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Abstract

We present the stochastic approach to nonlinear kinetic equations (without gra-

dient terms) in a unifying general framework, which covers many interactions im-

portant in applications, like coagulation, fragmentation, inelastic collisions, as well

as source and e�ux terms. We provide conditions for the existence of correspond-

ing stochastic particle systems in the sense of regularity (non-explosion) of a jump

process with unbounded intensity. Using an appropriate space of measure-valued

functions, we prove relative compactness of the sequence of processes and character-

ize the weak limits in terms of solutions to the nonlinear equation. As a particular

application, we derive existence theorems for Smoluchowski's coagulation equation

with fragmentation, e�ux and source terms, and for the Boltzmann equation with

dissipative collisions.
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1. Introduction

Studies of the connection between stochastic interacting particle systems and nonlinear

kinetic equations have a long history. The earliest references seem to be the papers by

Leontovich [22] and Kac [20], where the Boltzmann equation (cf. [6], [7]) from rare�ed

gas dynamics was considered. In the simplest (spatially homogeneous) case this equation

describes the time evolution of the velocity distribution of gas molecules that change their

velocities during collisions. The stochastic approach to the Boltzmann equation has been

further developed in [25], [32]. The practically relevant (unbounded) hard sphere collision

kernel was treated in [31]. We refer to [35] for more comments and references concerning

this �eld. Algorithms based on the corresponding stochastic interacting particle systems

are presently the most widely used numerical tools in kinetic theory [5].

Stochastic particle systems related to Smoluchowski's coagulation equation (cf. [34],

[8]) were used in [24], [14], [23] in the context of various applications. In the spatially

homogeneous case this equation describes the time evolution of the size distribution of

particles moving in a physical medium and merging during collisions. The stochastic

approach to Smoluchowski's coagulation equation has been reviewed in [1]. We refer to

[10], [12] for comments and references concerning applications of the particle systems in

numerics. Note that the coagulation process can be considered as a chemical system

with in�nitely many species (characterized by size) and simple reactions (merging of two

partners). The study of the relationship between stochastic and deterministic models for

chemical systems with a �nite number of species and reactions goes back to [21] (cf. [15]

concerning numerical applications).

Developing the stochastic approach to the Boltzmann equation, systems with a general

binary interaction between particles and a general (Markovian) single particle evolution

(including spatial motion) were considered in [26], [17]. Results concerning the approx-

imation of the solution to the corresponding nonlinear kinetic equation by the particle

system were obtained in the case of bounded intensities and a constant (in time) number of

particles. The weak law of large numbers for stochastic particle systems related to Smolu-

chowski's coagulation equation with general kernels has attracted attention only recently

(cf. [1, Problem 10(a)]). Meanwhile, rigorous results of this type are contained, e.g.,

in [18] (discrete coagulation-fragmentation equation with bounded kernels), [19] (discrete

coagulation-fragmentation equation), [28] (continuous coagulation equation), [11] (contin-

uous coagulation-fragmentation equation). Most of the practically relevant coagulation

kernels are unbounded. Moreover, if the kernel grows su�ciently fast, solutions to the

limiting equation show the so-called gelation e�ect (loss of mass in �nite time). It has

been observed that the stochastic approach provides new existence results for the deter-

ministic limiting equation (cf. the discussion in [11]), besides the approximation results

that were the original motivation.

The purpose of this paper is to present the stochastic approach to nonlinear kinetic

equations (without gradient terms) in a unifying general framework, which covers the

cases mentioned above and allows one to include other e�ects important in applications,

like multiple fragmentation, structured clusters, inelastic collisions, internal degrees of

freedom, sources and e�ux, etc. (cf., e.g., [36, Sections 3.3, 3.7], [29]). To this end we use

an arbitrary locally compact separable metric space as the type space of a single particle
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and consider rather general multiple interactions with unbounded rates. The state space

of the particle system consists of appropriately normalized discrete measures on the type

space. The limiting equation is considered in a weak form so that solutions are functions

of time taking values in some space of measures on the type space.

The paper is organized as follows. The main results are given in Section 2. The

�rst theorem provides conditions for the existence of the particle system in the sense of

regularity (non-explosion) of a jump process. The second theorem studies the property

of relative compactness of the sequence (with respect to the normalization parameter) of

processes. The third theorem characterizes the weak limits of the sequence in terms of

solutions to a deterministic nonlinear equation. An existence theorem for the limiting

equation is given in form of a special corollary. In Section 3 the general results are ap-

plied to some speci�c models. First, the coagulation-fragmentation equation with source

and e�ux is considered. In this case new existence results are obtained. Second, a gener-

alized Boltzmann equation with dissipative collisions is considered. Such equations have

attracted considerable interest in recent years in connection with the study of granular

materials (cf., e.g., [16], [4]). An existence result is obtained that covers the known results

in the classical Boltzmann case. The rest of the paper is concerned with the proofs of

the main results. In Section 4 we consider the so-called minimal jump process, with a

compactly bounded kernel on some locally compact separable metric space, and prove a

theorem concerning its regularity (non-explosion). In Section 5 we give proofs of our

main theorems, using the results from the previous section and applying techniques from

[13]. Some auxiliary results are collected in an appendix, in order to make the paper

self-contained.

In conclusion we note that convergence of the particle system to the solution of the

limiting deterministic equation (weak law of large numbers) is obtained under the as-

sumption of uniqueness of that solution. So far no general uniqueness result have been

obtained (cf. [28] concerning the coagulation case). However, the general framework

proposed in this paper provides a basis for the derivation and justi�cation of stochastic

algorithms in many �elds of application. The results cover both unbounded kernels (thus

avoiding any truncation leading to unnecessary numerical errors) and a variable number

of particles (possibly unbounded in time). As to concrete applications, we worked out

only two speci�c models in order to keep the length of the paper reasonable. However,

any combinations of these interaction models, and many others, can be considered.

2. Main results

Let E and E0 be metric and separable spaces. LetM(E) ; B(E) ; C(E) ; Cb(E) and Cc(E)
denote the sets of functions on E that are measurable, bounded measurable, continuous,

bounded continuous, and continuous with compact support, respectively. For E locally

compact, let C0(E) denote the set of continuous functions on E vanishing at in�nity as

the closure of Cc(E) with respect to the sup-norm k:k : Furthermore, the sets of Borel

measures, bounded Borel measures and probability measures on the Borel-�-algebra B(E)
are denoted by M(E) ; Mb(E) and P(E) ; respectively. The Dirac measure on � 2 E is

denoted by Æ� : Vague and weak convergence of Borel measures are denoted by �n
v
! �

and �n
w
! �, respectively, whereas the sign ) is used for convergence in distribution.
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Let C([0;1); E) be the space of continuous paths and D([0;1); E) the Skorohod space

of cadlag paths. For ' 2 M(E) and � 2 M(E) we use the notation h'; �i =
R
' d� :

Finally, let 1A denote the indicator function of a set A : A kernel from E to E0 (on E if

E = E0) is a function � : E � B(E0)! [0;1) such that

�(�; B) 2M(E) ; 8B 2 B(E 0) and �(�; �) 2 Mb(E
0) ; 8 � 2 E :

A kernel � is called compactly bounded if

sup
�2C

�(�;E0) < 1 ; for any compact C � E :

We consider particles with types from a locally compact separable metric space Z and

weights 1
N
: De�ne the state space of the particle system as

EN =

(
1

N

nX
i=1

Æxi : n � 0 ; xi 2 Z ; i = 1; : : : ; n

)
; N = 1; 2; : : : : (2.1)

Any event in the system consists in the interaction of at most R particles and produces as

a result at most K particles. This includes, for example, the generation of new particles

from a source, the extinction or transformation of single particles, and the collision of two

particles. The admissible subsequent states of � 2 EN are denoted by

J0(�; �) = � +
1

N
� ;

J1(�; i; �) = � +
1

N
[� � Æxi] ; (2.2)

Jr(�; i1; : : : ; ir; �) = � +
1

N

�
� � Æxi1 � : : :� Æxir

�
; r = 2; : : : ; R ;

where i1; : : : ; ir are pairwise distinct indices from f1; : : : ; ng and � 2 EK ; with

EK =

(
nX
i=1

Æxi : 0 � n � K ; xi 2 Z ; i = 1; : : : ; n

)
; (2.3)

for some given natural numbers R and K : Both spaces EN and EK are equipped with

the weak topology.

The rates for the di�erent events are determined by a measure q0 and kernels q1; : : : ; qR
such that

q0 2 Mb(EK) and (2.4)

qr : Z
r � B(EK)! [0;1) ; r = 1; : : : ; R ; are compactly bounded.

Thus, transitions (jumps) in the system are governed by the kernel

�N (�;B) = N

Z
EK

1B(J0(�; �)) q0(d�) +
nX
i=1

Z
EK

1B(J1(�; i; �)) q1(xi; d�)+ (2.5)

RX
r=2

1

N r�1

~X
1�i1;:::;ir�n

Z
EK

1B(Jr(�; i1; : : : ; ir; �)) qr(xi1; : : : ; xir ; d�) ; B 2 B(EN) ;

where � 2 EN and ~P denotes summation over pairwise distinct indices.

We �rst provide conditions for the regularity (non-explosion) of the system.
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Theorem 2.1 (Regularity) Consider a locally compact separable metric space Z and a

function

H 2 C(Z) such that H > 0 and
1

H
2 C0(Z) : (2.6)

Suppose �N0 2 P(EN) satis�es Z
EN
hH;�i �N0 (d�) � c0 ; (2.7)

for some c0 � 0 : Suppose q0; q1; : : : ; qR satisfy (2.4) and are such that the kernel (2.5)

satis�es Z
EN

[hH;�1i � hH;�i] �
N (�; d�1) � c1 [hH;�i + c01] ; 8 � 2 EN ; (2.8)

for some c1 ; c
0
1 � 0 :

Then there exists a random process XN with sample paths in D([0;1); EN ) that is

indistinguishable from the minimal jump process, corresponding to the kernel �N and the
initial distribution �N0 :

Next we study asymptotic properties of the sequence XN : To this end, we construct

an appropriate common state space. Consider two functions

h;H 2 C(Z) : 0 � h(x) � cH(x) ; 8 x 2 Z ; for some c > 0 ; (2.9)

the set

M(Z;H) =
n
� 2 M(Z) : hH;�i <1

o
(2.10)

and the metric

dh(�; �) = d0(�; �) + minf1; jhh; �i � hh; �ijg ; �; � 2 M(Z;H) ; (2.11)

where d0 is a metric generating the vague topology. Introduce the space

M(Z;H; h) =
�
M(Z;H); dh

�
: (2.12)

Note that M(Z; 0) =M(Z) ; M(Z; 1) =Mb(Z) and

M(Z;H) �Mb(Z) if inf
x2Z

H(x) > 0 : (2.13)

According to [2, Theorem 45.7], the metric d1 generates the weak topology on Mb(Z) :

Theorem 2.2 (Relative Compactness) Consider a locally compact separable metric

space Z and functions H satisfying (2.6) and

h 2 C(Z) such that h � 0 and h
H
2 C0(Z) : (2.14)

Suppose �N0 2 P(EN ) satisfy (2.7) uniformly in N : Suppose q0; q1; : : : ; qR are such that

(2.8) is satis�ed uniformly in N and

q0(EK) � c2 and qr(x;EK) � c2H(x1) : : :H(xr) ; 8x = (x1; : : : ; xr) 2 Z
r ; (2.15)

for r = 1; : : : ; R and some c2 � 0 :

Then the processes XN form a relatively compact sequence of D([0;1);M(Z;H; h))-
valued random variables.
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Theorem 2.3 (Characterization of Weak Limits) Consider a locally compact sepa-

rable metric space Z and functions H;h satisfying (2.6) and (2.14). Suppose �N0 2 P(EN)
satisfy (2.7) uniformly in N and are such that

XN (0) ) �0 ; for some �0 2 M(Z;H) : (2.16)

Suppose q0; q1; : : : ; qR are such that (2.8) is satis�ed uniformly in N ;

q0(EK) � c2 and qr(x;EK) � c2 h(x1) : : : h(xr) ; 8x = (x1; : : : ; xr) 2 Z
r ; (2.17)

for r = 1; : : : ; R and some c2 � 0 ; and

qr(:; EK) 2 C(Z
r) ;

Z
EK

h'; �i qr(:; d�) 2 C(Z
r) ; r = 1; : : : ; R ; (2.18)

for any ' 2 Cc(Z) :

Then the processes XN form a relatively compact sequence of D([0;1);M(Z;H; h))-
valued random variables and every weak limit X satis�es, almost surely,

h';X(t)i = h'; �0i+

Z t

0

G(';X(s)) ds ; 8 t � 0 ; ' 2 Cc(Z) ; (2.19)

where, for � 2 M(Z;H) ;

G('; �) =

Z
EK

h'; �i q0(d�)+ (2.20)

RX
r=1

Z
Z

: : :

Z
Z

Z
EK

[h'; �i � '(x1) � : : :� '(xr)] qr(x1; : : : ; xr; d�)�(dx1) : : : �(dxr) :

Corollary 2.4 (Continuity) Under the assumptions of Theorem 2.2, every weak limit

X satis�es

P
�
X 2 C([0;1);M(Z;H; h))

�
= 1 : (2.21)

Corollary 2.5 (Moments) Under the assumptions of Theorem 2.2, every weak limit X

satis�es

E hH;X(t)i � (c0 + c01) exp(c1 t) ; 8 t � 0 : (2.22)

Corollary 2.6 (Existence) Consider a locally compact separable metric space Z and

functions H;h satisfying (2.6) and (2.14). Let �0 2 M(Z;H) : Suppose q0; q1; : : : ; qR are

such that (2.8) is satis�ed uniformly in N ; and assumptions (2.17), (2.18) are ful�lled.

Then there exists some � 2 C([0;1);M(Z;H; h)) solving the macroscopic equa-

tion

h'; �(t)i = h'; �0i+

Z t

0

G('; �(s)) ds ; 8 t � 0 ; ' 2 Cc(Z) : (2.23)
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Corollary 2.7 (Convergence) Let the assumptions of Theorem 2.3 be ful�lled. If there

is a unique � 2 C([0;1);M(Z;H; h)) satisfying equation (2.23), then the stochastic

processes XN converge in distribution to � :

Corollary 2.8 For nonnegative g 2 C(Z) and  > 0 consider the set

M(Z; g) = f� 2 M(Z) : hg; �i � g : (2.24)

Suppose q0; q1; : : : ; qR are such that, for all N = 1; 2; : : : ;

�N (�;EN \M(Z; g)) = �N (�;EN ) ; 8� 2 EN \M(Z; g) : (2.25)

Then the Theorems 2.1, 2.2 and 2.3 hold, when the spaces EN andM(Z;H; h) are replaced
by EN \M(Z; g) and (M(Z;H) \M(Z; g); dh) ; respectively.

Corollary 2.9 Consider a locally compact separable metric space Z and functions H;h

satisfying (2.6) and (2.14). Let �0 2 M(Z;H) be such that hg; �0i < 1 ; for some

nonnegative g 2 C(Z) ; and consider  = hg; �0i+ 1 : Suppose q0; q1; : : : ; qR are such that

assumptions (2.17), (2.18) and (2.25) are ful�lled, and (2.8) is satis�ed uniformly in N ;

with EN replaced by EN \M(Z; g) :

Then there exists some � 2 C([0;1); (M(Z;H)\M(Z; g); dh)) solving the equation
(2.23).

We �nish this section by providing some basic properties of the objects under consid-

eration, which will be used at several parts of the paper.

Remark 2.10 Let �k = N�1
Pnk

i=1 Æxki , k � 1, and � = N�1
Pn

i=1 Æxi. Then d1(�k; �) !
0 if and only if there are an l � 1 and permutations �k on f1; : : : ; ng, k � l, such that

nk = n ; k � l; and lim
k!1; k�l

xk�k(i) = xi ; i = 1; : : : ; n :

Note that the kernel (2.5) satis�esZ
EN

	(�)�N (�; d�) = (2.26)

N

Z
EK

	(J0(�; �)) q0(d�) +
nX
i=1

Z
EK

	(J1(�; i; �)) q1(xi; d�)

+
RX
r=2

1

N r�1

~X
1�i1;:::;ir�n

Z
EK

	(Jr(�; i1; : : : ; ir; �)) qr(xi1; : : : ; xir ; d�) ;

for � 2 EN and appropriate test functions, e.g., 	 2 C(EN) : In particular, one obtains

�N (�;EN ) � N

"
q0(EK) +

RX
r=1

Z
Z

: : :

Z
Z

qr(x1; : : : ; xr; EK)�(dx1) : : : �(dxr)

#
: (2.27)
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Remark 2.11 If ' 2 C(Z) ; then the function

� : EN ! R ; �(�) = h'; �i ; (2.28)

is continuous, according to Remark 2.10.

Using (2.26) and (2.2), one obtainsZ
EN

[h'; �i � h'; �i]k �N (�; d�) = (2.29)

N1�k

"Z
EK

h'; �ik q0(d�) +
1

N

nX
i=1

Z
EK

[h'; �i � '(xi)]
k
q1(xi; d�)+

RX
r=2

1

N r

~X
1�i1;:::;ir�n

Z
EK

[h'; �i � '(xi1)� : : :� '(xir)]
k
qr(xi1; : : : ; xir ; d�)

#
;

for � 2 EN ; k = 1; 2 ; and ' 2 C(Z) : Introduce the notation

Q0(') =

Z
EK

h'; �i q0(d�) ; (2.30)

Qr('; x) =

Z
EK

[h'; �i � '(x1)� : : :� '(xr)] qr(x; d�) ; r = 1; : : : ; R ;

for x = (x1; : : : ; xr) 2 Zr and ' 2 C(Z) : Using (2.29) with ' = H and k = 1 ; condition
(2.8) takes the form

Q0(H) +

Z
Z

Q1(H;x)�(dx) +
RX
r=2

1

N r

~X
1�i1;:::;ir�n

Qr(H;xi1; : : : ; xir) � c1 [hH;�i + c01] : (2.31)

It follows from the de�nition (2.3) that

jh'; �ij � k'kK ; 8 � 2 EK ; (2.32)

and Z
EK

jh'; �ijk q0(d�) � Kk k'kk q0(EK) ; (2.33)Z
EK

jh'; �i � '(x1)� : : :� '(xr)j
kqr(x; d�) � (K + r)k k'kk qr(x;EK) ;

for k = 1; 2 ; x = (x1; : : : ; xr) 2 Zr ; r = 1; : : : ; R and ' 2 Cb(Z) : Using (2.33) with
k = 1 ; one obtains (cf. (2.30))

jQ0(')j � K k'k q0(EK) ; (2.34)

jQr('; x)j � (K + r) k'k qr(x;EK) ; 8x 2 Zr ; r = 1; : : : ; R :

8



3. Applications

In this section we apply the general results, in particular Corollaries 2.6 and 2.9, to several

special cases. We consider R = 2 : One has to check conditions (2.8), (2.17), (2.18) and

(2.25) (in case of Corollary 2.9), for appropriate functions H;h satisfying (2.6) and (2.14).

According to (2.31), condition (2.8) is satis�ed for all � 2 EN ; if

Q0(H) =

Z
EK

hH; �i q0(d�) � c1 ; (3.1)

Q1(H;x) =

Z
EK

[hH; �i �H(x)] q1(x; d�) � c1H(x) ; 8x 2 Z ; (3.2)

and

Q2(H;x; y) =

Z
EK

[hH; �i �H(x)�H(y)] q2(x; y; d�) � 0 ; 8x; y 2 Z : (3.3)

Using (2.26) with 	 = 1EN\M(Z;g) and (2.2), one observes that condition (2.25) is

satis�ed provided that

q0 = 0 ; hg; �i � g(x) ; q1(x; d�) a.e. (3.4)

and hg; �i � g(x) + g(y) ; q2(x; y; d�) a.e. ; 8x; y 2 Z :

In this case, condition (2.8) is satis�ed for all � 2 EN \M(Z; g) ; if (3.2) holds and

Q2(H;x; y) � c1 [H(x) g(y) + g(x)H(y) + g(x) g(y)] ; 8x; y 2 Z : (3.5)

Indeed, (3.5) implies

1

N2

X
1�i6=j�n

Q2(H;xi; xj) � c1() [hH;�i + 1] ; 8� 2 M(Z; g) :

3.1. Source and e�ux

Any source term q0 2 Mb(EK) (cf. condition (2.17)) satisfying (3.1) is covered by

the results. In particular, we consider

q0(B) =

Z
Z

1B(Æx)S(dx) ; B 2 B(EK) ;

where S 2 Mb(Z) : Condition (3.1) takes the formZ
Z

H(x)S(dx) < 1 : (3.6)

Note that (cf. (2.30))

Q0(') = h'; Si : (3.7)
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Next we consider the e�ux term

q1(x;B) = 1B(0)E(x) ; x 2 Z ; B 2 B(EK) ;

where 0 denotes the zero measure and E 2 C(Z) is such that

0 � E(x) � c2 h(x) ; 8x 2 Z : (3.8)

Conditions (2.17), (2.18) are satis�ed, and condition (3.2) is ful�lled with c1 = 0 ;
since the left-hand side is non-positive. Note that (cf. (2.30))

Q1('; x) = �'(x)E(x) : (3.9)

3.2. Coagulation and fragmentation

Let Z = N or Z = (0;1) : Consider the coagulation term

q2(x; y;B) = 1B(Æx+y)K(x; y) ; x; y 2 Z ; B 2 B(EK) ;

where K 2 C(Z �Z) is non-negative, and note that (cf. (2.30))

Q2('; x; y) = ['(x+ y)� '(x)� '(y)]K(x; y) : (3.10)

Consider the fragmentation term

q1(x;B) =

Z
Z

1B(Æx�y + Æy)F (x; dy) ; x 2 Z ; B 2 B(EK) ;

where F is a kernel on Z satisfying

F (x; [x;1)) = 0 ; 8x 2 Z ; (3.11)

and note that (cf. (2.30))

Q1('; x) =

Z
Z

['(x� y) + '(y)� '(x)]F (x; dy) : (3.12)

With the terms (3.7), (3.9), (3.10) and (3.12), equation (2.23) takes the formZ
Z

'(x)�(t; dx) =

Z
Z

'(x)�0(dx) +

Z t

0

�Z
Z

'(x)S(dx)�

Z
Z

'(x)E(x)�(s; dx)+Z
Z

Z
Z

['(x+ y)� '(x)� '(y)]K(x; y)�(s; dx)�(s; dy) + (3.13)Z
Z

Z
Z

['(x� y) + '(y)� '(x)]F (x; dy)�(s; dx)

�
ds ; 8 t � 0 ; ' 2 Cc(Z) :

Theorem 3.1 Let Z = N or Z = (0;1) : Consider functions H satisfying (2.6) and

H(x)

x
�

H(y)

y
; 8 0 < x � y <1 ; (3.14)

10



and h satisfying (2.14). Let �0; S 2 M(Z;H) and E 2 C(Z) such that (3.8) holds.

Consider a function K 2 C(Z �Z) such that

0 � K(x; y) � c2 h(x)h(y) ; 8x; y 2 Z ; (3.15)

and a kernel F satisfying (3.11),

F (xn; :)
w
! F (x; :) ; if xn ! x 2 Z ; (3.16)

Z
Z

[H(x� y) +H(y)�H(x)]F (x; dy) � c1H(x) ; 8x 2 Z ; (3.17)

and

0 � F (x;Z) � c1 h(x) ; 8x 2 Z : (3.18)

Then there exists some � 2 C([0;1);M(Z;H; h)) satisfying equation (3.13).

Remark 3.2 In the case Z = (0;1) and F � 0 ; any continuous coagulation kernel

satisfying (3.15) is covered, provided that H satis�es (3.14). Note there is no restriction
on K at zero.

Corollary 3.3 Let Z = (0;1) ;

H(x) = x�� + x ; � 2 (0; 1) ;

and

h(x) = x��+" + x1�" ; " 2 (0; �] :

Let �0; S 2 M(Z;H) and E 2 C(Z) such that (3.8) holds. Consider a function K 2
C(Z �Z) satisfying (3.15). Assume F has the form

F (x; dy) = 1(0;x)(y) f(x; y) dy ; (3.19)

where f is continuous with respect to the �rst argument and satis�es

0 � f(x; y) �
R(x) y��

x1��
; � 2 [0; 1 � �) ; R(x) = c (1 + x1�") :

Then there exists some � 2 C([0;1);M(Z;H; h)) satisfying equation (3.13).

To our knowledge, the most general existence result in the continuous case, including

source and e�ux terms, is contained in [9, Theorem 2.2]. There it is assumed that both

K and f have compact support, and that both the source term and the initial distribution

have a �nite moment of some order r � 1 : Thus, Corollary 3.3 provides a new existence

result for unbounded K and f :

Corollary 3.4 Let Z = N and H(x) = x ; h(x) = o(x) : Consider �0; S 2 M(Z;H)
and E such that (3.8) holds. Suppose K satis�es (3.15) and F satis�es (3.11), (3.18).

Then there exists some � 2 C([0;1);M(Z;H; h)) satisfying equation (3.13).
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To our knowledge, the most general existence result in the discrete case, including source

and e�ux terms, is contained in [30]. The corresponding assumptions there are K(x; y) =
o(x) o(y) ; E(x) = O(x) ;

P1

x=1 xS(x) < 1 and boundedness of F (x;Z) in x : Thus,

Corollary 3.4 provides a new existence result for an unbounded total fragmentation rate.

Theorem 3.5 Let Z = N or Z = (0;1) : Consider functions H;h satisfying (2.6),
(2.14). Let �0 2 M(Z;H) such thatZ

Z

x�0(dx) < 1 ; (3.20)

S = 0 and E 2 C(Z) such that (3.8) holds. Consider a function K 2 C(Z�Z) satisfying
(3.15) and

[H(x+ y)�H(x)�H(y)]K(x; y) � c1 [H(x) y + xH(y) + x y] ; (3.21)

and a kernel F satisfying (3.11), (3.16), (3.17) and (3.18). Then there exists some
� 2 C([0;1);M(Z;H; h)) satisfying equation (3.13).

Corollary 3.6 Let Z = (0;1) ;

H(x) = x�� + x2 ; � 2 (0; 1) ;

and

h(x) = x��+" + x2�" ; " 2 (0; �] :

Let �0 2 M(Z;H) ; S = 0 and E 2 C(Z) such that (3.8) holds. Consider a function
K 2 C(Z �Z) satisfying

K(x; y) � c1(1 + x+ y) : (3.22)

Suppose F has the form (3.19), where f is continuous with respect to the �rst argument
and satis�es

0 � f(x; y) �
R(x) y��

x1��
; � 2 [0; 1 � �) ; R(x) = c (1 + x2�") :

Then there exists some � 2 C([0;1);M(Z;H; h)) satisfying equation (3.13).

Corollary 3.7 Consider Z = N ; and the functions H(x) = xr ; h(x) = xr�" with
some r = 2; 3; : : : and " 2 (0; 1] : Let �0 2 M(Z;H) ; S = 0 and E such that (3.8) holds.

Suppose K satis�es

K(x; y) � c1(x+ y) ; (3.23)

and F satis�es (3.11), (3.18). Then there exists some � 2 C([0;1);M(Z;H; h)) satis-
fying equation (3.13).
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Remark 3.8 Consider Z = (0;1) : Suppose F has the form (3.19) and

�(t; dx) = c(t; x) dx ; S(dx) = S(x) dx :

Then, using the identityZ 1

0

Z 1

0

 (x; y) dy dx =

Z 1

0

Z x

0

 (x� y; y) dy dx ;

equation (3.13) takes the formZ 1

0

'(x) c(t; x) dx =

Z 1

0

'(x) c0(x) dx +

Z 1

0

dx'(x)

Z t

0

ds

�
S(x)�

E(x) c(s; x) + 2

Z
1

0

f(x+ y; y) c(s; x+ y) dy �

Z x

0

f(x; y) c(s; x) dy +Z x

0

K(x� y; y) c(s; x� y) c(s; y) dy �

Z 1

0

[K(x; y) +K(y; x)] c(s; x) c(s; y) dy

�
:

Removing the test functions, one obtains

@

@t
c(t; x) = S(x)�E(x) c(t; x)+ (3.24)

2

Z 1

0

f(x + y; y) c(t; x+ y) dy � c(t; x)F (x;Z) +Z x

0

K(x� y; y) c(t; x� y) c(t; y) dy �

Z 1

0

[K(x; y) +K(y; x)] c(t; x) c(t; y) dy :

In the discrete case Z = N ; analogous transformations of equation (3.13) lead to the form
(3.24), with integrals replaced by sums. In this case both forms are equivalent, without

any additional assumptions.

Lemma 3.9 If (3.16) then condition (2.18) is satis�ed. If F has the form (3.19), for
some non-negative function f ; which is continuous with respect to the �rst argument, then
condition (3.16) is ful�lled.

Proof. Condition (2.18) reduces to

F (:;Z) 2 C(Z) ;

Z
Z

['(:� y) + '(y)]F (:; dy) 2 C(Z) : (3.25)

Note that����
Z
Z

['(x� y) + '(y)]F (x; dy)�

Z
Z

['(xn � y) + '(y)]F (xn; dy)

���� �����
Z
Z

['(x� y) + '(y)]F (x; dy)�

Z
Z

['(x� y) + '(y)]F (xn; dy)

����
+

����
Z
Z

['(x� y) + '(y)]F (xn; dy)�

Z
Z

['(xn � y) + '(y)]F (xn; dy)

����
�

����
Z
Z

['(x� y) + '(y)]F (x; dy)�

Z
Z

['(x� y) + '(y)]F (xn; dy)

����
+F (xn;Z) sup

y2Z

j'(x� y)� '(xn � y)j
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and

lim
n!1

sup
y2Z

j'(x� y)� '(xn � y)j = 0 ; 8' 2 Cc(Z) ;

if xn ! x : Thus, (3.25) follows from (3.16).

If F has the form (3.19), then condition (3.16) takes the formZ
Z

1(0;x)(y)'(y)f(x; y) dy 2 C(Z) ; 8' 2 Cb(Z) : (3.26)

Note that

1(0;xn)(y)'(y)f(xn; y) � 1(0;�x)(y) k'k sup
n

R(xn)

x1��n

y�� ; �x = sup
n

xn ;

and

lim
n!1

1(0;xn)(y)'(y)f(xn; y) = 1(0;x)(y)'(y)f(x; y) ; 8 y 6= x ;

if limn!1 xn = x : Thus, (3.26) follows from the dominated convergence theorem, since

f(x; y) is continuous in x : �

Lemma 3.10 If (3.14) then H(x) +H(y) � H(x+ y) : If

H(x)

x
�

H(y)

y
; 8 0 < x � y <1 ;

then H(x) +H(y) � H(x+ y) :

Proof. Since

H(x) +H(y) =
H(x)

x
x+

H(y)

y
y ; H(x+ y) =

H(x+ y)

x+ y
x+

H(x+ y)

x+ y
y ;

the assertions follow. �

Lemma 3.11 Let Z = (0;1) ; H1(x) = x�� ; � 2 (0; 1) ; and

f1(x; y) =
y��

x1��
; � 2 [0; 1� �) : (3.27)

ThenZ x

0

[H1(x� y) +H1(y)�H1(x)] f1(x; y) dy � c(�; �)H1(x) ; 8x > 0 : (3.28)

Proof. UsingZ x

0

(x� y)�� y�� dy =

Z x=2

0

(x� y)�� y�� dy +

Z x

x=2

(x� y)�� y�� dy

�

Z x=2

0

(x=2)�� y�� dy +

Z x

x=2

(x� y)�� (x=2)�� dy

= (x=2)�� (x=2)1��
1

1� �
+ (x=2)�� (x=2)1��

1

1� �

= (x=2)1����
�

1

1 � �
+

1

1 � �

�
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and (3.27), one obtainsZ x

0

[H1(x� y) +H1(y)�H1(x)] f1(x; y) dy =

1

x1��

Z x

0

�
(x� y)�� + y�� � x��

�
y�� dy

� x��
�

1

21����

�
1

1� �
+

1

1 � �

�
+

1

1 � � � �
�

1

1� �

�

so that (3.28) follows. �

Lemma 3.12 Let Z = (0;1) ;

H(x) = x�� + x ; � 2 (0; 1) ;  � 1 ;

and

h(x) = x��+" + x�" ; " 2 (0; �] :

Assume F has the form (3.19), where f satis�es

0 � f(x; y) �
R(x) y��

x1��
; � 2 [0; 1� �) ; R(x) = c (1 + x�") : (3.29)

Then conditions (3.17) and (3.18) are ful�lled.

Proof. Using Lemma 3.10, (3.29), and Lemma 3.11, one obtainsZ
Z

[H(x� y) +H(y)�H(x)]F (x; dy) �

Z x

0

[H1(x� y) +H1(y)�H1(x)] f(x; y) dy

� R(x)

Z x

0

[H1(x� y) +H1(y)�H1(x)] f1(x; y) dy � c(�; �)R(x)H1(x) ;

and condition (3.17) follows. Moreover, (3.29) implies

F (x;Z) �
R(x)

x1��

Z x

0

y�� dy =
R(x)

1� �
� c1 h(x)

so that condition (3.18) is satis�ed. �

Proof of Theorem 3.1. The statement is a consequence of Corollary 2.6. Indeed,

condition (2.17) follows from (3.8), (3.15) and (3.18), and condition (2.18) is satis�ed

due to the continuity assumptions and Lemma 3.9. Furthermore, condition (3.1) follows

from S 2 M(Z;H) (cf. (3.6)), condition (3.2) follows from (3.17), and condition (3.3)

is ful�lled, according to Lemma 3.10 and (3.14). �

Proof of Corollary 3.3. The statement is a consequence of Theorem 3.1. Note that

(2.6), (2.14) and condition (3.14) are satis�ed. Moreover, condition (3.16) is ful�lled,

according to Lemma 3.9, and conditions (3.17), (3.18) follow from Lemma 3.12, with

 = 1 : �
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Proof of Corollary 3.4. The statement follows immediately from Theorem 3.1. �

Proof of Theorem 3.5. The statement is a consequence of Corollary 2.9, with g(x) =
x : Note that condition (3.4) is satis�ed. Moreover, condition (2.17) follows from (3.8),

(3.15) and (3.18), and condition (2.18) is satis�ed due to the continuity assumptions and

Lemma 3.9. Furthermore, condition (3.2) follows from (3.17), and condition (3.5) is

ful�lled, according to (3.21). �

Proof of Corollary 3.6. The statement is a consequence of Theorem 3.5. Note that

(2.6), (2.14) and (3.20) are satis�ed, and (3.15) follows from (3.22). Using Lemma 3.10

and (3.22), one obtains

[H(x+ y)�H(x)�H(y)]K(x; y) �
�
(x+ y)2 � x2 � y2

�
K(x; y) =

2x y K(x; y) � 2 c1 [x y + x2 y + x y2] � 2 c1 [x y +H(x) y + xH(y)]

so that (3.21) is ful�lled. Moreover, condition (3.16) is ful�lled, according to Lemma 3.9,

and conditions (3.17), (3.18) are consequences of Lemma 3.12, with  = 2 : �

Proof of Corollary 3.7. The statement is a consequence of Theorem 3.5. Note that

(2.6), (2.14) and (3.20) are satis�ed, and (3.15) follows from (3.23). Since

xk yl = x (x=y)k�1 yl+k�1 � x yl+k�1 ; if x � y ;

one obtains

xk yl � x yk+l�1 + y xk+l�1 ; 8x; y � 0 ; k; l � 1 : (3.30)

Using (3.23) and (3.30), one obtains

[(x+ y)r � xr � yr]K(x; y) =
r�1X
l=1

Cr
l x

l yr�lK(x; y)

� c1

"
r�1X
l=1

Cr
l x

l+1 yr�l +
r�1X
l=1

Cr
l x

l yr�l+1

#
� 2 c1

 
r�1X
l=1

Cr
l

!
[x yr + y xr] ;

and condition (3.21) follows. Finally, condition (3.17) is a consequence of Lemma 3.10.

�

3.3. Dissipative collisions

Here we consider the case Z = Rd ; d � 1 : Denote

v0(v;w; e; �) =
v + w

2
+ "(v;w; �)

kv � wk e

2
(3.31)

and

w0(v;w; e; �) =
v + w

2
� "(v;w; �)

kv � wk e

2
; (3.32)
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where v;w 2 Rd ; e 2 Sd�1 (unit sphere), � 2 � ; for some measurable space � ; and " is
some measurable function. Note that

kv0k2 + kw0k2 = kvk2 + kwk2 �
1� "(v;w; �)2

2
kv �wk2 ; (3.33)

i.e. energy is dissipated if "2 < 1 ; conserved if "2 = 1 ; and created if "2 > 1 : Transfor-
mation (3.31), (3.32) generalizes the one-dimensional model proposed in [33], with

"(v;w; �) =
1

1 + � kv � wka
; � 2 [0;1) ; a > 0 :

In the special case " � 1 ; we use the notation

v�(v;w; e) =
v + w

2
+
kv � wk e

2
; w�(v;w; e) =

v + w

2
�
kv � wk e

2
: (3.34)

Theorem 3.13 Consider the functions

H(v) = kvk2 + 1 ; v 2 Rd ; (3.35)

and h satisfying (2.14). Let �1 ; �2 : Rd�Rd�B(Sd�1)! [0;1) be compactly bounded

kernels satisfying

�1(v;w;S
d�1) � c h(v)H(w) ; 8 v;w 2 Rd ; (3.36)

�2(v;w;S
d�1) � c h(v)h(w) ; 8 v;w 2 Rd ; (3.37)

�1(vn; w; :)
w
! �(v;w; :) ; 8w 2 Rd ; (3.38)

and

�2(vn; wn; :)
w
! �(v;w; :) ; (3.39)

when vn ! v and wn ! w in Rd : Consider �0 2 M(Rd;H) ; � 2 P(�) ; and

M 2 P(Rd) such that

Z
Rd
kwk4M(dw) < 1 : (3.40)

Suppose Z
�

"(v;w; �)2 �(d�) � 1 ; 8 v;w 2 Rd ; (3.41)

and

"(:; :; �) 2 C(Rd�Rd) ; 8 � 2 � : (3.42)

Then there exists some � 2 C([0;1);M(Rd;H; h)) satisfying the equation

h'; �(t)i = h'; �0i+Z t

0

�Z
Rd

Z
Rd

Z
Sd�1

h
'(v�(v;w; e))� '(v)

i
�1(v;w; de)M(dw)�(s; dv)

+

Z
Rd

Z
Rd

Z
�

Z
Sd�1

h
'(v0(v;w; e; �)) + '(w0(v;w; e; �))� '(v)� '(w)

i
�

�2(v;w; de)�(d�)�(s; dv)�(s; dw)

�
ds ; t � 0 ; (3.43)

for any ' 2 Cc(Rd) :
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Remark 3.14 The probability measure � 2 P(�) introduces some randomness into the

collision events. The probability measure M 2 P(Rd) represents the in�uence of some

background gas. Condition (3.40) is ful�lled, for example, when M is a Maxwellian.

Remark 3.15 Consider the special case

" � 1 ; �1(v;w; de) = kv � wk de ; �2(v;w; de) =
1

2
kv � wk de ;

and suppose �(t; dv) = f(t; v) dv ; M(dv) = M(v) dv : Then equation (3.43) takes the

formZ
Rd
'(v) f(t; v) dv =

Z
Rd
'(v) f0(v) dv+Z

Rd
dv '(v)

Z t

0

ds

�Z
Rd

Z
Sd�1

kv �wk
h
M(w�) f(s; v�)�M(w) f(s; v)

i
de dw+Z

Rd

Z
Sd�1

kv � wk
h
f(s;w�) f(s; v�)� f(s;w) f(s; v)

i
de dw

�
:

Removing the test functions, one obtains

@

@t
f(t; v) =

Z
Rd

Z
Sd�1

kv � wk
h
M(w�) f(t; v�)�M(w) f(t; v)

i
de dw

+

Z
Rd

Z
Sd�1

kv � wk
h
f(t; w�) f(t; v�)� f(t; w) f(t; v)

i
de dw :

Proof of Theorem 3.13. Introducing the background collision term

q1(v;B) =

Z
Rd

Z
Sd�1

1B(Æv�(v;w;e))�1(v;w; de)M(dw) ; v 2 Rd ; B 2 B(EK) ;

one obtains (cf. (2.30))

Q1('; v) =

Z
Rd

Z
Sd�1

h
'(v�(v;w; e))� '(v)

i
�1(v;w; de)M(dw) : (3.44)

With (3.35), condition (3.2) takes the formZ
Rd

Z
Sd�1

�
kv�(v;w; e)k2� kvk2

�
�1(v;w; de)M(dw) � c1

�
kvk2 + 1

�
: (3.45)

Note that (3.33) (with " = 1) implies

kv�(v;w; e)k2 � kvk2 � kwk2 ;

so that assumptions (3.36) and (3.40) are su�cient for condition (3.45).

Introducing the binary collision term

q2(v;w;B) =

Z
�

Z
Sd�1

1B(Æv0(v;w;e;�) + Æw0(v;w;e;�))�2(v;w; de)�(d�) ;
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where v;w 2 Rd and B 2 B(EK) ; one obtains (cf. (2.30))

Q2('; v;w) = (3.46)Z
�

Z
Sd�1

h
'(v0(v;w; e; �)) + '(w0(v;w; e; �))� '(v)� '(w)

i
�2(v;w; de)�(d�) :

In view of (3.35) and (3.33), condition (3.3) takes the form

kv � wk2

2

�Z
�

"(v;w; �)2 �(d�)� 1

�
�2(v;w;S

d�1) � 0 ;

and follows from (3.41).

Condition (2.17) takes the form (3.37) andZ
Rd
�1(v;w;S

d�1)M(dw) � c h(v) ; 8 v 2 Rd ;

and follows from (3.36) and (3.40).

Condition (2.18) reduces to �2(:; :;Sd�1) 2 C(Rd;Rd) ;Z
�

Z
Sd�1

h
'(v0(:; :; e; �)) + '(w0(:; :; e; �))

i
�2(:; :; de)�(d�) 2 C(R

d;Rd) ; (3.47)

Z
Rd
�1(:; w;S

d�1)M(dw) and

Z
Rd

Z
Sd�1

'(v�(:; w; e))�1(:; w; de)M(dw) 2 C(Rd) :(3.48)

Note that (cf. (3.31))

kv0(v;w; e; �)� v0(vn; wn; e; �)k �
kv � vnk+ kw �wnk

2
+

j"(v;w; �)� "(vn; wn; �)j
kv � wk

2
+
"(vn; wn; �)

2

���kv � wk � kvn � wnk
���

implies

sup
e2Sd�1

kv0(v;w; e; �)� v0(vn; wn; e; �)k ! 0 if (vn; wn)! (v;w) ;

according to assumption (3.42). Since ' 2 Cc(Rd) ; it follows that

sup
e2Sd�1

���'(v0(v;w; e; �))� '(v0(vn; wn; e; �))
��� ! 0 if (vn; wn)! (v;w) : (3.49)

One obtains����
Z
Sd�1

'(v0(v;w; e; �))�2(v;w; de)�

Z
Sd�1

'(v0(vn; wn; e; �))�2(vn; wn; de)

����
�

����
Z
Sd�1

'(v0(v;w; e; �))�2(v;w; de)�

Z
Sd�1

'(v0(v;w; e; �))�2(vn; wn; de)

����
+ sup
e2Sd�1

���'(v0(v;w; e; �))� '(v0(vn; wn; e; �))
����2(vn; wn;Sd�1) (3.50)
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and the continuity of Z
�

Z
Sd�1

'(v0(:; :; e; �))�2(:; :; de)�(d�)

follows from (3.50), (3.49), assumption (3.39), and the dominated convergence theorem.

The other terms in (3.47), (3.48) are treated in an analogous way, using also assumption

(3.38). Finally, the assertion is a consequence of Corollary 2.6, since, with the terms

(3.44), (3.46), equation (2.23) takes the form (3.43). �

4. The minimal jump process

Let � be a compactly bounded kernel on a locally compact separable metric space E :

The minimal jump process X� ; corresponding to � and some initial distribution �0 2
P(E) ; is constructed on the one-point compacti�cation E� in the following way (cf. [13,

p.263], [27, p.69]). Let Y0; Y1; : : : be a Markov chain in E with initial distribution �0 and

transition function p : E � B(E)! [0; 1] de�ned by

p(�;B) =

(
�(�;B)

�(�;E)
: �(�;E) > 0 ;

1B(�) : �(�;E) = 0 :

Let T0; T1; : : : be independent and exponentially distributed random variables with mean

1 that are also independent of (Yk) ; all de�ned on some probability space (
;F ; P ) :
Introduce the jump and explosion times

�0 = 0 ; �l =
l�1X
k=0

Tk

�(Yk; E)
; l = 1; 2; : : : ; �1 =

1X
k=0

Tk

�(Yk; E)
; (4.1)

where Tk=0 :=1 ; and de�ne

X�(t) =

�
Yl : �l � t < �l+1
� : t � �1

; t � 0 : (4.2)

Note that X� is an E�-valued stochastic process, since

B(E�) = B(E) [
n
B [ f�g : B 2 B(E)

o
and

�
X�(t) 2 B

	
=

1[
l=0

f�l � t < �l+1g \ fYl 2 Bg 2 F

and n
X�(t) 2 B [ f�g

o
=

�
X�(t) 2 B

	
[ ft � �1g 2 F ;

for all B 2 B(E) :
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Theorem 4.1 Let � be a compactly bounded kernel on a locally compact separable metric

space E ; and �0 2 P(E) : Suppose there exists a nonnegative continuous function � such

that

1

� + 1
2 C0(E) ; (4.3)

Z
E

�(�) �0(d�) � c0 (4.4)

and Z
E

[�(�1)� �(�)] �(�; d�1) � c1 [�(�) + c01] ; 8 � 2 E ; (4.5)

for some c0; c1; c
0
1 � 0 :

Then there exists a D([0;1); E)-valued random variable X such that

P (X(t) = X�(t) ; 8 t � 0) = 1 (4.6)

and

E �(X(t)) � (c0 + c01) exp(c1 t) ; 8 t � 0 : (4.7)

Corollary 4.2 Let X be given by Theorem 4.1. Then

�Cm = inf ft � 0 : X(t) =2 Cmg ; (4.8)

with

Cm = f� 2 E : �(�) � mg ; (4.9)

and

M(	; t) = 	(X(t))�	(X(0)) �

Z t

0

A	(X(s)) ds ; (4.10)

with

A	(�) =

Z
E

[	(�1)�	(�)] �(�; d�1) ; � 2 E ; (4.11)

satisfy

P (�Cm � t) � m�1 (c0 + c01) exp(c1t) (4.12)

and

E sup
s�t

jM(	; s ^ �Cm)j � 2

�
t sup
�2Cm

Z
E

[	(�1)�	(�)]2 �(�; d�1)

�1=2

; (4.13)

for all m � 1 ; t � 0 ; and 	 2 Cb(E) :
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Remark 4.3 By construction (4.1), (4.2), X� is right-constant, but left limits may not

exist at �1 : In particular, one obtains

X�(t) 2 E ; 8 t � 0 , �1 =1 , X� 2 D([0;1); E) :

Remark 4.4 For every A 2 B(E) ; the random variable

��A = inf
�
t � 0 : X�(t) =2 A

	
(4.14)

is an fFX�

t g-stopping time. Indeed, since the paths are right-constant, one obtains

X�(t) 2 A ; 8t < ��A ; X�(��A ) =2 A ; (4.15)

and �
��A � t

	
=

[
s2Q\[0;t]

�
X�(s) =2 A

	
[
�
X�(t) =2 A

	
2 FX�

t ; t � 0 ;

where Q denotes the set of rational numbers.

Lemma 4.5 If

sup
�2A

�(�;E) <1 (4.16)

then there exists a process XA with sample paths in D([0;1); E) such that

P (XA(t) = X�(t ^ ��A ) ; 8 t � 0) = 1 : (4.17)

Moreover, for 	 2 Cb(E) and t � 0 ; it satis�es

E 	(XA(t)) = E 	(XA(0)) + E

Z t

0

AA	(XA(s)) ds (4.18)

and

E sup
s�t

jMA(	; s)j � 2

�
t sup
�2A

Z
E

[	(�1)�	(�)]2 �(�; d�1)

�1=2

; (4.19)

where

AA	(�) =

Z
E

[	(�1)�	(�)] �A(�; d�1) ; � 2 E ; (4.20)

with

�A(�;B) = 1A(�) �(�;B) ; � 2 E ; B 2 B(E) ; (4.21)

and

MA(	; t) = 	(XA(t))�	(XA(0))�

Z t

0

AA	(XA(s)) ds : (4.22)
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Proof. We �rst check that

P (
0) = 1 ; where 
0 = fX�(t ^ ��A ) 2 E ; 8 t � 0g : (4.23)

If there is a k � 0 such that Tk(!) > 0 and Yk(!) =2 A ; then �
�
A (!) � �k(!) ; i.e. there are

at most k jumps for this trajectory, and ! 2 
0 : Thus, for ! =2 
0 one obtains Yk(!) 2 A
whenever Tk(!) > 0 ; and therefore

1 > �1(!) =
1X
k=0

Tk(!)

�(Yk(!); E)
�

1

sup�2A �(�;E)

1X
k=0

Tk(!) ;

which implies (cf. Remark 4.3)

P (
 n 
0) � P (�1 <1) � P

(
1X
k=0

Tk <1

)
= 0 :

Therefore, (4.23) is ful�lled, and the process XA is obtained by rede�ning X�(t^ ��A ) on
the set 
 n 
0 by elements of D([0;1); E) :

It follows from the explicit construction procedure that the process XA is equivalent

to the minimal jump process corresponding to �0 and the kernel (4.21), and therefore is

a Markov process with the bounded generator (4.20) (cf., e.g., [13, p.163]). Thus, for

	 2 Cb(E) ; the processes (4.22) and

MA(	; t)
2 �

Z t

0

�
AA	

2 � 2	AA	
�
(XA(s)) ds

are fFXA
t g-martingales (cf., e.g., [13, p.93 and Proposition 4.1.7]) In particular, one ob-

tains (4.18) and

EMA(	; t)
2 = E

Z t

0

�
AA	

2 � 2	AA	
�
(XA(s)) ds : (4.24)

Using the identity

[AA	
2 � 2	AA	](�) =

Z
E

[	(�1)�	(�)]2�A(�; d�1) ; � 2 E ; (4.25)

and Doob's inequality (cf. [13, Corollary 2.2.17])

E sup
s�t

jMA(	; s)j
2 � 4 EMA(	; t)

2 ; (4.26)

one obtains (4.19) from (4.26), (4.24), (4.25) and (4.21). �

Lemma 4.6 Let the assumptions of Theorem 4.1 be ful�lled. Then (cf. (4.14), (4.9))

P (��Cm � t) � m�1 (c0 + c01) exp(c1t) ; 8 t � 0 : (4.27)
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Proof. Note that

Cm � Om := f� 2 E : �(�) < m+ 1g � Cm+1 :

According to Lemma A.2, we choose ek 2 Cc(E) ; k � 1 ; such that

ek(�) = 1; � 2 Ck ; ek(�) = 0; � 2 Cc
k+1 and 0 � ek(�) � 1; � 2 E :

Note that ek(�) = 1 ; k � m; � 2 Cm : Thus, the functions 	k = ek [� + c01] 2 Cc(E)
satisfy (cf. (4.21))Z

E

[	k(�1) �	k(�)]�Cm(�; d�1) �

Z
E

[�(�1)� �(�)]�Cm(�; d�1) ; 8 k � m: (4.28)

It follows from assumption (4.3) and Lemma A.1 that the sets (4.9) are compact.

Thus, since � is compactly bounded, assumption (4.16) is ful�lled so that Lemma 4.5 is

applicable. Using (4.18), (4.28) and assumptions (4.4), (4.5), one obtains

E 	k (XCm(t)) = E 	k (X(0)) + E

Z t

0

Z
E

[	k(�1)�	k(XCm(s))]�Cm(XCm(s); d�1) ds

� E 	k (X(0)) + E

Z t

0

Z
E

[�(�1)� �(XCm(s))]�Cm(XCm(s); d�1) ds

� E 	k (X(0)) + c1 E

Z t

0

1Cm(XCm(s)) [�(XCm(s)) + c01]ds

� c0 + c01 + c1

Z t

0

E [�(XCm(s)) + c01] ds ; 8 t � 0 ; k � m;

where XCm is a D([0;1); E)-valued random variable such that

P (XCm (t) = X�(t ^ ��Cm) ; 8 t � 0) = 1 : (4.29)

The monotone convergence theorem (with k !1) implies

E �(XCm (t)) + c01 � c0 + c01 + c1

Z t

0

E [�(XCm(s)) + c01] ds : (4.30)

Using (4.29), (4.15) and assumption (4.5), one obtains

E �(XCm (t)) = E �(XCm (t)) 1f��
Cm

>tg + E �(XCm (t)) 1f��
Cm

�tg

� m+ sup
�2Cm

Z
E

�(�1)�(�; d�1) � m+ sup
�2Cm

�
c1 [�(�) + c01] + �(�)�(�;E)

�
� m+

�
c1 [m+ c01] +m sup

�2Cm

�(�;E)
�
:

An application of Gronwall's inequality to (4.30) yields

E �(XCm (t)) � (c0 + c01) exp(c1 t) ; 8 t � 0 : (4.31)

Using (4.15) and (4.29), one obtains

P (��Cm � t) = P (XCm(t) =2 Cm) = P (�(XCm(t)) > m) � m�1 E �(XCm(t)) ;

for all m � 1 and t � 0 ; so that (4.27) follows from (4.31). �
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Proof of Theorem 4.1. Since ��Cm � ��Cm+1 ; for all m � 1 ; Lemma 4.6 implies

P
�
lim
m!1

��Cm � t
�
= 0 ; 8 t � 0 :

so that

P
�
lim
m!1

��Cm =1
�
= 1 : (4.32)

Since 0 � ��Cm � �1 = ��E ; (4.32) implies P (�1 = 1) = 1 : Thus, according to

Remark 4.3, a process X with sample paths inD([0;1); E) ; satisfying (4.6), is obtained
by appropriately rede�ning X� on the set f�1 < 1g ; e.g., by constant paths. This

process is a D([0;1); E)-valued random variable according to [13, p.128], since E is

separable.

Using (4.32) and continuity of � ; one obtains

P
�
lim
m!1

�(X(t ^ �Cm)) = �(X(t))
�
= 1 :

Thus, Fatou's lemma and (4.31) imply (4.7). �

Proof of Corollary 4.2. Note that (cf. (4.8), (4.14))

P (�Cm = ��Cm) = 1 ; (4.33)

according to (4.6). Thus, (4.12) is a consequence of Lemma 4.6.

Moreover, (4.6) and (4.33) imply

P (X�(t ^ ��Cm) = X(t ^ �Cm) ; 8 t � 0) = 1

and (cf. (4.17))

P (XCm(t) = X(t ^ �Cm) ; 8 t � 0) = 1 : (4.34)

Note that (cf. (4.10))

M(	; t ^ �Cm) = 	(X(t ^ �Cm))�	(X(0)) �

Z t^�Cm

0

A	(X(s)) ds (4.35)

and (cf. (4.22), (4.20), (4.21), (4.11))

MCm(	; t) = 	(XCm(t))�	(XCm(0))�

Z t

0

1Cm(XCm(s))A	(XCm(s)) ds : (4.36)

Since XCm(s) =2 Cm a.e., for s � �Cm ; one obtains, using (4.34), (4.35) and (4.36),

P (M(	; t ^ �Cm) =MCm(	; t) ; 8 t � 0) = 1 ;

so that (4.13) follows from (4.19), with A = Cm : �
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5. Proofs of the main results

5.1. Regularity

Lemma 5.1 Let Z be a locally compact separable metric space. Then the space (EN ; d1)
(cf. (2.1), (2.11)) is separable and locally compact. If, in addition, assumption (2.4)
holds, then the kernel �N (cf. (2.5)) on (EN ; d1) is compactly bounded.

Proof. Let Z 0 be a countable dense set in Z : Then the set(
1

N

nX
i=1

Æxi : n � 0 ; xi 2 Z
0 ; i = 1; : : : ; n

)

is countable and dense in (EN ; d1) ; according to Remark 2.10. Choose compact and

open sets �m;
m ; m � 1 ; according to Lemma A.3. Then the sets

Gm =

(
1

N

nX
i=1

Æxi : 0 � n � m; xi 2 �m ; i = 1; : : : ; n

)
(5.1)

and

Om =

(
1

N

nX
i=1

Æxi : 0 � n � m; xi 2 
m ; i = 1; : : : ; n

)

are, respectively, compact and open (this is easily established using Remark 2.10). They

satisfy

Gm � Om � Gm+1 and EN =
[
m

Gm : (5.2)

In particular, every � 2 EN has a compact neighbourhood, which proves local compact-

ness of the space EN : Any compact set C � EN is covered by a �nite number of sets

Om ; according to (5.2). Thus, it is contained in some Gm ; and (2.27) implies

sup
�2C

�N (�;EN ) � N

"
q0(EK) +

RX
r=1

sup
x2�rm

qr(x;EK)
�m
N

�r#
: (5.3)

The right-hand side of (5.3) is �nite by assumption (2.4), so that the kernel is compactly

bounded. �

Remark 5.2 For any � = 1
N

Pn
i=1 Æxi 2 E

N one obtains

n

N
= �(EN ) �

hH;�i

infH
and H(xi) � N hH;�i ; 8 i = 1; : : : ; n : (5.4)

Lemma 5.3 If assumption (2.6) holds, then the function � de�ned in (2.28), with ' =
H ; satis�es

1

� + 1
2 C0(E

N ) : (5.5)
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Proof. It follows from assumption (2.6) that the set � = fx 2 Z : H(x) � mNg
is compact, according to Lemma A.1, and that infx2Z H(x) > 0 : As a consequence of
Remark 5.2, the set �

� 2 EN : �(�) � m
	
; m > 0 ; (5.6)

is contained in the set(
1

N

nX
i=1

Æxi : 0 � n �
mN

infH
; xi 2 �

)
;

which is compact (cf. (5.1)). Since the function � is continuous, according to assumption

(2.6) and Remark 2.11, the set (5.6) is closed, and therefore compact. Finally, property

(5.5) follows from Lemma A.1 and the �rst part of Lemma 5.1. �

Proof of Theorem 2.1. According to assumption (2.4) and Lemma 5.1, the kernel

�N is compactly bounded on the separable and locally compact space (EN ; d1) : Condition
(4.3), with � = � ; follows from assumption (2.6) and Lemma 5.3. Assumptions (2.7),

(2.8) take the form (4.4), (4.5). Thus, Theorem 2.1 follows from Theorem 4.1. �

We �nish this section by providing further consequences of the assumptions of Theo-

rem 2.1, which will be used later.

Remark 5.4 The processXN provided by Theorem 4.1 is a D([0;1); EN )-valued random
variable. Note that EN � M(Z;H) and the embedding (EN ; d1) ! M(Z;H; h) is
continuous (cf. Remark 2.10). Thus, in view of Lemma A.4, the process XN can be

considered as a D([0;1);M(Z;H; h))-valued random variable.

Using (4.7), one obtains

E hH;XN (t)i � (c0 + c01) exp(c1 t) ; 8 t � 0 : (5.7)

Moreover, Corollary 4.2 implies

P
�
�Nm > T

�
� 1�m�1(c0 + c01) exp(c1 T ) ; 8 T � 0 ; m � 1 ; (5.8)

and

E sup
t�T

��MN (	; t ^ �Nm)
�� � 2

 
T sup

�2CNm

Z
EN

[	(�)�	(�)]2 �N (�; d�)

!1=2

; (5.9)

for all m � 1 ; T � 0 ; and 	 2 Cb(EN ) ; where

�Nm = inf
�
t � 0 : XN (t) =2 CN

m

	
; (5.10)

CN
m :=

�
� 2 EN : hH;�i � m

	
; m > 0 ; (5.11)

MN (	; t) = 	(XN (t))�	(XN(0)) �

Z t

0

AN	(XN (s)) ds ; t � 0 ; (5.12)

and

AN	(�) =

Z
EN

[	(�) �	(�)]�N (�; d�) ; � 2 EN : (5.13)
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Lemma 5.5 Suppose the assumptions of Theorem 2.1 are satis�ed. Let ' 2 Cb(Z) and
� be de�ned in (2.28). Then

E sup
t�T

��MN (�; t ^ �Nm)
�� � 2

 
T sup

�2CNm

Z
EN

[h'; �i � h'; �i]2 �N (�; d�)

!1=2

; (5.14)

for any T � 0 and m � 1 :

Proof. The function (2.28) is continuous but, in general, unbounded. However, the

stopped process reaches only a set, on which the function is bounded. Indeed, introduce

the sets ĈN
m of all � 2 EN such that � = J0(�; �) or � = Jr(�; i1; : : : ; ir; �) ; for

some � 2 CN
m ; pairwise distinct indices i1; : : : ; ir from f1; : : : ; ng ; r = 1; : : : ; R and

� 2 EK : Using

j�(�)j � k'k�(EN ) � k'k
hH;�i

infH
; 8 � 2 EN ;

and (2.32), one obtains (cf. (2.2))

j�(�)j � k'k

�
m

inf H
+
K

N

�
; 8 � 2 CN

m [ Ĉ
N
m : (5.15)

Note that

P
�
XN (t ^ �Nm) 2 C

N
m [ Ĉ

N
m ; 8 t � 0

�
= 1 :

Consequently, (5.15) implies

P
�
�(XN (t ^ �Nm)) = �m(X

N (t ^ �Nm)) ; 8 t � 0
�

= 1 ; (5.16)

where

�m(�) := �(�) ^ k'k

�
m

infH
+
K

N

�
; � 2 EN ;

is a bounded function. Moreover, (2.26) and (5.15) imply, for � 2 CN
m ;Z

EN
[�(�)� �(�)]k �N (�; d�) =

Z
EN

[�m(�)� �m(�)]
k
�N (�; d�) ; k = 1; 2 : (5.17)

It follows from (5.16) and (5.17), with k = 1 ; that

P
�
MN (�; t ^ �Nm) =MN (�m; t ^ �

N
m) ; 8 t � 0

�
= 1 : (5.18)

Finally, (5.14) follows from (5.9), (5.18) and (5.17), with k = 2 : �
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5.2. Relative compactness

Lemma 5.6 Suppose assumption (2.15) is satis�ed. Then (cf. (5.11))

sup
�2CNm

����
Z
EN

[h'; �i � h'; �i]k �N (�; d�)

���� � c2N
1�k (K +R)k k'kk

RX
r=0

mr ;

for any ' 2 Cb(Z) ; k = 1; 2 ; and m � 1 :

Proof. Using (2.29), (2.33) and assumption (2.15), one obtains����
Z
EN

[h'; �i � h'; �i]k �N (�; d�)

���� �
N1�k (K +R)k k'kk

"
q0(EK) +

RX
r=1

Z
Z

: : :

Z
Z

qr(x1; : : : ; xr; EK) �(dx1) : : : �(dxr)

#

� c2N
1�k (K +R)k k'kk

�
1 + hH;�i + : : :+ hH;�iR

�
;

and the assertion follow from the de�nition (5.11). �

Corollary 5.7 Suppose the assumptions (2.6), (2.7), (2.8) and (2.15) are satis�ed. Let
' 2 Cb(Z) and � be de�ned in (2.28). Then (cf. (5.10))

E sup
t�T

��MN (�; t ^ �Nm)
�� � 2 k'k (K +R)

 
c2 T

N

RX
r=0

mr

!1=2

; (5.19)

for any T � 0 and m � 1 :

Proof. Property (5.19) follows from Lemma 5.5 and Lemma 5.6, with k = 2 : �

Lemma 5.8 Suppose the assumptions (2.6), (2.15) are satis�ed, and the assumptions

(2.7), (2.8) hold uniformly in N : Consider

' 2 C(Z) such that
'

H
2 C0(Z) : (5.20)

Then, for any T > 0 and " > 0 ;

9 �t;N0 > 0 : sup
N�N0

P

 
sup

js�tj��t; t�T

��h';XN (s)i � h';XN (t)i
�� � "

!
� " : (5.21)

Proof. Consider T > 0 and " > 0 �xed. According to Lemma A.1, the set

� =

�
x 2 Z :

j'(x)j

H(x)
�

"

8m

�
(5.22)

is compact, for any m � 1 : Choosing  according to Lemma A.2, we �nd ~' = ' 2
Cc(Z) such that

~'(x) = '(x) ; x 2 � and j ~'(x)j � j'(x)j ; x 2 Z : (5.23)
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Consider (cf. (5.10), (5.11))

0 � s � t < �Nm (5.24)

so that XN (s) 2 CN
m and hH;XN (s)i � m: Using (5.23) and (5.22), we obtain��h';XN (s)i � h';XN (t)i

��
�

��h'� ~';XN (s)i
��+ ��h' � ~';XN (t)i

��+ ��h ~';XN (s)i � h ~';XN (t)i
��

�

Z
�c

2 j'(z)j

H(z)
H(z)XN (s; dz) +

Z
�c

2 j'(z)j

H(z)
H(z)XN (t; dz) +

��h ~';XN (s)i � h ~';XN (t)i
��

�
"

2
+
��h ~';XN (s)i � h ~';XN (t)i

�� : (5.25)

Furthermore, setting ~�(�) = h ~'; �i ; we obtain (cf. (5.24), (5.12), (5.13))

��h ~';XN (s)i � h ~';XN (t)i
�� �

���MN (~�; s)�MN (~�; t)
���+ Z t

s

���AN ~�(XN (r))
��� dr

�
���MN (~�; s)�MN (~�; t)

���+ c (t� s) ; (5.26)

where c = c(m;';K;R) ; according to Lemma 5.6, with k = 1 : Choose m according to

(5.8) such that

inf
N
P
�
�Nm > T + 1

�
� 1 �

"

2
; (5.27)

and let 0 < �t < "
4 c
^ 1 : Using (5.25), (5.26) (which hold under condition (5.24)), (5.27),

and Tschebysche�'s inequality, we obtain

P

 
sup

js�tj��t; t�T

��h';XN (s)i � h';XN (t)i
�� � "

!

� P

 
sup

js�tj��t; t�T

��h';XN (s)i � h';XN (t)i
�� � " ; �Nm > T + 1

!
+
"

2

� P

 
3 "

4
+ sup

js�tj��t; t�T

���MN (~�; s)�MN (~�; t)
��� � " ; �Nm > T + 1

!
+
"

2

� P

�
sup
t�T+1

���MN (~�; t)
��� � "

8
; �Nm > T + 1

�
+
"

2
�

8

"
E sup
t�T+1

���MN (~�; t ^ �Nm)
���+ "

2
:

By Corollary 5.7, the mean value of the right-hand side becomes smaller than "2=16 for
su�ciently large N and thus (5.21) is satis�ed. �

Lemma 5.9 Let Z be a locally compact separable metric space. Consider

H 2 C(Z) such that H > 0 ; (5.28)

and h satisfying (2.14). Then the sets

C" = f� 2 M(Z) : hH;�i � "g ; " > 0 ; (5.29)

are compact subsets of the space M(Z;H; h) :
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Proof. By [3, Corollary 31.3], the set ~C = f� 2 M(Z) : �(Z) � "g is vaguely

compact. Consider the mapping (cf. (2.11))

T : ( ~C; d0)! (C"; dh) ; T (�)(B) =

Z
B

1

H
d� ; B 2 B(Z) ;

which is invertible and continuous. Indeed, according to assumption (2.14) and [3,

Theorem 30.6], one obtains

hh; T (�k)i = h
h

H
; �ki ! h

h

H
; �i = hh; T (�)i ;

if �k; � 2 ~C are such that d0(�k; �)! 0 : Hence C" = T ( ~C) is compact w.r.t. the topology

generated by dh : �

Remark 5.10 Since Z is locally compact and separable, there is a countable subset

f kg1k=1 of Cc(Z) which is dense in Cc(Z) w.r.t. uniform convergence (cf. [3, Lemma

31.4]). According to Lemma A.3 and Lemma A.2, choose compact and open sets satisfying
(A.1), and localizing functions em 2 Cc(Z) ; m � 1 ; such that

em(z) = 1; z 2 �m ; em(z) = 0; z =2 
m and 0 � em(z) � 1; z 2 Z : (5.30)

Reorder the elements of the countable set

f k : k � 1g [ f k � em : k;m � 1g [ fem : m � 1g (5.31)

and denote them by f'kg1k=1. According to [3, Proof of Theorem 31.5], we introduce the

metric

d0(�; �) =
1X
k=1

1

2k
minf1; jh'k; �i � h'k; �ijg ; �; � 2 M(Z) ; (5.32)

generating the vague topology.

Proof of Theorem 2.2. Note that assumption (2.15) implies (2.4) so that Theo-

rem 2.1 is applicable. To prove relative compactness of the sequence (XN ) we apply [13,
Theorem 3.7.6] with E =M(Z;H; h) (cf. Remark 5.4).

The �rst condition to be checked is the compact containment condition

8 T; " > 0 9 compact C � E : inf
N
P
�
XN (t) 2 C; 0 � t � T

�
� 1� " : (5.33)

Choose m according to (5.8) such that infN P
�
�Nm > T

�
� 1 � " : Note that the set Cm

(cf. (5.29)) is compact, according to Lemma 5.9. One obtains (cf. (5.11), (5.10))

inf
N
P
�
XN (t) 2 Cm; 0 � t � T

�
= inf

N
P
�
�Nm > T

�
� 1 � " ;

i.e. (5.33) is satis�ed.

The second condition to be checked is

8 T; " > 0 9 Æ > 0 : sup
N

P
�
w(XN ; Æ; T ) � "

�
� " (5.34)

31



where the modulus of continuity

w(�; Æ; T ) = inf
ftig

max
i

sup
s;t2[ti�1;ti)

dh(�(s); �(t)) (5.35)

is de�ned for Æ; T > 0 and � 2 D([0;1); E) : Here ftig ranges over all partitions of the

form 0 = t0 < t1 < � � � < tn�1 < T � tn with min1�i�n(ti � ti�1) > Æ and n � 1 : Recall
the de�nition (2.11) of the metric dh and Remark 5.10. Let T; " > 0 and choose L � 0
such that

P
1

k=L+1
1
2k
� "

2
. With the notation '0 = h (cf. (5.32)), we obtain

P

 
sup

js�tj��t; t�T

dh(X
N (s);XN(t)) � "

!

� P

 
sup

js�tj��t; t�T

LX
k=0

��h'k;XN (s)i � h'k;X
N (t)i

�� � "

2

!

�
LX
k=0

P

 
sup

js�tj��t; t�T

��h'k;XN (s)i � h'k;X
N (t)i

�� � "

2(L+ 1)

!
: (5.36)

Taking into account that (5.20) is ful�lled for ' = h ; according to assumption (2.14),

we apply Lemma 5.8 to the right-hand side of (5.36). Thus, there are �t;N0 > 0 such

that

sup
N�N0

P

 
sup

js�tj��t; t�T

dh(X
N (s);XN (t)) � "

!
� " : (5.37)

Since (cf. (5.35))

w(�; Æ; T ) � sup
js�tj��t;s�T

dh(�(s); �(t)) ; Æ < �t ;

we obtain from (5.37) that

sup
N�N0

P
�
w(XN ; Æ; T ) � "

�
� " ; Æ < �t : (5.38)

For any N there exists ÆN > 0 such that P
�
w(XN ; ÆN ; T ) � "

�
� " ; according to [13,

Lemma 3.6.2(a)]. Thus, for 0 < Æ < minf�t; Æ1; � � � ; ÆN0�1g ; (5.38) implies

sup
N

P
�
w(XN ; Æ; T ) � "

�
� " ;

i.e. condition (5.34) is satis�ed. �

5.3. Characterization of weak limits

Lemma 5.11 Consider � ; �n 2 M(Z;H) such that

lim
n!1

dh(�n; �) = 0 : (5.39)
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Let �
(k)
n ; �(k) ; h(k) ; k = 1; 2; : : : ; denote the k-fold products of �n ; � ; h ; respectively.

Then

lim
n!1

h ; �(k)n i = h ; �(k)i ; (5.40)

for any  2 C(Zk) such that

j (x)j � c h(k)(x) ; 8x 2 Zk ; for some c > 0 : (5.41)

Proof. De�ne the measures �n ; � 2 Mb(Z) by

�n(B) =

Z
B

h(k)(x)�(k)n (dx) ; �(B) =

Z
B

h(k)(x)�(k)(dx) ; B 2 B(Zk) :

Since 'h(k) 2 Cc(Zk) for every ' 2 Cc(Zk) and since �
(k)
n converges vaguely to �(k) ; one

obtains

h'; �ni = h'h(k); �(k)n i ! h'h(k); �(k)i = h'; �i ;

i.e. �n converges vaguely to � : Using (5.39) one obtains

�n(Z
k) = hh(k); �(k)n i = [hh; �ni]

k ! hh(k); �(k)i = �(Zk) ;

so that �n converges weakly to � : Note that Zk is a locally compact separable metric

space, and therefore complete according to [2, Th. 44.1]. Using Lemma A.6 we �nd, for

any " > 0 ; a compact � � Zk satisfying

�n(�
c) �

"

3 c
; n � 1 and �(�c) �

"

3 c
:

Choose f 2 Cc(Zk) according to Lemma A.2 and consider  2 C(Zk) satisfying (5.41).
Then, for su�ciently large n ; one obtains��h ; �(k)n i � h ; �(k)i

�� � ��h (1� f); �(k)n i � h (1 � f); �(k)i
��+ ��h f; �(k)n i � h f; �(k)i��

� c

Z
�c
h(k)(x)�(k)n (dx) + c

Z
�c
h(k)(x)�(k)(dx) +

��h f; �(k)n i � h f; �(k)i�� � " ;

which proves (5.40). �

Lemma 5.12 Suppose assumptions (2.17) and (2.18) are satis�ed. Then the mapping

M' : D([0;1);M(Z;H; h))! D([0;1);R)

de�ned by (cf. (2.20))

M'(�)(t) = h'; �(t)i � h'; �(0)i �

Z t

0

G('; �(s)) ds ; t � 0 ; (5.42)

is continuous, for any ' 2 Cc(Z) :

33



Proof. According to Lemma A.5, the mapping

F1 : D([0;1);M(Z;H; h))! D([0;1);R) ; F1(�)(t) = h'; �(0)i

is continuous. In view of Lemma A.4, and since (cf. [13, p.153, (11.10)]) the mapping

F2 : D([0;1);R)! D([0;1);R) ; F2(�)(t) =

Z t

0

�(s) ds

is continuous, it remains to show that the mappings f1(�) = h'; �i and f2(�) = G('; �)
from M(Z;H; h) into R are continuous. For f1 ; this is obvious, since convergence in

M(Z;H; h) implies vague convergence. Using (2.34), continuity of f2 follows from as-

sumptions (2.17), (2.18) and Lemma 5.11. �

Lemma 5.13 Suppose assumption (2.17) is satis�ed. Let  n;  2 Cc(Z) be such that
limn!1 k �  nk = 0 and

fx 2 Z : j n(x)j > 0g � � ; n � 1 ; (5.43)

for some compact � � Z : Then (cf. (5.42))

lim
n!1

M n(�)(t) = M (�)(t) ; 8 t � 0 ;

for any � 2 D([0;1);M(Z;H; h)) :

Proof. Note that

sup
n

k nk <1 and h n; �i ! h ; �i ; 8 � 2 EK : (5.44)

The dominated convergence theorem implies, using (2.32) and (5.44),

Q0( n) ! Q0( ) ; Qr( n; x) ! Qr( ; x) ; 8x 2 Zr ; r = 1; : : : ; R ;

and, using (2.34) and assumption (2.17),

lim
n!1

G( n; �) = G( ; �) ; 8 � 2 M(Z;H) : (5.45)

Using (5.43), one obtains

lim
n!1

h n; �i = h ; �i ; 8 � 2 M(Z;H) : (5.46)

Moreover, it follows from (2.34) and assumption (2.17) that (cf. (2.20))

sup
n

sup
s�t

jG( n; �(s))j � c2 (K +R) sup
n

k nk sup
s�t

"
1 +

RX
r=1

hh; �(s)ir

#
< 1 ; (5.47)

for any � 2 D([0;1);M(Z;H; h)) : Using (5.45), (5.46) and (5.47), a further application

of the dominated convergence theorem completes the proof. �
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Lemma 5.14 Suppose the assumptions (2.14) and (2.17) are satis�ed. Let ' 2 Cb(Z)
and � be de�ned in (2.28). Then (cf. (5.13), (2.20))

lim
N!1

sup
�2CNm

��AN�(�)� G('; �)
�� = 0 ; 8 m � 1 : (5.48)

Proof. Using (5.13), (2.29), (2.30), (2.20), one obtains

AN�(�) = G('; �)�
RX
r=2

1

N r

X̂
1�i1 ;:::;ir�n

Qr('; xi1; : : : ; xir) ; (5.49)

where � 2 EN and
P̂

denotes summation over those indices, at least two of which are

equal. According to (2.34) and assumption (2.17), (5.49) implies

��AN�(�)� G('; �)
�� �

RX
r=2

c2 (K + r) k'k

N r

X̂
1�i1;:::;ir�n

h(xi1) : : : h(xir )

�

RX
r=2

c2 (K + r) k'k r (r � 1)

2N
hh2; �i hh; �ir�2

and

sup
�2CNm

��AN�(�) � G('; �)
�� � 1

N
sup
�2CNm

hh2; �i
c2 k'k

2

RX
r=2

(K + r) r (r � 1) (cm)r�2 : (5.50)

According to assumption (2.14) and Lemma A.1, the set

�(") =

�
x 2 Z :

h(x)

H(x)
� "

�

is compact, for any " > 0 : Using (5.4), one obtains

hh2; �i =

Z
�(")

h2(x) �(dx) +

Z
�(")c

h2(x) �(dx) � m sup
x2�(")

h2(x)

H(x)
+ "2

1

N

nX
i=1

H2(xi)

� m sup
x2�(")

h2(x)

H(x)
+ "2 m2 N ; (5.51)

for any � 2 CN
m : Finally, (5.50) and (5.51) imply (5.48). �

Proof of Theorem 2.3. Using (5.42) and (5.12), one obtains

M'(X
N )(t) = MN (�; t) +

Z t

0

�
AN�(XN (s))� G(';XN(s))

�
ds : (5.52)

For " > 0 and t � 0 ; choose m � 1 according to (5.8) such that

inf
N
P
�
�Nm > t

�
� 1 �

"

2
: (5.53)
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By (5.53), (5.52), Lemma 5.14, and Tschebysche�'s inequality, one obtains

P

�
sup
s�t

��M'(X
N )(s)

�� � "

�
� P

�
sup
s�t

��M'(X
N )(s)

�� � " ; �Nm > t

�
+
"

2

� P

�
"

2
+ sup

s�t

��MN (�; s)
�� � " ; �Nm > t

�
+
"

2
(5.54)

� P

�
sup
s�t

��MN (�; s ^ �Nm)
�� � "

2

�
+
"

2
�

2

"
E sup

s�t

��MN (�; s ^ �Nm)
��+ "

2
;

for su�ciently large N : By Corollary 5.7, the right-hand side of (5.54) becomes smaller

than " for su�ciently large N , i.e.

lim sup
N

P

�
sup
s�t

��M'(X
N )(s)

�� � "

�
� " ; 8 " > 0 ; t > 0 :

This implies

sup
s�t

��M'(X
N )(s)

�� ) 0 ; 8 t > 0 ;

and, recalling the de�nition of the Skorohod metric d ([13, p.117]),

d(M'(X
N ); 0) ) 0 : (5.55)

Suppose XNl ) X for some subsequence Nl : According to Lemma 5.12, the mapping

M' is continuous so that M'(XNl) ) M'(X) and d(M'(XNl); 0) ) d(M'(X); 0) :
Thus, (5.55) implies

M'(X) = 0 ; a.e. ; for any �xed ' :

Using Remark 5.10, Lemma 5.13 and right-continuity of the trajectories, one obtains

M'(X) = 0 ; 8 ' 2 Cc(Z) ; a.e. : (5.56)

Moreover, it follows from Lemma A.5 that XNl(0)) X(0) so that assumption (2.16)

implies

X(0) = �0 ; a.e. : (5.57)

According to (5.56), (5.57), X satis�es (2.19) almost everywhere. Note that, by Theo-

rem 2.2, the sequence of D([0;1);M(Z;H; h))-valued random variablesXN is relatively

compact. �

5.4. Corollaries

Proof of Corollary 2.4. Note that

sup
t�T

dh(X
N (t);XN(t�)) � sup

js�tj��t; t�T

dh(X
N (s);XN (t)) ; 8 �t > 0 :
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Thus, (5.37) implies

sup
N�N0

P

�
sup
t�T

dh(X
N (t);XN (t�)) � "

�
� " ;

so that

sup
t�T

dh(X
N (t);XN (t�)) ) 0 ; T > 0 ;

as N ! 1 : An application of [13, Theorem 3.10.2(a)] gives (2.21), for every weak limit

X of the sequence (XN ) : �

Proof of Corollary 2.5. Suppose XNl ) X for some subsequence Nl : Then Corol-

lary 2.4 and [13, Prop. 3.5.2] imply

XNl(t)) X(t) ; 8 t � 0 : (5.58)

For any  2 Cc(Z) ; the mapping 	(�) = h ; �i from M(Z;H; h) into R is continuous,

and

	(XNl(t))) 	(X(t)) ; 8 t � 0 ; (5.59)

as a consequence of (5.58).

Consider a sequence of localizing functions ek 2 Cc(Z) satisfying (5.30). Then (5.59),

with  = Hek ; implies

hHek;X
Nl(t)i ) hHek;X(t)i ; 8 t � 0 ; k = 1; 2; : : : : (5.60)

Since, according to (5.7),

E hHek ;X
N (t)i � E hH;XN (t)i � (c0 + c01) exp(c1 t) ; 8N ;

Fatou's lemma and (5.60) imply

E hHek ;X(t)i � (c0 + c01) exp(c1 t) ; 8 t � 0 ; k = 1; 2; : : : :

Thus, (2.22) follows from the monotone convergence theorem. �

Proof of Corollary 2.6. Consider �0 2 M(Z;H) and note that �0(Z) < 1 ; ac-

cording to assumption (2.6) and (2.13). Let y1; y2; : : : be i.i.d. random variables with

distribution 1
�0(Z)

�0(dx) ; and

lim
N!1

nN

N
= �0(Z) : (5.61)

Then

Y N =
1

N

nNX
i=1

Æyi 2 E
N (5.62)
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and, by (5.61) and the law of large numbers,

h'; Y N i =
nN

N

1

nN

nNX
i=1

'(yi) ! �0(Z)

Z
Z

'(x)
1

�0(Z)
�0(dx) = h'; �0i a.e. ; (5.63)

for all nonnegative ' 2M(Z) such that h'; �0i <1 : Thus, limN!1 dh(Y N ; �0) = 0 a.e.,
and Y N ) �0 : Moreover,Z

EN
hH;�i �N0 (d�) = E hH;Y N i =

nN

N

Z
Z

H(x)
1

�0(Z)
�0(dx) ; (5.64)

where �N0 2 P(EN) denotes the distribution of Y N : Thus, �N0 satis�es assumptions

(2.7) and (2.16). By Theorem 2.3 and Corollary 2.4 there is at least one � 2
C([0;1);M(Z;H; h)) satisfying equation (2.23). �

Proof of Corollary 2.7. By Theorem 2.3 any weak limit is concentrated on the set

of solutions, which now consists only of one element. Thus, all weak limits are the same,

and the assertion follows. �

Proof of Corollary 2.8. Assumption (2.25) assures that the processes remain in

the restricted space, once they have started there. According to Remark 2.10, the

mapping hg; �i is continuous so that the subset EN \M(Z; g) is closed in EN : According

to Lemma A.7, the subset M(Z;H) \ M(Z; g) is closed in M(Z;H; h) : Thus, all
statements about compact sets remain true for the restricted spaces. �

Proof of Corollary 2.9. De�ne (cf. (5.62))

~Y N (!) =

�
Y N(!) ; if hg; Y N i � hg; �0i + 1 ;

0 ; otherwise ;

and let ~�N0 denote the distribution of ~Y N : By de�nition, one obtains hg; ~Y Ni � hg; �0i+1
and EhH; ~Y N i � EhH;Y N i : This implies ~�N0 2 P(EN \M(Z; g)) ; with  = hg; �0i+
1 ; and (2.7), according to (5.64). Moreover, it follows from (5.63) that hg; Y N i !
hg; �0i a.e. ; so that (5.63) holds for ~Y N : Consequently, ~Y N ) �0 ; i.e. (2.16) is ful�lled,

and the assertion follows from Corollaries 2.8 and 2.4. �

Appendix

Lemma A.1 (cf. [3, Theorem 27.6]) Let E be a locally compact space. Then 	 2 C0(E)
i�

	 2 C(E) and f� 2 E : j	(�)j � "g is compact for every " > 0 :

Lemma A.2 (cf. [3, Corollary 27.3]) Let E be a locally compact space and C and O be

compact and open subsets such that C � O. Then there is a 	 2 Cc(E) such that

	(�) = 1; � 2 C ; 	(�) = 0; � =2 O and 0 � 	(�) � 1; � 2 E :
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Lemma A.3 Let Z be a locally compact separable metric space. Then there are compact

and open subsets �m and 
m such that

Z =
1[
m=1

�m and �m � 
m � �m+1 ; m � 1 : (A.1)

Proof. Since Z is �-compact, the statement is given by [3, Lemma 29.8]. �

Lemma A.4 (cf. [13, p.151]) Let E;E1 be metric spaces. If f : E ! E1 is continuous,

then the mapping

F : D([0;1); E)! D([0;1); E1) ; F (�)(t) = f(�(t)) ; t � 0 ;

is continuous.

Lemma A.5 Let E be a metric space. If limn!1 �n = � in D([0;1); E) then limn!1 �n(0) =
�(0) in E :

Proof. The assertion follows from [13, Ch. 3, Prop. 5.2], since 0 is a continuity point for
any � 2 D([0;1); E) : �

Lemma A.6 Let E be a complete separable metric space, and � ; �n 2 Mb(E) such that
�n

w
! � : Then, for each " > 0 ; there exists a compact K" such that

�n(E nK") � " ; 8n ; �(E nK") � " :

Proof. Introduce the measures

�n(B) =

�
1

�n(E)
�n(B) ; if �n(E) > 0 ;

0 ; otherwise ;
�(B) =

�
1

�(E)
�(B) ; if �(E) > 0 ;

0 ; otherwise :

Note that, if �(E) = 0 then �n(E) � " ; for all n except a �nite number. For those one

�nds the corresponding compact. If �(E) > 0 then �n ! � weakly, and the statement

follows from Prohorov's theorem and the boundedness of �n(E) : �

Lemma A.7 Let Z be a locally compact space, and � ; �n 2 M(Z) such that �n
v
! � :

Then

hH;�i � lim inf
n!1

hH;�ni ; for any nonnegative H 2 C(Z) :

Proof. Note that �n
v
! � ; where

�n(B) =

Z
B

H(x)�n(dx) ; �(B) =

Z
B

H(x)�(dx) ; B 2 B(Z) :

Thus, the assertion follows from [3, Lemma 30.3]. �
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