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Abstract. We discuss a Modi�ed Field Theory (MOFT) in which the number of

�elds can vary. It is shown that when the number of �elds is conserved MOFT re-

duces to the standard �eld theory but interaction constants undergo an additional

renormalization and acquire a dependence on spatial scales. In particular, the

renormalization of the gravitational constant leads to the deviation of the law of

gravity from the Newton's law in some range of scales rmin < r < rmax, in which

the gravitational potential shows essentially logarithmic � ln r (instead of 1=r)

behavior. In this range, the renormalized value of the gravitational constant G

increases and at scales r > rmax acquires a new constant value G0
� Grmax=rmin.

From the dynamical standpoint this looks as if every point source is surrounded

with a halo of dark matter. It is also shown that if the maximal scale rmax is

absent, the homogeneity of the dark matter in the Universe is consistent with a

fractal distribution of baryons in space, in which the luminous matter is located

on thin two-dimensional surfaces separated by empty regions of ever growing size.

1. Introduction

It is well established that dark matter gives the leading contribution to the matter

density of the Universe (e.g., see [1]). Apart from some phenomenological properties

of the dark matter (e.g., it is non-baryonic, cold, etc.) the problem of its nature

remains still open. Particle physics suggests various hypothetical candidates for

dark matter. However, while we do not observe such particles in direct laboratory

experiments there remains the possibility to avoid or replace the dark matter para-

digm. The best known attempt of such kind is represented by the phenomenological

algorithm suggested by Milgrom [2], the so-called MOND (Modi�ed Newtonian Dy-

namics). This algorithm suggests replacing the Newton's law of gravity in the low

acceleration limit g � a0 with gMOND �
p
ga0 (where g is the gravitation accelera-

tion and a0 is a fundamental acceleration a0 � 2� 10�8cm= s2). This, by construc-

tion, accounts for the two observational facts: the �at rotation curves of galaxies and

the Tully-Fisher relation Lgal / v4
c
which gives Mgal / Lgal / v4

c
(where Lgal, Mgal,

and vc are the galaxy's luminosity, mass, and rotation velocity respectively). The

MOND was shown to be successful in explaining properties of galaxies and clusters

of galaxies [3] and di�erent aspects of MOND attract the more increasing attention,

e.g., see Refs.[4, 5, 7]. However, MOND presumes a nonlinear regime (e.g., at low

accelerations the force F /
p
M) and was criticized in Ref. [7].

A more conservative model was suggested in Ref. [8] which presumes the existence

of an additional attraction between baryons with logarithmic potential

(1) U / �b1b2 ln (r)

where b is the baryon number and � de�nes a characteristic scale r0 � 1=� � 5kpc
on which this potential starts to dominate over gravity. This model contains basic

features of MOND (at least roughly) but fails when confronting with gravitational

lensing by clusters. To explain lensing this extra force must act like gravity and,

in fact, be gravity. We note that if this additional potential cuts o� at very large

distances, the e�ects of the extra potential will not, in fact, be distinguishable from

that of dark matter
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interactions which has a range of scales with logarithmic behavior. In the present

paper we, however, show that the logarithmic potentials appear naturally in the

so-called Modi�ed Field Theory (MOFT) suggested in Ref. [9] to account for the

spacetime foam e�ects.

It was suggested in Ref. [9] that nontrivial topology of space should display itself

in the multivalued nature of all observable �elds, i.e. the number of �elds should

be a dynamical variable. The argument is that in the case of general position

an arbitrary quantum state mixes di�erent topologies of space. From the other

side, any measurement of such a state should be carried out by a detector which

obeys classical laws and, therefore, the detector introduces a background space of a

particular topology (of course, on the classical level the topology is always de�ned

and does not change). This means that the topology of space must not be a direct

observable, and the only chance to keep the information on the topology is to allow

all the �elds (which are speci�ed on the background space) to be multivalued.

The corresponding extension of the standard quantum �eld theory was developed

in Ref. [9] and it was proposed there that e�ects related to the multivalued nature

of the physical �elds could reveal themselves at large spatial scales. In the present

paper we show that the logarithmic behavior of the gravitational potential at large

distances may indeed appear as a result of nontrivial properties of the vacuum state

in MOFT. In fact, analogous modi�cations hold for all �elds and, in particular, for

the Coulomb potential. In this sense at large scales we should observe not only dark

matter, but dark charges of all sorts as well.

We show that in the case when the number of �elds is conserved MOFT reduces

to the standard �eld theory in which interaction constants (e.g., the gravitational

and the �ne structure constants) undergo an additional renormalization and, as a

consequence, may acquire a dependence on spatial scales (observational limits on the

scale-dependence of the gravitational constant have been already considered, e.g.,

in Ref.[10]). From the formal standpoint such a renormalization looks as if particles

lose their point-like character and acquire an additional distribution in space, i.e.,

each particle turns out to be surrounded with a �dark halo�.

The density distribution of the halo follows properties of the vacuum state which

formed during the quantum period in the evolution of the Universe. At the moment,

we do not have an exact model describing the formation of properties of the vacuum

and, therefore, our consideration of the vacuum structure has a phenomenological

character. Namely, we assume that upon the quantum period of the Universe the

matter was thermalized with a very high temperature. Then, as the temperature

dropped during the early stage of the evolution of the Universe, the topological

structure of the space has tempered and the subsequent evolution resulted only in

the cosmological shift of the physical scales. We show that in MOFT such kind of

assumptions leads almost immediately to the logarithmic growth of the gravitational

potential in some range of scales.



32. Modified Field Theory

Let M be a background basic space. Let us specify an arbitrary �eld ' on it. We

suppose that the action for the �eld can be presented in the form (for the sake of

simplicity we consider the case of linear perturbations only)

(2) S =

Z
M

d4x

�
�1

2
'bL'+ �J'

�
;

where bL = bL (@) is a di�erential operator (e.g., in the case of a massive scalar �eldbL (@) = @2 + m2), J is an external current, which is produced by a set of point

sources (J =
P

JkÆ (x� xk(s)), where xk (s) is a trajectory of a source), and � is

the value of the elementary charge for sources. Thus, the �eld ' obeys the equation

of motion

(3) �bL'+ �J = 0:

We note that such a structure is valid for perturbations in gauge theories (' = ÆA�,

where � is the gauge charge) and in gravity (' = lplÆg��, where � = lpl is the Planck
length).

In the Modi�ed Field Theory we admit that the number of �elds is a variable,

therefore we replace the �eld ' with a set of �elds 'a, a = 0; 1; :::N (x). In this

manner, we introduce an additional variable N (x) which in MOFT plays the role

of an operator of the number of �elds. Thus, the total action assumes the structure

(4) S =

Z
M

d4x

N(x)X
a=0

�
�1

2
'abL'a + �J'a

�
;

where the number of �elds N (x), in general, depends on the position in the back-

ground spaceM and, therefore, the sum stands inside the integral overM . Fields 'a

are supposed to obey the identity principle and, therefore, they equally interact with

the external current. We also note that, unlike the �eld ', trajectories of sources
xa (s) have a single-valued character, while the sum over sources automatically ac-

counts for possible variations in their number, which may appear in processes of

topology changes.

It is easy to see that the main e�ect of the introduction of the number of identical

�elds is the renormalization of the charge (the constant � ). For example, let us

consider the simplest case when N (x) is a constant: N (x) = N0 = const. We

introduce a new set of �elds as follows

(5) 'a =
e' (x)p
N0

+ Æ'a;
X
a

Æ'a = 0

where e' is the e�ective �eld [9]

(6) e' (x) =
1p
N0

N0X
a=0

'a (x) :



4Then the action splits into two parts

(7) S =

Z
M

d4x

 
�1

2

X
a

Æ'abLÆ'a

!
+

Z
M

d4x

�
�1

2
e'bLe'+ e�J e'� :

The �rst part represents a set of free �elds Æ'a which are not involved into inter-

actions between particles and, therefore, cannot be directly observed. The second

part represents the standard action for the e�ective �eld e' with a new value for the

charge e� =
p
N0�.

In general case N (x) is an operator-valued function and so will be the charge. How-

ever, the e�ective �eld and the transformation (5) can be introduced in this case as

well, provided we are working with Fourier transforms, i.e. in the momentum rep-

resentation, where the states of the �elds can be classi�ed in terms of free particles.

It is, of course, quite usual in the quantum �eld theory, and we show in the next

section that carrying out this approach in the framework of MOFT leads indeed to

a physically meaningful theory.

In the Fourier representation action (4) takes the form

(8) S =

Z
dtd3k

N(k)X
a=0

�
�1

2
'a�

k
bL(@t;�ik)'a

k
+ �J�

k
'k

�
;

where 'a

k
= 1= (2�)

3=2
R
'a (x) exp (�ikx) d3x, (a = 0; 1; :::N (k)), and N (k) is the

operator of the number of �elds in the momentum space (it is, of course, not the

Fourier transform of N(x)).

When N(k) conserves, making the same kind of transformation as in (5) we bring

the action to the form

(9) S =

Z
dtd3k

 
�1

2

X
a

Æ'a�

k
bLÆ'a

k
� 1

2
e'�
k
bLe'k + e� (k)J�

k
e'k

!
:

We see that the action for the e�ective �eld e' coincides with that in the standard

theory, but the charge e� (k) =
p
N (k)� becomes now scale-dependent.

We recall that N (k) is an operator and we, strictly speaking, should consider an

average value for the charge

(10) he� (k)i =
Dp

N (k)
E
�:

The homogeneity and isotropy of the Universe allows hN (k)i = Nk (t) to be an

arbitrary function of jkj.
In a sense, the function Nk characterizes the structure of the momentum space M�

(note that the structure of the basic space M itself is not speci�ed here). If we

assume (and we do so) that processes with topology transformations have stopped

after the quantum period in the evolution of the Universe, then the structure of the

momentum space conserves indeed and the function hN (k)i depends on time via

only the cosmological shift of scales, i.e., hN (k)i = Nk(t), where k (t) � 1=a (t) and
a (t) is the scale factor. In this manner, function Nk represents some new universal

characteristic of the physical space.



53. Vacuum state in MOFT

In this section we describe the structure of the vacuum state for e�ective �elds. For

simplicity, we consider a real scalar �eld, while generalization to the case of spin one

and spin two particles is obvious. Consider the expansion of the �eld operator ' in

plane waves,

(11) ' (x) =
X
k

�
2!kL

3
�
�1=2 �

cke
ikx + c+

k
e �ikx

�
;

where !k =
p
k2 +m2, and k = 2�n=L, with n = (nx; ny; nz); for the sake of

convenience, we introduce periodic boundary conditions with a period length L
(when it is necessary sums can be replaced with integrals, as L!1, via the usual

prescription:
P !

R
(L=2�)

3
d3k ). In the case of free particles the expression for

the Hamiltonian is

(12) H0 =
X
k

!kc
+
k
ck :

When the number of �elds is variable, the set of annihilation/creation operators�
ck; c

+
k

	
is replaced by the expanded set

�
ca;k; c

+
a;k

	
, where a 2 [1; : : :Nk], and Nk

is the number of �elds for a given wave number k. For a free �eld the energy is an

additive quantity, so it can be written as

(13) H0 =
X
k

NkX
a=1

!kc
+
a;k
ca;k :

In MOFT it is supposed that the �elds are identical and obey the Fermi statistics (for

motivations and more details, see Ref. [9]). Thus, the eigenvalues of the Hamiltonian

can be written straightforwardly

(14) bH0 =
X
n;k

n!kNn;k ;

where Nn;k is the number of �eld modes with the given wave number k and number

of scalar particles n; since we assume Fermi statistics, we should set Nn;k = 0 or 1.

Assuming that upon the quantum period of the evolution of the Universe topology

transformations are suppressed, we should require that the number of �elds conservesP
n
Nn;k = Nk = const in every mode. Thus, we �nd that the �eld ground state �0

is characterized by occupation numbers

(15) Nn;k = � (�k � n!k) ;

where � (x) is the Heaviside step function and �k is the chemical potential. For the

spectral number of �elds we get

(16) Nk =

1X
n=0

� (�k � n!k) = 1 +

�
�k
!k

�
;

where [x] denotes the integral part of x. We interpret the function Nk as a geometric

characteristic of the momentum space, so it should be common for all types of Bose

�elds. Then assigning a speci�c value for the function Nk, the expression (16) de�nes

the value of the respective chemical potential �k for a given �eld.
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follows [9]

(17) eck = 1p
Nk

NkX
a=1

ca;k; ec+
k
=

1p
Nk

NkX
a=1

c+
a;k
;

while the interaction term in (9) takes the form

(18) Sint =

Z
dt
X
k

e� (k)
�eckJk + ec+k J+k �

with e� (k) =
p
Nk�.

4. Origin of the spectral number of fields

As it was already mentioned above, the function Nk forms during the quantum

stage of the evolution of the Universe, when processes involving topology changes

took place. It is well known that near the singularity the evolution of the Universe

is governed by a scalar �eld (responsible for a subsequent in�ationary phase). For

the sake of simplicity we neglect the presence of all other sorts of particles during

the quantum stage and suppose that the Universe was �lled with massive scalar

particles only.

Upon the quantum period the Universe is supposed to be described by the homoge-

neous metric of the form

(19) ds2 = dt2 � a2 (t) dl2;

where a (t) is the scale factor, and dl2 is the spatial interval. It is natural to ex-

pect (at least it is the simplest possibility) that the state of the scalar �eld was

thermalized with a very high temperature T > TP l where TP l is the Planck temper-

ature. The state of the �eld was characterized by the thermal density matrix with

� = 0 (for the number of �elds varies) and with mean values for occupation numbers

hNk;ni =
�
exp

�
n!k

T

�
+ 1
�
�1
. On the early stage m � T , and the temperature and

the energy of particles depend on time as T = eT=a (t), k = ek=a (t). When the tem-

perature drops below a critical value T
�
, which corresponds to the moment t

�
� tpl,

topological structure (and the number of �elds) tempers. This generates the value

of the chemical potential for scalar particles � � T
�
.

Let us neglect the temperature corrections, which are essential only at t � t
�
and

whose role is in smoothing the real distribution Nk . Then at the moment t � t
�
the

ground state of the �eld will be described by (15) with �k = � = const � T
�
. During

the subsequent evolution the physical scales are subjected to the cosmological shift,

however the form of this distribution in the commoving frame must remain the same.

Thus, on the later stages t � t
�
, we �nd

(20) Nk = 1 +

" ek1

k (t)

#
;

where 
k (t) =

q
a2 (t) k2 + ek22, ek1 � a0�, and ek2 � a0m (a0 = a (t

�
)).



7Consider now properties of the function Nk. There is a �nite interval of wave

numbers k 2 [kmin (t) ; kmax (t)] on which the number of �elds Nk changes its value

from Nk = 1 (at the point kmax) to the maximal value Nmax = 1 +
hek1=ek2i (at

the point kmin). This causes the variation of the charge values from �min = � , to

�max =
p
Nmax�. The boundary points of the interval of k depend on time and are

expressed via the free phenomenological parameters ek1 and ek2 as follows
kmax =

1

a (t)

qek21 � ek22; kmin =
1

a (t)

qek21= (Nmax � 1)
2 � ek22:

And in the wave number range k � kmin (t) the number of �elds remains constant

Nk = Nmax.

During the later stages of the evolution of the Universe (t � t
�
) the contribution

from all other �elds becomes essential. However processes involving topology trans-

formations are suppressed and the structure of the momentum space is described

by the distribution (20). We note that the real distribution can be di�erent from

(20), which depends on the speci�c picture of topology transformations in the early

Universe and requires the construction of the exact theory (in particular, thermal

corrections smoothen the step-like distribution (20)). However we believe that the

general features of Nk will remain the same.

5. The Law of gravity

The dependence of charge values upon wave numbers leads to the fact that the

standard expressions for the Newton's and Coulomb's energy of interaction between

point particles break down. In this section we consider corrections to the Newton's

law of gravity (corrections to the Coulomb's law are identical). The interaction

constant � � m
p
G (where m is the mass of a particle), and MOFT gives G !

G (k) = NkG. To make estimates, we note that at the moment t � t
�
the mass of

scalar particles should be small as compared with the chemical potential (which has

the order of the Planck energy), which gives ek1 � ek2. Then in the range kmax (t) � k
� kmin (t) the function Nk can be approximated by

Nk � 1 + [kmax (t) =k] :

Consider two rest point particles with masses m1 and m2. Then the Fourier trans-

form for the energy of the gravitational interaction between particles is given by the

expression

(21) V (k) = �4�Gm1m2

jkj2
Nk;

which in the coordinate representation is given by the integral

(22) V (r) =
1

2�2

1Z
0

�
V (!)!3

� sin (!r)
!r

d!

!
:



8From (16) and (20) we �nd that this integral can be presented in the form

(23)

V (r) = �2Gm1m2

�

Nmax�1X
n=0

knZ
0

sin (!r)

!r
d! = �Gm1m2

r

 
1 +

Nmax�1X
n=1

2Si (knr)

�

!

where kn = 1
a(t)n

qek21 � n2ek22: The �rst term n = 0 of the sum in (23) gives the

standard expression for the Newton's law of gravity, while the terms with n >
1 describe corrections. From (23) we �nd that in the range k1r = kmaxr � 1,

Si (knr) � knr and corrections to the Newton's potential give the constant

(24) ÆV � �2Gm1m2

�

Nmax�1X
n=1

kn:

Thus, in this range we have the standard Newton's force. In the range kminr � 1,

we get 2
�
Si (knr) � 1 and for the energy (23) we �nd

V (r) � �G
0m1m2

r
;

where G0 = GNmax. Thus, on scales r � 1=kmin the Newton's law is restored,

however the gravitational constant increases in Nmax times. In the intermediate

range 1=kmin � r � 1=kmax the corrections can be approximated as

(25) ÆV (r) � 2Gm1m2

�

ek1
a (t)

ln

 ek2
a (t)

r

!
;

i.e., they have a logarithmic behavior.

We note, that from the dynamical point of view the modi�cation of the Newton's law

of gravity can be interpreted as if point sources lose their point-like character and

acquire an additional distribution in space. Indeed, let m1 be a test particle which

moves in the gravitational �eld created by a point source m2. Then, assuming the

Newton's law is unchanged, from (23) we conclude that the source m2 is distributed

in space with the density

(26)

� (r) =
m2

2�2

1Z
0

�
Nkk

3
� sin (kr)

kr

dk

k
= m2

 
Æ (~r) +

1

2�2

Nmax�1X
n=1

sin (knr)� knr cos (knr)

r3

!
:

The total mass contained within a radius r is

(27) M (r) = 4�

Z
r

0

s2� (s) ds = m2

 
1 +

2

�

Nmax�1X
n=1

(Si (knr)� sin (knr))

!
:

Thus, in the range r� 1=kmax we �nd M (r) � m2, i.e., one may conclude that the

gravitational �eld is created by a point source with the mass m2. However in the

range 1=kmin > r > 1=kmax the mass increases M (r) � m2kmaxr, and for r � 1=
kmin the mass reaches the value M (r) � m2kmax=kmin.

We see that in MOFT the distributions of the dark matter and the actual matter are

strongly correlated (by the rule (26)), and the resulting behavior of the dynamically



9determined mass M(r) seems to agree with the observations. We stress that the

theoretical scheme of MOFT was not invented to �t the dark matter distribution.

On the contrary, the logarithmic behavior of the e�ective �eld potentials simply

appears in the thermodynamically equilibrium state at the low temperature, as a

by-product of a non-trivial structure of MOFT vacuum.

6. Conclusions

In this manner we have shown that in the case when the number of �elds is conserved

MOFT reduces to the standard �eld theory in which interaction constants undergo

a renormalization and, in general, acquire a dependence on spatial scales. From the

dynamical standpoint such a renormalization looks as if particles lose their point-like

character and acquire an additional distribution in space, i.e., each point source is

surrounded with a halo of dark matter. This halo carries charges of all sorts and

its distribution around a point source follows properties of the vacuum. The latter

forms during the quantum period in the evolution of the Universe, and the rigorous

consideration of vacuum properties requires constructing an exact theory.

In applying to cosmological problems it is convenient to suppose that the Newton's

law of gravity remains intact, while the variation of the gravitational constant is

phenomenologically described by the presence of a dark matter. In the simplest

case properties of the vacuum and that of dark matter can be described by two

phenomenological parameters which represent the two characteristic scales. They

are the minimal scale rmin = 2�=kmax on which the dark matter starts to show up

(and on which the law of gravity (23) starts to deviate from the Newton's law) and

the maximal scale rmax = 2�=kmin which de�nes the fraction of the dark matter or

the total increase of interaction constants Gmax � Grmax=rmin (and after which the

Newton's law restores). The minimal scale rmin can be easily estimated (e.g., see

Ref.[8]) and constitutes a few kpc. To get analogous estimate for the maximal scale

rmax is not so easy. This requires the exact knowledge of the total matter density


tot for the homogeneous background and the knowledge of the baryon fraction 
b

which gives rmax=rmin � 
tot=
b (where 
 = �=�cr and �cr is the critical density).

If we accept the value 
tot � 1 (which is predicted by in�ationary scenarios) and

take the upper value for baryons 
b � 0:03 (which comes from the primordial

nuclearsynthesis), we �nd rmax=rmin � 30. Another estimate can be found from

restrictions on parameters of in�ationary scenarios. Indeed, in in�ationary models

correct values for density perturbations give the upper boundary for the mass of

the scalar �eld m � 10�5mP l which gives rmax=rmin � 105T
�
=mpl, where T� is the

critical temperature at which topology has been tempered.

From our point of view, the most interesting picture of the Universe appears in the

case when the maximal scale is absent (rmax ! 1 , or at least rmax � RH , where

RH is the Hubble radius). In this case a uniform distribution of baryons in space

is consistent with closed cosmological models only. Indeed, the number of baryons

contained within a radius r in the case of a uniform distribution with a density nb is
given by Nb (r) � nbr

3 and the mass of every baryon increases according to (27) as

mb (r) � mpr=rmin (mp is the proton mass). Thus, for the total mass (baryons plus



10dark matter) contained within the radius r we getMtot (r) = mb (r)Nb (r)+ÆM (r) �
�br

4=rmin (where �b = mpnb and ÆM (r) accounts for the contribution of baryons

from the outer region which does exist according to (26)). This means that the

lower limit for the total density increases with the radius �tot �Mtot=r
3 � �br=rmin

and for su�ciently large r � rcr it will reach the value �brcr=rmin = �cr , i.e., 
tot > 1

and such a Universe must correspond to a closed cosmological model. Then rmax
coincides with the radius of the Universe rmax = R and for the mean value of the

matter density we will �nd 
tot = 
bR=rmin.

We note that this does not mean that open cosmological models are forbidden at

all. This, however, means that in open models luminous matter has a speci�c

nonuniform distribution in space � (x) (the total density nevertheless is uniformly

distributed, i.e., the dark matter compensates exactly the inhomogeneity of the

luminous matter). Indeed, let 
tot be a constant in space and let it be of order 1.

Then the total mass Mtot (r) = mb (r)Nb (r) + ÆM (r) contained within a radius

r behaves as � r3�tot and, therefore, the number of baryons should follow the law

Nb (r) � r2rmin�tot=mp. Such a law for the number of baryons can be achieved

when the luminous matter is located on thin two-dimensional surfaces separated by

empty regions of ever growing size (i.e., baryons have a kind of a fractal distribution

in space). This, in fact, is consistent with the observed picture of the Universe at

large scales r � 100Mpc.

In this manner in open models the mean density of baryons depends on the scale of

averaging out �b (r) = �totrmin=r and at the Hubble scale r � RH we �nd 
b=
tot �
rmin=RH . If we consider larger scales we �nd �b ! 0 as r !1, i.e., the expansion

of the Universe is governed by dark matter alone.

In conclusion we point out that all the interaction constants (the gravitational con-

stant G the electron charge e, gauge charges) depend on time via the cosmological

shift of scales rmin (t) and rmax (t) which may give rise to a number of interesting

processes in the early Universe. We do not discuss here all the possibilities but just

point out to them which, in general, may be used to rule out or, better, to con�rm

the theory suggested.
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