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Abstract

The paper contains the analysis of the propagation of acoustic waves in

two�component poroelastic media. It is shown that the existence of P2-mode

as a wave in the range of low frequencies depends on the way in which the

wave is excited. This property as well as properties of other bulk modes are

discussed on practical examples of soil mechanics.

1 Introduction

In this work we present three problems of weak discontinuity waves in porous mate-

rials: acoustic waves in saturated media modelled by a two�component continuum,

surface waves in such media and their asymptotic properties, and acoustic waves in

unsaturated porous media modelled by a three�component continuum. The present

Part I of the Note is devoted to some aspects of the analysis of dispersion relations

for linear poroelastic materials related to the problem of excitation of harmonic

acoustic waves in fully saturated systems.

Propagation of acoustic waves in geophysical porous materials plays a particularly

important role in testing porous and granular materials because laboratory mea-

surements on such materials usually di�er considerably from in situ measurements

required in practical applications. Most of theoretical results were obtained within

the so�called Biot's model (e.g. [1]). They have contributed immensely to the under-

standing of the subject but simultaneously there are many very controversial issues

related to the application of this model. We mention some of them further in this

note. During the last decade the acoustics of porous materials was also developed

within a di�erent continuous model derived on the basis of a modern continuum

thermodynamics. This model in its linear version is on the one hand side simpler

than the Biot's model, in contrast to the Biot's model it does not violate the second

law of thermodynamics and the principle of material frame indi�erence, and on the

other hand it describes changes of porosity as an additional microscopical variable.

In spite of these di�erences the number of acoustic modes of propagation and their

fundamental properties are the same in both models (e.g. [2]).

Part I of the Note contains a review of fundamental properties of P1�, S�, and P2�

waves in porous materials. However we emphasize an aspect of such waves which

seems to be overlooked in the literature. Namely we demonstrate the dependence of

acoustic properties of porous media on the way in which the dynamic disturbance

is excited. This way is immaterial for the high frequency asymptotics determining
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the speeds of signals in the medium. However it becomes essential in the limit of

low frequencies and these are of primary practical importance in soil mechanics and

other geophysical applications. We show that the P2�wave does not propagate in

the case of impact excitations. This means that some surface modes of propagation1

cannot appear in the range of low frequencies as well.

2 Field equations for poroelastic media

We consider a two�component poroelastic medium described by the following �elds

partial mass density of the �uid �
F (x;t),

velocity of the �uid vF (x;t),

velocity of the skeleton vS (x;t),

symmetric tensor of small deformations of the skeleton eS (x;t),

porosity n.

For these �elds the following �eld equations hold in the linear model of poroelastic

materials
@�

F

@t
+ �

F
0 div v

F = 0; (1)

�
F
0

@vF

@t
+ �grad �F + �grad (n� n0) + p̂ = 0; p̂ :=�

�
vF � vS

�
; (2)

�
S
0

@vS

@t
� div

�
�
S
�
treS

�
1 + 2�eS + � (n� n0)1

�
� p̂ = 0; (3)

@eS

@t
= symgradvS; (4)

@n

@t
+ n0div

�
vF � vS

�
+

n� n0

�
= 0: (5)

In these equations �F0 ; �
S
0 ; n0 denote constant reference values of partial mass densi-

ties, and porosity, respectively, and �; �
S
; �

S
; �; �; � are constant material parame-

ters. The �rst one describes the macroscopic compressibility of the �uid component,

the next two are macroscopic elastic constants of the skeleton, � is the coupling

constant, � is the coe�cient of bulk permeability, and � is the relaxation time. For

the purpose of this work we assume � = 0. Then the problem of evolution of poros-

ity described by equation (5) can be solved separately from the rest of the problem

and does not in�uence the acoustic waves in the medium. Let us mention that the

general case has been considered in earlier papers on the subject (e.g. [3],[4]) and it

has been shown that coupling e�ects through � can be neglected in linear models.

1see [11] for the high frequency asymptotics
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3 Bulk waves

We investigate the propagation of the front carrying weak discontinuities. It is

assumed that the front �t is given by the relation

f (x; t) = 0; x 2 �t � Bt; t 2 T ; (6)

where the function f is assumed to be at least continuously di�erentiable with

respect to both variables. Bt, T denote the current con�guration of the medium,

and the time interval, respectively. The surface de�ned by (6) moves with the normal

speed c and possesses a unit normal vector n given by the relations

c := �
@f

@t

jgrad f j
; n :=

grad f

jgrad f j
: (7)

Weak discontinuities of �elds introduced in the previous section are de�ned by the

following conditions on the surface �t oriented by the �eld n (x; t) ;x 2 �t; t 2 T ,hh
�
F
ii

= 0;
hh
vF
ii

= 0;
hh
vS
ii

= 0;
hh
eS
ii

= 0; (8)

where

[[: : :]] := �
+
t lim (: : :)� �

�

t lim (: : :) : (9)

Then according to the Hadamard lemma the following kinematic compatibility con-

ditions hold

hh
grad �F

ii
= �

1

c
R
Fn;

hh
grad eS

ii
=

1

2c2

�
AS 
 n + n
AS

�

 n; (10)

hh
gradvF

ii
= �

1

c
AF 
 n;

hh
gradvS

ii
= �

1

c
AS 
 n;

where

R
F :=

""
@�

F

@t

##
; AF :=

""
@vF

@t

##
; AS :=

""
@vS

@t

##
; (11)

are the so�called amplitudes of discontinuity.

Substitution in �eld equations evaluated on both sides of the front �t yields the

conditions

R
F =

�
F
0

c
AF � n; (12)

and  
c
21�

�
S + �

S

�
S
0

n
 n�
�
S

�
S
0

1

!
AS = 0; (13)

�
c
21��n
 n

�
AF = 0:
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Certainly this is the eigenvalue problem which yields three nontrivial solutions:

cP1 : =

s
�S + 2�S

�
S
0

; AS � n 6= 0; AS
?

:= AS �
�
AS � n

�
n = 0; AF = 0;

cP2 : =
p
�; AF � n 6= 0; AS = 0; AF

?

:= AF �
�
AF � n

�
n = 0; (14)

cS : =

s
�S

�
S
0

; AS
?

6= 0; AS � n = 0; AF = 0:

The �rst two solutions describe longitudinal P1�, and P2�modes of propagation

while the third one is the transversal S�mode in the skeleton. There exists no

transversal mode in the �uid: AF
?

� 0.

The P2�mode is often called Biot's wave. Its theoretical existence is quite natural

in the frame of any two�component continuous model even if both components are

�uids (a miscible mixture). However there are problems with practical observations

of its propagation if one of the components is solid. It has been observed for the �rst

time in an arti�cial porous material made of sintered glass beads by T. J. Plona [5],

and in an arti�cial rock of cemented sand grains by T. Klimentos and C. McCann

[6] but in situ measurements are extremally di�cult to be performed. The main

reason for those di�culties is a very strong attenuation of P2�waves. We discuss

this point in some details in this work.

Let us mention in passing that the partial stresses TS
;TF in the skeleton and in

the �uid, respectively which lead to the above used �eld equations are not coupled

if the constant � is equal to zero. Such a coupling is required in the Biot's model

commonly used in the wave analysis for porous saturated materials. In the notation

of this work such a coupling has the form

TS = �
S
�
treS

�
1+ 2�SeS �Q

�
F � �

F
0

�
F
0

1; (15)

TF = �
�
�

�
�
F � �

F
0

�
�QtreS

�
1;

where Q is the Biot's coupling constant. Such a model is thermodynamically ad-

missible solely in the case of an additional contribution of the gradient of porosity

to the momentum balance equations (2), (3)(see: [7])

p̂ = �

�
vF � vS

�
�Qgradn: (16)

In such a case it can be easily shown that the coe�cient Q which would give rise

to the o��diagonal terms in the eigenvalue problem (13) has an order of magnitude

of the pore pressure, i.e. 105 Pa in soils and rocks. This must be compared with

elastic constants �S; �S; ��F0 which are at least of the order 108 Pa. Hence, similarly

to the assumption that � = 0, we can leave out this correction in the wave analysis.

The above results do not reveal the attenuation of waves because the behaviour

of amplitudes cannot be determined from the properties of �eld equations on the

wave front alone. In order to see such e�ects we have to construct solutions of �elds

equations. We proceed to do so for monochromatic waves in in�nite domains.
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4 Monochromatic waves

We seek solutions of the set of equations (1)�(4) in the form of bulk monochromatic

waves de�ned by the following ansatz for harmonic waves

�
F � �

F
0 = R

F ei(kn�x�!t); eS = ESei(kn�x�!t); (17)

vF = VF ei(kn�x�!t); vS = VSei(kn�x�!t);

where R
F
;ES

;VF
;VS are constant, possibly complex, amplitudes of the distur-

bance, n denotes the unit vector in the direction of propagation, k is the wave

number, and ! the frequency of the wave. Both k and ! may be complex.

Straightforward calculations lead to the following compatibility relations with �eld

equations

R
F =

k�
F
0

!
VF � n; ES = �

k

2!

�
VS 
 n+ n
VS

�
; (18)

 
!
21�

�
S + �

S

�
S
0

k
2n
 n�

�
S

�
S
0

k
21+i

�!

�
S
0

1

!
VS � i

�!

�
S
0

VF = 0; (19)

�i
�!

�
F
0

VS +

 
!
21��k2n
 n+i

�!

�
F
0

1

!
VF = 0:

Equations (19) form, of course, the eigenvalue problem with the six�dimensional

eigenvector
�
VS

;VF
�T
, and !

2 � eigenvalues if k is given. We consider further also

a modi�cation of this problem with a given !.

We can easily separate the components in the direction of the vector n, and in the

direction perpendicular to this vector. We consider these problems in the subsequent

two sections.

5 Longitudinal modes of propagation

Scalar multiplication of equations (19) by the vector n yields

 
!
2 � �

S + 2�S�S0 k
2 + i�!�

S
0 �i�!�S0

�i�!�F0 !
2 � �k

2 + i�!�
F
0

! 
VS � n
VF � n

!
= 0: (20)

This two�dimensional eigenvalue problem yields immediately the following disper-

sion relation

�
!
2 � cP1k

2 + i�!�
S
0

� �
!
2 � c

2
P2k

2 + i�!�
F
0

�
+

�
2
!
2

�
S
0 �

F
0

= 0: (21)

We consider two cases.
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1. The frequency ! is real and given. This corresponds to the problem of a

harmonic excitation with a given frequency (�boundary value problem�).

2. The wave number k is real and given. This corresponds to an external impact

(�initial value problem�).

In the �rst case the equation (21) can be easily solved for k and we obtain

k
2 =

1

2

"
1

c
2
P1

 
!
2 + i

�!

�
S
0

!
+

1

c
2
P2

 
!
2 + i

�!

�
F
0

!
�
p
D

#
; (22)

D :=

"
1

c
2
P1

 
!
2 + i

�!

�
S
0

!
�

1

c
2
P2

 
!
2 + i

�!

�
F
0

!#2
�

4

c
2
P1c

2
P2

�
2
!
2

�
S
0 �

F
0

:

In the next two Figures we illustrate this result for the following numerical data

cP1 = 2500
m

s
; cP2 = 1000

m

s
; (23)

�
S
0 = 2500

kg

m3
; �

F
0 = 250

kg

m3
:

In Figure 1 we plot the phase velocity cph = !Rekof both longitudinal modes, and

in the Figure 2 the attenuation 
 = Imk:

Figure 1: Phase speed of P1� (left), and P2�waves (right) as functions of

frequency !.

The curves correspond to the permeability � (from top to bottom):

106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]:
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Inspection of the Figure 1 shows that both modes of propagation exist for any

frequency of the excitation. The phase speed of P1�waves grows a little from its

initial value to the asymptotic speed cP1 for ! !1. On the other hand the phase

speed of P2�waves is equal to zero for ! = 0 and grows asymptotically to the limit

cP2 for ! !1. For both modes the growth becomes slower for larger permeability

coe�cients �.

Figure 2: Attenuation of P1� (left), and P2�waves (right) as functions of

frequency !.

The same values of permeability � as in Fig.1 growing from the bottom to the top.

It is clear from Figure 2 that the attenuation of P2�waves is much stronger than this

of P1�waves. This observation justi�es the remark made in the Introduction that

the strong attenuation of P2�waves causes di�culties in their in situ measurements.

The above described properties of monochromatic waves have been discussed in

details in earlier works on this model of poroelastic materials (e.g. [8], [9], [4], [3],

[10]).

We proceed to present properties of the second case � external impact (initial value

problem). In this case the wave number k is given and real, and the frequency ! is

complex. It follows as the solution of the dispertion relation (21). This solution can-

not be obtained analytically and we present here a few typical numerical examples.

We use the data (23).

In contrast to the above discussed boundary value problem P2�waves may not exist

in the case of the initial value problem. For any chosen real wave number k solutions

of the dispersion relation (21) consists of four complex ! symmetric with respect to

zero. Consequently there are two essential real parts of ! which determine P1�, and

P2�mode. In Figure 3 we show the real part of ! corresponding to the P2�mode for
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di�erent values of the permeability coe�cient �. It is seen that that for su�ciently

low wave numbers k (i.e. long waves) the real part of ! is constant and equal to

zero. Consequently in these ranges the P2�modes contain only damping and they

cannot propagate as waves. The extent of the plateau of the constant real part

of frequency changes approximately in the linear way with � and, for instance, for

� = 109[ kg

m3s
] (the right �gure) it reaches the value k � 2050[ 1

m
], which corresponds

to the wave length 0:05cm. Obviously from the physical point of view P2�wave

does not exist any more because the wave length would have to be smaller than the

characteristic dimension of the microstructure. However the minimum length of the

wave for smaller permeabilities lie in the physically reasonable range. For instance

for � = 107[ kg

m3s
] it is app. 5cm (see the left �gure).

Figure 3: Real part of the frequency as a function of the wave number for

P2�waves.

The left hand side is the magni�cation of the �gure on the right hand side for the

following values of permeability �: 106; 5 � 106;107; 5 � 107;108 [ kg

m3s
] growing from

the left to the right: On the right �gure the curves for � = 5 � 108 and 109 [ kg

m3s
] are

shown in addition.

The problem of existence of propagation does not concern the P1�mode. These

waves behave in a way similar to these of the boundary value problem. In Figure 4

we show their phase speeds for the data (23). The speed grows a little and reaches

the limit value cP1 for k !1.
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Figure 4: Phase velocity of P1�waves for permeability � (from the left to the

right): 106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]

As indicated above the P2�waves do not propagate below a critical value of k which

changes with �. We show this behaviour in Figure 5. In the range of large values of

k the P2�modes propagate and reach the limit value cP2 for k !1.

Figure 5: Phase velocity of P2�waves for permeability � (from the left to the

right): 106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]

Imaginary parts of the frequency ! determine the damping of waves. This attenu-

ation in time behave di�erently from the attenuation in space discussed in the �rst

case. In the case of P1�waves (Figure 6) it grows with the growth of the wave num-

ber k (i.e. with the decay of the wave length). However in the range of long waves

the damping in media with a larger permeability � is smaller than this for media

with a smaller permeability. Most likely it is related to the fact that the energy of
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the wave created by the impact remains longer in the vicinity of the impact if the

value of � is larger which, as seen in Figure 4 yields a lower speed of propagation.

Figure 6: Attenuation of P1�waves for permeability �: 106 (the smallest

attenuation), 5 � 106; 107; 5 � 107; 108 (the largest attenuation) [ kg

m3s
]:

The behaviour of P2�modes is entirely di�erent due to the existence of plateau. The

ranges of these plateaus are visible also in Figure 7 which illustrates the attenuation

of P2�modes. For any value of permeability � the range of small values of k contains

solely the damping � the frequency ! is imaginary. For larger values of k we see the

attenuation of P2�waves. As in the case of the boundary value problem it is much

stronger than in the case of P1�waves.

Figure 7: Attenuation of P2�waves for permeability �: 106 (the smallest

attenuation), 5 � 106; 107; 5 � 107; 108 (the largest attenuation) [ kg

m3s
]

The above described properties of initial value problems have an important in�uence

on the construction of asymptotic solutions in the range of low frequencies. For
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instance, they lead to an entirely di�erent structure of surface waves than this for

high frequencies [11]. We shall discuss this problem in the Part II of this Note.

6 Transversal modes of propagation

Let us introduce the following quantities

VF
?

:= VF �
�
VF � n

�
VF

; VS
?

:= VS �
�
VS � n

�
VS

: (24)

Then from (19) for arbitrary components of the above vectors V F
?

:= VF
?

� t; V S
?

:=
VS
?

� t; with t being any unit vector perpendicular to n we obtain

 
!
2 � �

S
�
S
0 k

2 + i�!�
S
0 �i�!�S0

�i�!�F0 !
2 + i�!�

F
0

! 
V

S
?

V
F
?

!
= 0: (25)

This is again the eigenvalue problem which yields the dispertion relation

!
3 + i�

�
1�S0 + 1�F0

�
!
2 � c

2
Sk

2
! � ic

2
Sk

2
��

F
0 = 0: (26)

We illustrate the solutions of this relation in Figures 8 and 9 for the data

cS = 1500
m

s
; (27)

�
S
0 = 2500

kg

m3
; �

F
0 = 250

kg

m3
:

We obtain for the phase speed the behaviour quite similar to this of P1�waves. After

the initial growth the phase speed goes to the limit value cS for k !1.

Figure 8: Phase speed of S�waves for the permeability � :

106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]:
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The left diagrams correspond to the initial value problem while the right diagrams

to the impact.

The upper curve corresponds to the lowest permeability.

The behaviour of the attenuation is also similar to this of P1�waves. The rate of

attenuation is similar as well as the comparison of the values of Im! for both waves

cleary shows.

Figure 9: Attenuation of S�waves for the permeabilities �:

106; 5 � 106; 107; 5 � 107; 108 [ kg

m3s
]:

The left diagrams correspond to the initial value problem while the right diagrams

to the impact.

The upper curve corresponds to the lowest permeability.

7 Final remarks

Results presented in this work show that the simplest possible model of saturated

poroelastic materials yields qualitatively the same properties of wave motion as

more so�sticated Biot's model. However in contrast to the latter the model used in

this paper does not contradict any principal rules of the modern continuum ther-

modynamics. In addition the notions such as tortuosity, anisotropic permeability,

etc. which may be essential in some practical applications are not needed in the

construction of all important bulk modes of propagation in spite of claims in the

literature on the Biot's model.

As the analysis of monochromatic waves shows the asymptotic behaviour for high

frequencies checks with the expectation following from the analysis of singularities
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of �elds independently of the fact if one controls the propagation by harmonic ex-

citations on the boundary (a given real frequency !) or if one controls an initial

condition in which a wave of a particular length (a given real wave number k) is

excited.

However the situation changes if we consider a low frequency limit. This limit is

smooth independently of the external control for the classical two modes of propaga-

tion � P1�waves and S�waves. Both these waves have �nite phase speeds for ! ! 0
and these are a bit smaller than the speeds of propagation of the corresponding

fronts. This is not the case for the P2-mode. This mode behave like a wave for

harmonic excitations on the boundary. The phase speed of this wave goes to zero

as ! ! 0. In the vicinity of the zero frequency it has approximately a parabolic

character. The behaviour changes entirely in the case of initial conditions. In the

vicinity of the zero point of the wave number k (in�nitely long waves) the P2�mode

has the zero phase velocity and it is solely damped. After a plateau of the zero

velocity whose length depends on the value of the permeability coe�cient � this

mode behaves again as a wave and in the limit of high frequencies (short waves) this

behaviour is the same as this of the P2�waves excited by harmonic vibrations.

Such a behaviour has a very important practical bearing. First of all the lack of

positive results for the P2�waves in in situ measurements may be related not only

to the high attenuation of P2-waves but also to the nonexistence of these waves for

low frequency initial excitations. It is also very important in the analysis of surface

waves in the range of low frequencies commonly used in geophysical applications.

We will return to this question in the Part II of this Note.

Let us mention �nally that the attenuation properties of all modes are caused by

the relative motion of components re�ected by the permeability coe�cient �. As

the examples presented in the paper clearly show these properties check well with

the expectations.
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