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Abstract

We present the stochastic approach to nonlinear kinetic equations (without gra-
dient terms) in a unifying general framework, which covers many interactions im-

portant in applications, like coagulation, fragmentation, inelastic collisions, as well
as source and efflux terms. We provide conditions for the existence of correspond-

ing stochastic particle systems in the sense of regularity (non-explosion) of a jump

process with unbounded intensity. Using an appropriate space of measure-valued

functions, we prove relative compactness of the sequence of processes and character-

ize the weak limits in terms of solutions to the nonlinear equation. As a particular

application, we derive existence theorems for Smoluchowski’s coagulation equation
with fragmentation, eflux and source terms, and for the Boltzmann equation with

dissipative collisions.
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1. Introduction

Studies of the connection between stochastic interacting particle systems and nonlinear
kinetic equations have a long history. The earliest references seem to be the papers by
Leontovich [22] and Kac [20], where the Boltzmann equation (cf. [6], [7]) from rarefied
gas dynamics was considered. In the simplest (spatially homogeneous) case this equation
describes the time evolution of the velocity distribution of gas molecules that change their
velocities during collisions. The stochastic approach to the Boltzmann equation has been
further developed in [25], [32]. The practically relevant (unbounded) hard sphere collision
kernel was treated in [31]. We refer to [35] for more comments and references concerning
this field. Algorithms based on the corresponding stochastic interacting particle systems
are presently the most widely used numerical tools in kinetic theory [5].

Stochastic particle systems related to Smoluchowski’s coagulation equation (cf. [34],
[8]) were used in [24], [14], [23] in the context of various applications. In the spatially
homogeneous case this equation describes the time evolution of the size distribution of
particles moving in a physical medium and merging during collisions. The stochastic
approach to Smoluchowski’s coagulation equation has been reviewed in [1]. We refer to
[10], [12] for comments and references concerning applications of the particle systems in
numerics. Note that the coagulation process can be considered as a chemical system
with infinitely many species (characterized by size) and simple reactions (merging of two
partners). The study of the relationship between stochastic and deterministic models for
chemical systems with a finite number of species and reactions goes back to [21] (cf. [15]
concerning numerical applications).

Developing the stochastic approach to the Boltzmann equation, systems with a general
binary interaction between particles and a general (Markovian) single particle evolution
(including spatial motion) were considered in [26], [17]. Results concerning the approx-
imation of the solution to the corresponding nonlinear kinetic equation by the particle
system were obtained in the case of bounded intensities and a constant (in time) number of
particles. The weak law of large numbers for stochastic particle systems related to Smolu-
chowski’s coagulation equation with general kernels has attracted attention only recently
(cf. [1, Problem 10(a)]). Meanwhile, rigorous results of this type are contained, e.g.,
in [18] (discrete coagulation-fragmentation equation with bounded kernels), [19] (discrete
coagulation-fragmentation equation), [28] (continuous coagulation equation), [11] (contin-
uous coagulation-fragmentation equation). Most of the practically relevant coagulation
kernels are unbounded. Moreover, if the kernel grows sufficiently fast, solutions to the
limiting equation show the so-called gelation effect (loss of mass in finite time). It has
been observed that the stochastic approach provides new existence results for the deter-
ministic limiting equation (cf. the discussion in [11]), besides the approximation results
that were the original motivation.

The purpose of this paper is to present the stochastic approach to nonlinear kinetic
equations (without gradient terms) in a unifying general framework, which covers the
cases mentioned above and allows one to include other effects important in applications,
like multiple fragmentation, structured clusters, inelastic collisions, internal degrees of
freedom, sources and efflux, etc. (cf., e.g., [36, Sections 3.3, 3.7], [29]). To this end we use
an arbitrary locally compact separable metric space as the type space of a single particle



and consider rather general multiple interactions with unbounded rates. The state space
of the particle system consists of appropriately normalized discrete measures on the type
space. The limiting equation is considered in a weak form so that solutions are functions
of time taking values in some space of measures on the type space.

The paper is organized as follows. The main results are given in Section 2. The
first theorem provides conditions for the existence of the particle system in the sense of
regularity (non-explosion) of a jump process. The second theorem studies the property
of relative compactness of the sequence (with respect to the normalization parameter) of
processes. The third theorem characterizes the weak limits of the sequence in terms of
solutions to a deterministic nonlinear equation. An existence theorem for the limiting
equation is given in form of a special corollary. In Section 3 the general results are ap-
plied to some specific models. First, the coagulation-fragmentation equation with source
and efflux is considered. In this case new existence results are obtained. Second, a gener-
alized Boltzmann equation with dissipative collisions is considered. Such equations have
attracted considerable interest in recent years in connection with the study of granular
materials (cf., e.g., [16], [4]). An existence result is obtained that covers the known results
in the classical Boltzmann case. The rest of the paper is concerned with the proofs of
the main results. In Section 4 we consider the so-called minimal jump process, with a
compactly bounded kernel on some locally compact separable metric space, and prove a
theorem concerning its regularity (non-explosion). In Section 5 we give proofs of our
main theorems, using the results from the previous section and applying techniques from
[13]. Some auxiliary results are collected in an appendix, in order to make the paper
self-contained.

In conclusion we note that convergence of the particle system to the solution of the
limiting deterministic equation (weak law of large numbers) is obtained under the as-
sumption of uniqueness of that solution. So far no general uniqueness result have been
obtained (cf. |[28] concerning the coagulation case). However, the general framework
proposed in this paper provides a basis for the derivation and justification of stochastic
algorithms in many fields of application. The results cover both unbounded kernels (thus
avoiding any truncation leading to unnecessary numerical errors) and a variable number
of particles (possibly unbounded in time). As to concrete applications, we worked out
only two specific models in order to keep the length of the paper reasonable. However,
any combinations of these interaction models, and many others, can be considered.

2. Main results

Let E and E' be metric and separable spaces. Let M(E), B(E), C(E), Co(E) and C.(E)
denote the sets of functions on E that are measurable, bounded measurable, continuous,
bounded continuous, and continuous with compact support, respectively. For E locally
compact, let Co(E) denote the set of continuous functions on E vanishing at infinity as
the closure of C.(FE) with respect to the sup-norm ||.||. Furthermore, the sets of Borel
measures, bounded Borel measures and probability measures on the Borel-o-algebra B(E)
are denoted by M(E), My(E) and P(E), respectively. The Dirac measure on ¢ € E is

denoted by & . Vague and weak convergence of Borel measures are denoted by u, — u

and p, — u, respectively, whereas the sign = is used for convergence in distribution.



Let C([0,0), E) be the space of continuous paths and D([0, 00), E) the Skorohod space
of cadlag paths. For ¢ € M(E) and p € M(E) we use the notation (p,u) = [¢ du.
Finally, let 14 denote the indicator function of a set A. A kernel from E to E' (on E if
E = FE') is a function A : E x B(E') — [0, c0) such that

AM-,B) e M(E), VBeB(E and ME,) € My(E"), VEEE.
A kernel X is called compactly bounded if

sup A& E) < oo, for any compact C C E.
¢eC

We consider particles with types from a locally compact separable metric space Z and
weights % Define the state space of the particle system as

1 n
EN = {Nzazlnzoymzezafl/:l))n}) N:1727 (21)
1=1

Any event in the system consists in the interaction of at most R particles and produces as
a result at most K particles. This includes, for example, the generation of new particles
from a source, the extinction or transformation of single particles, and the collision of two
particles. The admissible subsequent states of u € EV are denoted by

Jo(lu’af) = ,Uf‘|‘%f,

. 1
J]-(/'l’7,1/7§) = M + N [5 - 5931] ) (22)
. ) 1
Jo(py 21y ytr, &) = ,L+N[§—5zi1—...—5zir}, r=2,...,R,
where 11,...,7, are pairwise distinct indices from {1,...,n} and ¢ € Ex, with

Ex = {Zc?zi:OSnSK,mZ-EZ,izl,...,n}, (2.3)
=1

for some given natural numbers R and K . Both spaces EY and Ex are equipped with
the weak topology.

The rates for the different events are determined by a measure gy and kernels qq, ..., qr
such that

g € My(Ex) and (2.4)
g : 2" x B(Eg) = [0,00), 7=1,...,R, are compactly bounded.

Thus, transitions (jumps) in the system are governed by the kernel

Ex

M(w,B)=N | 15(Jo(s,€)) ao(d€) + Z/E 18(J1(k,1,€)) qr(=i, d€)+ (2.5)

R
1 = ) )
ZW > /E 15(Jr(ty 51, - i, E)) @ (@i, . . -, mi,, d€), B e B(EY),

r=2 1<21,..22 <N

where p € EY and Y denotes summation over pairwise distinct indices.

We first provide conditions for the regularity (non-explosion) of the system.
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Theorem 2.1 (Regularity) Consider a locally compact separable metric space Z and a
function

HecC(Z) suchthat H>0 and %E Co(2). (2.6)

Suppose vl € P(EVN) satisfies

| ) <, (2.7

for some ¢o > 0. Suppose qo,q1,-..,qr satisfy (2.4) and are such that the kernel (2.5)
satisfies

[ ) = ()W wdn) < al(fp vl Vue BN, (28)

for some ¢, ¢; >0.

Then there exists a random process XN with sample paths in D([0,00), EN) that is

indistinguishable from the minimal jump process, corresponding to the kernel AN and the

initial distribution vl .

Next we study asymptotic properties of the sequence X . To this end, we construct
an appropriate common state space. Consider two functions

hHeCO(Z): 0<h(x)<cH(z), YecZ, forsome c>0, (2.9)
the set
M(Z,H) = {peM(2): (Hp) <o} (2.10)
and the metric
Al v) = dolp,v) +min{L, |(h, ) — (b))},  p, veE M(Z,H), (211)
where dy 1s a metric generating the vague topology. Introduce the space
M(Z,H k) = (M(Z, H),dh). (2.12)
Note that M(Z,0) = M(Z), M(Z,1) = My(Z) and
M(Z,H) C My(Z) if  inf H(z) > 0. (2.13)

According to [2, Theorem 45.7], the metric d; generates the weak topology on M(Z).

Theorem 2.2 (Relative Compactness) Consider a locally compact separable metric
space Z and functions H satisfying (2.6) and

h e C(Z) suchthat h >0 and % € Co(2). (2.14)

Suppose v} € P(EN) satisfy (2.7) uniformly in N . Suppose qo,qu, .. .,qr are such that
(2.8) is satisfied uniformly in N and

qO(EK) <c¢ and qr(maEK) < c H(ml) st H(mr)a Ve = (1111, <o 7:1;7‘) S ZT: (215)

for r=1,...,R and some c3 > 0.

Then the processes XN form a relatively compact sequence of D([0,00), M(Z, H,h))-
valued random variables.



Theorem 2.3 (Characterization of Weak Limits) Consider a locally compact sepa-
rable metric space Z and functions H, h satisfying (2.6) and (2.14). Suppose v € P(EYN)
satisfy (2.7) uniformly in N and are such that

XM0) = wo, for some po € M(Z,H). (2.16)
Suppose qo, q1, - - ., qr are such that (2.8) is satisfied uniformly in N ,
qO(EK) <c¢ and qr(maEK) < e h(ml)h(mr)a Ve = (mla-"amr) EZT: (217)

for r=1,...,R and some ¢y >0, and
q.(.,Ex) € C(Z7), / (p, &) qr(.,dE) € C(Z7), r=1,...,R, (2.18)
Ex

for any ¢ € C:(2).
Then the processes XN form a relatively compact sequence of D([0,00), M(Z, H,h))-
valued random variables and every weak limit X satisfies, almost surely,

(0, X(8) = (o) + /Otg«o,X(s))ds, Vi20, peCz), (219)

where, for p€ M(Z,H),

Glp, ) = / (0, €) ao(d€) + (2.20)

z:/z/z/EK (o, &) — p(z1) — ... — o(@.)] @ (@1, - - - @0, dE) p(dzr) . . . p(dz,) .

Corollary 2.4 (Continuity) Under the assumptions of Theorem 2.2, every weak limit
X satisfies

P(Xe C([O,oo),/\/l(Z,H,h))) = 1. (2.21)

Corollary 2.5 (Moments) Under the assumptions of Theorem 2.2, every weak limit X
satisfies

E(H, X(t)) < (co+c))exp(ert), Vt>0. (2.22)

Corollary 2.6 (Existence) Consider a locally compact separable metric space Z and
functions H, h satisfying (2.6) and (2.14). Let po € M(Z, H) . Suppose qo,q1,-..,qr are
such that (2.8) is satisfied uniformly in N, and assumptions (2.17), (2.18) are fulfilled.

Then there exzists some p € C([0,00), M(Z, H,h)) solving the macroscopic equa-
tion

(orul®) = (ppo) + /Otg«o,u(s))ds, V120, peCiz). (2.23)



Corollary 2.7 (Convergence) Let the assumptions of Theorem 2.8 be fulfilled. If there
is a unique p € C([0,00), M(Z, H,h)) satisfying equation (2.23), then the stochastic
processes XV converge in distribution to p .

Corollary 2.8 For nonnegative g € C(2) and v > 0 consider the set
Mi(Z,9) = {ueMZ) : (gm) <} (224
Suppose qo, q1, - - - ,qr are such that, for all N =1,2,...,
MW, ENNML(Z,9)) = MW(u,EY), Vue BN N M (Z,9). (2.25)
Then the Theorems 2.1, 2.2 and 2.8 hold, when the spaces EN and M(Z, H,h) are replaced
by ENN M, (Z,9) and (M(Z,H)NM(Z,9),ds), respectively.

Corollary 2.9 Consider a locally compact separable metric space Z and functions H,h
satisfying (2.6) and (2.14). Let po € M(Z,H) be such that (g,po) < oo, for some
nonnegative g € C(Z), and consider v = (g, o) + 1. Suppose qo, q1,- . .,qr are such that
assumptions (2.17), (2.18) and (2.25) are fulfilled, and (2.8) is satisfied uniformly in N ,
with BN replaced by EN N M (Z,g).

Then there exists some p € C([0,00), (M(Z,H)NM,(Z,9),dr)) solving the equation
(2.23).

We finish this section by providing some basic properties of the objects under consid-
eration, which will be used at several parts of the paper.

Remark 2.10 Let pp = N71Y 7% 8.6, k> 1, and p = N1 >0 64, Then dy(pg, p) —
0 +f and only if there are an 1 > 1 and permutations 7, on {1,...,n}, k > 1, such that

— : k — .
ng =n, k>I and k—)lolorr%c>lmﬂ-k(i) =z, 1=1,...,n.

Note that the kernel (2.5) satisfies
/ () XN (u, dv) = (2.26)
EN

N \IJ(JO(:U’a qO df ‘|‘Z/ Jl ,Ll,, 75 )ql(miadé-)

Ex

R
1 .
—I_ZNT 1 /E Iu7217'"727‘75))611‘(311'17---:miradf);
r=2 K

1<21,..0, 1. <n

for p € EN and appropriate test functions, e.g., ¥ € C(E¥). In particular, one obtains

Wi, BY) < N

qo(EK)—|—Z/Z.../ZqT(acl,...,mr,EK)u(dml)...u(dmr) . (2.27)



Remark 2.11 If ¢ € C(Z), then the function
®: BN >R, &) = (o), (2.28)
18 continuous, according to Remark 2.10.

Using (2.26) and (2.2), one obtains

[ L) = (ol 3V ) = (2.20)
N ! (0, €)* go(df) + NZ/E (p:€) — w(@i)]" (=i, d€) +
/E (0,6) = plos) = .. — (@ ar o, ., i, )

for pe BN, k=1,2, and ¢ € C(Z). Introduce the notation

%) = [ {0&) mlde), (2.30)
Q(pyz) = /E (0,6 — o) — .. — p(e)a(@de), r=1,...R,

for z = (z1,...,2,) € Z" and ¢ € C(Z). Using (2.29) with ¢ = H and k = 1, condition
(2.8) takes the form

/Q (H,z) p(dz) —I_ZN’I‘ Z Q.(H,z;,,...,z;,) < a1 [(H,p) +ci]-(2.31)

1<21,..422 <0

It follows from the definition (2.3) that

(08 < llel K,  Vée Ex, (2.32)
and
/E (o, O o(de) < K*[lgll* ol B, (2.33)
/E (0,€) — pl@) — .. — o(@)Far (2, d€) < (K +)* ||l (e, Ex),

for k=1,2, z=(21,...,2,)€Z", r=1,...,R and ¢ € Cp(Z). Using (2.33) with
k =1, one obtains (cf. (2.30))

|Qo(p)|
@+, 2)]

K |l¢ll 90(Ex), (2.34)

<
< (K+7)|¢| gz, Ex), YeeZ', r=1,...,R.



3. Applications

In this section we apply the general results, in particular Corollaries 2.6 and 2.9, to several

special cases. We consider R = 2. One has to check conditions (2.8), (2.17), (2.18) and
(2.25) (in case of Corollary 2.9), for appropriate functions H, h satisfying (2.6) and (2.14).

According to (2.31), condition (2.8) is satisfied for all u € E¥ | if

lt) = [ (HOwlde) < a, (3.1)

and

Q2(H,z,y) =/ (H,§) — H(z) — H(y)| g2z, 9,d€) < 0, Va,yeZ. (33)

Ex

Using (2.26) with ¥ = 15~ (2,9) and (2.2), one observes that condition (2.25) is
satisfied provided that

=0, (9,8 <g(z), alzdf)ae (3.4)
and (g,§) <g(z) +9(y), az,y,df)ae, VzycZ.
In this case, condition (2.8) is satisfied for all u € E¥N N M,(Z,9), if (3.2) holds and
Qx(H,z,y) < cal[H(z)g(y)+9(z)H(y) +9(z)g(y)], Ve,yeZ. (3.9)

Indeed, (3.5) implies

= Y Q) <al)(Hm+1), Ve My(Z).

1<i#j<n

3.1. Source and efHux

Any source term gy € My(Eg) (cf. condition (2.17)) satisfying (3.1) is covered by
the results. In particular, we consider

q0(B) = / 1g5(6;) S(dz), B € B(Ek),
z
where S € My(Z). Condition (3.1) takes the form
/ H(z) S(dz) < oo. (3.6)
z

Note that (cf. (2.30))



Next we consider the eflux term
qi(z,B) = 15(0) E(z), r€Z, BeB(Ek),
where 0 denotes the zero measure and E € C(Z) is such that
0 < E(z) < cyh(z), Ve e Z. (3.8)

Conditions (2.17), (2.18) are satisfied, and condition (3.2) is fulfilled with ¢; = 0,
since the left-hand side is non-positive. Note that (cf. (2.30))

Qi(p,z) = —p(z)E(z). (3.9)

3.2. Coagulation and fragmentation

Let Z =N or Z = (0,00). Consider the coagulation term
%2(z,y, B) = 18(0ety) K(2,y), z,y€Z, BeDB(Ek),

where K € C(Z x Z) is non-negative, and note that (cf. (2.30))

Qxp,2,y) = [e(z+y)— (@) —¢(y)] K(z,y). (3.10)
Consider the fragmentation term

a(e,B) = [ 1albuy+8)Flody),  w€Z, BeB(Ex),
z
where F' is a kernel on Z satisfying
F(z,[z,00)) = 0, Ve € Z, (3.11)

and note that (cf. (2.30))

Qulpz) = /Z lo(z —y) + o(y) — p(@)] Flz, dy). (3.12)

With the terms (3.7), (3.9), (3.10) and (3.12), equation (2.23) takes the form

[ ele)uttd) = [ olw)uatds) + [ t [ | #le)stas) ~ [ pla) Bo)ulo,do)

Zz

/Z /Z oz +9) — o(@) — o)) K(z,y) u(s, dz) u(s, dy) + (3.13)
[ [so(m—y)ﬂo(y)—so(m)]F(m,dy>u<s,dm>] ds, Vi20, pel(2).

Theorem 3.1 Let Z =N or Z = (0,00). Consider functions H satisfying (2.6) and

HE) | HE)

> , Vi<z<y<oo, (3.14)
Z Yy

10



and h satisfying (2.14). Let po,S € M(Z,H) and E € C(Z2) such that (3.8) holds.
Consider a function K € C(Z x Z) such that

0 < K(z,y) < ch(z)hly), VaoyeZz, (3.15)

and a kernel F satisfying (8.11),

F(zn,.) 5 F(z,.), if Tz, T €Z, (3.16)
/Z[H(m—y)—l—H(y)—H(m)]F(m,dy) < ¢ H(z), Ve € Z, (3.17)

and
0 < F(z,2) < c1h(z), Vz € Z. (3.18)

Then there exists some p € C([0,00), M(Z, H,h)) satisfying equation (3.13).

Remark 3.2 In the case Z = (0,00) and F = 0, any continuous coagulation kernel
satisfying (3.15) is covered, provided that H satisfies (8.14). Note there is no restriction
on K at zero.

Corollary 3.3 Let Z = (0,00),

and
h(z) = 7% +a2'°, e €(0,q].

Let po, S € M(Z,H) and E € C(Z) such that (3.8) holds. Consider a function K €
C(Z x Z) satisfying (3.15). Assume F has the form

F(z,dy) = 1(0,z)(y) f(z,y)dy, (3.19)
where f 1s continuous with respect to the first argument and satisfies
R -8
0 < fley) < T gefi-a),  BE)=c(+a).

Then there exists some p € C([0,00), M(Z, H,h)) satisfying equation (3.13).

To our knowledge, the most general existence result in the continuous case, including
source and efflux terms, is contained in [9, Theorem 2.2|. There it is assumed that both
K and f have compact support, and that both the source term and the initial distribution
have a finite moment of some order » > 1. Thus, Corollary 3.3 provides a new existence

result for unbounded K and f.

Corollary 3.4 Let Z =N and H(z) =z, h(z)=o(z). Consider uo,S € M(Z,H)
and E such that (3.8) holds. Suppose K satisfies (3.15) and F satisfies (8.11), (3.18).
Then there exists some p € C([0,00), M(Z, H,h)) satisfying equation (3.13).

11



To our knowledge, the most general existence result in the discrete case, including source
and efflux terms, is contained in [30]. The corresponding assumptions there are K(z,y) =

o(z)o(y), E(z) = O(z), Y oo,z S(z) < co and boundedness of F(z,Z) in z. Thus,

Corollary 3.4 provides a new existence result for an unbounded total fragmentation rate.

Theorem 3.5 Let Z = N or Z = (0,00). Consider functions H,h satisfying (2.6),
(2.14). Let po € M(Z,H) such that

/Zm,uo(da:) < o0, (3.20)

S =0and E € C(2) such that (3.8) holds. Consider a function K € C(Z x Z) satisfying
(3.15) and

[H(z +y) — H(z) - H(y)| K(z,y) < alH(z)y+zH(y)+zy], (3.21)

and a kernel F satisfying (8.11), (8.16), (3.17) and (3.18). Then there exists some
p € C([0,00), M(Z, H,h)) satisfying equation (3.13).

Corollary 3.6 Let Z = (0,00),

and
h(z) = 7% +2°°°, e €(0,q].

Let pjo € M(Z,H), S =0 and E € C(Z) such that (5.8) holds. Consider a function
K € C(Z x Z) satisfying

Kz,y) < a(l+z+y). (3.22)

Suppose F has the form (8.19), where f is continuous with respect to the first argument
and satisfies

2) B
0 < fz,y) < R(ml)i_%, Be0,l—a), R(z) = c(1 +2°79).

Then there exists some p € C([0,00), M(Z, H,h)) satisfying equation (3.13).
Corollary 3.7 Consider Z = N, and the functions H(z) = 2", h(z) = "° with
somer =2,3,... and e € (0,1]. Let uyo € M(Z,H), S =0 and E such that (3.8) holds.
Suppose K satisfies

K(may) S cl(m + y) ) (323)

and F satisfies (3.11), (8.18). Then there exists some p € C([0,00), M(Z, H,h)) satis-
fying equation (3.13).

12



Remark 3.8 Consider Z = (0,00). Suppose F has the form (3.19) and
pu(t,dz) = c(t,z)dz, S(dz) = S(z) dz.

Then, using the identity

/()w/()m¢(m,y)dydm:/Ooo/oqu(m—y,y)dydm’

equation (3.13) takes the form

/00090(90) c(t,z) dz = /Ooo o(x) co(z) d -|-/0oo dmso(m)/otds [S(m)_
E(az)C(s,az)—I-Z/C)oof(a:—l—y,y)c(s,a;-|-y)dy_/()zf(m7y) o(s,) dy +

/0"” Kz —y,y)c(s,z—y)c(s,y)dy — /OOO[K(a:,y) + K(y,z)] c(s,z) c(s,y) dy| .

Removing the test functions, one obtains

o clt,z) = S(z) - B(z)c(t,2) + (3.04)

2 [ fletwv)eltio + ) du - ety o) Flo, 2) +

/0"” Kz —y,y)c(t,z—y)c(t,y)dy — /OOO[K(m,y) + K(y, )] c(t,z) c(t,y) dy .

In the discrete case Z = N, analogous transformations of equation (8.13) lead to the form
(8.24), with integrals replaced by sums. In this case both forms are equivalent, without
any additional assumptions.

Lemma 3.9 If (3.16) then condition (2.18) is satisfied. If F has the form (8.19), for
some non-negative function f , which is continuous with respect to the first argument, then

condition (8.16) is fulfilled.
Proof. Condition (2.18) reduces to
F(.2)€0@), [l + el FLd) € O(2). (3.25)

Note that

[lete =)+ el o) - [

Zz

o(an— 3) + ()] Flan dy>\ <

/Z[so(w —y) + o(y)] F(z,dy) — /Z[so(w —y) + o(y)] F(zn, dy)‘
/Z (e —4) + p(y)] (e dy) /

/Z[so(w —y) + ¢(y)] F(z,dy) - /Z[so(w —y) + ¢(y)] F(zn, dy)‘

+F(zn, Z) sup [p(z —y) — @(zn — )]
yeZ

_|_

(o(an — 1) + p(u)] Flam dy>\

<
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and

lim sup|p(z —y) —e(zn —y)| =0, VeeC(Z),

n— o0 yEZ

if z, — z. Thus, (3.25) follows from (3.16).
If F' has the form (3.19), then condition (3.16) takes the form

[1oast)f@ndectz),  veeaz). (3.26)
Note that
R(z,) _ B
Lown)(¥) e(W)f(@n,y) < Liom(y) [l sup m(l_ﬂ) y?, ZT=supazn,

and

im 100, (y) e(¥)f(@ny) = leoy) e f(z,y), Vy#z,

n—oo

if limy 00 zn = . Thus, (3.26) follows from the dominated convergence theorem, since
f(z,y) is continuous in z . [ |

Lemma 3.10 If (8.14) then H(z)+ H(y) > H(z +vy). If

H(z) < M, Vi<z<y< oo,
€z )
then H(z)+ H(y) < H(z +y).

Proof. Since
H(z)  H(y)

H(z)+ H(y) = z + y, H(@+y)=

the assertions follow. [ |

Lemma 3.11 Let Z = (0,00), Hi(z)=2"*, a €(0,1), and

fl(may) = :1;1—_,57 BE [0,1—0&). (327)
Then

/Oz[Hl(m—y)+H1(y)—Hl(a:)]fl(m,y)dy < ¢(e,B) Hi(z), Vz>0. (3.28)

Proof. Using

T z/2 T
/ (z—y) 2y Pdy = / (z—y)*y Pdy+ / (z—y)yPdy
0 0 x

/2
z/2 z
< /0 (m/z)‘“y‘ﬂdy+//2(m—y)‘“(w/Z)‘ﬂdy
a 1 1 - a1
= (@)™ (@/2) 7+ @/ @/
1 1

= (z/2)'7>F [1 571 _a]
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and (3.27), one obtains

/Oz [Hi(z —y) + Hi(y) — Hi(z)] fi(z,y) dy =

1 xr
1P / (e —y) ™ +y™ -2y dy
0

e ] 1 1 1 1
s @ {ZH—ﬂ [1—5*1—(1}*1—(1—5‘1—5}

so that (3.28) follows. [ |

Lemma 3.12 Let Z = (0, 00),
H(z) = z7%+42", a€(0,1), y>1,
and
h(z) = z % 427°, e €(0,q.
Assume F has the form (3.19), where f satisfies

R -8
0 < fz,y) < %, Be,l—a), R(z)=c(l+2"°). (3.29)
Then conditions (8.17) and (8.18) are fulfilled.

Proof. Using Lemma 3.10, (3.29), and Lemma 3.11, one obtains
/Z H(z —y) + H(y) — H(z)] Fa, dy) < / Bz —y) + Hi(y) - Hy(2)] flzy) dy
< R(x) / “Hi(z — y) + Hy(y) — Hy(@)] fi(2y) dy < (a0, B) R(z) Hi (c),

and condition (3.17) follows. Moreover, (3.29) implies

F(z,2) < fl(_mg /Oz y Pdy = 1R£a:; < ¢ h(z)

so that condition (3.18) is satisfied. [ |

Proof of Theorem 3.1. The statement is a consequence of Corollary 2.6. Indeed,
condition (2.17) follows from (3.8), (3.15) and (3.18), and condition (2.18) is satisfied
due to the continuity assumptions and Lemma 3.9. Furthermore, condition (3.1) follows
from S € M(Z,H) (ct. (3.6)), condition (3.2) follows from (3.17), and condition (3.3)
is fulfilled, according to Lemma 3.10 and (3.14). |

Proof of Corollary 3.3. The statement is a consequence of Theorem 3.1. Note that
(2.6), (2.14) and condition (3.14) are satisfied. Moreover, condition (3.16) is fulfilled,
according to Lemma 3.9, and conditions (3.17), (3.18) follow from Lemma 3.12, with
vy=1. |

15



Proof of Corollary 3.4. The statement follows immediately from Theorem 3.1. N

Proof of Theorem 3.5. The statement is a consequence of Corollary 2.9, with g(z) =
z . Note that condition (3.4) is satisfied. Moreover, condition (2.17) follows from (3.8),
(3.15) and (3.18), and condition (2.18) is satisfied due to the continuity assumptions and
Lemma 3.9. Furthermore, condition (3.2) follows from (3.17), and condition (3.5) is
fulfilled, according to (3.21). [

Proof of Corollary 3.6. The statement is a consequence of Theorem 3.5. Note that
(2.6), (2.14) and (3.20) are satisfied, and (3.15) follows from (3.22). Using Lemma 3.10
and (3.22), one obtains

[H(z +y) - H(z) — H(y)| K(z,y) < [(z + ) — 2* = y°] K(z,y) =
2zy K(z,y) <2clzy+2’y+2y’] <2clzy+ H(z)y + z H(y)]

so that (3.21) is fulfilled. Moreover, condition (3.16) is fulfilled, according to Lemma 3.9,
and conditions (3.17), (3.18) are consequences of Lemma 3.12, with v = 2. [ |

Proof of Corollary 3.7. The statement is a consequence of Theorem 3.5. Note that
(2.6), (2.14) and (3.20) are satisfied, and (3.15) follows from (3.23). Since

mkyl (m/y)k 1 l-|—k 1 <:11yl+k 1 lf azﬁy,
one obtains
gyt < ayFTT 4oy g Ve,y>0, kII>1. (3.30)

Using (3.23) and (3.30), one obtains
[(z+y) —a" —y] ZCf y ' K(z,y)

r—1
ZCT I+1 r l_I_ZCr I, r— l-I—l] <2¢ (ZCIT) [myT+ymr]7
=1

and condition (3.21) follows. Finally, condition (3.17) is a consequence of Lemma 3.10.
|

3.3. Dissipative collisions

Here we consider the case Z = R%, d > 1. Denote

v'(v,w,e,8) = v—l—Tw —|—5(v,w,0)w (3.31)
and
w'(v,w,e,8) = v—l—Tw —g(v,w,0) w , (3.32)
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where v,w € R%, e € S%7! (unit sphere), 6 € ©, for some measurable space O, and ¢ is

some measurable function. Note that

1 —e(v,w,0)?
2

i.e. energy is dissipated if €2 < 1, conserved if €2 = 1, and created if €2 > 1. Transfor-
mation (3.31), (3.32) generalizes the one-dimensional model proposed in [33], with

1
§) = g0 0.
5('[}7’11)7 ) 1—|—9||’U—w||‘17 E [ 700)7 a’>

W17+ 1w * = Jloll® + [fw]® - lv —wl?, (3.33)

In the special case € = 1, we use the notation

v+w |v—w|e . v+w |v—wle
, w*(v,w,e) = — .
2 2 2 2

Theorem 3.13 Consider the functions
Hv) = |v||?+1, veR?, (3.35)
and h satisfying (2.14). Let Bi, B2 : RExRIx B(S? 1) — [0,00) be compactly bounded

kernels satisfying

(3.34)

v*(v,w,e) =

Bi(v,w,8%Y) < ch(v) H(w), Vo, we R?, (3.36)
Bo(v,w,S*1) < ch(v)h(w), Vv,wcR?, (3.37)
Bi(Vn,w,.) = Bv,w,.), Vw e R?, (3.38)
and
B2(vn7wn7') £> B(’ana')a (339)
when v, — v and w, — w in R?. Consider u, € M(R4 H), m € P(O©), and
M € P(RY)  such that / |w||* M(dw) < oo. (3.40)
R4
Suppose
/ e(v,w,0)*n(dd) < 1,  Vuv,weR?, (3.41)
)
and
e(.,,0) e CR*xRY, VdeO. (3.42)

Then there exists some u € C([0,00), M(R? H,h)) satisfying the equation

(e, (¢, to)

/ [/R/RL . (v, w,¢€)) = (v)]ﬁl(v,w,de) M(dw) u(s, dv)
ol / e e,0) & ol (0,w,0,0)) = olv) — (o) x

Ba(v,w, de) m(df) u(s,dv) u(s, dw)} ds, t>0, (3.43)
for any ¢ € C(R%).
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Remark 3.14 The probability measure 7 € P(O) introduces some randomness into the
collision events. The probability measure M € P(R?) represents the influence of some
background gas. Condition (8.40) is fulfilled, for ezample, when M is a Mazwellian.

Remark 3.15 Consider the special case
1
€= 17 Bl(vawade): ||v—w||de, 52(v7w7de): §||’U_w||dea

and suppose u(t,dv) = f(t,v)dv, M(dv) = M(v)dv. Then equation (3.43) takes the

form
[ e sttoyds = [ oo fofw) do
[ avoto) [ as [/Rd/g,“'”—wH M(w) f(s,0%) = M(w) f(s,0)] dedw +
L[ o=l [ 5t6,57) = ) o) ded]
Removing the test functions, one obtains
L Lt wl [0 £6,0%) = M) £t 0)]de
[ =l [ £607) = e w) £ 0)]dedw.

Proof of Theorem 3.13. Introducing the background collision term
0,8 = [ [ 1aeua) il wde) Mldw),  vER?, BeB(B),
RE JSa-1
one obtains (cf. (2.30))
/ / (v,w,€)) — (v)] Bi(v,w, de) M(dw) . (3.44)
RE JSa-1
With (3.35), condition (3.2) takes the form
L] ool = o) o w, de) Mdw) < o [lolf?+1] . (3.49)
R4 Jgd-1

Note that (3.33) (with € = 1) implies
[o* (v, w, e)||* = [Jo]I* < [lw]l?,

so that assumptions (3.36) and (3.40) are sufficient for condition (3.45).

Introducing the binary collision term

'U'LUB // 'u'u'wee +5 vwe9)52(vwde) (d0)7
gd-1
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where v,w € R% and B € B(Ek), one obtains (cf. (2.30))
20,0, w) (3.46)

/ /Sd 1 "(v,w,e,8)) + p(w'(v,w,e,8)) — o(v) — cp(w)] Ba(v,w,de) m(dF) .

In view of (3.35) and (3.33), condition (3.3) takes the form

lv — wlf®

2 Ms(v,w,ﬁ)zvr(de)—l] Balv,w,5%1) < 0,

and follows from (3.41).
Condition (2.17) takes the form (3.37) and

Bi(v,w,S* ) M(dw) < ch(v), Vv e RY,
Rd
and follows from (3.36) and (3.40).
Condition (2.18) reduces to Bs(.,.,S$%1) € C(R%RY),

/@/§ [90( 506 0)) +eW( e ))]Bz(,, e)m(df) € C(RLRY),  (3.47)

Rdﬁl( ,w, S M(dw) and /Rd/gd 1 e)) Bi(.,w,de) M(dw) € C(R?)(3.48)

Note that (cf. (3.31))

[v = vnl| 4+ ||w — wa]
2
| ||’U - ’LUH 5(vn7wn7 0)

2 2

|[v'(v,w, e,8) — v'(vn, wn, e, 8)|| <

(0,10, 8) — &(tm, 0, 6) o — w] — lfon — wa
implies

sup ||v'(v,w,e,8) —v'(vn,wn,e,8)]] — 0 it (vn,wn) = (v,w),
EESd_l

according to assumption (3.42). Since ¢ € C.(R%), it follows that

sup
eeSd—l

o(v'(v,w,e,0)) — o(v'(vn, Wn, 6,0))‘ — 0 it (vp,wn) = (v,w) . (3.49)
One obtains

/ cp(v'(v,w,e,@))ﬁg(v,w,de) - / (p(’U’(’l}n,’wn,670))52(’1)”,’11),17616)
Sa-1 §d—1

< / o(v'(v,w,e,0))B2(v,w, de) —/ o(v'(v,w,e,0)) Bz2(vn, wn, de)
gd—1 gd—1
4 sup [0!(v,0,€,6)) — (0 (0, €,6))| B 10, 5 (3.50
EESd_l
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and the continuity of

/@/Sd_l(’D(vl("'7670))52(-;.,de)7r(d0)

follows from (3.50), (3.49), assumption (3.39), and the dominated convergence theorem.
The other terms in (3.47), (3.48) are treated in an analogous way, using also assumption
(3.38). Finally, the assertion is a consequence of Corollary 2.6, since, with the terms

(3.44), (3.46), equation (2.23) takes the form (3.43). [

4. The minimal jump process

Let A be a compactly bounded kernel on a locally compact separable metric space E.
The minimal jump process X2 , corresponding to A and some initial distribution v, €
P(E), is constructed on the one-point compactification E® in the following way (cf. 13,
p.263], [27, p.69]). Let Yo, Y, ... be a Markov chain in E with initial distribution v and
transition function p: E x B(E) — [0, 1] defined by

A(¢,B)
p(§,B) = ME.B) ¢ E) >0,
15(¢) MéE) =0
Let T, Th, . . . be independent and exponentially distributed random variables with mean

1 that are also independent of (Y%), all defined on some probability space (€2, F, P).
Introduce the jump and explosion times

-1

T% > T%
k=19, T o= S —2F 41
Ve, ) 2 smm Y

3

I

o

A
|

k=0

where T /0 := oo, and define

XA(t) =

{Y’ P S E<Tin £>0 (4.2)

A > T ’
Note that X2 is an E®-valued stochastic process, since
B(E®) = B(E)U {Bu {A}: Be B(E)}

and

{XA(t)EB} = O{Tl§t<n+1}ﬂ{Y}€B} c F

=0

and
{XA(t)eBU{A}} = {X2(t) e BYU{t> 1} € F,
for all B € B(E).
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Theorem 4.1 Let A be a compactly bounded kernel on a locally compact separable metric
space E | and vy € P(E). Suppose there exists a nonnegative continuous function n such
that

1
m S CO(E) ) (43)
JRCEGIER (4.4)
and
[ @) -n@nede) < am@+dl, vées, (45)

for some ¢, c1,¢5 > 0.
Then there exists a D([0, 00), E)-valued random variable X such that

P(X(t) = X2(t), Vt>0) = 1 (4.6)
and
En(X(#) < (co+c})exp(ert), Vt>0. (4.7)

Corollary 4.2 Let X be given by Theorem 4.1. Then

oc,, = inf{t>0:X(t)¢Cn}, (4.8)

with
Cr = {EC B : ne) <m}, (49)

and
M(9,t) = P(X(t))— ¥(X(0) —/0 AU (X (s))ds, (4.10)

with
ave) = [e)-voDed),  cer, (411)

satisfy

P(oc,, <t) < m™' (co+ c))exp(ert) (4.12)

and

1/2
E sup|M(¥,s Aog,)| < z(t sup /E [@(&)—\P@)m(s,dfn) . (413)

Sst £€Cm

forall m>1,t>0, and U € Cy(E).
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Remark 4.3 By construction (4.1), (4.2), X® is right-constant, but left limits may not
exist at Teo . In particular, one obtains

XAHEE, V>0 & Te=00 <« X2eD(0,0),E).
Remark 4.4 For every A € B(E), the random variable
o4 = inf{t>0:X%(t)¢ A} (4.14)

8 an {ftXA}—stopping time. Indeed, since the paths are right-constant, one obtains

XAt e A, Vt<oay, X2 ¢ A, (4.15)
and
{od <t} = U (X eau{xcoe¢a) e 7%, >0,
seQn[o,t]

where Q denotes the set of rational numbers.

Lemma 4.5 If

21615 MEE) < o (4.16)

then there exists a process X 4 with sample paths in D([0,00), E) such that
P(Xa(t)=X2(tNoy), Vt>0) = 1. (4.17)

Moreover, for U € Cyo(E) and t >0, it satisfies

E¥(X4(1) = E\IJ(XA(O))—|—E/tAA\IJ(XA(s))ds (4.18)

and

1/2

BauplMa(v0) < (s [ @) - wOPNEd)) L ()

where
Au0(E) = /E V(&) - V(@) Iale, ), ECE, (4.20)

with
M€, B) = 1) A B), €cE, BecB(E), (4.21)

and
Ma(,8) = \IJ(XA(t))—\IJ(XA(O))—/O AU (Xa(s)) ds. (4.22)
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Proof. We first check that
P(Q)=1, where Q' ={X%tAc})€E,Vt>0}. (4.23)

If there is a k > 0 such that Tx(w) > 0 and Y3 (w) ¢ A, then 04 (w) < 7x(w), i.e. there are
at most k jumps for this trajectory, and w € . Thus, for w ¢ Q' one obtains Yx(w) € A
whenever Ti(w) > 0, and therefore

o0

€ ) 2 M)

k=0

nd Tr(w) !
> 1) = D 353 w), B Z supger )

k=0

which implies (cf. Remark 4.3)

PO\ Q) < P(Too<oo)§P{§:Tk<oo} =0.

k=0

Therefore, (4.23) is fulfilled, and the process X4 is obtained by redefining X2 (¢t A ¢4) on
the set © \ Q' by elements of D([0,0), E).

It follows from the explicit construction procedure that the process X4 is equivalent
to the minimal jump process corresponding to vg and the kernel (4.21), and therefore is
a Markov process with the bounded generator (4.20) (cf., e.g., [13, p.163]|). Thus, for
U € Cy(E), the processes (4.22) and

My(9,t)? — /t [Aa0? =20 A 0] (X4(s))ds

are {F*4}-martingales (cf., e.g., [13, p.93 and Proposition 4.1.7]) In particular, one ob-
tains (4.18) and

EMy(0,1)? = E/t [AaT? — 20 Ay T] (Xa(s))ds. (4.24)
Using the identity
A 20 A 0)) = [ [B(6) - WO, Ee B, (425)

and Doob’s inequality (cf. [13, Corollary 2.2.17])

E sup [Ma(¥,s)]>? < 4EM4(T,t)?, (4.26)
s<t
one obtains (4.19) from (4.26), (4.24), (4.25) and (4.21). [

Lemma 4.6 Let the assumptions of Theorem 4.1 be fulfilled. Then (cf. (4.14), (4.9))

P(O’ém <t) < m~! (co + c}) exp(ait), Yt>0. (4.27)
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Proof. Note that
Cn COpm i ={(€E : n) <m+1} CChpy1.
According to Lemma A.2, we choose e € C.(E), k > 1, such that
ex(§) =1, € Cr, () =0, € Crypy and 0<e(é) <1, E€cE.

Note that ex(é) =1, k > m, £ € Cp. Thus, the functions Uy = ex[n + ¢}] € C(E)
satisfy (cf. (4.21))

/E[‘I’k(&) — i) Ao (€, dE1) < /E[n(fl)—n(g)] de,, (€,dE1),  VEk>m. (4.28)

It follows from assumption (4.3) and Lemma A.1 that the sets (4.9) are compact.
Thus, since A is compactly bounded, assumption (4.16) is fulfilled so that Lemma 4.5 is
applicable. Using (4.18), (4.28) and assumptions (4.4), (4.5), one obtains

E\Pk(Xcm(t)) = E\Pk(X(O)) ‘|‘ E/O /E[\Pk(fl) — \Pk(Xcm(S))] )\cm(Xcm(S),dfl)dS
< BBXO)4E [ [ &) - 1(Xow ()] don (Ko o) dr) ds

< EUL(X(0) + o E / Lo, (Xon(5)) [1(Xon(s)) + ¢;] ds

0
t
< co—l—c'l—l—cl/E[n(Xcm(s))—l—c'l]ds, Vt>0, k>m,
0
where X¢,, is a D([0, 00), E)-valued random variable such that
P(Xc,(t) = X%(tAog ), VE>0) = 1. (4.29)

The monotone convergence theorem (with £ — oo) implies

t
En(Xe.(t)+a < a+cta / En(Xen(s)) +alds. (4.30)
0
Using (4.29), (4.15) and assumption (4.5), one obtains
En(Xon (1)) = En(Xon () Ly e+ En(Xen (1) Lia <o

< mtmwp [ €)M de) <mot sup (e lnf€)+ &) +(0) e, )

¢€Cm
< m+ (c1 [m+ci]+m gseug:H A€, E))
An application of Gronwall’s inequality to (4.30) yields
En(Xe, () < (co+¢)explcrt), Vi>0. (4.31)
Using (4.15) and (4.29), one obtains
P(og,, <t) = P(Xc,(t) & Cm) = P(n(Xc,(t)) > m) <m™ En(Xc, (1)),
for all m > 1 and ¢ > 0, so that (4.27) follows from (4.31). m
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Proof of Theorem 4.1. Since Uém < UémH , for all m > 1, Lemma 4.6 implies

P(limog <t)=0, V>0
m—>oo

so that

P ( lim o& = oo) ~1. (4.32)

m— o0

Since 0 < Uém < 7o = 0%, (4.32) implies P(7, = oo) = 1. Thus, according to
Remark 4.3, a process X with sample paths in D([0, 00), E), satisfying (4.6), is obtained
by appropriately redefining X2 on the set {7, < oo}, e.g., by constant paths. This
process is a D([0,00), E)-valued random variable according to [13, p.128|, since E is
separable.

Using (4.32) and continuity of 7, one obtains

P ( lim (X (¢ A og,)) = n(X(t))) ~1.

m— o0

Thus, Fatou’s lemma and (4.31) imply (4.7). [

Proof of Corollary 4.2. Note that (cf. (4.8), (4.14))
P(oc,, =0g. ) = 1, (4.33)

according to (4.6). Thus, (4.12) is a consequence of Lemma 4.6.
Moreover, (4.6) and (4.33) imply

P(X®(tAog )=X(tNog,), Vt>0) = 1
and (cf. (4.17))
P(Xc, (t)=X(tANoc,), Vt>0) = 1. (4.34)
Note that (cf. (4.10))
M(U,tNoe,,) = Y (X(tAog,)) —P(X(0)) — /t’\“cm AU (X(s))ds  (4.35)

and (cf. (4.22), (4.20), (4.21), (4.11))

M, (¥,t) = \P(Xcm(t))—\IJ(Xcm(O))—/o le,. (Xe,.(s)) A¥(Xc, (s))ds. (4.36)

Since X¢,,(s) ¢ Cp a.e., for s > o¢,, , one obtains, using (4.34), (4.35) and (4.36),
P(M(9,tAog,) =M, (9,t), Vt>0) = 1,

so that (4.13) follows from (4.19), with A = Cp, . [
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5. Proofs of the main results

5.1. Regularity

Lemma 5.1 Let Z be a locally compact separable metric space. Then the space (EY,d;)
(¢f. (2.1), (2.11)) is separable and locally compact. If, in addition, assumption (2.4)
holds, then the kernel AN (cf. (2.5)) on (EYN,d,) is compactly bounded.

Proof. Let Z’ be a countable dense set in Z. Then the set

1 n
{Nz&:i : nZO,miEZ',izl,...,n}

=1

is countable and dense in (E¥,d,;), according to Remark 2.10. Choose compact and
open sets ', Q,, , m > 1, according to Lemma A.3. Then the sets

1 n
Gn = {NZCSEi:OSnSm,miEFm,izl,...,n} (5.1)

=1

and

1 n
Om = {N;&;i : OSnSm,miEQm,izl,...,n}

are, respectively, compact and open (this is easily established using Remark 2.10). They
satisfy

Gm C O C Gy and EY = | |G (5.2)

In particular, every u € EV has a compact neighbourhood, which proves local compact-
ness of the space EY . Any compact set C C E¥ is covered by a finite number of sets
Om, , according to (5.2). Thus, it is contained in some G,, , and (2.27) implies

sup AV (1, V) < N |ao( Bx) + Y sup a.(3, Bx) (T)’]. (5.3)

pec —1 =€y, N

The right-hand side of (5.3) is finite by assumption (2.4), so that the kernel is compactly
bounded. [ |

Remark 5.2 For any p = + ., 6, € EN one obtains

n N <H7:u’> .
N w(EY) < — and H(z,) < N(H,p), VYie=1,...,n (5.4)

Lemma 5.3 If assumption (2.6) holds, then the function ® defined in (2.28), with ¢ =
H | satisfies
1

311 © Co(EY). (5.5)
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Proof. It follows from assumption (2.6) that theset '={z € Z : H(z) <m N}
is compact, according to Lemma A.1, and that infycz H(z) > 0. As a consequence of
Remark 5.2, the set

{pe EY : ®(u)<m}, m>0, (5.6)

is contained in the set

1 & mN
— 0z, : 0<n< ——, z, €T,
{N; : _n_me € }

which is compact (cf. (5.1)). Since the function ® is continuous, according to assumption
(2.6) and Remark 2.11, the set (5.6) is closed, and therefore compact. Finally, property
(5.5) follows from Lemma A.1 and the first part of Lemma 5.1. |

Proof of Theorem 2.1. According to assumption (2.4) and Lemma 5.1, the kernel
AN is compactly bounded on the separable and locally compact space (EY,d;). Condition
(4.3), with n = @, follows from assumption (2.6) and Lemma 5.3. Assumptions (2.7),
(2.8) take the form (4.4), (4.5). Thus, Theorem 2.1 follows from Theorem 4.1. |

We finish this section by providing further consequences of the assumptions of Theo-
rem 2.1, which will be used later.

Remark 5.4 The process XY provided by Theorem 4.1 is a D([0, 00), EN )-valued random
variable. Note that EN C M(Z,H) and the embedding (EV,d)) — M(Z,H,h) is
continuous (cf. Remark 2.10). Thus, in view of Lemma A.4, the process XV can be
considered as a D([0,00), M(Z, H,h))-valued random variable.

Using (4.7), one obtains
E(H,XN(t)> < (co+ ) exp(c t), Vt>0. (5.7)
Moreover, Corollary 4.2 implies
P(Uﬁ>T) > 1—m " (co+c)) exp(e; T), VT>0, m>1, (5.8)
and
1/2
E ?5123 ‘MN(\IJ,t A Uﬁ)‘ < 2 (T ”seu(gx /EN [T(v) — ()] )\N(,u,du)) , (5.9)
forall m>1, T>0,and ¥ € Cy(EY), where
on = inf{t>0:XN(t)¢ CN}, (5.10)

m

oy = {,uEE'N: (H,,u)ﬁm}, m>0, (5.11)

m

MY (U t) = \IJ(XN(t))—\IJ(XN(O))—/tAN\IJ(XN(s)) ds, t>0, (5.12)
and

A = [ ) @ ), e BY. (5.13)
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Lemma 5.5 Suppose the assumptions of Theorem 2.1 are satisfied. Let ¢ € Cy(Z) and
® be defined in (2.28). Then

t<T pecky

1/2
E sup [ MY (8,60 0N)| < 2 (T sup_ | [<¢,u>—<w,u>12AN(u,du>) . (5.14)
EN
forany T >0 and m > 1.

Proof. The function (2.28) is continuous but, in general, unbounded. However, the

stopped process reaches only a set, on which the function is bounded. Indeed, introduce
the sets CN of all v € EN such that v = Jo(p, &) or v = J.(u,%1,...,1,€&), for

some p € CN  pairwise distinct indices 41,...,%, from {1,...,n}, r=1,...,R and
¢ € Ex . Using
H, p)
P < EN < < ) ¥ EN
[2(u)] < llell u(B™) < el 7 pweET,

and (2.32), one obtains (cf. (2.2))

m K "
80) < ol (@W), Vue N U, (5.15)

Note that

P(XN(t/\aﬁ)eCﬁuéﬁ, Vtzo) = 1.

Consequently, (5.15) implies

P@XYtAd)) =XV (tAGY)), VE>0) = 1, (5.16)
where
m K N
Sal) = ANl (gt ), me B

is a bounded function. Moreover, (2.26) and (5.15) imply, for u € C¥ |

m

[0 = 2 N ) = [ [@00) = A (), k=120 (517)

EN EN

It follows from (5.16) and (5.17), with & = 1, that
P(MY(@,tAol)= MY (®pm,tAGh), Vt>0) = 1. (5.18)

Finally, (5.14) follows from (5.9), (5.18) and (5.17), with k = 2. [
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5.2. Relative compactness

Lemma 5.6 Suppose assumption (2.15) is satisfied. Then (cf. (5.11))

R
< aN"HE+ R olt ) m,

r=0

sup
neck

[ o) = o ¥ (s, a0)

forany o € Co(Z), k=1,2, and m > 1.
Proof. Using (2.29), (2.33) and assumption (2.15), one obtains

<

[ o) = o1V (s, )

N'7F (K + R)* [lo|l*

qo(E'K)—I—Z/Z.../qu(azl,...,mr,E’K) ,u(da:l)...,u(dmr)]
< aNTHE 4R ol L+ (H p) + -+ (H )]

and the assertion follow from the definition (5.11). [ |

Corollary 5.7 Suppose the assumptions (2.6), (2.7), (2.8) and (2.15) are satisfied. Let
0 € Co(Z) and © be defined in (2.28). Then (cf. (5.10))

R 1/2
T
E sup |[MY(@,tA o)) < 2| (K + R) (% Zm) : (5.19)
r=0

t<T

foranyT >0 and m > 1.
Proof. Property (5.19) follows from Lemma 5.5 and Lemma 5.6, with & = 2. [ |

Lemma 5.8 Suppose the assumptions (2.6), (2.15) are satisfied, and the assumptions
(2.7), (2.8) hold uniformly in N . Consider

o€ C(2) such that % € Co(2). (5.20)

Then, for anyT >0 and e >0,
N>N, |s—t|<At, t<T

JAtL, Ng>0: sup P ( sup ‘(cp,XN(s» — (cp,XN(t))‘ > 5) < e.(5.21)

Proof. Consider T > 0 and € > 0 fixed. According to Lemma A.1, the set

r = {:1: €z |fl((“;))| > 8%} (5.22)

is compact, for any m > 1. Choosing ¢ according to Lemma A.2, we find ¢ = @ €
C.(Z) such that

G(z) = p(a), o€l and [p(a) < lp(a)l, vcZ. (5.23)
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Consider (cf. (5.10), (5.11))
0<s<t<oal (5.24)
so that XV (s) € CY and (H, X" (s)) < m. Using (5.23) and (5.22), we obtain

\(%XN( ))—(so,XN( )|

< e \+\90 &, XN ()] + (@, X7 (s)) — (@, XN (1))

N 2 |p(2)] N ~ N - N
< [ B nG x¥ e+ [ ZEE ) XV )+ (6, XV(9) - (6, X))
< S+ [e X () — (3, XV ()] (5.25)

Furthermore, setting ®(u) = (@, 1), we obtain (cf. (5.24), (5.12), (5.13))

(6, XV (s)) (2, XV (W) < MY (®,5) — MY (B,1)| + /
< | MY(@,5) - MY(@,0)] 4ot s), (5.26)

where ¢ = ¢(m, ¢, K, R), according to Lemma 5.6, with k£ = 1. Choose m according to

(5.8) such that
1 N > _ _
inf P (Um >T + 1) 1 (5.27)

and let 0 < At < = Al. Using (5.25), (5.26) (which hold under condition (5.24)), (5.27),
and Tschebyscheft’s inequality, we obtain

|s—t|<At, ¢<T

P ( sup (0, X(s)) — (o, XV (2))] > 8)

< P( sup \<¢,XN<s>>—<so,XN<t>>\Ze,aﬁ>T+1)+

|s—t| <At t<T

< P24 s [MN(E) - MN(@,0)| 2, N> T 1) 4
4 |st|<A<T 2
N € N e 8 N(F N £
< P| sup |M (@t)‘ = O >T+1) 4+ <~ IESUP M7 ( 7t/\0-m)‘+_'
t<T+1 8’ 2 t<T+1 2

By Corollary 5.7, the mean value of the right-hand side becomes smaller than £2/16 for
sufficiently large N and thus (5.21) is satisfied. [

Lemma 5.9 Let Z be a locally compact separable metric space. Consider
HeC(Z) suchthat H >0, (5.28)
and h satisfying (2.14). Then the sets
{peM(Z): (Hpu) <e}, e>0, (5.29)

are compact subsets of the space M(Z,H,h).
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Proof. By [3, Corollary 31.3], the set C = {v ¢ M(Z) : v(Z) < e} is vaguely
compact. Consider the mapping (cf. (2.11))

T:(C,do) = (Cardn),  T(v)(B) = %du, BeB(2),

which is invertible and continuous. Indeed, according to assumption (2.14) and |3,
Theorem 30.6], one obtains

h h

<h7T(Vk)> = <E7Vk> — <E7V> = <h7T(V)>7

if vy, v € C are such that do(vg,v) — 0. Hence C, = T(C) is compact w.r.t. the topology
generated by dj, . [ |

Remark 5.10 Since Z 1is locally compact and separable, there is a countable subset
{Ye}2, of C(Z) which is dense in C.(Z) w.r.t. uniform convergence (cf. [3, Lemma
81.4]). According to Lemma A.8 and Lemma A.2, choose compact and open sets satisfying
(A.1), and localizing functions e, € C.(Z), m > 1, such that

em(2) =1, 2€ 0, em(2)=0,2¢Q, and 0<e,(z)<1, z2€ 2. (5.30)
Reorder the elements of the countable set
{r k> 1} U{vr -em: k,m > 1} U{eyn :m > 1} (5.31)

and denote them by {pr}2,. According to [3, Proof of Theorem 81.5], we introduce the
metric

o0

do(pr) = O o min{Lllpw ) — (oe )}, mreM(Z),  (532)

k=1

generating the vague topology.

Proof of Theorem 2.2. Note that assumption (2.15) implies (2.4) so that Theo-
rem 2.1 is applicable. To prove relative compactness of the sequence (X¥) we apply |13,

Theorem 3.7.6] with E = M(Z, H,h) (cf. Remark 5.4).

The first condition to be checked is the compact containment condition

VT,e>0 3Jcompact C CE : i%fP(XN(t)eC,Ogth) > 1—¢. (5.33)

Choose m according to (5.8) such that infy P (Uﬁ > T) > 1 —¢. Note that the set C,,
(cf. (5.29)) is compact, according to Lemma 5.9. One obtains (cf. (5.11), (5.10))

inf P (X¥(t) €Cm, 0<t<T) = inf P(0, >T) 2 1,

i.e. (5.33) is satisfied.

The second condition to be checked is

VT,e>0 36>0 : supP (w(XV,5,T)>e) < ¢ (5.34)
N
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where the modulus of continuity

w(p,d,T) = inf max sup dn(u(s),u(t)) (5.35)

{t:} ostelti—1,t;)

is defined for 6,7 > 0 and u € D([0,00), E). Here {t;} ranges over all partitions of the
form 0 =ty <t < -+ < tpoy < T < ¢, with minyj<i<n(t; —tiz1) > 6 and n > 1. Recall
the definition (2.11) of the metric d, and Remark 5.10. Let T, e > 0 and choose L > 0
such that Z,:iL+1 o= < 2. With the notation @o = h (cf. (5.32)), we obtain

&
2k 2°

P ( sup  dp(XV(s), XN (2)) > 5)

|s—t|<At, ¢<T

< P( sup Z\<sok,XN<s>>—<sok,XN<t>>‘23)

ls—t|<AL, ¢<T 10

< ZP( sup ‘(‘Pk:XN(S»_(‘Pk;XN(t»‘Z%). (5.36)

s |s—t|<At, ¢<T (L+1)

Taking into account that (5.20) is fulfilled for ¢ = h, according to assumption (2.14),
we apply Lemma 5.8 to the right-hand side of (5.36). Thus, there are At, Ny > 0 such
that

sup P ( sup  dp(XV(s), XN (1)) > 5) < e. (5.37)
N>No ls—t|<At, ¢<T

Since (cf. (5.35))

w(p,6,T) < sup di(u(s),p(t)), &6<AtL,
|s—t|<At,s<T

we obtain from (5.37) that

sup P (w(XY,8,T)>¢) <e, § < At. (5.38)
N>N,

For any N there exists d5 > 0 such that P (w(XN,5N,T) > 5) < g, according to [13,
Lemma 3.6.2(a)]. Thus, for 0 < § < min{At,81,---,dn,-1}, (5.38) implies

sup P (w(XN,5,T) > 5) < g,
N

i.e. condition (5.34) is satisfied. [ |

5.3. Characterization of weak limits

Lemma 5.11 Consider p, pn, € M(Z, H) such that

lim dp(pn, ) =0. (5.39)
n—oo
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Let ,u,(lk) cp® R k=12 ..., denote the k-fold products of un, i, h, respectively.
Then

lim (o, u) = (,u), (5.40)
for any v € C(Z*) such that
[ (z)] < ch(k)(m), Vze 2k, for some ¢>0. (5.41)

Proof. Define the measures v, , v € My(Z) by
n(B) = [ W9@)ulde),  vB) = [ 19()uPlde),  BeB(zY).
B B

Since ¢ h*) ¢ C.(Z*) for every p € C.(Z*) and since ,u,(lk) converges vaguely to u®) | one
obtains

(p,vm) = (@A™ uEy — (oh® uE)y = (p,0),

i.e. v, converges vaguely to v . Using (5.39) one obtains

va(25) = (RO, 1) = [(hpa))* — ("), u®) = v(2F),

n

so that v, converges weakly to v. Note that Z* is a locally compact separable metric
space, and therefore complete according to |2, Th. 44.1]. Using Lemma A.6 we find, for
any € > 0, a compact I' C Z* satisfying

() < i, n>1 and v(I) < £
3¢ 3¢

Choose f € C.(Z*) according to Lemma A.2 and consider 1 € C(Z*) satisfying (5.41).

Then, for sufficiently large n, one obtains

[, 1) = (0, 1 @) < (1= 1), 10) = (1 = 1), w®D)] + [@f, 1) — (B f,u )
<c [ W9e)ude) +c [ 19e) (o) + (5, u) — (5,4 <,

which proves (5.40). m

Lemma 5.12 Suppose assumptions (2.17) and (2.18) are satisfied. Then the mapping
M, : D(]0,00), M(Z,H,h)) — D([0,00),R)

defined by (cf. (2.20))

MO = (o)~ o))~ [ GlonloNds, 120, (542

is continuous, for any ¢ € C.(Z).
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Proof. According to Lemma A.5, the mapping
Fy : D([0,00), M(Z,H,h)) = D([0,00),R),  Fi(u)(t) = (p,u(0))

is continuous. In view of Lemma A.4, and since (cf. [13, p.153, (11.10)]) the mapping

Fa: D(0,00),R) > D(0,00)R),  F(e)t) = [ e(s)ds

is continuous, it remains to show that the mappings fi(v) = (p,v) and fo(v) = G(p,v)
from M(Z,H,h) into R are continuous. For fi, this is obvious, since convergence in
M(Z, H,h) implies vague convergence. Using (2.34), continuity of f, follows from as-
sumptions (2.17), (2.18) and Lemma 5.11. |

Lemma 5.13 Suppose assumption (2.17) is satisfied. Let n, € C(Z) be such that
limn 00 [ — ¥nll = 0 and

{z€Z:|¢Yn(z)|>0}CT,n>1, (5.43)
for some compact I' C Z. Then (cf. (5.42))

hm My, (p)(t) = My(p)(t), Vi=>0,

n—o0
for any i € D((0, 00), M(Z, H, ).
Proof. Note that

sup [|¢n|| < oo and (¢n,€) = (4,€), VE€ Ex. (5.44)

The dominated convergence theorem implies, using (2.32) and (5.44),
Qo(¥n) = Qo(¥), Q:(¥n,z) = Qi(¢,z), VzeZ', r=1,.. R,
and, using (2.34) and assumption (2.17),
Im G(pn,p) = G(4,p),  VpeM(Z,H). (5.45)
Using (5.43), one obtains
lm (Y, p) = (Pyp),  VpecM(Z,H). (5.46)

Moreover, it follows from (2.34) and assumption (2.17) that (cf. (2.20))

R

1—|—Z(h,,u(s))r] < o0, (5.47)

r=1

sup 5up G (4 ()| < ca (K + R) sup [ sup

n s<t

for any p € D([0,00), M(Z, H,h)). Using (5.45), (5.46) and (5.47), a further application

of the dominated convergence theorem completes the proof. [ |
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Lemma 5.14 Suppose the assumptions (2.14) and (2.17) are satisfied. Let ¢ € Cy(Z)
and ® be defined in (2.28). Then (c¢f. (5.13), (2.20))

lim sup ‘AN@ w) — g(cp,,u)‘ = 0, Vm>1. (5.48)

N—ooo ECN -

Proof. Using (5.13), (2.29), (2.30), (2.20), one obtains

AV (n) = Z

Z Qr(Q, Tiyy ..y Zi ), (5.49)

1511 ..... 1. <n

where p € EY and 2 denotes summation over those indices, at least two of which are
equal. According to (2.34) and assumption (2.17), (5.49) implies

AN ®(u) — G, p)| < Zcz K—H)”SDH Z h(zi,). .. h(z:,)

r=2 1<21 0022 <N
R
co (K +7)|el|r(r—1 .
< Y BRIl ey ih, y=
r=2
and
1 R
sup ‘AN@(,U,) — G(p,p)| < N sup ( (r—1)(cm) 2. (5.50)
uecky ueckry —

According to assumption (2.14) and Lemma A.1, the set

(e) = {mEZ:Z((Z))Za}

is compact, for any € > 0. Using (5.4), one obtains

) = [ ) ) ¢ [ B utda) smosup T e LS (e

T(e)e z€l(e) 11T

hz(m) 2,2 N

< m sup +e"m , (5.51)
z€l'(e) H(:IJ)
for any p € CY . Finally, (5.50) and (5.51) imply (5.48). [

Proof of Theorem 2.3. Using (5.42) and (5.12), one obtains
t
M) = MY@0)+ [ A - Glo XN )] ds. (552)
0
For e > 0 and t > 0, choose m > 1 according to (5.8) such that

. £
inf P (0,, > 1) 2> -3 (5.53)
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By (5.53), (5.52), Lemma 5.14, and Tschebyschefl’s inequality, one obtains

P (sup ‘MLP(XN)(S)‘ > 5) <P (sup ‘MLP(XN)(S)‘ >e, o > t) —|—§
s<t s<t
< P E—|—sup‘MN(<I>,s)‘ >e, o >t —|—E (5.54)
2 s<t 2
N N € € 2 N N €
< P sup‘M (@,sAam)‘Z— +- < —Esup‘M (<I>,s/\0m)‘—|——,
s<t 2 2 £ s<t 2

for sufficiently large N . By Corollary 5.7, the right-hand side of (5.54) becomes smaller
than e for sufficiently large N, i.e.

limsupP(sup‘Mlp(XN)(s)‘Zs) <eg, Ve>0,t>0.
N s<t

This implies

sup‘Mlp(XN)(s)‘ = 0, Vit>0,

s<t
and, recalling the definition of the Skorohod metric d ([13, p.117]),
d(M,(XY),0) = 0. (5.55)
Suppose XM = X for some subsequence N;. According to Lemma 5.12, the mapping
M, is continuous so that M,(X™) = M,(X) and d(M,(X™),0) = d(M,(X),0).
Thus, (5.55) implies
M,X) = 0, a.e., for any fixed ¢.
Using Remark 5.10, Lemma 5.13 and right-continuity of the trajectories, one obtains

My,(X) = 0, VeeC(Z), ae. (5.56)

Moreover, it follows from Lemma A.5 that X*(0) = X(0) so that assumption (2.16)
implies

X(0) = uo, a.e.. (5.57)

According to (5.56), (5.57), X satisfies (2.19) almost everywhere. Note that, by Theo-
rem 2.2, the sequence of D([0, o0), M(Z, H, h))-valued random variables X* is relatively
compact. |

5.4. Corollaries

Proof of Corollary 2.4. Note that

sup dp( XV (1), XV(t—)) < sup  dp(XN(s), XV (1)), VAt>0.
t<T |s—t| <At t<T
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Thus, (5.37) implies

sup P (supdh(XN(t),XN(t—)) 25) < g,

N>N, t<T

so that

sup dp (XY (1), XN (t—)) = 0, T>0,
t<T

as N — oo. An application of [13, Theorem 3.10.2(a)| gives (2.21), for every weak limit
X of the sequence (X¥). [ |

Proof of Corollary 2.5. Suppose X = X for some subsequence N;. Then Corol-
lary 2.4 and |13, Prop. 3.5.2| imply

XMt) = X(t), Vt>0. (5.58)

For any ¢ € C.(Z), the mapping ¥(u) = (¢, u) from M(Z, H, h) into R is continuous,

and
U(XM@)) = U(X(t), V>0, (5.59)

as a consequence of (5.58).

Consider a sequence of localizing functions e € C.(Z) satisfying (5.30). Then (5.59),
with 1 = Heg, implies

(Heg, XM(t)) = (Heg, X(t)), Vt>0, k=1,2,.... (5.60)

Since, according to (5.7),

Fatou’s lemma and (5.60) imply
E(Heg, X(t)) < (co+c})exp(ct), Vt>0, k=1,2,....

Thus, (2.22) follows from the monotone convergence theorem. [ |

Proof of Corollary 2.6. Consider yo € M(Z, H) and note that po(Z) < oo, ac-
cording to assumption (2.6) and (2.13). Let y1,9a,... be i.i.d. random variables with
distribution ﬁ po(dz), and

Jim ”WN = uo(2). (5.61)
Then
|
YN = ~ > 6, € EY (5.62)



and, by (5.61) and the law of large numbers,

’)’LNl

NnNZW vi) — Mo(Z)/w() L io(de) = (p,0) ae., (5.63)

<"07Y MO(Z)

for all nonnegative ¢ € M(Z) such that (¢, go) < co. Thus, limy e da(YY, 1) = 0 a.e.,
and YV = po . Moreover,

[ ) =m0,y = 5 [ () s o), (5.64)
EN

where 1)’ € P(EV) denotes the distribution of YV . Thus, v satisfies assumptions
(2.7) and (2.16). By Theorem 2.3 and Corollary 2.4 there is at least one p €
C([0,00), M(Z, H, h)) satisfying equation (2.23). [

Proof of Corollary 2.7. By Theorem 2.3 any weak limit is concentrated on the set
of solutions, which now consists only of one element. Thus, all weak limits are the same,
and the assertion follows. [ |

Proof of Corollary 2.8.  Assumption (2.25) assures that the processes remain in
the restricted space, once they have started there. According to Remark 2.10, the
mapping (g, 4) is continuous so that the subset ENNM,(Z, g) is closed in EY . According
to Lemma A.7, the subset M(Z,H) N M,(Z,g) is closed in M(Z, H,h). Thus, all

statements about compact sets remain true for the restricted spaces. [ |
Proof of Corollary 2.9. Define (cf. (5.62))

}}N(w) { YN(w)7 if <97YN> S <g,,l.bo> —I_l;

0, otherwise,

and let 7 denote the distribution of YV . By definition, one obtains (g, f”N) <{g,po)+1
and E(H,YY) <E(H,YN). This implies & € P(EY N M,(Z,9)), with v = (g, uo) +
1, and (2.7), according to (5.64). Moreover, it follows from (5.63) that (g,YV) —
(g, o) a.e., so that (5.63) holds for Y'Y . Consequently, YV =y, i.e. (2.16) is fulfilled,
and the assertion follows from Corollaries 2.8 and 2.4. [ |

Appendix

Lemma A.1 (c¢f. [8, Theorem 27.6]) Let E be a locally compact space. Then ¥ € Co(E)
uf
U € C(E) and {£€ E:|U(¢)| > e} is compact for everye > 0.

Lemma A.2 (c¢f. [8, Corollary 27.53]) Let E be a locally compact space and C and O be
compact and open subsets such that C C O. Then there is a ¥ € C.(E) such that

() = 1,60, TE) =0,6¢0 and 0 < () < 1,EcE.
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Lemma A.3 Let Z be a locally compact separable metric space. Then there are compact
and open subsets Iy, and §,, such that

UTm and Th C Qn CTmp, m>1. (A1)
m=1
Proof. Since Z is o-compact, the statement is given by [3, Lemma 29.8|. |

Lemma A.4 (¢f. [18, p.151]) Let E, E; be metric spaces. If f : E — E; is continuous,
then the mapping

F 2 D([0,00), E) = D([0,00), Ev),  F(E)(F) = f(E(¢), ¢2>0,

18 CONtinNUous.

Lemma A.5 Let E be a metric space. Iflim, o pin = pin D([0, 00), E) then limp, o0 pn(0) =
w(0) in E.

Proof. The assertion follows from [13, Ch. 3, Prop. 5.2|, since 0 is a continuity point for
any u € D([0,00), E). |

Lemma A.6 Let E be a complete separable metric space, and p, pn € Mp(E) such that
tn — p. Then, for each € > 0, there exists a compact K, such that

pn(E\K)<e, Vn, uwE\K)<e

Proof. Introduce the measures

VH(B):{ L pn(B), if pa(E) >0, V(B):{ L u(B), if u(E)>0,

0 , otherwise, 0 , otherwise.

Note that, if u(E) = 0 then p,(E) < €, for all n except a finite number. For those one
finds the corresponding compact. If u(E) > 0 then v, — v weakly, and the statement
follows from Prohorov’s theorem and the boundedness of u,(E). [ |

Lemma A.7 Let Z be a locally compact space, and p, pn, € M(Z) such that p, — .
Then

(H,u) < liminf (H,pn), for any nonnegative H € C(Z).

n—oo

Proof. Note that v, — v, where

:/BH(m)Mn(dm), /H BeB(2).

Thus, the assertion follows from |3, Lemma 30.3]. [
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