,], and
therefore also bounded from below by a positive constant C’ on this set. Setting
0, := min(C1s/2,C"), we see that (2.30) holds. O

Lemma 4.5. If G is the identity operator, then we have (2.33) and

lim [lw,(-,6)], = Jim [[4(,2)], = 0. (4.8)
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Proof. Testing the time derivative of (1.4) by w; and using Young’s inequality, we
see that for a.e. ¢t € (0, 00)

0

1 1
g [0 O < [ e, t)de < 5 o 01+ 5 I, 13-

By assumption, we have w; = (G[w]), and can therefore apply (3.50), (3.74), Lemma
4.1, and (1.4) to show that (4.8) holds. Using now (H6)iii) and (4.6), we get also
(2.33) . 0

Lemma 4.6. Assume that Hi =H3;=F1 =0, g=0, and f =0. Then, we have

p e
9(',t)t_>—oo> ||90||1+E||u1||3, in  L=(Q). (4.9)

and (2.35). If G is the identity operator then we have (2.36).

Proof. Thanks to the assumptions, (3.4), (3.10), (1.2), (H7), and (H5), we see that
I, =0, that [,/Cy is equal to the right—hand side of (4.9), and that & = 0Hs[u,, w].
Invoking (3.2), (4.6), (4.7), (4.5), and (H1), we get (4.9) and (2.35). If G is the

identity operator then it follows from (4.8), ¥ = 0H4[u,, w], and (4.9) that (2.36)
holds. O

Lemma 4.7. If (H9) holds then there is a us, € WH*(Q) such that (2.37)-(2.38)
hold.

Proof. Owing to (3.75) and (H9), we have a function e, : 2 — R such that

uz(z,t) — Ex(z), forae.z e Q. (4.10)
—>00

Invoking (3.16), compactness, and properties of weak-star and weak convergence,
we see that
Ug(+, t) 2 Eo weakly-star in  L>°(Q). (4.11)
—00

Defining now ue(z) := [ €s0(€) and using (1.6), we conclude that us, € Wh>(Q)
and (2.37)—(2.38) hold. O

Lemma 4.8. If (H10) holds then there is a wy € L™ () such that (2.39) holds.

Proof. Thanks to (3.75), (H10), (3.16), compactness, and properties of weak con-
vergence, we get a W, € L>(£2) such that (2.39) holds. O

This completes the proof of Theorem 1.
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