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A travelling wave solution 
to the Kolmogorov equation with noise 

Roger Tribe 

November 1993 

Abstract 

We consider the one-dimensional Kolmogorov equation driven by a 
particular space-time white noise term and show that there exist stochastic 
wavelike solutions which travel with a linear limiting speed. 

Keywords: Stochastic PDE, Kolmogorov equation, travelling wave. 

1 Introduction 
We consider the one-dimensional stochastic partial differential equation, 

Ut = U:z::z: +Ou- u2 +1u1 112w. (1) 

Her~ W is a space-time white noise and () ~ 0 is a parameter measuring the 
mass creation rate. Without the white noise term the equation is the well stud-
ied Kolmogorov equation which has a family of non-negative travelling wave 
solutions u(t, :c) = w(:c - At) with speeds A ~ 28112 (see Bramson [2]). The 
form of the noise term in ( 1) arises from particle branching in a particle approx-
imation. The same noise term appears in the stochastic PDE which describes 
the density of one-dimensional super Brownian motion (see Konno and Shiga 
[8]). Perkins [11] has shown that equation (1) arises as the high density limit 
of particle systems which undergo branching random walks and have an extra 
death mechanism due to overcrowding (see also Mueller and Tribe [10]). The 
existence and uniqueness of solutions to (1) for which u(O, :c) is integrable is 
proved in Evans and Perkins [6]. In section 2 we give the proof of existence 
and uniqueness for solutions to (1) with infinite initial mass (satisfying certain 
growth conditions). 

Define 
R0 (u(t)) := sup(:c: u(t, :c) > 0). 
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In contrast to the deterministic equation, if u is a solution to (1) for which 
R0 (u(O)) < oo then Ro(u(t)) < oo for all t ~ 0. Thus R0 (u(t)) is a natural 
marker for the front of a travelling wave. The preservation of this compact 
support property has been studied for stochastic P.D.E's in (9), (12) and will 
follow for our equation from an argument of Iscoe (7). 

We look for solutions u to (1) which have the following properties: 

i. Ro(u(t)) E (-00,00) for all t ~ O, 
ii. u( t, · - Ro( u( t))) is a stationary process in time. 

We call such a solution a travelling wave. 
The behavior of solutions to (1) started from initial conditions with compact 

support is studied in Mueller and Tribe (10). It is shown that there is a critical 
value Oc > 0 below which all solutions die in finite time and above which soluti-
ons have non-zero probability of surviving forever. The main result of this paper 
is in section 3 where we show that for () > Oc there exist travelling wave soluti-
ons to (1). We do not prove the uniqueness of the travelling wave or investigate 
convergence to the travelling wave. Travelling waves have been constructed for 
discrete time interacting particle systems. To construct our solutions we follow 
the proof in Durrett (4] where a travelling wave for ·oriented percolation in one 
dimension is studied. 

In section 4 we show (using the ergodic theorem) that any travelling wave 
solution has an asymptotic wave speed 

Ro(u(t))/t ~·A E [-oo, 28112] as t---+ oo. 

Note that the wave speed is no faster than the slowest corresponding determini-
stic wave speed. If() > ()c then the (possibly random) wavespeed is non-negative. 
By using the coupling of solutions to (1) with an oriented percolation process 
established in (10] we show that, as () ---+ oo, the normalised wavespeed A/8112 

approaches its largest possible value 2. We do not prove that the wavespeed is 
constant or that it is strictly increasing in 8. 

In the remainder of this section we give the notation for the spaces on which 
our solutions will live and state tightness criteria. 

Notation. Let <f»,(x) = exp(-..\lxl). For continuous functions f: R---+ R let 
llfll>. = sup(lf(x)¢>>.(x)I: x ER). Let ct=(!~ 0: IJ(x)¢>>.(x)I ---+ 0 as x---+ 
±oo). c~m = n).>0 ct is the space of continuous functions with slower than 
exponential growth. C>. has the topology given by the norm II· II>. and C~m 
that given by the family (II· II>.,..\> 0). 

Let <} = (! : llfll>. < oo for some ..\ < 0) be the space of functions with 
exponential decay. We write (!, g) for the integral J f ( x )g( x )dx whenever this 
is defined (i.e. when f E C~m' g E <}). Let (C([O, oo), C~m),U,Ut, U(t)) be 
continuous path space, the canonical right continuous filtration and the coordi-
nate variables. Finally C': is the space of infinitely differentiable functions on 
R with compact support. 
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We state the Arzela Ascoli theorem and Kolmogorov tightness criterion for 
the spaces ct, C£"em· K ~ct is relatively compact if and only if 

i. (!: f EK) are equicontinuous on compacts. 

ii. limR-+ex> sup/EK supl:i:l?:R lf(z)¢>.(z)I = 0. 

K ~ C£"em is (relatively) compact if and only if it is (relatively) compact in ct 
for all .A> 0. For C < oo, "'(, 6 > O, µ, < .A define 

K(C, 6,"'(, µ,) = (!: lf(z)- f(z')I ~ Clz - z'l7 eµl:i:I for all Ix - z'I ~ 6). 

Then using the above conditions one can show that 

K(C, 6,"'f, µ,) n (!: (!, ¢1 ) ~a) is compact in Cf_ 

If Xn(·) are ct valued processes, with (Xn,¢1) tight and with Co< oo,p > 
O, 'Y > 1, µ,<A such that for all n ~ 1 

E(IXn(x)- Xn(x')IP) ~Golz- z'l7 el"Pl:i:I for all Ix - YI~ 1 (2) 

then (Xn) are tight. Indeed if (2) holds and '1 < ('Y - 1)/p, µ, < p. < .A then 
there exist deterministic C = C ( ;y, p.) < oo, p = p( 'Y, ;y, p) > 0 and random 6 ( w) 
such that 

Xn(w) E K(C,6,-y,p.) and E(6-P) ~ Constant(C0 ,µ,,p.,-y,;y,p) < oo. 

Similarly if Xn(·, ·)are C([O, T], ct) valued, (Xn(O), ¢ 1) are tight and there are 
Co < oo, p > O, 'Y > 2, µ, < A such that for all n ~ 1 

E(IXn(x, t) - Xn(z', t')IP) ~ Co(lz - z'l7 +It - t'17 )eµpl:i:I (3) 
for all lz - YI ~ 1, It - t'I ~ 1, t, t' E [O, T] 

then (Xn) are tight. C£"em (respectively C([O, oo), C£"em) valued processes (Xn) 
are tight if and only if they are tight as ct (respectively C([O, oo), ct)) pro-
cesses for each .A > 0. 

2 Existence and uniqueness of solutions 
To prove existence and uniqueness for ( 1) we consider a more general equation. 
Choose a,(3,"'( E C([O, oo),C£"em)· In the following equation we may interpret 
a as the immigration rate, (} - (3 as the mass creation-annihilation rate and 'Y 
as the overcrowding rate. 

(4) 
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A solution to ( 4) consists of a filtered probability space (n, :F, :Ft, P), an adapted 
white noise W and an adapted continuous e{em valued process u(t) such that 
for all </> E er: 

(u(t),</>) (u(O), t/>) + l (u(s), tf>,. + (8 - P(s) - 'Y(s)u(s))tf>)ds (5) 

+ l (a(s), t/>)ds + l j lu(s, z)l1
/

2t/>(z)dW.,.. 

If in addition P(u(O, z) = f(z)) = 1 then we say the solution u starts at f. Let 
u be any solution to ( 4) started at f. Approximating</>;.. with functions in er: 
and taking expectations carefully in (5) we may derive the bound 

E(sup(u(t), </>;..)P) < oo for all T,p, .:X > O, f E etem· (6) 
t~T 

Using this bound we may extend (5) to test functions 'lfJ(t, z) so that if 'ljJ has 
one continuous derivative in t and two continuous derivatives in z and 

sup l'l/J(t, ·)I/\ l'l/Jt(t, ·)I/\ l'l/J:i::i:(t, ·)IE cf? (7) 
tE[O,T] 

then for t E [O, T] 

(u(t), 'l/J(t)) 

(!, ,P(O)) + l (u(s), .Pt+ ,P • .(s) + (8 -P(•) - 'Y(•)u(s)),P(s))ds 

+ l (a(s), ,P(s))ds + l j lu(s, z)l 112,P(s, z)dW,,.. (8) 

Let Pt(z) = (4?rt)- 112 exp(-z2/4t) and pf(z) = e9tpt(z). Write Pt,P/ for the 
semigroups generated by convolution with these functions. Applying (8) with 
'l/J(s, z) = PLa+6(z) for s ~ t and then letting fJ-+ O+ we obtain the Green's 
function representation 

u(t, z) = (!,pf (z - ·)) - l (u(s), pf_,(z - ·)(P(•) + 'Y(•)u(s)))ds 

+ l (a(s), pf_,(z - ·))ds + l j lu(s, y)l'/'pf_,(z - y)dWy,•· 

The following lemma estimates how fast the support of solutions to ( 4) can 
spread. It is a similar estimate to Dawson, Iscoe and Perkins [3] theorem 3.3. 
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Lemma 2.1 Let u be a solution to (4) started at f. Suppose for some R > 0 
that f and (a(s, ·): s ~ t) are supported outside (-R-2, R+2). Then fort~ 1 

P(1tf_R u(s,z)dzds>O) 
O -R 

:5 48(1+8)e" j exp(-( lo: I - (R + 1))2 /4t)(f(o:) + l a(s, o:)ds)do:. 

If f and (a(s, ·): s ~ t) are supported outside (R- 2, oo) then the same bound 
holds for P(J~ J;' u(s, z)dzds > 0). 

Proof. We indicate the changes necessary in the proof of [3] theorem 3.3 to 
prove the first part of our lemma. The second part is proved in the same way. 
Let 0 ~ r/>o E G'g° satisfy (z: ¢0 (z) > 0) = (-R, R). For,\~ 0 let e(.\, t, z) be 
the unique non-negative solution to 

et= e:z::z: +Be - (1/2)e2 + .\¢0,. e(o, z) = 0. 

Then e satisfies (7). Apply (8) with ,,P(s, z) = e(t - s, z) for s E (0, t]. Using 
Ito's formula to expand 

Ca := exp(-(u(s), e(.\, t - s)) - .\la (u(r), 4>o)dr +la (a(r), e(.\, t- r))dr) 

we obtain for s E [O, t] that Ca equals 

(o + [ j (,e()., t-r, o:)lu(r, o:)l''2dW.,.+ [ (,(fl(r) +1(r)u(r),e(>., t-r))dr 

so that 

E(exp(-A fo'cu( s), </>o)ds) ?_exp(-(!, e(>., t)) - l (a(s), e(>., t - s))ds). (9) 

We now claim that 

e(.\, t, z) ~ h(z) := 28 + 12 (lzl - R)- 2 for all lzl > R, ,\ ~ 0. (10) 

We argue as in a proof of a maximum principle. Suppose, to the contrary, 
that e(.\,t,z) > h(z) for some (t,z) E [O,T] x (R,oo). Note that e(t,z) ~ 
f~ P:r/>o(z)ds-+ 0 as z-+ oo. Since e(.\,O,z) ~ h(z) for z E (R,oo) and 

lim e(.\, s, z) - h(z) = -28, lim e(.\, s, z) - h(z) = -00 :z:-+oo :z:-+R+ 

then there exists (to, zo) E (0, T] x (R, oo) at which e(.\, ·, ·)- h(·) achieves its 
maximum in (0, T] x [R, oo). Then 

et(A, to, zo) ~ 0, (e:z::z: - h:z::z:)(to, zo) ~ O 
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and e(.A, t0 , :c0 ) > h(:co) > 28. his chosen so that h:z::z: + Bh - (1/2)h2 ::; O on 
(R, oo ). Then at (to, :co) 

0 ~ et eu +Be - (1/2)e2 
~ (e:z::z: - h:z::z:) +(Be - (1/2)e2) - (Bh - (1/2)h2

) 

~ (Be - (1/2)e2) - (Bh - (1/2)h2
) < 0 

since f(z) = Bz - (1/2)z2 is strictly decreasing when z > B. This contradiction 
proves the claim ( 10). 

The arguments in [3] lemma 3.5 and theorem 2.3 now improve (10) to the 
bound 

e(.~, t, :z:) ::; 48(1 + 8)e8t exp(-(l:z:I - (R + 1))2 /4t) for l:z:l 2:: R + 2, t 2:: 1, .A 2:: O. 

Then substituting this bound into (9) and letting A~ oo proves the lemma. • 

Theorem 2.2 a) For all /E ctem there is a ;;;;lution to (4) started at f. 

b} All solutions to (4) started at f have the same law which we denote 
Qf,a.,(3,-,. The map(!, a, {3, 1') ~ Qf,a.,(3,-, is continuous. The laws Qf,a.,(3,-, 
for f E ctem form a strong Markov family. 

c) For R, T > 0 let UR,T = a(U(t, :c) : t ~ T, lzl ~ R). Then the two laws 
Qf ,a.,(3,-,, Qf ,a.,o,o are mutually absolutely continuous on UR,T. 

As indicated in the proof, the only new result in this theorem is uniqueness in 
the presence of overcrowding when the initial condition f is not integrable. 

Proof: Existence can be proved using the techniques of Shiga (12]. We 
sketch the steps. Set Fn(u) = lul 112 /\ nlul, Gn(u) = u2 /\ n, an= a/\ n,f3n = 
{3 /\ n, "Yn = 1' /\ n. Then there exists a pathwise unique solution Un ( t) in ctem 
solving 

uf = u~:z: +an+ Bun -f3nun - ")'Gn(un) + Fn(un)W. 
This is proved in Shiga [12] theorems 2.1, 2.2. Adapting the proof of Shiga [12] 
theorem 2.5, we may check the Kolmogorov tightness criterion (3) to show that 
(un: n 2:: 1) are tight and that any limit point is a solution to (4). 

For uniqueness we consider first the case {3 = 1' = 0. We sketch the standard 
argument (see [1] for this case when f is integrable). Fixing 0 ~ <P E <l>, let 
vt</J(:c) be the unique non-negative bounded solution to 

Vt= V:z::z: +Bv -(1/2)v2
, v(O,:z:) = </J(:c). 

Fix T > 0 and let 1/J(r, :z:) = "Vt-r<P(z) for r E [O, t]. Then .,P satisfies (7). Let u 
be any solution to (4) with f3 = 1' = O, u(O, :z:) = f. Apply (8) with this choice 
of 1/J. Ito's formula shows that 

exp(-(u(t), </!) - l (a(r), V.-r</i)dr) 
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is a martingale. Taking conditional expectations we obtain 

E(exp(-(u(t), ¢))IF,) = exp(-(u(s), v,_,¢) - J.' (a(r), v,_,¢)dr). (11) 

Induction using (11) shows that E(exp(-(u(t1), ¢1)- .. . -(u(tn), <Pn)) and hence 
also the law of u are determined. 

We now consider the case when the functions ({3(t, ·),'Y(t, ·) : t ~ 0) have 
compact support. This case is handled by change of measure techniques (see 
Evans and Perkins [6] for our equation when f is integrable). We sketch the 
argument. Let u be a solution to (4) with u(O,z) = f(z) and ({3(t, ·),'Y(t, ·): 
t ~ 0) supported in [-K, K]. Then 

L' j (f3(s, :n) + -r(s, :n)u(s, :n))2 u(s, :n)d:n ds < oo, Vt?:. O, P - a.s. 

So the stochastic integral 

l (/3(s, :n) + -y(s, :n)u(s, :n))lu(s, :n)l112dW,,, 

is well defined. Let Rt be the exponential martingale derived from this stochastic 
integral. The arguments of (6] theorem 3.10 show that Rt is a true martingale 
and that defining a new measure by (dQ/dP)IFt = Rt then under Q, u solves 
the equation 

Ut = U:z::z: +a+ fJu + lul 1f 2W 
for some new adapted white noise W. Thus under Q, u has law Qf,a,o,o. Appro-
ximating ({3( s, z )-'Y( s, z )u( s, z)) by a sequence of simple predictable integrands 
shows that Rt is adapted to u( u 6 : s ~ t). Hence if A E Ut 

P(u EA)= Q(I(u E A)Rt" 1) 

which is determined thus proving uniqueness. 
Suppose that (f3n(t, ·),'Yn(t, ·): n ~ 1, t ~ 0) are all supported in [-K, K]. 

Suppose also that (fn,an,f3ni'Yn)--+ (f,a,{3,'Y)· If un solve (4) and have law 
Qf.,.,a.,.,fJ.,.,7.,. then it may be chacked that the Kolmogorov tightness criterion 
holds and any limit point u has law Qf,a,{3,7. This proves that Qf.,.,a.,.,fJ.,.,7.,. --+ 

Qf,a,{3,7. The same argument will also prove continuity in the general case once 
uniqueness is established. 

We now prove uniqueness in the general case. Let u be a solution to ( 4) 
started at f and defined on (0, :F, :Ft, P).We shall couple u with a solution to 

Wt = W:z::z: +a+ fJw - f3KW - 'YK_W2 + lwl 1
/

2W 
where f3K = {3Ix, 'YK = 'YlK and 

{ 

1 if lzl ~ K 
Ix ( z) = . 

0
K + 1 - lz I if K ~ I z I ~ K + 1 

if lzl~K+l. 
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To do this we use the coupling technique of Barlow, Evans and Perkins (1] 
theorem 5.1. Define random ctem valued processes AK, BK by 

Define 

AK(w)(t, :c) (u(t, x){3(t, :c) + u2(t, x)T(t, x))(l - h(x)) 
BK(w)(t, x) = f3K(t, x) + 2u(t, x)Tx(t, :c). 

n' = n x C((O, oo), C{em), :F' = :F x U, :F: =:Ft x Ut 

u'(w, f) = u(w), v(w, f) = U(f), w(w, f) = u'(w, f) + v(w, f). 
There is a unique probability Pk on (n', :F') such that for F E :F, G EU 

Pk(F X G) = L I(w E F)QO,AK(w),BK(w),7K (G) P(dw). (13) 

The integrand on the right hand side of (13) is measurable by the continuity of 
the map (f,a,{3,'Y) ~ Qf,a,{3,7 whenf3,'Y are supported in (-K-1,K +1]. The 
techniques of [1] then show that w solves (12) (on a possibly enlarged probability 

. space). The idea is that the process v has immigration which exactly. matches 
the mass lost from u due to annihilation and overcrowding outside [-K, K]. The 
process v itself has annihilation and overcrowds itself inside (-K, K]. The extra 
annihilation term 2u(t, :c)TK(t, x) has the same effect as overcrowding between 
the u and v processes inside (-K, K]. 

Fix R, T ~ 1 and A E UR,T· The next step is to show that for large K the 
processes u' and w agree on [O, T] x [-R, R] with large probability. If K ~ R+2, 
using lemma 2.1, , 

IP(u EA)_ Qf,a,f3K17K (A)I 
IPk(u' EA) - Pk(w E A)I 

< Pk(3 (t, :c) E (0, T] x [-R, R] such that u(t, x) f- w(t, x)) 

Pk( fTf_R v(s,x)dxds > 0). lo -R 

{ Qo,AK(w),BK(w),7K ( {T J_R U
6
(:c)dx ds > O)P(dw) lo lo -R 

< 48(1+ 9)e9T E(1T J_: exp(-(1,,1- (R + 1))2 /4T) 

(u(s, x){3(s, :c) + u2(s, :c)T(s, x))(l - h(:c))dxds) 
~ O as K ~ oo. (14) 

· Hence P( u E A) is determined to arbitrary precision proving uniqueness. The 
strong Markov property follows from uniqueness by the standard argument. 

To prove part c) we rewrite (14) as 

IQf,a,f3,7(A) - Qf,a,f3K1'YK(A)I ~ 0 as K ~ oo. 
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Using the mutual absolute continuity of Qf,a,o,o and Qf,a,/3,7 when /3, 'Y are 
compactly supported 

Qf,a,o,o(A) = 0 => Qf,a,/3Ki'YK (A) = 0 for all K 
=> Qf,a,/3,7(A) = o (15) 

proving Qf,a,{3,7 «: Qf,a,o,o on UR,T· For continuity in the opposite direction 
we reverse the above arguments. Letting f3K = /3(1-IK ), 'YK = "f(l -IK) check 
that Qf ,a,/3,7 and Qf ,a,f3K ,7x are mutually absolutely continuous on U. Check 
also that for A E UR,T 

IQf,a,o,o(A) - Qf,a,13K,7K (A)I __. oo ask__. oo. 

Now the argument in (15) may be reversed to finish the proof. • 

3 Construction of the travelling wave 
We now write Qf for the law of the unique solution to (1) such that u(O) = f. 
If v is a probability on ctem we define 

Qv(A) = { Qi (A)v(df). Jc+ tern 

We consider as markers of the wavefront R>. : C{em--. [-oo, oo] for ..\ ~ 0 
defined as follows: 

Ro(!) = sup(z: f(z) > 0) 
R>.(f) = r 1 ln((e>., /)) where e>.(z) = exp(..\z). 

Then for ..\ ~ 0 we have R>.(f(· - c)) = R>.(f) + c (with obvious conventions 
involving ±oo ). We adopt the convention that U(t, +oo) = 1, U(t, -oo) = 0. 
Define on C([O, oo ), C{em) 

R>.(t) 
V>.(t) 

R>.(U(t)), 
U(t, · + R>.(t)) 

so that V>.(t) is the wave U shifted so that its wavefront lies at the origin. Note 
that whenever Ro(!) < oo, then the compact support property in lemma 2.1 
implies that R>.(U(t)) < oo, Vt~ 0, Qf-a.s. 

We now summarise the method for constructing a travelling wave. Take an 
initial condition /o(z) = 1/\(-zV0). Define 

VT to be the law of T-1 foT Vi ( s )ds under Qf'. 
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We shall show (lemma 3.7) that the sequence VT, T = 1, 2 ... is tight. We shall 
also show and that any limit point is nontrivial (which seems easier using the 
wavefront marker Ri rather than R0 ). We then check that for any limit point 
11, Qv is the law of a travelling wave. The two ingredients that go into the proof 
of tightness are the Kolmogorov tightness criterion for the unshifted waves (see 
lemma 3.4) and control on the movement of the wavefront to ensure the shifting 
doesn't destroy the tightness (see lemma 3.6). 

The following coupling lemma may be proved by the method used in [10] 
lemmas 2.1.3 and 2.1.4. Note that the process v defined below in (16) is the 
density of a one-dimensional super Brownian motion with mass creation rate fJ. 

Lemma 3.1 a) There is a coupling of u a solution to {1} started at f E ctem 
with v a solution to 

1/2 . 
Vt = v~~ + 8v + lvl W, v(O) = f (16) 

so that u ~ v. 

b} Fiz f, f E ctem with f ~ f Then we may construct coupled solutions u, 'ii 
to ( 1) with initial conditions u( 0) = f, ii.( 0) = f and satisfying u( t, z) ~ 
u(t,z) for allt ~ O,z ER. 

Lemma 3.2 For (J ~ O, n E N, T > 0 there ezists C(fJ, n, T) such that for all 
t ~ T, f E Cfem, z E R 

Proof. By lemma 3.1 a) it is enough to prove the bound for a solution v to (16). 
Moments for the superprocess density v are studied in Konno and Shiga [8] where 
a slightly smaller class of initial conditions is considered but the arguments are 
valid for C{em· Setting Xf(z) = (U(t),p~(z - ·))for h E (0, 1) we have from 
[8] lemmas 2.2, 2.1 

where vCi)(t) = v<il(t, ·, h) E 4? satisfy v<1)(t) = Pf+h(z - ·)and for n ~ 2 

v(n)(t) = E ( n ~ 1 ) 1t pt_
5
(11(1c)(s)11(n-lc)(s))ds. (18) 

lc=l 0 

From (18) we have P:v(n)(t) ~ v<n)(t + s) so that 

v<nl(t) ~ ~ ( n ~ 1 ) 1' llv(n-lo)(•)lloods v<•>(t). (19) 
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By induction from (19) there exists C(n, T, 9) such that for all t::; T, n ~ 1 

lv(n)(t, z, h)I ::; C(n, T, 9)r1/ 2 

(!, v(n)(t, ·, h)) ::; C(n, T, 9)(/,Pt+h(z - ·)). 

Using this bound in (17), letting h--. 0 and using induction on n then proves 
the lemma.• 

Lemma 3.3 Suppose </> > 0 has two continuous derivatives with </>, </>z-z; E cf? 
and that a:= sup(</>-z;-z;(y)f</>(y) : y E R) < oo. Set {3 = sup(<f>(y) : y E R),-y = 
f </>(z)dz. Then for all p ~ 2, t > o, IE ctem 

Qi ((U(t), </>)P)::; (2-y)PCP V 1V(2-y(a+9 + pf3))P. 

Note that the bound is independent of the initial condition/. Such a bound is 
possible since the overcrowding term -u2 will drag down arbitrarily large initial 
conditions in a finite time. 

Proof. Let u be a solution to (1) started at f. From (8) and Ito's formula 
we have 

d(u(t), <f>)P 
p(u(t), <f>)P- 1(u(t), </>-z;z + 9</> - u(t)<f>)dt (20) 

+(p/2)(p- l)(u(t), <f>)P- 2(u(t), </>2)dt + p(u(t), <f>)P- 1 lu(t, :v)l 112¢(:v)dW-z;,t· 

From (6) the stochastic integral in (20) is a true martingale. Set g(t) = 
E((u(t), <f>)P) which is continuous in t from (6). Note that (u(t), </>u(t)) > 
(lh)(u(t), ¢) 2 • So we may bound 

Qi (( u(t), <f>)P- 1 ( u(t), <Pu)) < ag(t) 
Qi((u(t),</>)Pc..2(u(t),</>2)) < f3g(t)l-(l/p) 

Qi ((u(t), <f>)P- 1(u(t), u(t)</> )) > (lf'Y)g(t)l+(l/p). 

Taking expectations in (20) shows that g(t) is continuously differentiable and 
that 

g'(t) ::; (1/2)p(p- l)f3g(t) 1-<1IP) + p(a + 9)g(t) - (pf'Y)g(t)l+(l/p). 

Setting T(n) = inf(t ~ 0: g(t) ::; n) we have fort::; T(l) 

g'(t) ::; -(pf'Y)g(t)1+(l/p) + p(a + 9 + pf3)g(t). 

Fort::; T(l V (2-y(a + 9 + p{3))) we have g'(t) ::; -(p/2-y)g(t)l+(l/~). A compa-
rison with h(t) = (2-y)PrP (which solves h'(t) = -(p/2-y)h(t)l+(l/p) on (0, oo)) 
finishes the proof.• 
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Lemma 3.4 For f) ;::: O, p ;::: 2, t > 0 there ezists C(O, p, t) such that for all 
I z - z' I ~ 1, I E ct.m 

Q1(1U(t, z) - U(t, z')jP) ~ C(O,p, t)lz - z'j(Pl2>- 1 • 

Proof. Take a solution u to (1) started at /. From the Green's function repre-
sentation for u(t, z) we have for z' > z, lz - zl ~ 1 

E(lu(s, z) - (s, z')IP) 
< 3P- 1 IP:(f)(z) - P: f(z')IP 

+3"-1 E(ll j (p:_,(,, - y) - p:_,(,,1 
- y))u2(r, y)dydrlP) 

+3"-1 E(I[ j (p:_,(,, - y) - p:_,(,,' - y))[u(r, y)[ 1i 2dWy,{) 

= l+II+Ill. 

We shall use the bounds, for lz - z'I ~ 1 

f j (p:_, (" - Y) - p:_, ( "1 
- y))2dy dr :::; . C(O, s) [" - ,,1

[ 

l J fp:_,(,, - y) - p:_,(,,1 - y)[dy dr '.5 C(O, s)/" - ,,1,1/2, 

Then using Burkholder's inequality we bound the term III by 

C(p)E(lf j (p:_.<z- y) - p:_,(,,1 
- y))2u(r, y)dy drlp/

2

) 

< C(p) (l j (p:_,(,, - y) - p:_,(,,1 - y))2 dydr) (p/
2
)-l 

15 j (p:_r(z - Y) - p:_r(z' - y))2 E(uPl 2_(r, y))dydr 

~ C(O,p, s)lz - z'j(P/2)-l 

[ j (p:_,(,, - y) - p:_,(,,' - y))2 E(u?i2(r, y))dydr. 

Similarly we can bound term II by 

C(O, p, s)/" - " 1/(p-l)/2 fo' j /p:_,(,, - y) - p:_,(,,1 
- y)/E(u2•(r, y))dydr. 

Finally term I equals 
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:r:' 
< C(B,p, s)(f J. s- 1! 2e-(y-z)'l/3a f(y)dz dy)P 

< C(B, s,p)lz - :z:'IP f s-1!2e-(y-:r:)'l/3 a JP(y)dy. 

Fix t, (}, p, µ,as in the lemma and set s = t/3. Applying the Markov property at 
time 2s and the above estimates gives 

E(lu(t, :z:) - u(t, z')IP) 

< C(8,p, t)l:o - :o'i(•/2l-1 '(/ .-112.-<•-•)'/3• E(u'(2s, y))dy 

+ J.: j lp:_,(:o - y) - p:_,(:o' - y)IE{u2•(r, y))dydr 

+ !.'. f (pL,(:o - Y) - PLh' - Y) )2 E( u•I• { r, y ))dy dr) • {21) 

From lemma 3.2 we have thatfor r E [O, s], l EN 

Qi (Ul(2s + r, :z:)) ~ C(B, l, s)(l +Qi ((U(s),p2 ,(z - ·))l)). (22) 

Apply lemma 3.3 with <f>(y) = exp(-(1 + (y - :z: )2 ) 112) for which a ~ 3, {3 = 
1, 'Y ~ 2. Note that P2a(z - y) ~ C(s)</>(y). This shows that the right hand side 
of (22) is bounded by C(B, l, s). Substituting this bound into (21) finishes the 
proof. • 

The following two lemmas give some weak control on the movement of the 
wavefronts. 

Lemma 3.5 Suppose () > Be. Recall that f 0 (z) = 1 /\ (-:z: V 0). Then there 
ezists C(O) < oo such that 

Qi0 (R1(t)) 2:: -C(O)(l + t). 
Proof. Let 'I/Jo: R-+ [O, 1] be symmetric and satisfy (:z:: 'l/Jo(z) > 0) = (-1, 1). 
Let 'l/Jr(z) = 'l/Jo(z + r). For r 2:: 2 let fr = 2:~1 'l/J;r· Then fo 2:: fr and lemma 
3.1 shows that Qi0 (R1(t)) 2:: Qi"(R1(t)). 

Consider the equation 

uCi>(o, :z:) 
u<n(t, :z:) 

u~} + Bu<n - (u<n) 2 + luCi>1 1l 2w 
on [O, oo) x (-(2j + l)r/2, -(2j- l)r/2) 

'l/J;r(z) 
0 fort;::: 0, :z: (j. (-(2i + l)r/2, -(2j - l)r/2). 

Define for f E C([O, oo ), C{em) 

(23) 

T;(f) = inf(t;::: 0: f(t, :z:) > 0 for some :z: (j. (-(2j + l)r/2+ 1, -(2j- l)r/2-1). 
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Let u(j) solve (23). Then u(j) solves (1) "upto time T;" and uniqueness implies 
that for A E Ut 

P(u<n EA, T;(u(j)) ~ t) = Q"'''"(U EA, T;(U) ~ t). (24) 

We may couple a solution u to (1) started at Jo with a sequence of independent 
processes u(j) solving (23) so that u ~ 2:}:1 u<n. See [10) lemma 2.1.5 for this 
argument. Fix t and set r = ct. We claim that for suitable choice of c = c( B) 
there exists a(B) < oo, 6(8) > 0 so that 

P(R1(u(j)(t)) ~-a - cjt) ~ 6 for j = 1, 2 ... (25) 

Assuming this claim then 

Qf0 (R1(t) ~-a - cmt) ~ P(R1(u(j)(t)) ~-a - cjt for j = 1, ... , m) 
< (1- 6)m 

which implies the lower bound in the lemma. 
It remains to prove the claim (25). Let v be a solution to (16) with initial 

condition f satisfying (!, 1) < oo. The total mass process vt = ( v( t), 1) satisfies 
the S.D.E. dvt = Bvtdt + lvtl112dBt. From this one may show that 

P((v(t), 1) = 0) = exp(-8(1- e- 9t)- 1(!, 1)). (26) 

For (} > Be there exists 6(9) > 0 so that 

Q"'0 ((U(t), 1) ~ 6) ~ 6 for all t ~ 0. 

To see this suppose the contrary: that for each 6 > 0 there exists t( 6) with 
Q1/J 0 ((U(t), 1) ~ 6) ~ 6. Then using lemma 3.1 

Q"' 0 (U dies in finite time) 
> Q"' 0 ((U(t(6) + 1), 1) = O) 
> Q"' 0 (QU(t(6))((U(l), 1) = O)I((U(t(6)), 1) ~ 6)) 
> (1 - 6) exp(-8(1 - e-9)- 16) 
~ las6~o 

which contradicts the definition of Be. 
By symmetry Q"'0 ((U(t), I(O, oo)) ~ 6/2) ~ 6/2. By lemma 2.1 for r ~ 4 

Q"' 0 (To(U) ~ t) < 96(1 + B)e9t f exp(-((r/2) - 1 - z)2 /4t)1fao(z)dz 

< 192(1 + B) exp(Bt - (r - 4)2 /16t). 
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· So we may choose r = c(B)t so that Q""0 (T0 (U) ~ t) ~ 8/4. Then choosing 
a= - ln(6/2) 

P(R1(uU>(t)) ~ -a - cjt) 
> P(R1(uU>(t)) ~ -a - cjt, T;(uU>) ~ t) 

P(Ri(u<0>(t)) ~ ln(8/2), T0 (u<0 >) ~ t) 
> P((u<0>(t), I(O, oo) ~ 6/2, T0 (u<0 >) ~ t) 

Q1'i 0 ((U(t), I(O, oo) ~ 8/2, T0(U) ~ t) by (24) 
> 8/4 

proving the claim. • 

Lemma 3.6 For all t ~ O, (}>Be there ezists C(B, t) < oo such that 

Q11
T (IR1(s)I ~a) ~ C(B, t)/a for all a~ O, s ~ t, T ~ 1. 

Proof. Let v be a solution to (16) started at f. Then using the coupling from 
lemma 3.1 a) 

Qi (exp(R1(s)) Qi ((U(s), ei)) 
< E((v(s),e1)) 

(!, P: ei) 
= e(1+8)a (/, ei). 

Jensen's inequality then gives that Qi (R1(s)) ~ (1 + fJ)s + R1(/). Since 
(Vi(t), ei) = 1 under Qi0 we have for s ~ t 

Q"T(R1(s) ~a) T-1 1T Qf0 (QV,(•l(R1(s) ~ a))dr 

< r' 1T e-•Qf0 (Qv,(.)(exp(R1(s))))dr 

T 
< T-1 1 e-a.+(1+e)a dr ~ e-a.+(l+B)t. 

This proves half of the lemma. 

r 1Qf•(LT+• R1(r)dr - l R1(r)dr) 

T-1Qf•(1T R1(r + s) - R1(r)dr) 

< T-1 1T l" Qf•(R1(s + r)- R1(r) ~ y)dydr 
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-aT-' 1T Qf0 (R1(s + r)- R1(r):::; -a)dr 

= 100 

Q"T(R1(s) ~ y)dy - aQ"T(R1(s) ~-a). 

Rearranging and using lemma 3.5 gives 

Q"T(R1(s) ~-a) 

< a- 1 L" Q"T(R1(s) 2': y)dy+ (aTt' l Qfo(R(r))dr 

rT+ts 
-( aT)-1 }T Qf0 (R(r-))dr 

< a-1100 

.-Y+(i+•)•dy+ (aT)- 1 1' R1(fo) + (1 + O)rdr 

rT+ts 
+(aT)-1 }T C(B)(l + s)ds 

< C(O, t)/a.• 

Lemma 3. 7 If()> Oc the sequence (vT : T = 1, 2 ... ) is tight. 

Proof. Recall the set K( C, 6, 1, µ) and the tightness condition (2) in the intro-
duction. 

VT(K(C, 6, 1 1 µ)) 

T-' 1T Qf'(U(t, · - Ri(t)) E K(C,6oy,µ))dt 

> r' f,T QI' (U(t,. - R,(t - 1)) E K(ce-µ•' 6,'y, µ), 

IR1(t) - Rl(t - 1)1 ~a) dt 

> r' f,T Qf'(QV,(~-ll(U(l) E K(ce-µ•, 6, -y, µ)))dt 
T , 

-T- 1 !. Qf0 (IR1(t) - Rl(t - 1)1 ~ a)dt 

.- I-II. 

Term II is bounded by Q11T(IR1(t)I ~a)~ C(O, t)/a by lemma 3.6. Lemma 3.4 
and the tightness criterion (2) show that given a,µ> 0 we can choose C, 1, 6 to 
make term I as close to (T- 1)/T as desired. Recall that </>1(z) = exp(-lxl) ~ 
el(x) so that 

VT(!:(!, </>1) ~ (!,el) = 1) = 1. 

So givenµ> 0 we can choose C,6,1 so that VT(K(C,61 1,µ)n(f: (f,1/;1) ~ 1)) 
is as close to one as desired for large T finishing the proof. • 
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Theorem 3.8 For (J > (Jc there is a travelling wave solution to {1). 

Proof. By lemma 3.7 we may take a subsequence VT(n) converging to v. We 
shall show that Q 11 is the law of a travelling wave solution. We first show four 
facts: 

lim lim VT(!:(!, I(a, oo) = 0) = 1 
a-+oo T-+oo 

v(f: (f,e1) = 1) = 1 
v(f: -oo <Ro(!)< oo) = 1 
U(t) '# O, Q11 a.s. Vt;?: 0. 

(27) 

(28) 
(29) 
(30) 

Suppose (g, el)= 1. Choose gi, g2 E C{em with g = gl + g2, (gi, I(a/3, oo )) = 0 
and (g2 , I(-oo, 2a/3) = 0). Take v(1), v( 2) independent solutions to (16) started 
at gl, g2. Then the additive property of superprocesses shows that v = v(1>+v(2} 
is a solution to (16) started at g. Take a;?: 6. Using lemma 3.1 

So 

< 
< 
< 

< 
< 

QD((U(t), I(a, oo)) > 0) 
P((v(t), I(a, oo)) > 0) 
P((v( 1>(t), I(a, oo)) > 0) + P((v(2>(t), 1) > 0) 

48(1 + fJ)e 8t J gl(z) exp(-( a - 1 - z)2 /4t)dz + (g2, 1)8(1 - e- 0t)- 1 

(using lemma 2.1 and (26)) 
48(1 + fJ)e(O+l)t+l-a(g, ei) + e-a/3(g, el)fJ(l - e-Ot)-1 
C(fJ, t)e-a/3 , (31) 

VT(!:(!, I(2a, oo)) = 0) 

T-1 lT Qf0 ((Vi(t), 1(2a, oo)) = O)dt 

> r 1 lT Q''((U(t), !(a+ Ri(t - 1), oo)) = O, JR1(t) - Ri(t - l)J ~ a)dt 

> r 1 lT Q''(QV,(t-l)((U(l), !(a, oo)) = O)dt- Q"T(JRt(l)J?: a) 

> (T - l)/T- (C(fJ)/a) (32) 

by (31) and lemma 3.6. This proves (27). Since VT(n)(f : (!,el) = 1) = 1 we 
have v(f: (!,el)~ 1) = 1. Let ei(z) =exp( a - Jz - al). Then 

v(f: (!,el) ;?: 1) > v(f: (!, e~) ;?: 1) 
> limsupvT(n}(f: (!, e'l.) = 1) 

n-+OO 

limsupVT(n)(f: (!, I(a, oo)) = 0). 
n-+oo 

17 



By (27) the right hand side converges to 1 as a -+ oo. This proves (28) which 
in turn implies v(f : R0 (f) > -oo) = 1. Choose 0 ~ 1/Ja. E <P with ( 1/Ja. > 0) = 
(a, oo). Then 

v(f : Ro(!) ~ a) v(f: (!, 1/Ja) = 0) 
> lim sup VT(n)(f : (!, 1/Ja) = 0) 

n-+oo 

= limsupvT(n)(f: (!, I(a, oo)) = 0). 
n-+oo 

Again the right hand side converges to 1 as a-+ oo which proves (29). To show 
(30) we have 

Q11 (U(t) = 0) 
< Q11 (R~(t) <~a) 

< lim inf Q11T(n) (Ri(t) < -a) 
n-+oo 

< liminf(Q 11TC .. >(R1 (t) <-a)+ Q11T(n>((U(t), I(a, oo)) > 0)) 
n-+oo 

. < C((), t)/a (by lemma 3.6 and (32)) 
-+ 0 as a-+ oo. 

We now start the main argument. Let Ri(t) = ln((U(t), ei)). Let F : 
C{em -+ R be bounded and continuous .. Fix t > 0. Then 

IQ11T(n)(F(V1(t))) - Q11 (F(V1(t)))I 
~ IQ 11T(n>(F(U(t, • - Ri(t)))) - Q11 (F(U(t, • - Ri(t))))I 

+llF(f)lloo(Q 11T< .. >(R1(t)-:/:: Ri(t)) + Q11 (R1(t)-:/:: Ri(t))). (33) 

Since vn(f: (!, ei) = 1) = 1, (31) shows that 

Q11"(R1(t)-:/:: Ri(t)) ~ Q11"((U(t), I(a, oo)) > 0) ~ C((), t)/a. 

The same bound holds for Q11 by (28) so that the second term on the right hand 
side of (33) is bounded by C((), t)/a. By the continuity off -+ Qi we have 
Q11T(n) -+ Q11

• Since F(U(t, · - Ri(t))) is a bounded and continuous function 
. on C([O, oo ), C{em) n (U(t) -:/:: 0) the first term on the right hand side of (33) 

converges to zero as n -+ oo. So 

Q11 (F(Vi(t))) 
lim Q11"(F(Vi(t))) n-+oo 

1T,. 
lim T,; 1 Qf0 (F(V1(s + t)))ds 

n-+oo 0 

1T,. 
lim T,; 1 Qf0 (F(V1(s)))ds 

n-+oo 0 

v(F). 

18 



We have shown that under Q11 the one dimensional marginals of (Vi(t) : t ~ 0) 
have law v. It is straightforward to check that (Vi(t) : t ~ 0) is also Markov. 
Hence (Vi(t) : t ~ 0) is stationary and since the map f --.. f(· - Ro(!)) is 
measurable on C{em the process (V0 (t) : t ~ 0) is also stationary. This together 
with (29) verifies that Q11 is the law of a stationary wave. • 

4 Wavespeed 
This section proves the following result. 
Proposition 4.1 Let (u.(t) : t ~ 0) be a travelling wave solution to {1) with 
parameter 8. 

a) Ro( u.(t))/t--.. A E [-oo, 28112] almost surely as t--.. oo. 

b) If 8 > 8c then A ~ 0 almost surely. 

c) Given e > 0 there there ezists 8( e) such that if 8 ~ 8( e) then 
P(A ~ (2 - e)8112 ) ~ 1 - e 

Proof. a) Let Q11 be the law of u.. Let Z(n) = R0 (n) - R0 (n-1). The compact 
support property lemma 2.1 implies that Q 11 (Z(n) V 0) < oo. 

Q11 ((Ro(k + 1) - R0 (k), ... , Ro(k + m) - Ro(k + m - 1)) EB) 
Q11 (QU(A:)((Ro(l) - Ro(O), ... , Ro(m) - Ro(m - 1)) EB)) 

= Q11 (QVo(k)((Ro(l) - R0 (0), ... , Ro(m) - Ro(m - 1)) EB.)) 
Q11 ((Ro(l) - Ro(O), .. . , Ro(m) - Ro(m- 1)) EB) 

so that the sequence (Z(n) : n = 1, 2, ... ) is stationary under Q11 and the ergodic 
theorem gives 

n 

Ro(n)/n = Ro(O)/n + (1/n) L Z(i) --.. A E [-oo, oo) a.s. as n--.. oo. 
i=l 

That A ~ 28112 follows from lemma 2.1. We now interpolate. Define Tn = 
inf(t ~ n: Ro(t) ~ Ro(n) - 2ne). Again using lemma 2.1, applying the strong 
Markov property at Tn, we have for e > 0 and n large enough 

Q11 (Tn < n + 1, Ro(n + 1) ~ Ro(n) - ne) 
~ Q11(QU(T(n)An+1>(sup.Ro(s) - Ro(O) ~ ne)) 

&$1 

< C(O) [
00 

exp(-(ne -1- ,,)2/4)d" 

< C(8)(ne - 1)-1 exp(-(ne - 1)2 /4). 
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Since Ro(n)/n -+ A we have that R0 (n + 1) ~ Ro(n) - ne for large n. Borel 
Cantelli then implies that Tn ~ n + 1 for large n which in turn implies that 
liminfn-oo Ro(t)/t ~A. The other halfofthe interpolation is easier and follows 
again from lemma 2.1. 

b) Suppose now that (J > (Jc and that the wavespeed is almost surely con-
stant under Qv. By translating the initial condition we may assume that 
11(! : R0(!) = 0) = 1. Choose a, e > 0 so that 11(! : f ~ I(-a - e, -a)) ~ e. 
Define ii by ii(! E B) = 11(!(2a + € - ·) E B)). Using the method of [10] 
lemma 2.1.3 we can construct a coupling of three solutions u1, u, ur to (1) 
with(~: u(O,~) > 0) = (-a-e,-a), i{ g 11,u1 g ii and so that u(t) ~ 
ur(t) /\ u1(t), \/ t ~ 0 whenever u(O) ~ ur(o) /\ u1(0). Furthermore we may ask 
that ur(o),u1(0) are independent and that u is independent of u(ur(o),u1(0)). 
Define L0 (u1(t)) =inf(~: u1(t, ~) > 0). Then, letting p(fJ) = P(u lives forever), 
we have 

p(fJ)e2 < P(u(O) ~ ur(O) /\ u1(0), u lives forever) 
< P(u(t) ~ ur(t) /\ u1(t), u lives forever) 
< P(Ro( ur (t)) > Lo( u1(t))). (34) 

If (J > (Jc then p(fJ) > 0. If A < 0 then the right hand side of (34) converges to 
zero providing a contradiction. 

In general if Qv is the law of a stationary wave we may decompose it into er-
godic parts as follows. Note that ((Z(l), V0(1)), (Z(2), V0 (2)), ... ) is Markov and 
stationary and we continue to write Qv for its law on (C{em x [-oo, oo])N. Then 
there exists a probability Nv on P( C{em) the space of probabilities on C{em so 
thatµ= JP(c+ ) µNv(dµ) and so that Qµ(((Z(l), Vo(l)), (Z(2),.Vo(2)), ... ) E 

tern 
B) E {O, 1} for all shift invariant B for Nv almost allµ. Since A= limn-oo n-1 :E7=1 Z(i) 
is shift invariant, part b) follows from this decomposition and the ergodic case. 
An ergodic decomposition theorem is proved in [13] section 5.2. That theorem 
is stated for the case of a measure preserving system. To obtain the decom-
position above it is necessary only to check that when the system arises from 
a Markov process the stationary measure is decomposed into elements of the 
Markov family. 

c) We have to tighten the coupling argument given in [10] in order that 
we don't drop below the correct wavespeed. We indicate below the changes 
necessary. However we refer the reader to [10] section 2.2 for the· basic steps 
and definitions. We shall couple a solution to (1) with an N-dependent oriented 
site percolation with density 1-p. For small enough p oriented percolation has a 
leading occupied site that itself moves with a limiting linear speed. The proof of 

. part c) is based on the fact that as () -+ oo the density of the coupled percolation 
process approaches 1 and the speed of the leading occupied site approaches its 
maximum value of 1. 
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· Lemma 4.2 For€ E (0, 1) there ezists p(E) > 0 so that if (w(m, n) : m+n even) 
is a 1-dependent oriented site percolation process with density 1- p ~ 1- p( €), C 
is the cluster of occupied sites connected to (0, 0) and Sn = sup(m: (m, n) E C) 
then 

lim inf P(sn ~ (1 - E)n) ~ 1 - €. 
n-+oo 

Proof of lemma 4.2. We can extract a proof from Durrett [4]. In section 10 of 
[4] he shows that P(ICI < oo)--+ 0 asp--+ 1 (!Cl is the cardinality of C). Let C 
be the cluster of points connected to (0, m) for some m = O, -2, -4, ... Define 
also Sn= sup(m: (m, n) EC). Then on {ICI = oo} we have Sn= Sn· In section 
11 of [4] he shows that 

P(sn ~ (1 - E)n) ~ 3n(l - p)m/36(1 - 3(1 - p)l/36)-1 

whenever (1 - p) < 3-36. These results imply our lemma. • 

Lemma 4.3 Given€ E (0, 1/2) there ezists M(E) ~ 1 such that for all M ~ 
M(E), if his a solution to the following PDE, 

ht 
h(O,x) 

h(t, -2M) 

h:c:c + (1 - E)h 
6I(x E (-1, 1)) 
h(t, 2M) = 0 fort~ 0 

then h((l + E)M/2, x) ~ 261(-M - 1, M + 1) for all Ix I~ 2M. 

Proofoflemma4.3. By linearity we may assu~e 6 = 1. Define g(t, x) = exp((l-
E)t)Ptl(-1, l)(x) so that also Yt = 9:c:c + (1 - E)g. Note that g is symmetric, 
unimodal, g(O) = h(O) and g ~ h. Using a single Riemann block to approximate 
the convolution in the definition of g gives the bound, for lxl ~ M + 1, 

g((l + E)M/2, x) 
> g((l + E)M/2, M + 1) 
> (7r(l + E)M/2)-1/ 2 exp((l - E2)(M/2) - (M + 2)2(2M(l + E))-1) 
> 3 for sufficiently large M. 

Also by the maximum principle, for lxl ~ 3M, t ~ (1 + E)M/2 

g(t, :z:) - h(t, :z:) 
< sup g(t, -3M) V g(t, 3M) 

t~(l+E)M/2 

< sup ( ?rt)-112 exp(((l - E)t - ((3M - 1)2 /4t)) 
t~(l+E)M/2 

< 1 for sufficiently large M. 

Combining these two bounds completes the proof. • 
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We now complete the proof of Proposition 4.1 c). Fix€ E (0, 1/2). Choose 
p(€), M(€) as in lemmas 4.2, 4.3. Let u be a solution to (1) with parameter value 
8. Define v(t, z) = 8- 1u(8- 1t, 8- 1/ 2z ). Define 8( €) = € exp(-(1 - €2 )M /2). 
Define form E Z,n EN, m+ n even 

(m n) = { 1 if v((l-: €)Mn/2, ·) 2:: 81[Mm- 1, Mm+ 1] 
TJ ' 0 otherwise 

Further, if TJ(m - 1, n - 1) = TJ(m + 1, n - 1) = 0 we set 

( ) { 
1 with probability 1 - p 

w m, n = 0 with probability p 

independently for each m, n. Otherwise we set w(m, n) = TJ(m, n). We may 
now follow the argument in [10] section 2.2 (where our lemma 4.3 is needed in 
place of lemma 2.2.4) to show that for all sufficiently large 8, say 8 2:: 8(€) the 

·process (w(m, n) : m+n even) is a 1-dependent oriented site percolation process 
of density at least 1 - p(€). We now choose our solution u to (1) to have initial 
condition u(O) 2:: 881(-8- 1/ 2 , 8112). Then v(O) 2:: 81(-1, 1). Then we have by 
lemma 4.2, provided 8 2:: 8(€) 

P(Ro(u(8- 1(1 + €)nM/2)) ~ (1- €)8- 1/ 2nM) 
P(Ro(v((l + €)nM/2)) ~ (1 - €)M) 

< P(sn ~ (1 - €)n) 
< 2€ for large n. 

We now suppose that Qv is the law of a travelling wave solution to (1) with 
· parameter value (} 2:: 8( € ). Define 

T = inf(t 2:: 0 : Vo(t) > 881[-z - 8-1/ 2 , -z + 8112], 3z E N), 
X = inf( z E N : Vo(T) > 881[-z - 8-112 , -z + 8112]). 

We claim (and prove below) that Qv (T < oo) = 1. Given the claim, we 
may use the strong Markov property at time T to see that u(t, z) = U(T + 
t, z + R 0 (U(T)) - X) defines a solution whose initial condition satisfies u(O) 2:: 
881(-8-1/ 2 , 8112 ). Then from the above, for all sufficiently large n 

Q11 (R0 (U(T + 8- 1 (1 + €)nM/2)) ~ (1 - €)8- 112nM + R0 (U(T)) - X) ~ 2€. 

This implies that Q 11 (A < 2(1 - €)(1 + €)- 18112 ) ~ 2€ and completes the proof 
of part c). 

To prove the claim we define F, F: ctem ~ [O, 1] by 

F(f) l(f > 881(-z - 8- 1/ 2 , -z + 8112], 3z EN), 
F(f) Qi (F(V0(1))). 
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By the ergodic theorem n- 1 L:~=l F(V0 (i)) ~ Z almost surely under Q". We 
shall show that Z > 0 which implies the claim. 

n 

n-1 L F(Vo(i)) - F(Vo(i)) 
i=l 
n-1 

n-1 L(F(Vo(i+1)) - E(F(Vo(i + l))IUi)) + F(Vo(l))/n + F(Vo(n))/n 
i=l 

= n- 1 Mn+ 0(1/n) 

where Q"(M~) ~ n. This shows that n- 1 L:~=l F(V0 (i)) ~Zin probability and 
so by the ergodic theorem again Z = E(F(Vo(l))II) where I are the invariant 
sets for the sequence (V0 (1), V0 (2), .. . ). To prove that Z > 0 it is now enough 
to show that F(f) > 0 for all f f:. 0. By lemma 3.1 b) it is enough to consider 
f E C':'. Write (Ji for the law of super Brownian motion started at f (i.e. 
a solution to (16)). By Evans and Perkins (6] theorem 3.10, for f E C':' the 
laws of U(t, z)dz under Qf and QI are absolutely continuous on M(R) the 
space of finite measures. Moreover, by Evans and Perkins (5] corollory 2.3, if 
f, g E C':', f, g f:. 0 then the laws of U(t, z )dz under (Jf and Q9 are also 
absolutely continuous. We may write F(f) = Qf (U(t, z)dz E B) for some 
measurable B ~ M(R). For suitable g, sit is possible by using the existence of 
jointly continuous densities and the finite speed of propagation of Ro(t) to show 
that Q9(U(t, z )dz E B) > O, Then the above absolute continuity results finish 
the proof. • 
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