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Abstract

We have studied various aspects concerning the use of hyperbolic wavelets and adaptive
approximation schemes for wavelet expansions of correlated wavefunctions. In order to
analyze the consequences of reduced regularity of the wavefunction at the electron-electron
cusp, we first considered a realistic exactly solvable many-particle model in one dimension.
Convergence rates of wavelet expansions, with respect to L? and H' norms and the energy,
were established for this model. We compare the performance of hyperbolic wavelets
and their extensions through adaptive refinement in the cusp region, to a fully adaptive
treatment based on the energy contribution of individual wavelets. Although hyperbolic
wavelets show an inferior convergence behavior, they can be easily refined in the cusp
region yielding an optimal convergence rate for the energy. Preliminary results for the
helium atom are presented, which demonstrate the transferability of our observations to
more realistic systems. We propose a contraction scheme for wavelets in the cusp region,
which reduces the number of degrees of freedom and yields a favorable cost to benefit ratio
for the evaluation of matrix elements.

1 Introduction

Within the last decade wavelets became a vivid part of applied mathematics. Most of the
applications focused on signal and image processing [1], where wavelet transforms have been
used as an alternative to the Fourier transformation. Beside some interesting formal relations
between quantum theory and wavelet analysis [1], like Heisenberg’s uncertainty principle, co-
herent states and the Wigner transform, there are more practical analogies, which provide the
main motivation for an application to electronic structure theory. Image processing typically
requires the resolution of structures ranging from very fine to coarse scales. Furthermore, fine
structures often extend only over small regions, which are distributed across the whole picture.
Wavelets enable a local and adaptive treatment of such kind of multiscale problems, leading
to efficient schemes for data compression. More recently these schemes have been extended
towards the sparse representation of various types of operators [2], resulting in the design of
efficient solvers for elliptic partial differential equations.

The purpose of “data compression” is actually also a central motivation for recent devel-
opments in many-particle theory. It has been argued that the main achievement of density



functional theory (DFT), with respect to wavefunction based methods, is the reduction of rele-
vant information from a many-particle wavefunction to a one-particle density or single-particle
wavefunctions, respectively (see e.g. [3]). However, not only DFT but also wavefunction based
methods can achieve a considerable reduction of complexity by selection of the correct degrees
of freedom. This can be accomplished by means of a local treatment of electron correlations.
Examples are the local ansatz of Stollhoff and Fulde [4, 5], the increment method of Stoll [6]
and the local correlation methods of Pulay and Saebg [7], which have been further developed
to linear scaling methods by Werner and collaborators [8, 9]. A common principle underlying
all of these methods in practical calculations are so called atomic orbital basis sets. This term
has mainly historical reasons, and in modern applications atomic orbitals have been replaced
by atomic centered Gaussian type orbitals (GTO) [10]. In a first step the GTOs serve as a
basis for a mean-field calculation, like Hartree-Fock (HF), generating a set of molecular or-
bitals (MO), which can be subject to further transformations for the purpose of localization.
Projecting out the localized occupied MOs from the GTOs, produces a basis in the subspace
of virtual orbitals, preserving the local character of the GTOs as far as possible. This serves as
a starting point for the correlation treatment using various versions of Mgller-Plesset pertur-
bation theory or coupled cluster (CC) methods. Due to the local character of the transition
amplitudes it is possible to achieve an improved scaling behavior with the size of the system.

A GTO basis fits perfectly the requirements of mean-field methods [11]. However, it is not
well adapted to the description of electron correlations. Roughly speaking, within a tensor
product basis of GTOs, electron correlations can be described by partial-wave expansions with
respect to the atomic centers. At small inter-electronic distances, the convergence behavior
of such kind of expansion is rather poor [12]. In the first paper of this series [13] (referenced
as paper I in the sequel), we proposed a wavelet expansion of correlated wavefunctions. This
ansatz enables an adaptive and local treatment of electron correlations, while retaining the
tensor product structure of the wavefunction, which is advantageous from the computational
point of view. Wavelets can be selected according to the length and energy scales of the phys-
ical processes under consideration, reflecting the local variations of the wavefunction on these
scales. Guided by ideas from multi-scale analysis and image processing, we are aiming towards
an approximation scheme, where wavelet tensor products are selected according to their con-
tribution to the “exact” many-particle wavefunction. These so called nonlinear approximation
schemes [14] are currently a very active area of research in applied mathematics. The term
“nonlinear” here means that basis functions are selected according to their contribution to
the function to be approximated. In other words the basis depends on the properties of the
solution. Within this context wavelets are especially favorable and offer rigorous selection
schemes based on local regularity requirements [15]. For correlated wavefunctions, regions of
low regularity correspond mainly to inter-electron cusps, where a rather detailed knowledge of
the analytic behavior is available [16]. This possibly bridges the gap between pure and applied
mathematics.

Application of methods from multi-scale analysis for the approximation of correlated wave-
functions raises a multitude of questions concerning new numerical and physical aspects of this
ansatz. Therefore it is desirable to keep the many-particle treatment as simple as possible. We
have argued in paper I, that an appropriate starting point for our considerations is a product
ansatz for the wavefunction

U (ry,ry,...,ry) = F (r1,r9,...,rn) @ (r1,r9,...,TN), (1)

where the correlation factor F, usually called Jastrow factor, is a symmetric function of the
electron coordinates and ® represents a mean-field solution or a linear combination of Slater
determinants. The short-range behavior of the Jastrow factor F essentially reflects Kato’s
cusp condition [16] and its shape depends on the averaged electron density near the cusp.



Although the product ansatz (1) is in general only approximately valid for many-particle
wavefunctions, it provides a good approximation for a large class of long- and short-range
correlations [17]. In paper I, we were able to demonstrate the feasibility of our approach
by presenting some preliminary results for the helium atom, which already required the full
machinery for calculating one- and two-electron integrals. The integral evaluation by itself
provides new numerical features concerning the development of fast algorithms in a wavelet
representation.

We are aiming towards a synthesis of local correlation methods and nonlinear approxima-
tion schemes. The main objective of the present work was to develop adaptive approximation
schemes for the Jastrow factor F, resulting in data sparse representations of many-particle
wavefunctions. In order to simplify numerical and analytical studies, we first considered an
exactly solvable many-particle model in one dimension. For this model, we were able to study
the convergence behavior of individual approximation schemes over several wavelet levels. Fol-
lowing that, we have studied the transferability of our findings for the model system to the
helium atom. This can give us some hints of what we can expect for larger systems.

2 Exactly solvable many-particle model in one dimension

As a first application of our method, we want to discuss an exactly solvable many-particle
model system in one dimension. A large class of such systems, whose exact ground-state
wavefunctions are of product type (1), can be found in Ref. [18]. In particular this class
includes systems with Hamiltonian

Hmodel ZB 2+ Z:c +Z< %\mi—xﬂ), (2)

1<J

whose exact ground-state wavefunction is of the form

1 il 1
Uo(z1,T2,---,% NHexp [ x]|] Hexp —ixf] , (3)
1<J =1
with normalization constant A'. The corresponding ground-state energy is given by
1 1
Ey=-N—-—(N—-1)N(N +1). 4
0= 5N = 5 (N = )N(N +1) @

Atomic units have been used throughout this paper. In the following we take

F(z1,%2,.., TN Hexp[ \] (5)

1<)

as the Jastrow factor. Consequently

&(z1,29,...,TN Hexp [——w ] (6)

models the one-particle part in our approach. A Hamiltonian of the form (2) and the corre-
sponding ground-state wavefunction can be also found in Ref. [19] and might be considered
as a limit [20, 21] of the Hamiltonian discussed by Forrester [22].

'In order to show this, one first has to verify that ¢(z) = isgnz, 7(z) = —z, f(z) = —%, A(z) = 0 and
F(z) = 1|z| meet the requirements (2.10) and (2.11) of Proposition 1 in Ref. [18]. The statement follows
immediately after putting ¢, 7, f, A and F' in (2.12) and (2.13) in Ref. [18]. Note that a factor 2 is missing in
front of A(z) and F(z) in the formulas (2.9), (2.12) and (2.13) in Ref. [18]. The correct results are obtained by
replacing A\(z) by 2A(z) and F(z) by 2F(x)!



The Hamiltonian (2) describes a system of coupled harmonic oscillators interacting via
repulsive short-range and long-range two-body potentials. Although the exact solution (3)
corresponds to the bosonic ground state, its short-range behavior looks rather similar to the
corresponding behavior of three-dimensional many-electron systems. Especially at the two-
particle coalescence points it resembles closely Kato’s cusp condition [23], in particular there
is the same dominating linear term |z; — x| in the short-range expansion of F. Such kind of
behavior is a consequence of the d-function in the interaction potential. For the construction
of simplified one-dimensional models it is common practice to replace the three-dimensional
Coulomb interaction by a d-function [24, 25, 26]. An important argument for taking a 6-
function potential in one dimension has been given by Herrick and Stillinger [27]. They
showed that the d-function potential arises in the one-dimensional scaling limit, with respect
to the dimension, of the helium atom in dimensions greater than one. Herewith an interaction
of the form 1/|x; — x2| has been assumed in higher dimensions.

2.1 Approximation schemes for the two-particle model

We want to start our discussion with the simplest case of the two-particle model. For two
particles, without spin dependent interactions, the bosonic and fermionic ground states coin-
cide. The wavefunction (3) with N = 2 is therefore a realistic model for the helium atom,
which in turn can serve as a benchmark for more general many-electron systems. Due to
the low dimensionality of the problem, we were able to compare the performance of various
approximation schemes, including a nonlinear scheme, which would have not been feasible
otherwise. In particular it is possible to illustrate distinct features of these approximation
schemes. Furthermore we have explicitly studied different kinds of convergence criteria for
this model, which are otherwise difficult to access. These studies gave us some insights con-
cerning realistic electronic structure calculations.

2.1.1 Wavelet expansion of the Jastrow factor

Following our approach outlined in paper I, we have first performed standard tensor product
wavelet expansions, up to levels £, for the Jastrow factor (5)

V4
Felovan) = fO4 3 XS0 Fl (@10 (7
Jj1=jo @1
(2 2
+ Z Z f(]15]2 (01,112 (.71;,72) (al’az) ($1,$2) )
J1<g2 a1,a2

where we have used symmetric one- and two-particle terms

fjgll?al (‘Tl’ $2) = wjl,dh ("El) + wjl,al (372)a (8)
'7:((]?1),3'2),(01,112) (z1,29) = ijl,al (z1) ¢j2,a2 (z2) + "/’j2,az (z1) ¢j1,a1($2)a

represented with respect to an univariate wavelet basis 1, ,(z) = 21/24)(27z — a) with dilation
levels j ranging between jo < j < £. For some elementary facts concerning wavelet analysis,
required in the sequel, we refer to the introduction of paper I. In the wavelet expansion (7),
we have assumed that a coarsest level jy exists, corresponding to the maximal length-scale of
correlations, below which contributions can be neglected. This assumption is not completely
obvious for the isolated Jastrow factor (5) of our model. However we are only concerned with
the product F®, where the exponential decay of ® confines the distance between the two
particles.



We have determined the variational parameters f(©, f (1) f((jZI) i2)(an,a2) by solving a

J1,a1’
generalized eigenvalue problem of the form
Hf=EM{, (9)

which arises from the Rayleigh-Ritz variational principal applied to the expectation value of
the energy. The matrix elements with respect to the Hamiltonian (2) are given by

Hp3,A)0LB) = / / dz1dzy FY'A® Hyogel Fiin®, (10)
M@p.3,A)(q,LB) = / / dz1dzy 75{’3;‘5 fﬁ‘%‘l’, (11)

where the indices J = {}, {j1}, {j1,72}, A = {},{a1}, {a1, as} refer to multi indices depending

on whether F _g’: A represents a constant, one- or two-particle term.
In order to solve the generalized eigenvalue problem (9) by means of a direct or iterative

)

procedure, care has to be taken concerning almost linear dependencies among the F ‘%’ A Ccon-
taining wavelets on coarse levels. This is due to the fact that on sufficiently coarse levels the
wavelets are almost constant on the whole domain of the system. Thereby they become nearly
linear dependent within the domain of the system, giving rise to ill conditioned matrices (10)
and (11). To overcome this problem, we first performed a singular value decomposition of
the M matrix limited to the coarse levels, in order to generate a well conditioned basis on
these levels. Due to the comparatively small number of basis functions on the coarse levels
the additional computational effort is rather small.

Straightforward evaluation of the matrix elements (10) and (11) leads to one- and two-
dimensional integrals, where products of Gaussians with wavelets appear in the integrands.
To specify these products we introduce the functions

d(x) := exp [—%xQ] , (12)
_ ) #(=)
@M”’{mem’ (19)
¢*(x)
77J,A(-7") = ¢2($)¢j1,al (CC) ) (14)

¢2 ($)¢j1,a1 ($)¢j2,112 ('7")

where J, A again denote appropriately chosen multi indices characterizing the wavelets ap-
pearing in the functions (13) and (14). With these definitions at hand, we can write down the
required integrals for the Laplacian

/d.’l: CJ’A(.T) A CL,B(iU), (15)

the one-body potential V (z) = 32

[ o maaa) (16)

and for the two-body potentials Vo(z1 — z2) = 6(z1 — 22), %|x1 — 9|

// d.’L‘ld.’IIQ nJ’A(fvl) Vg(ivl — .’1}2) 'f]L,B(fEQ). (17)



We have presented a detailed exposition of how to calculate such kind of integrals in paper
L. In the first step, wavelet expansions of the functions ¢, (,n have to be performed using the
wavelet coupling coefficients defined in paper I. Due to the comparatively small number of
contributing wavelets in one dimension, we can avoid the telescopic expansion underlying the
nonstandard representation of operators. Instead we have transformed the wavelet expansion
of the functions ¢, ¢, 7 into a basis of scaling functions ¢y 4 (z) := 2t/2p(2tz—a) on a sufficiently
fine level /, e.g.

13,a(x) = ) capra(a). (18)

Simple scaling relations can be used in order to reduce the integrals to so called elementary
integrals

[ s oo a) (o), (19)

/ dz p(z — a) A (), (20)

/dx 22 o(z — a), (21)

/ / dzydis p(z) — a) |21 — 2] @(2), (22)

with respect to the scaling function ¢(z — a). An iterative scheme according to Beylkin [28],
Dahmen and Micchelli [29] can be applied to calculate these integrals. It only requires the
filter coefficients and no closed analytic expression for the scaling function.

Further restrictions can be imposed on the wavelet expansion (7), like the hyperbolic
wavelet approximation, which we have discussed in paper 1. Together with adaptive refinement
schemes near the cusp region, this offers the possibility to reduce the computational effort
considerably. However, at first we have to establish the convergence behavior of the standard
wavelet expansion (7) with respect to the levels £. We have chosen for our calculations a
biorthogonal symmetric wavelet basis with compact support and six vanishing moments from
Sweldens [30]. These wavelets are based on the interpolating scaling function of Deslauriers
and Dubuc [31], where the dual basis with the same number of vanishing moments has been
generated from a lifting scheme [30].

In the first step we have to identify the coarsest level jo from which we start our wavelet
expansions. This was done iteratively by choosing a coarse level j and saturating the wavelet
basis 1;, on this level with respect to the energy. The saturating threshold on a level was
set to 10~* Hartree relative to the energy. In the next step, we have added wavelets from the
next coarser level 7 — 1 and checked whether they contribute to the energy. If this was the
case, we have saturated the basis with respect to the wavelets 1;_1 , and added wavelets from
level 5 — 2. This process has been continued until the coarsest level j — n did not contribute
to the energy any more, by definition we set jo = 7 — n 4+ 1. Obviously our choice of jy is not
necessarily strict and depends on the desired final accuracy one wants to achieve with such an
expansion. By means of the exact solution Wy, it can be seen that the size of the system is of

the order of the characteristic scale at level j = —2. Starting the iterative scheme at j = —2,
we actually observed a rather sharp cut in the contribution to the energy. By going to the
next coarser level j = —3, we observed a gain in energy of ~ 10~* Hartree, which is below the
accuracy aimed at in the present application. Noteworthy, the level j = —2 contributes 92%
to the total defect energy AFE defined by the energy difference 2
_ (®|H|®)
AE = W — Ey. (23)

2The defect energy AE differs from the correlation energy because @ is not the HF solution of the model.



In analogy to this, we have defined the defect energy at level £

_ (F@|H|F,®)
AE = (Fe®@|F, @)

Once jo has been settled, we have extended the wavelet basis by adding successively finer
levels. The corresponding defect energies ranging from level £ = —2 to £ = 3 are listed in
Table 1. Starting already at level £ = —1, the energy shows an asymptotic convergence rate of
O(27%). To consider the energy alone does not give too much insight into the approximation
properties of our wavelet expansion. Therefore, we have calculated the norm of the defect
function

_ E,. (24)

0Wy(z1,22) = Vo(z1,22) — Fr @(21, 22) (25)

of our approximate solution on various levels ¢ with respect to alternative function spaces.

In order to get a visual impression of the accuracy of the wavelet expansion (7), we have
shown in Fig. 1 the exact solution ¥y and the defect function §¥, on various levels (¢ =
—2,0,2). A prominent feature in Fig. 1 is the two-particle cusp along the diagonal 21 = zs.
Apart from the diagonal, we observed an increasingly fast decay of the approximation error
by going to finer levels /4.

The standard Hilbert space used in quantum theory for bound states of Schrodinger’s
equation is L?. Hence a natural measure for the approximation error on level £ is given by the
L? norm of the defect function defined by

Epa(0) =|| 69, ||poi= (//d:vld:vg \5@4(;51,;32)?)%. (26)

Calculating the integral in E;2(£) over the square [—2, 2]? numerically, we observed an asymp-
totic convergence of O(27¢), as can be seen from Table 1. A more sensitive measure for the
accuracy of our wavelet expansion is the error in the norm of the Sobolev space H'(R?) [32]
defined by

954 (x1,
By () = 6T || = l//dwldxg <|5\I/g(x1,$2)|2+‘ za(: z2)

2 2
o6V
n ‘ e(z1, 72)
8.’[,‘2

(27)
Here we also take into account the approximation error of the first derivatives of the wave-
function, which is the relevant quantity with respect to the convergence of the energy. As can
be seen from Table 1, we observed an asymptotic convergence of O(2 ¢/2) for the H' norm.
Due to the variational nature of our approach one has to expect that the error in the energy
is of O([Eg1(£)]?), which is actually the case as can be seen from Table 1.

The convergence rates observed from our calculations are within the general estimates for
the finite element method with piecewise linear basis functions. This clearly indicates that
within the cusp region we can not benefit from the higher regularity of our wavelgt basis. It is
shown in Appendix A that the exact solution ¥y belongs to the Sobolev space H27¢ fore > 0
(for a definition of Sobolev spaces with real coefficients, see e.g. Ref. [32] and Appendix A).
From this we can expect [32]

(28)

Em(6) < 027G | g || |

which is in agreement with our numerical observations. Further extension of this estimate with
respect to the E 2 (¥) error requires that the exact solution belongs to the Sobolev space H?,
which is not the case for our model. At best we can obtain a not necessarily sharp estimate
[32]

Er2(0) < Egp2(0) <279 || @y || (29)

3=
which is in agreement with our calculations.



0.04

0.4

5%
5
%
%
7
2
7
/

Z
s

":::

555
55

%
405
KKK
o
"’/

7

2
z:o
0%

AN
R ‘\“\\\\\\\\\\\\%\
\

%
25
555

5
2

N
im
M
Rt
N
NN
SN\

o

z

0.2

x 10

0.02

0.01

-0.01

-0.02

Figure 1: Standard tensor product wavelet expansion of F for the two-particle model. A
wavelet with six vanishing moments has been taken from Sweldens [30]. a) exact solution ¥y.
Defect functions §W¥y: b) £ = —2, ¢) £ =0, d) £ = 2. Different scalings of the vertical axes are
used on the various levels according to the absolute size of the errors. The coefficients of the
wavelet expansion have been obtained from the Rayleigh-Ritz variational principal applied to
the expectation value of the energy.



Table 1: Approximation errors of standard tensor product wavelet expansion F; for the two-
particle model. A wavelet with six vanishing moments has been taken from Sweldens [30].
We have listed errors corresponding to the L? (E2(£)) and H' (Eg1(£)) norms as well as
errors in the energy AE(¢) (Hartree). The coefficients of the wavelet expansions have been
obtained from the Rayleigh-Ritz variational principal applied the energy expectation value.
For comparison, we have presented the L? error of the direct wavelet expansion of the total
wavefunction ¥ (Ey(£)) according to Egs. (30).

¢ Ep2(0) Eu(f) Egi(£) AE()
-2 0.0347 0.04183 0.1984 0.0191
1 0.0229 0.00958 0.1679 0.0142
0 0.0103 0.00312 0.1236 0.0076
1 0.0044 0.00110 0.0885 0.0038
2 0.0021 0.00042 0.0647 0.0020
3 0.0015 0.0487 0.0011

2.1.2 Wavelet expansion of the total wavefunction

Alternatively we have considered another approach, to study the convergence in the L? norm,
by means of a direct wavelet expansion of the total wavefunction

Uo(z1,22) = Zgjo,(a b)gjo o) (T1,22) (30)

(1)
+ Z Z g .70’.71)’(0'7b)g(j0ajl)i(aab) (.’L‘l, :L.Q)

Jjo<ji ab

2)
LD DD D RN R CES

Jo<j1<s2 ab

where we have introduced for G 0) and g (1) tensor products involving scaling functions on the
coarsest level 7

Gty @1m2) = @ioa(m1)@ion(2) + jo p(1) Pjoa(w2), (31)
G5 iy @32) = @@ 5(82) + 5y p(@1) P a(2),
G2 oo (@182) = D5y a(30)%5, 5(52) + Do (1), a(32).

The wavelet coefficients g are given by scalar products with respect to the dual basis ¢;, 4, 'I,Bj,a

Gs = 2 [ [ dudes Wo(a1,2) Gnalon) Gnoloa), (32
Q%L-ha,b = 2// dz1dzy Uo(z1,72) Bjoa(m1) W5y 0(72),
gj(-i)jQ,a,b = 2// dzydzy Vo (z1,22) )y a(1) )y 0(22)-

For computational simplicity, we have included scaling functions ¢, 4 in our expansion, which
enables us to start at an arbitrary level jo without affecting the final accuracy. Please recall
from paper I that we have excluded scaling functions from our expansion due to the finite
range of electron correlations. This leads to considerable technical simplifications for the



calculation of matrix elements in the many-particle case [33], which however does not matter
for the present purpose. It can be seen from Table 1 that the convergence rate in the L? norm
(26) of the direct expansion (Eg(£)) is of O(273¢/2), which is by a factor of 27¢/? faster than
what we found for the expansion based on the Rayleigh-Ritz variational principal applied to
the energy expectation value. The latter is equivalent to minimizing the error in the H' norm,
where the first derivatives dominate.

In order to elucidate the convergence behavior of the direct expansion, we can follow
the same line of arguments given in paper I for the homogeneous electron gas. Obviously
W, is smooth except along the diagonal 1 = z2, where the first partial derivatives have
discontinuities. We can therefore limit our discussion to diagonal matrix elements on fine
levels j >> jo. Performing a Taylor expansion of the Jastrow factor for such a matrix element
and neglecting the variation of ® within the supports of the wavelets

gj('?j)’a’a = //diEld.TQ \DO(-’EI,.TQ)'I,Zj,a(,Tl) ";j,a(xZ) (33)
Z a—W: // dridxs |£E1 - $2|m ";j,a(l'l) "Z’j,a(l'Q)
m—0 m.

— 5 e [ [ drsdis o1 — mal ) ),

it is obvious that the linear term |z; — x3|, corresponding to m = 1, governs the convergence
behavior in the asymptotic limit. The matrix elements of this term decay with O(27%),
whereby their number increase with O(27) along the diagonal. Here we take into account that
® acts as a cutoff function, which confines the wavelet expansion to a finite interval on the
diagonal. Wen can estimate the L? error in the asymptotic limit from the expression

Er0)? = Y Y162, 0l (34)

j1>742>2 ayb
2
~ 310l
j>t a
< 0y 2,
>0

which is equivalent (C; Eg? < E_'g? < Oy Eg? ) to the E(LZQ)
basis [34]. From this estimate we obtain a convergence of the direct expansion of O(273¢/2),

which is in agreement with our numerical finding.

error for a biorthogonal wavelet

3 Hyperbolic wavelets and adaptive refinement schemes

After we have established the convergence behavior of the wavelet expansion in the standard
tensor product space, we want to discuss the hyperbolic wavelet approximation and related
adaptive refinement schemes. Hyperbolic wavelets introduce a hierarchy on the set of standard
tensor products according to the sum of their levels. A symmetrized tensor product

Z wjl,ln (xll) 'lij,az (‘Tzz) s ll)ij,CbN ($ZN) (35)

(il,iz,...,iN)ESN

is accessible for a hyperbolic wavelet approximation of level @ if
N
Yi<a. (36)
i=1

10



Special regulations have to be taken for each of the n-particle terms F(™, with n < N, of the
Jastrow factor. Formally each n-particle term consists of tensor products of the form

n N
H wjz‘,ai (:E,) H Pjo,ar (wk) (37)
=1

k=n+1

Due to the finite range of electron correlations, we can replace the ¢j, , by constant functions.
For the hyperbolic wavelet approximation, however, we have to take the level jy of the scaling
functions into account and use the condition

d i+ (N—-n)(jo—1)<Q (38)
=1

instead 3. In order to derive a notation which does not rely too much on arbitrary re-scalings
of the wavelet variable, we introduce a shifted hyperbolic wavelet level

Q=Q—N(jo—1). (39)

It has been shown by DeVore et al. [35] that the approximation properties of hyperbolic
wavelets for a given function depend on the size of the L? norm of its mixed derivatives. For
our two-particle model, it can be easily seen that already the first mixed derivative of the
wavefunction does not belong to L?, actually we get

62|LII1 - $2|/8.’L‘18$2 = —2(5(.’1)1 - :112). (40)

Numerical results of the hyperbolic wavelet approximation for the two-particle model are
listed in Table 2, from which we derive a convergence rate on the coarse levels of O(2-9/4).
By comparison with the standard tensor product expansion, one expects asymptotically a
convergence rate of at least O(2-%9/2), which can actually be observed at the finest level only.
In Fig. 2 we have shown the grid points of the hyperbolic wavelet approximation at level
Q=4

For obvious reasons one can expect that it should be possible to improve the convergence
by adding wavelet products on fine levels along the diagonal. In order to make this statement
more precise, we have considered a fully adaptive wavelet scheme, which is similar to a best N-
term approximation [14], i.e. to find the set of N basis functions which yields the lowest energy.
Starting from the coarsest level, we have systematically enlarged our wavelet basis by selecting
tensor products according to their contribution to the energy. For this we went through the
whole set of remaining standard tensor products and searched for the tensor product wavelet
which gave the largest contribution to the energy. This was included into the expansion and
the whole procedure was repeated again until the largest contribution was below a certain
threshold. Following our notation for the standard tensor products, all tensor products with
j1,J2 < £ were accessible for the fully adaptive scheme at level £. Actually, we found that
the energies on the various levels of the fully adaptive wavelet scheme are in good agreement
with the standard tensor product expansion, as can be seen from Table 2. A comparison of
the corresponding grids with those of the hyperbolic wavelet approximation shows that on the
coarse levels (Fig. 2 and 3a) both grids appear rather similar. The underlying sparse grids of
the hyperbolic wavelet approximation can be even further thinned out by removing points far
from the diagonal. On the fine levels, we observed a pronounced concentration of grid points
along the diagonal. The coupling between the fine levels is rather week and does not extend
over the nearest levels.

3The scaling functions on level jo actually represent the wavelet spaces on levels j < jo.
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Table 2: Error in the energy AE(¢) (Hartree) at level £ for the hyperbolic wavelet approxima-
tion (hyperbolic) and adaptive refinement schemes for the two-particle model. A wavelet with
six vanishing moments has been taken from Sweldens [30]. Two adaptive schemes have been
considered for hyperbolic wavelets: Adaptive refinement along the diagonal (diagonal) and
its contracted version (contracted). Results are also shown for the fully adaptive treatment
with respect to the energy (adaptive). For comparison, the standard tensor product expansion
(standard) has been included. The number of tensor product basis functions n is shown for
each case.

standard adaptive hyperbolic diagonal contracted
4 n AE({) | n AE®¥) n AE(Y) n AE(Y) n AE(Y)
-2 15 0.0191 | 14 0.0191 5 0.1566 9 0.0333 6 0.0398

45 0.0140 | 28 0.0142 19 0.0188 | 23 0.0142 | 20 0.0150
153 0.0075 | 55 0.0076 43 0.0156 | 55 0.0076 | 45 0.0077
276 0.0038 | 52 0.0039 91 0.0127 | 105 0.0038 | 93 0.0038
496 0.0019 | 66 0.0020 155 0.0110 | 177 0.0020 | 158 0.0020
1128 0.0010 | 80 0.0011 260 0.0075 | 293 0.0011 | 266 0.0011

S B IUR RSN P

W N = O =

Obviously, our fully adaptive wavelet scheme is not applicable in realistic calculations.
However it can give us some hints for the construction of an optimal scheme. A good candidate
seems to be a combination of hyperbolic wavelets and diagonal refinements on the fine levels.
Such a scheme is numerically in good agreement with the standard tensor products (see Table
2) and requires only a comparatively small number of additional basis functions. The number
of degrees of freedom can be even further reduced by contracting the wavelet tensor products
on the diagonal for each level j to a single basis function

Fj (@1,32) = 3 thj.a(1)hj,0(w2)- (41)

In the case of our two-particle model this does not even introduce a further approximation,
which can be seen from the exact solution (3) and Table 2. Contraction schemes have been
already discussed in paper I, where we pointed to potentially interesting applications for in-
homogeneous three-dimensional systems like molecules. In Section 5 we present the necessary
generalizations and propose a numerical scheme for the efficient evaluation of integrals involv-
ing contracted tensor products.

3.1 Extension to many-particle models

The two-particle model provides a simplified, nevertheless realistic description of a two-electron
system like the helium atom. For more than two-particles there is a discrepancy with respect
to many-electron systems due to the fact that the model does not meet Pauli’s principle. The
wavefunction (3) is symmetric and describes the bosonic ground state of the model Hamilto-
nian (2). Since we are solely interested in the numerical aspects of the model, it makes sense
to consider also cases with more than two particles. Actually these cases are more compli-
cated than they would be for a fermionic system, because of an increased importance of the
many-particle cusps. Electronic wavefunctions vanish in the coalescence points of more than
two electrons. This is not the case for the model wavefunctions, in contrast the product of
Gaussians, appearing in the exact solution (3), actually favors such coalescing arrangements.

In order to make the many-particle models tractable for our approach, we have used
the hyperbolic wavelet approximation in combination with adaptive refinement along the

12
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Figure 2: Grid points of the hyperbolic wavelet approximation up to Q = 4 for~ the two-particle

model. Indicated are tensor products 1;, a, (1) ¥j,,a, (72) at levels (ji,j2): Q@ =2, O (-2,-2);
Q = 37 \Y% ('2a'1); Q = 47 <> ('270)7 A ('1a'1)'

diagonals. By definition, simple diagonal n-particle tensor products

Xe,a(Tiys -5 Tiy) = Yo,a(Tiy) ---Yeali,) £<Q+jo—1 (42)

or their contracted analogues

Xe(@iys - @i,) = D Pral®iy) - Yral@i,) L<Q+jo—1 (43)

did not contribute to the hyperbolic wavelet level Q. They could be combined with other
wavelets 1); , in an arbitrary manner. Symmetrized tensor products

‘7:51,)_2& = Z Ilpjlgal (:L.Zl) ct Ilqu,aq (xlq) Xk (‘,L.iq+1’ b 7mip) (44)

(31,82, siN )ESN

were therefore accessible, if they satisfied the condition Y7 _; 5; — ¢(jo — 1) < Q. Results for
three-, four- and five-particle systems are listed in Tables 3, 4 and 5. )

The hyperbolic wavelet approximation converges rather fast with O(2~?) on the coarse
levels but slows down considerably when going to the finer levels, approaching an O(2‘Q/ 2
behavior. With increasing number of particles, the transition in the convergence behavior takes
place at larger values of Q, indicating an increasing importance of off-diagonal tensor products
on coarse scales. In contrast to this, the convergence for the adaptively refined schemes is of
O(27%) throughout. Even on the coarse levels, we observed considerable improvements by
means of diagonal refinement. Although the convergence rate is the same in the contracted
and un-contracted case, we obtained smaller total errors in the energy for the latter. This can
be understood by looking at the Taylor expansion of the Jastrow factor. The leading order
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Figure 3: Fully adaptive wavelet scheme, based on the contribution of tensor products
Y1 a1 (1) VPjs,a,(x2) to the energy, for the two-particle model. a) Tensor products on coarse
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Table 3: Errors in the energy AE(?) (Hartree) at level £ for the three-particle model. Results
are presented for the hyperbolic wavelet approximation (hyperbolic) and its adaptively refined
scheme by means of wavelet tensor products along the diagonal (diagonal) as well as for the
corresponding scheme based on contracted tensor products (contracted). For comparison, a
fully adaptive treatment with respect to the energy (adaptive) has been performed on the
coarse levels. A wavelet with six vanishing moments has been taken from Sweldens [30].
Percentages refer to the relative error with respect to the total defect energy (23). The
number of basis functions n is given for each scheme.

adaptive hyperbolic diagonal contracted

| n AE®) % n AE({) %o n AE(() %| n AE(®) %

-2 | 35 0.0625 93.8 0.4374 56.3 25 0.0678 93.2 | 10 0.1794 82.1

69 0.0369 96.3 19 0.0841 91.6 87 0.0352 96.5 | 36 0.0604 94.0
177 0.0182 98.2 63 0.0449 95.5 | 315 0.0181 98.2 | 109 0.0244 97.6
274 0.0095 99.1 151 0.0331 96.7 | 617 0.0097 99.0 | 233 0.0147 98.5
335 0.0269 97.3 | 1177 0.0057 99.4 | 468 0.0091 99.1
651 0.0195 98.1 | 2677 0.0036 99.6 | 900 0.0057 99.4

W N~ O
o Gl w N |
o

Table 4: Same as in Table 3 for the four-particle model, except for missing results for the fully
adaptive treatment with respect to the energy.

hyperbolic diagonal contracted

¢ Q n AE() % n AE() % n AE(W) %
2 1 5 1.0695 57.2 35 0.2164 91.3 20  0.407 83.7
-102 19 0.2827 88.7 | 187 0.0882 96.5 82 0.134 94.6
0 3 63 0.1752 93.0 | 835 0.0370 98.5 | 297 0.065 974
1 4| 18 0.0739 97.0 | 2271 0.0189 99.2 | 711  0.035 98.6
2 5| 450 0.05612 98.0 1514  0.022 99.1
3 61026 0.0385 98.5

three-particle terms are of the form |z; — z;||z; — zx|. An optimal representation of these
terms, however, requires products of the form x,,(z;, z;) xn(2;, zx) in the wavelet expansion,
which were not included in our scheme. Due to the restricted flexibility of our contracted
wavelet basis, we obtained a slightly deteriorated accuracy in the energy. As we have already
mentioned above, this effect is enhanced by the bosonic character of our model. At least for
the three-particle system, we were able to demonstrate that a fully adaptive treatment with
respect to the energy yields results in close agreement with our diagonal refinement scheme.

4 Comparative studies for the helium atom

The three-dimensional analog of the two-particle model is the helium atom. It is fairly straight-
forward to transfer to it the adaptive approximation schemes, discussed above for the two-
particle model. Due to the increase of computational complexity, we cannot afford the same
range of numerical results. Instead we have to limit ourselves to a simplified approach. We
took our best approximation for the helium wavefunction from paper I, which recovers 98
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Table 5: Same as in Table 3 for the five-particle model, except for missing results for the fully
adaptive treatment with respect to the energy.

hyperbolic diagonal contracted

¢ Q n AE() % n AE() % n AE(X) %
201 5 24802 504 45 0.7138 85.7 30 1.0928 78.1
102 19 0.9374 81.3 | 273 0.3113 93.8 | 168 0.4149 91.7

0 3 63 0.5928 88.1 | 1529 0.1529 96.9 | 755 0.2664 94.7

1 4] 186 0.2553 94.9 | 4628 0.0785 98.4 | 2036 0.1310 974

2 5| 506 0.1499 97.0

3 61222 0.1069 97.9

Table 6: Errors in the energy AE (mHartree) for hyperbolic wavelet schemes with respect to
a standard tensor product wavelet expansion of the helium atom (E = —2.903004 Hartree)
published in paper I. In the first scheme (hyperbolic) only hyperbolic wavelets up to level Q
have been taken into account, whereas in the second scheme (diagonal) all diagonal tensor
products were additionally included. For comparison, we present the corresponding error of
the standard tensor product expansion at levels £ (standard). The number of basis functions
n is given for each scheme.

standard hyperbolic diagonal
? n AE|Q| n AE| n AE
-1 703 1989 | 2| 59 7.001 | 77 2.928
0] 1540 0.266 | 3 | 401 3.958 | 437 0.585
12701 0.] 4914 1.790 | 950 0.151

% of the correlation energy, as a reference. The single-particle wavelet basis extends over
four levels, ranging from level 5 = —2 up to j = 1. No restrictions have been imposed on
the combinations of these wavelets in the standard tensor products. With respect to this
wavefunction, we have studied the performance of hyperbolic wavelets and the corresponding
adaptive approximation scheme.

It can be seen from Table 6 that taking hyperbolic wavelets alone leads to a considerable
increase of the errors compared to the standard tensor product expansion. Concerning the
convergence behavior, we can compare our results with the finite element calculations of Garcke
and Griebel [36]. They performed calculations for the hydrogen and helium atom on sparse
grids, using piecewise linear basis functions, and observed a convergence of O(2-?). This is
in agreement with our results and demonstrates again that, with respect to the convergence
rate, no improvement can be achieved by using higher order elements. In combination with an
adaptive refinement along the diagonal, however, we have obtained a considerable improvement
with only a very small number of additional basis functions. These preliminary results just
indicate that the model system is a useful starting point to study approximation schemes for
many-electron systems. Further work is required in order to get more insights concerning the
convergence behavior of these schemes in the case of the helium atom.
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5 Generalized contraction scheme in three dimensions

We have seen in Section 3 that a considerable reduction of the number of degrees of freedom
has been achieved by contraction of wavelets on fine scales. However in the one-dimensional
case, the situation is simplified due to the fact that the two-particle correlation factor F(z1, z2)
is constant along the cusp x1 = z3. Obviously this is not the case for the helium atom where
the correlation factor F(ri,ry) varies on the diagonal ry = ro. However it has been observed
that the variations are rather smooth and can be described by a relatively small number of
degrees of freedom [37]. Similar conclusions can be drawn from the homogeneous electron gas
[38], conjecturing the transferability of short-range correlations to inhomogeneous systems like
atoms and molecules.

The two-particle cusp represents a three-dimensional sub-manifold of configuration space
and requires O(2%) wavelets for its resolution up to level 5. Contraction schemes for wavelets
reduce the number of degrees of freedom in the ideal case to O(j). However such schemes have
no immediate effect on the computational complexity. At the outset it just corresponds to a
re-summagtion of matrix elements, leading to the same computational costs for the H and M
matrices as in the un-contracted case. Based on regularity arguments, we have pointed out in
paper I, that one can expect an asymptotic convergence of the energy of O(27%) with respect
to the wavelet levels j. The cost to benefit ratio of O(1), is therefore not very favorable in this
case. Beyond a pure reduction of the number of degrees of freedom, we furthermore require
from the contraction scheme to be beneficial with respect to the evaluation of the matrix
elements. This can be achieved by choosing an ansatz of the form

f? (1'1,1‘2) :fg (]21,.7,‘2) f? (yl,yg) .7:C (2’1,22), (45)

],w,a ]7w$7a29 .77"111;;041; J;w2;az

where the contraction is done for each dimension separately

b fa(D) wjp(x1) 0jp(22) w=0
Fiwa®1,m2) = ¢ 24 falb) [@j6(z1) ¥ip(z2) +bjp(z1) pjp(z2)] w=1 . (46)
b fa(b) Yjp(w1) Pjp(22) w=2

The index w characterizes possible combinations for three-dimensional wavelets, which can be
described by the ansatz (45). With this ansatz, we have introduced a set of functions f,(z),
which constitute the new degrees of freedom. In principle we can choose for f, any convenient
set of functions, like Chebyshev polynomials, for which we can easily evaluate their values at
the grid points. However it is tempting to stay within multi-resolution analysis and use again
wavelets for this purpose. Especially wavelets based on interpolating scaling functions, like
those used in the present work, seem to be appropriate. Choosing f, = ¢;  yields a complete
decoupling of the contracted wavelet basis, whereas coarser scales with kK < j generate an
increasingly stringent coupling scheme.

We want to exemplify our discussion of integral evaluation by considering two-electron
Coulomb integrals for a combination of contracted and un-contracted tensor product wavelets

| [ dridins Fialer el drlr) e, 12 () (02), (47)

|r1—rs |
where the ¢, represent arbitrary orbitals from the mean-field part ®. Typically, contracted
wavelets belong to finer levels than un-contracted ones, therefore we assume j > mj,mg in
the following. Applying the Gaussian transform method to the Coulomb interaction, it can
be expressed via an integral over a Gaussian function

1 —_—
|ty — 1o

2 o
— dt exp(—|r; — ra|*t?). 48
T2t el ) (48)
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According to our discussion in paper I, we assume that the orbitals are represented in terms of
linear combinations of GTOs. Therefore we can trace back our expansion of the wavefunction
to products of univariate functions

(z — Ap)% exp [—ax(z — Ap)?] w=0
@) =3 i) (o = A) exp [—on(o — 4] w=1 (49)
Pip(z) (z — Ap)% exp [—ap(z — Ap)?] w=2

where the indices 7, b can be dropped in the case w = 0. Inserting Eqgs. (46), (48) and (49) into
the integral (47) and changing the order of integration, the integral over the spatial variables
factorizes into products of one-dimensional integrals of the form

Lag(®) = - fa(®) [ [ dodas exp [~(1 — 22)2] 0} o) 03 @2) (50)
b

where we have introduced the products

S (5) = X (0) X o: (@2). (51)

To simplify our notation, all indices which are not explicitly required have been omitted in
the sequel. According to our assumption j > m1, me, the spatial extend of a function 77](-?2) is
characterized by the support of the wavelet 1);; or scaling function ¢;; belonging to it, i.e.

supp{nj(-fl))} C supp{%;s}. Based on our discussion of products involving wavelets in paper I,
we therefore expect that the wavelet expansion of 7)](-2 strongly peaks around 1); ;.

The integrals (50) can be efficiently calculated using a nonstandard representation [39] of
their Gaussian kernels. This means that the matrix representation of the kernels contains no
couplings between wavelets on different levels. Instead one has to introduce matrix elements
for the coupling between wavelets and scaling functions on the same level. Due to the smooth-
ness of the Gaussian kernels, we profit within this representation from the vanishing moment
property of our wavelets. All the required integrals can be obtained from the basic integrals

p(z1 —a)p(ze) w=0
oo famwln-ard {1 T

via simple scaling relations, e.g.

// dz1dzo exp [—(xl — :1:2)2752] Ye,0(21)ep(z2) = 2 tq®2) (a — b,27£t). (53)
Furthermore we have the relations
G(l)(a'a t) = Z gb+c—2ahc G(O) (ba t/2)a (54)
b,c
G(2) (aa t) = Z gb+c—2a9c G(O) (ba t/2)a (55)
b,c

by applying the refinement relations for wavelets and scaling functions, respectively. The
numerical evaluation of the functions G(%)(a,t) has been discussed in detail in paper I 4.

4The function G(a,t) of paper 1 differs by a pre-factor, i.e. G(a,t) = 2r'/2G®(a, t)
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Applying the same type of telescopic expansion, which has been discussed for the Coulomb
integrals in paper I, we obtain a nonstandard expression for the integrals (50)

Laj(t) =X fa(b) ZZ (ny 1) (bealny) G (e, 274) (56)
+2° D) GV (c,27%) (57)
+2° ZZ (1)1 Becra) (Draln'y) GH(—c,27) (58)
c,d
—£ 1), ~ ~ (2)\ ~(0) —t
+ 2 Z<77j,b|80€o,c+d) <‘P£o,d|77j,b) G (c,2771) (59)
c,d

starting at a sufficiently fine level £ down to a conveniently chosen coarse level £y. After a
reordering of the sums, we can define the coefficients

Salnty 1, c+d><(»0k dln'7) w=0

)7 @y -

b Zd<77]b|‘;0k c+d><1/)k d|77]b> w =2
Sty Pk cra)Pralnyg) w=3

Due to the local character of the functions n(i)

;5> there are only a finite number of grid points

¢ with non-vanishing coefficients gg% .~ The coefficients (60) can therefore be calculated with

O(Q1/329) effort, where Q corresponds to the volume of the system under consideration. Con-
sequently, all the sums (56) to (59), including the sum (59) with respect to scaling functions
on the coarsest level, can be performed in a local manner, thereby avoiding a persistent sum
as in the case of the Coulomb interaction. It therefore does not seem to make much sense to
go to very coarse levels, instead it appears to be reasonable to choose £y = j.

From these considerations, we obtain an expression of the form

Z Z [ Y G(l) (c,2™ kt) +gé23c,cG(1)(_C’ Z_kt) +g$3€,CG(2)(C’ Z_kt)} (61)
k=fy ¢

+ Zgaeo GO (c,27%0t)
for the one-dimensional integrals (50). It remains to perform the integral

= [ L0 Ty B0 (62)

with respect to the auxiliary variable ¢. According to Eq. (62), this just requires integrals of
the form

o
/ dt G (¢, 27 k1) GOV (¢, 27Fvt) G2 (¢, 27F24) (63)
0
within the range of the coefficients ggfk), .- These integrals do not depend on the system under
consideration and can be precomputed and stored in a library.
The computation of Coulomb integrals envolving contracted wavelet tensor products can

therefore be performed with O(Ql/ 327) effort, resulting in a favorable cost to benefit ratio of
0(@1/32-27).
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6 Conclusions

Data compression is a common theme of image processing and many-particle theory. Physi-
cally speaking it means to find a local representation of the essential degrees of freedom of a
system. Thereby avoiding artificial couplings between almost independent degrees of freedom
corresponding to physical processes on separate energy and length scales. The concepts of
multi-scale analysis offer the framework for the development of methods going into this direc-
tion. Wavelets provide a hierarchical single-particle basis with basis functions simultaneously
localized in position and momentum space according to Heisenberg’s uncertainty principle.
We proposed wavelets here as an alternative to atomic centered GTOs, still the most popular
basis in ab initio quantum chemistry. Hyperbolic wavelets, based on the sparse grids approx-
imation scheme of finite element methods, provide a starting point for the representation of
many-particle wavefunctions. However their efficiency is mainly limited to the approximation
of the smooth parts of the wavefunction. Additional adaptive refinement is required near the
inter-electronic cusps.

In the present work, we have studied local representations of short-range correlations for
a one-dimensional many-particle model, which provides considerable technical simplifications
compared to real many-electron systems. Nevertheless our results provide some insight for
the construction of adaptive approximation schemes in the many-electron case. Short-range
correlations are of fundamental importance from the point of view of approximation theory
because the inter-electronic cusps determine the regularity of the wavefunction. We devised a
contraction scheme for wavelet tensor products, which serves to extract the physically relevant
degrees of freedom and reduces the number of additional variables for the refinement consid-
erably. Furthermore, we proposed a method for the efficient evaluation of matrix elements
including contracted tensor products.
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Appendix

A Regularity considerations for correlated wavefunctions

In order to make a reference to error estimates of finite element methods, we require a detailed
knowledge of the Sobolev regularity of the exact solution ¥y of the two-particle model (3). To
be more specific we have to determine the maximal real index s of the Sobolev spaces H*(R?)
to which ¥, belongs. By definition ¥y € H*(R?) requires the existence of the integral

2 . 2\ |g 2
dwidwsy (1 +wi + (4.)2) \Ifo(wl,w2)‘ (64)
in Fourier space. We define the Fourier transform
\ilo(wl,wg) = // dz1dxs exp(—iwiz1) exp(—iwaz2) Yo (x1, 22), (65)
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which can be explicitly calculated by introducing the new variables y; = £1 — 2, Yo = 1 + 22
and & = (w1 — ws), w = 3(w1 + wy) for which we can factorize the integral and obtain and
an explicit representation in terms of the error function with complex arguments [40]

N 1 1 1 > 1 .
W@ w) = 3 / dy exp (glyl\ - Zy?) exp (—iy1) / dy; exp (—Zy§> exp (—iwys)
2\ [~ 1 1, ~
= 2v/mexp (—w ) /0 dy1 exp QU1 — Ui | cos (@y1) (66)

— mexp (—uﬂ) {exp [(% + z'a;ﬂ erfc (—% _ i&))
+ on[(-i0) o (-3 ).

The prime indicates the change of variables in Fourier space. Furthermore we have ignored
the normalization constant of the wavefunction. Using the asymptotic expansion of the com-
plementary error function in the complex plane [41]

_ 2 1
erfc(z) = ex;\)/(_iﬂzz) (1 5 ) for |z| = 0o, |arg(z)| < ??TW, (67)

we obtain an asymptotic expansion of the exact solution
(@) = vaexp (—o?) [~= +0 ()] for &1 - (68)
o(w,0) =+v/mexp (—w =2 =i or |w| — oo.
Taking into account the boundedness of the Fourier transform (65) and the inequality
|w? 4 wa|® < 2% (|G)|28 + |w|25) for s>0 (69)

we can see that the integral (64) exists provided s < 3/2. We conclude that ¥y € H3/2~¢(R?)
for e > 0.

To our knowledge there exists no rigorous statement concerning the Sobolev regularity of
the exact ground state solution of the helium atom. According to the classical work of Kato
[23], Tg belongs to H?(R?®), providing at least a lower bound on the Sobolev regularity. There
exists a large number of very accurate approximate wavefunctions, which have in common
a leading order linear dependence on |r; — ro| [12]. This property actually determines the
regularity of these wavefunctions, where the electron-nuclear and tree-particle cusps have
been neglected. It is therefore instructive to consider the three-dimensional analogue of the
wavefunction ¥

U34(ri,r2) = exp

%|r1 - r2|] exp [—%(r% + r%)] : (70)

as a representative for the whole class of these approximate wavefunctions. The Fourier
transform

\i/gd(kl, k2) = // d3’r1d3’l"2 exp(—iklrl) exp(—ikgrg)\Ilgd(rl, I'Q) (71)

can be treated analogously to the one-dimensional case by introducing new variables t =
ri —ro,s =r; +ry and k = %(kl —ky), k = %(kl + ko). After transformation of the new
variables into polar coordinates we can easily perform the integrations analytically

N 1 [oo 1, 1,5\ . =
Lk k) = 4n%%exp (—kQ) Z/0 dt texp (57:— Zt2> sin (kt) (72)
o ~
= —47%2exp (—kQ) %%/0 dt exp (%t - %t2> cos (kt)
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except for the variable ¢, where we end up with an integral similar to the one appearing in
Eq. (66). Performing the same kind of asymptotic analysis we obtain

N ~ 1 1 ~
gk, F) = 47°/2 exp (—#?) [_ﬁ +0 (ﬁ)] for | = oo (73)

Inserting the asymptotic expansion into the corresponding six-dimensional integral (64), we
conclude that W34 € H/2~%(RE) for £ > 0.
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