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ABSTRACT. A new layer method solving the space-periodic problem for the Navier-
Stokes equations is constructed by using probabilistic representations of their solutions.
The method exploits the ideas of weak sense numerical integration of stochastic differen-
tial equations. Despite its probabilistic nature this method is nevertheless deterministic.
A convergence theorem is proved.

1. INTRODUCTION

We propose an approximation method based on probabilistic approach for the three-
dimensional system of Navier-Stokes equations (NSEs) with spatial periodic boundary
conditions (for a review and numerical analysis of NSEs see e.g. [3], [12], [4], and references
therein). Probabilistic techniques are successfully used for investigation of different partial
differential equations. Comparatively few probabilistic works are devoted to NSEs (see
among them [2], [6], [1]). To the authors’ knowledge there is no numerical method based
on a probabilistic representation of solutions to NSEs. In the next section we construct
a new layer method solving the space-periodic problem for NSEs by using probabilistic
representations of their solutions. The method exploits the ideas of weak sense numerical
integration of stochastic differential equations (see [8]). Despite the probabilistic nature
this method is nevertheless deterministic. Such methods have been derived for nonlinear
equations of parabolic type in [9], [10], [L11]. The probabilistic approach takes into account
a coefficient dependence on the space variables and a relationship between diffusion and
advection in an intrinsic manner. In Section 3 a convergence theorem for the layer method
for NSEs is proved. Here we restrict ourselves to the space-periodic problem. Applications
of the developed approach to other problems for Navier-Stokes equations will appear
elsewhere. Numerical implementations of the obtained method will be considered in a
separate work.

2. CONSTRUCTION OF THE APPROXIMATION METHOD

Let us consider the system of Navier-Stokes equations for velocity v and pressure p in a
viscous incompressible flow

(2.1) %—l—(v,V)v:a;Av—Vp, ~T<s<0, z,v € R3,
(2.2) divv = 0,

with initial condition (2.3) and spatial periodic condition (2.4):

(23) o(~T,2) = (2),

(2.4) v(s,z+ Le;) = v(s,x), i =1,2,3, —T < s <0,

where {e;} is the canonical basis in R® and L > 0 is the period in i-th direction. Denote
by @ = (0,L)? the cube of the period. Of course, one may consider different periods
Ly, Lo, L3 in the different directions.



System (2.1) is autonomous and, consequently, its solution does not depend on shift of
time. The choice of the interval [T, 0] is convenient for a probabilistic representation of
the solution to the problem (2.1)-(2.4). Introducing the new time ¢ = —s and the new
function u(t,z) = v(—t,z), 0 <t < T, we get

ou  o? 3
(2.5) E—l—gAu—(u,V)u—Vp:O,Ogth,xER,
(2.6) divu = 0,
(2.7) u(T', z) = ¢(z),
(2.8) u(t,z + Le;)) = u(t,z), i=1,2,3, 0<t <T.

To study the solutions to this system, we need some functional spaces and the Helmholz
decomposition (see, e.g. [7], [12], [4]). We denote by L?(Q) the Hilbert space of functions
on ) with the scalar product and the norm

(u,v):/QZui(x)vi(x)dx, || = (u, u)"2.

We keep the notation | - | for the absolute value of numbers and for the length of three-
dimensional vectors, for example,

[u(t, z)| = [(u'(,2))” + (u*(t,2))" + (u*(2,2))°] /2.

We denote by H*(Q), m = 0,1,..., the Sobolev space of functions which are in L3(Q),
together with all their derivatives of order < m, and which are periodic functions with
the period @. The space H;”(Q) is a Hilbert space with the scalar product and the norm

3

0= [ 32 3 D@D v wd, il = (0 0)a],

where of = (af, b, a}), o} € {0,..m}, [o&/] = o} + o} + af, and
ola’]
i)

i al ad o al
D* = D\'Dy*Dy* = ol ol o
Oz,'0z,°0x3°

i1=1,2,3.
Clearly H)(Q) = L*(Q).
In connection with the Helmholz decomposition, introduce the Hilbert subspaces of H*(Q) :

V) ={v:ve H(Q), divv =0}, m >0,
Vg = the closure of V™, m > 0, in L*(Q).

p?

Clearly
V' = the closure of V* in H*(Q) for any my > m;.
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Denote by P the orthogonal projection in H*(Q) onto VI* (we omit m in the notation
for P here). The Helmholz decomposition consists in the fact that any v € H*(Q) is
equal to

u= Pu+ Vg, divPu =0,
where g = g(z) is a scalar Q-periodic function such that Vg € H*(Q). In other words,

(V;”)L ={v:v e H(Q), v= Vg}.

Let u(t, z), p(t,z) be a solution of the problem (2.5)-(2.8). The following representation
holds (we use here the probabilistic representation of solutions of the Cauchy problem for
equations of parabolic type (see, e.g. [5], [6])):

(2.9) UWMZEWMm@»—[‘@@XM@M%

where X, ,(s) solves the Ito system of stochastic differential equations
(2.10) dX = —u(s, X)ds + cdW (s), X(t) =z,
W is a standard 3-dimensional Wiener process.

Let 0 =1y < t; < ... <ty =T be a uniform partition of the interval [0,7] and h =T /N
(we restrict ourselves to the uniform partition for simplicity only). Clearly, analogously
to (2.9) one can write

(2.11) mmszmnmxmmﬂnilwvmwmAme

where X, ,(s) solves (2.10) with the initial data X (¢) = .

Fix k for a while and assume the function u(tx1, ) as a function of z to be known, i.e.,
we assume the solution on the layer ¢t = ¢;,; to be known. Our nearest aim is to find an
approximation of u(tx, x), i.e., of the solution on the previous k-th layer ¢ = ¢;. Applying
a slightly modified explicit Euler scheme with the simplest noise simulation to the system
(2.10), we obtain

(2.12) Xis1 =7 — u(tpsr, z)h + oVhE,

where £ = (¢',6%,€%)", €',¢€%, ¢ are i.i.d. random variables with the law P(¢' = —1) =
P =1)=1/2,i=1,2,3.

From the theory of weak numerical methods for stochastic differential equations [8], it
follows that if u(tx,1,z) and p(s, z), tx < s < tx,1, are sufficiently smooth, then

(213) Eu(tk+1, th,z(tk—|—l)) = Eu(tk+1, Xk-i—l) + O(I’L2),
and
tei1
(2.14) E / Vp(s, X o(5))ds = Vp(tess, 2)h + O(h2).
173



The remainder O(h?) in both (2.13) and (2.14) is a function of k, z, h and it is of the
second order of smallness uniformly with respect to these variables, i.e.,

|O(h?)] < KR?,
where K > 0 does not depend on k, x, and h. Below we use the letters K and C' without
any index for various constants which do not depend on k, z, h.
Hence it follows from (2.11)-(2.12) that
(2.15) u(ty, ) = Bu(tpir, Xpr1) — VD(tesr, )b + O(R?)
= Bu(tgy1, o8 — u' (tpi1, 2)h + oVheL, ... x® — u?(tpyr, )b+ a\/ﬁﬁ3)
—Vp(tesr, z)h + O(R?)
= v(ty, &) — Vp(trs1, 2)h + O(h?),

where
8

— 1
(2.16) v(tk, ) = Fu(tgs1, Xps1) = S Zu(tkH, z — u(tpy1,z)h + a\/ﬁfq),

q=1

&=(1,1,0)7, .., &E=(—1,-1,-1)T.
Using the Helmholz decomposition, we derive
(2.17) v(ty, z) = Po(t, ) + Vg(tx, ).

Taking into account that divu(tx, z) = 0, divPv(ty, z) = 0, comparing (2.15) with (2.17),
and using the Helmholz decomposition again, we get

(2.18) Vy(ty, z) = Vp(tesr, z)h + O(h?),
(2.19) u(ty, ©) = Po(ty, z) + O(h?).
We should underline that the remainder O(h?) unlike O(h?) is of the second order of
smallness in the sense of the space L%(Q), i.e.
10(h?)]| < KR?,
where K > 0 does not depend on k£ and h.

Heuristically, a method, based on a one-step approximation of the second order, converges
and has the first order of smallness with respect to A. So we can propose the following
method

(2.20) a(ty,z) = p(z), u(ty,z) = Po(ty,z), k=N —1,...,0,
where
8
1
(2.21) o(t,7) = g > a(tisr, @ — @(te, 2)h + oVhE).
g=1
Clearly
(2.22) diva(tg, x) = 0.

4



Knowing %(tg, z), it is not difficult to find @(t, z). Indeed, due to the Helmholz decom-
position

(2.23) O(tk, z) = Po(ty, ) + Vg(te, z) = u(t, ) + Vg(te, z).

The functions @(tg, ), u(tg, ), and g(tx,z) can be expanded in Fourier series (for the
sake of simplicity the dependences on k are omitted in the right hand sides of (2.24)):

27
(2.24) o(ty, z) = Z ﬁnelf( u(ty, x Z Une L )
IIEZ3 neZS
tka Z gne L e
ncZzs3
We have from (2.23)
(2.25) ¥ =@+ i%njgn, j=1,2,3.

Now (2.22) and (2.25) yield

(#0,1) = 0, (3, 1) = i (n, )30

and consequently

~_ _ (Unyn)

2.26 n = Un — , 0.
(2.26) T =% =y D #
Clearly

2_1,0 - ’l_Jo.

Thus, the method (2.20)-(2.21) can be realized. In the next section we prove that this
method converges and has the order of accuracy O(h) More exactly, we prove that
@(ty, z) = u(ty, z) + O(h). In this paper we do not consider approximation of pressure p
in detail. Most likely, the proposed method gives a good approximation for derivatives of
u(ty, T) with respect to z* as well, i.e., 94/dz® are sufficiently close to du/dz". In such a
case, the pressure can approximately be found from the well known equation

3 . .
_ ou’ (tk, .’L') a’l,_l,l(tk, .’E)
(2.27) Ap(tg,z) = — E O o

i,j=1

Let us propose an additional method which is based on the one-step approximations of u
and p given by formulas (2.15) and (2.27):

(2.28) a(ty,z) = p(z)

P(tg+1, ) is found from (2.27), a(tg, z) = 0(tg, ) — Vp(tgs1, )b, k=N —1,...,0,

5



where (i, z) is expressed by (2.21). We should note that divi(ty, ) # 0. Due to (2.17)-
(2.19), the one-step error of this method is estimated in the following way
u(te, z) — (v(te, z) — Vp(tri1, z)h)
= u(tg, z) — (Pv(te, z) + Vg(tr, z) — Vp(tei1, z)h)
= u(ty, r) — Pu(ty, ) + O(h?) = O(h?),
i.e., the one-step error is of O(h?). Therefore we can expect the method (2.28) to be

convergent with accuracy O(h) just as the method (2.20)-(2.21). Here we do not give a
complete justification of the method (2.28).

3. THE MAIN THEOREM

Let us evaluate the one-step error of the method (2.20)-(2.21). This error on the k-th layer
(on the (N — k)-th step) is equal to Pv(ty, z) — u(tg, z) provided @(try1,z) = w(tpy1, ) :
(3.1) Pu(ty,z) — u(ty, z) = v(tg, ) — Vg(t, ) — u(te, x)

8

— % Zu(tkﬂ, T — u(tps1, z)h + a\/ﬁﬁq) — Vyg(te, z) — u(ty, ).

g=1

Due to (2.19), the difference Pv(ty, &) — u(t, ) is of O(h?). We recall that the derivation
of (2.19) is based on probabilistic arguments using the theory of numerical methods in
weak sense for stochastic differential equations. Below we give a deterministic proof of
this fact.

Lemma 1. Let the solution to (2.5)-(2.8) have the continuous derivatives
(3.2)
o"u
———(t,2), j=0,1=1,2,3,4; 7=1,1=0,1,2; j=2,1=0; 0<t<T, z € R,
2 .3

where the derivative with respect to (z)! means a mized derivative with respect to z', =%, x
of order 1. Then the one-step error of the method (2.20)-(2.21) is of second order in H)(Q),
i.e.

(3.3) || Pv(tg, ) — u(ty,")|| < Ch?,

where the constant C does not depend on h and k.

Proof. Expanding the function w(try1,z — u(tgr1, z)h + aﬂfq) at tg, z in powers of h
and —u?(tg 1, z)h + a\/ﬁgg, j=1,2,3, we find that the terms with v/A and hv/h in the
sum 22:1 u(tis1, ¢ — u(ter1, ©)h + oVhE,) are annihilated. We obtain

0 1
(3.4) Pu(ty,z) = u(ty, z) + a—ltb(tk, z)h — (u, V)u(ty, z)h + 502Au(tk, z)h
_Vg(tka .’E) + T'(.’E, h1 k)a

where |r(z, h; k)| < Ch? with C independent of z, h, k.

6



Since u(t, z) solves (2.5), we get from here

(3.5) Pu(tg, ) — u(ty, ) = Vp(ty, z)h — Vg(tg, z) + r(z, h; k).

Using the orthogonality of Pu(t,z) — u(ty, z) and Vp(ty, z)h — Vg(tr,z) in HY(Q) (we
recall that div(Pv(tg, z) — u(ty, z)) = 0), we attain (3.3). O

Lemma 2. Let the solution to (2.5)-(2.8) have the continuous derivatives (3.2) for

j=0,1=1,..6;j=1,1=0,1,...4, 7=2,1=0,1,2.

Then the one-step error of the method (2.20)-(2.21) is of second order in the uniform
norm, i.e.

(3.6) |Pv(ty, ) — u(ty, )| < Ch?,

where the constant C does not depend on z, h, and k.

Proof. The remainder term r(z, h; k) in (3.4) can be represented as a sum of iterated
integrals with limits which are between ¢, and t; + h in ¢ and between z‘ and z* —
u'(tgy1, T)h + a\/ﬁffl in ¢, i = 1,2,3. From here and the condition of the lemma we
get that |Or(z, h; k)/0x| < Ch? and |0%r(z, h; k)/0x'02?| < Ch? with C independent of
z, h, k. Due to (3.5) we have

0Pv ou dg or

Op
—(t ——(t =V_—=(t - V=t —(z, h; k).
ox’ (b, 2) 8:51( ) 83:’( ) 83:’( o)+ ox’ (2, h; k)
As in the proof of the previous lemma, since div(0Pv/0z* — du/dz') = 0, we get
O0Pv Ou
——(tr, ) — —(te, )| < CR?, i =1,2,3.
157 ) — et )l < O, i = 1,2
Analogously
0? Pv 0%u

(tk")H < Ch?a Za.] - 1a2a3-

||8xi8xj (ts) = Ortdxi
From the last two inequalities we obtain for the norm in H2(Q) :
1Pots, ) — ults, )2 < CB.
Now (3.6) is attained due to the corresponding Sobolev inequality. [J

Theorem 1. Let the assumptions of Lemma 1 be fulfilled. Let
a(ty, )| < K, |0a(ty,z)/02'| < K,

where K > 0 is independent of z, h, k. Then the method (2.20)-(2.21) is of first order,
i.e.

(3.7) |a(ty, ) = u(ty, )|l < Ch,

where the constant C does not depend on h and k.

7



Proof. Denote the error of the method (2.20)-(2.21) on the k-th layer as e(ty, z) =
U(tg, z) — u(ty, ). Thus, we have

ﬂ(tk, .’L') = ’U,(tk, .’L') + E(tk, .’E), ﬂ(tk+1, .’E) = u(tk+1, .’E) + €(tk+1, .’E)

Due to (2.20) we get

(38) ’U,(tk, .’L')+E(tk, .’L') = ﬂ(tk, .’L') = P’U(tk, .’E) == % Z P[ﬂ(tk_H, x—ﬂ(tk+1, x)h—l—a\/ﬁfq)]

g=1
8 8
— é Z Plu(tp1, — G(tgs1, @)k + oVRE,)] + é Z Ple(tys1, ¢ — @(ter1, )b + oVRE)].
q=1 g=1

Further

(3.9)  u(tirr,z — lti1, 2)h + oVhE,) = ultisr, T — ultysr, ©)h + oVhE,) + rig(),

where

(3.10) |rkg(@)| = [u(thsr, T — GUtpsr, T)h + oVRE,) — ultisr, T — u(tysr, ©)h + oVhE,)]
< Kle(tgy1, z)]|h.

From (3.8) and (3.9) we get
8

(3.11)  wu(ty, ) +e(t,z) = % Z Plu(tps1,  — u(tpir, ©)h + U\/Efq)] + é Z Prig(z)

g=1
8

+é Z Ple(trt1,® — a(trs1, z)h + Uﬁfq)]'

q=1

Due to (2.16) and (3.5), we get
8

(3.12) é Z Plu(tes1, z — u(tps1, ©)h + 0\/554)]

q=1
= Pu(tg, ) = u(ty, z) + Vp(ty, z)h — Vg(tg, ) + r(z, h; k).
From (3.5) and Lemma 1 we have
IVp(ts, )b — Vg(ts,-) + (-, hs k) || = O(h?).

Therefore (3.11) and (3.12) imply

(3.13)  e(ty,z) = % > Ple(tisr, @ — @(tir, o) + oVRE,)] + % Y Priy(z) + O(R?).

q=1

Now introduce
er = |[e(tr, ).

8



Let us evaluate the norm || - || of the function &§(z) := e(txt1, T — G(trr1, T)h + oVRE,).
We have

3
161 = | STl — b, 2+ oV RE
i=1

3
, D(z', 2, x3)
= [t Y 55 4y,

/Q; ' D(y',y% y%)

where
y' =1' — @ (typ1, z)h + oVhE, i =1,2,3.

Due to the condition about the uniform boundedness of da‘/0z? and the fact that diva =
0, we get

Dyt yt,y®) | L hOT 0zt —hou /o  —hoa!/oa’
(3.14) % = | —how?/0z' 11— hou?/0x? —hIWZ/® | =1+ O(h?).
(#5,2%.2%) | _poud/ort  —howd/0a® 1 — hOE/0ad

Therefore
116]] < eppr(1+ C’h2).

Since ||P|| < 1, we obtain from (3.10) and (3.13) (in addition we recall that e(ty,z) = 0)
(3.15) en =0, e < eps1 + Kepth +Ch% k=N —1,...,1,0.

Consequently

O

Remark 1. The theorem establishes that the error of method (2.20)-(2.21) on the whole
interval is of O(h). This is natural due to Lemma 1 which establishes that the one-step
error of the method is of O(h?). One may expect that under the assumption of Lemma 2
the error of method (2.20)-(2.21) is of O(h), however we have not succeeded in proving
this fact rigorously.

Remark 2. The proof of Theorem 1 is not varied if a weaker condition than
0a(ty, ) /02| < K

is imposed. Namely it is sufficient to require |8a(ty, z)/0z'| < K/v/h. Indeed, in this case
we obtain in the right-hand side of (3.14) 1 + O(h) instead of 1 + O(h?). Consequently,
116]] < er41(1+Ch) and (3.15) follows again. At the same time the conditions of Theorem
1 are natural and they are most likely fulfilled for sufficiently wide class of initial conditions
¢(z) for the problem (2.5)-(2.8).



1]
2]
[3]
[4]
[5]
{?}
18]
9]
[10]
[11]

[12]
[13]

REFERENCES

Belopolskaya Ya. Burgers equation on a Hilbert manifold and the motion of incompressible fluid.
Methods of Functional Analysis and Topology, v. 5 (1999), no. 4, 15-27.

Bunsello B. A probabilistic approach to the two-dimensional Navier-Stokes equations. The Annals
of Prob. 27(1999), no. 4, 1750-1780.

Chorin A.J., Marsden J.E. A mathematical Introduction to Fluid Mechanics. Third ed., Springer,
New York, 1993.

Dubois T., Jauberteau F., Temam R. Dynamic Multilevel Methods and the Numerical Simulation
of Turbulence. Cambridge Univ. Press, 1999.

Dynkin E.B. Markov Processes. Springer, Berlin, 1965 (engl. transl. from Russian 1963).

Freidlin M.I.. Integration and Partial Differential Equations. Princeton Univ. Press., 1985.
Ladyzhenskaya O.A. The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach,
New York, 1969.

Milstein G.N. Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publish-
ers, 1995 (engl. transl. from Russian 1988).

Milstein G.N. The probability approach to numerical solution of nonlinear parabolic equations.
Numerical Methods for PDE, to appear.

Milstein G.N., Tretyakov M.V. Numerical algorithms for semilinear parabolic equations with small
parameter based on approximation of stochastic equations. Math. Comp., 69(2000), 237-267.
Milstein G.N., Tretyakov M.V. Numerical solution of the Dirichlet problem for nonlinear parabolic
equations by a probabilistic approach. IMA J. of Numerical Analysis, v. 21(2001), no. 4, 887-917.
Temam R. Navier Stokes Equations and Nonlinear Functional Analysis. STAM, Philadelphia, 1983.
Wesseling P. Principles of Computational Fluid Dynamics. Springer, Berlin, 2001.

10



