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Abstract

A net current �ow through an open 1-dimensional Schrödinger-Poisson system is

modeled by replacing self-adjoint boundary conditions by dissipative ones. To give

a rigorous de�nition of carrier and current densities the well-known dilation theory

of dissipative operators is used where the self-adjoint dilation is regarded as the

Hamiltonian of a larger closed system which contains the open one. The carrier

density turns out to be performed by the generalized eigenstates of the dilation

while the current density is related to the characteristic function of the dissipative

operator. A rigorous setup of a dissipative Schrödinger-Poisson system is outlined.
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1 Introduction

Schrödinger-Poisson systems are of great interest in semiconductor physics. In the

following we are interested in a Schrödinger-Poisson system on the interval 
 = [a; b]

on the real axis R. Systems of this type were considered in [9]. By ' we denote the

electrostatic potential on 
 which is determined by Poisson's equation

�
d

dx
�(x)

d

dx
' = q

�
C(x) + u+ � u�

�
; x 2 
; (1.1)

where u+ and u� are the densities of holes and electrons, q is the magnitude of the

elementary charge, C(�) is the so-called doping pro�le of the semiconductor devices

and � = �(x) > 0 denotes the dielectric permittivity which satis�es the condition

�(�) +
1

�(�)
2 L1([a; b]): (1.2)

The Poisson equation (1.1) is completed by the boundary conditions

'(a) = 'a; and '(b) = 'b: (1.3)

The second important ingredient of the Schrödinger-Poisson system are Schrödinger-

type operators H which are de�ned on the Hilbert space H = L2([a; b]) and look

like

H := �
1

2

d

dx

1

m(x)

d

dx
+ V; (1.4)

where the real potential V is slightly di�erent for holes and electrons, see Section

5, and m equals either to the x-dependent e�ective mass of the holes or of the

electrons. Since the formalism of quantum mechanics is well developed only for self-

adjoint operators usually self-adjoint boundary conditions, for instance Neuman or

Dirichlet boundary conditions at a and b, are chosen. Operators of this type have a
discrete spectrum. Let us denote by fElg1l=1 and f lg

1

l=1 the sequence of eigenvalues

and eigenfunctions counting multiplicities.

The carrier densities used in the Poisson equation are now performed by expres-

sions of the form

u%̂(x) =

1X
l=1

%lj l(x)j2; x 2 [a; b]; (1.5)

where %̂ := f%lg1l=1 is a sequence of occupation numbers such that

N :=

1X
l=1

%l; (1.6)

is the total number of carriers of the system. Usually, the sequence %̂ is given by

%l := f(El); l = 1; 2; : : : : (1.7)
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where f � 0 is a equilibrium distribution functions which may be di�erent for holes

and electrons. Let us introduce the operator

% := f(H): (1.8)

The operator % is self-adjoint and non-negative. If the equilibrium distribution

function f tends to zero su�ciently fast as x! +1, then % is nuclear. From % one

computes the total number N of carriers by N = tr(%) = tr(f(H)). Usually, non-

negative self-adjoint nuclear operators are called density matrices. Since % commutes

with H the density matrix % remains unchanged in time. In this case % is called a

steady state. If the density matrix is known, then one restores the carrier density

as follows: the number of carriers N%(!) in the set ! � [a; b] is computed by

N%(!) = tr(%�!); (1.9)

where �!(�) is the indicator function of the subset !. It turns out that (1.9) de�nes an
absolutely continuous measure (with respect to the Lebesgue measure). One veri�es

that its Radon-Nikodym derivative u% coincides with the carrier density de�ned by

(1.5), i.e. u%̂ = u%.

The system described by H is closed. Hence there is no interaction with the

environment, in particular, no carrier exchange. Consequently, the current density

j%̂(x) de�ned by

j%̂(x) :=

1X
l=1

%ljl(x); x 2 [a; b]; (1.10)

is identical zero, where in accordance with [15] the current density jl(x) of the

eigenstate  l is given by

jl(x) := =m
�

1

m(x)
 0
l
(x) l(x)

�
; x 2 [a; b]; l = 1; 2; : : : : (1.11)

However, from the point of view of semiconductor physics this consequence is totally

unacceptable since a net current �ow through the boundary is natural. Thus one

has to devise boundary conditions which allow those �ows.

A simple proposal was made in [9] which adds up to replace the self-adjoint

boundary conditions by non-selfadjoint ones, i.e. to consider H on the domain

dom(H) =

8><
>:g 2 W 1;2([a; b]) :

1

m(x)
g0(x) 2 W 1;2([a; b]);

1

2m(a)
g0(a) = ��ag(a);

1

2m(b)
g0(b) = �bg(b)

9>=
>; (1.12)

where �a; �b 2 C . If at least one of the imaginary parts is di�erent from zero, then

the operator H is non-selfadjoint. However, this non-selfadjointness implies several

complications. In particular, the notion of carrier densities becomes unclear.

This situation can be handled if we restrict ourselves to dissipative operators. Let

us recall that an operator is called dissipative if the imaginary part of its associated
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quadratic form is non-positive. In the present case the operator H is dissipative if

�a; �b 2 C + := fz 2 C : =m(z) > 0g, see [11]. Moreover, under this assumption

the operator H becomes maximal dissipative, i.e. it admits no proper dissipative

extension, see [11]. The main technical tool to overcome the di�culties is the dilation

theory for maximal dissipative operator. In [12] the minimal self-adjoint dilation K

of H was explicitly constructed and analysed in detail. From the physical point of

view the minimal self-adjoint dilation plays the role of the Hamiltonian of a larger

closed system which contains the original system described by H. Using this fact

one de�nes steady states, carrier densities and current densities. It turns out that

the current density is independent of x 2 [a; b] and, in general, di�erent from zero.

So we have a constant current through [a; b] which is quite satisfactory from the

physical point of view.

It turns out that this formal approach to the net current �ow problem �ts into

models discussed in the literature. Indeed, a well adopted model in semiconductor

physics is the so-called Kirkner-Lent model [14] which was mathematically analysed

in [4], [5] and [6]. In this model one replaces the maximal dissipative operator H by

a family of maximal dissipative operators fH(z)g
z2C+

de�ned on H = L2([a; b]) and
given by

dom(H(z)) :=

�
g 2 W 2;2([0; 1]) :

g0(1) = �1(z)g(1)
g0(0) = ��0(z)g(0);

�
;

(H(z)g)(x) := � d
2

dx2
g(x) + V (x)g(x); g 2 dom(H(z));

(1.13)

m(x) � 1=2, with

�1(z) := i
p
z and �0(z) := i

p
z � V�; z 2 C + ; (1.14)

where the cut of the square root is along [0;1) and =m(
p
z) � 0 for z 2 C + . Let

us consider the self-adjoint Schrödinger operator K,

dom(K) := W 2;2(R);

(Kf)(x) := � d
2

dx2
f(x) + VKL(x)f(x); f 2 dom(K);

(1.15)

on the Hilbert space K = L2(R) whose potential VKL 2 C(R) looks like

VKL =

8<
:

V� : x 2 R�

V : x 2 [0; 1]

0 : x 2 (1;+1)

(1.16)

where V� > 0,

V (0) = V� and V (1) = 0: (1.17)

Operators of this type were investigate in [7]. It turns out that

P K
H (K � z)

�1jH = (H(z)� z)�1; z 2 C + : (1.18)
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which means that the operator K can be regarded as a self-adjoint dilation of the

family fH(z)g
z2C+

. Moreover, it holds

_
z2CnR

(K � z)�1H = K (1.19)

which means that K is a minimal self-adjoint dilation and, hence, that K is unique

up to a certain isomorphism. Thus, if we want to compute quantities which are

related to the subspace H, for instance, carrier densities on the interval [0; 1], we can

do this using either the self-adjoint operator K or the family fH(�)g�2Rof maximal

dissipative operators. Moreover, if we are only interested in quantities with respect

to a small energy interval around the energy �0 2 R (in the limit only quantities

for the energy �0), then it is enough to consider the maximal dissipative operator

H(�0) which leads to a model described at the beginning.

The paper is organized as follows. In Section 2 we rigorously de�ne Schrödinger-

type operators and brie�y recall their properties, cf. [11]. Moreover, we introduce

the important notion of the characteristic function �H(z) and brie�y describe the

minimal self-adjoint dilationK ofH. For further purposes we indicate its generalized

eigenfunction expansion. Essentially, we follow here the paper [12]. In Section 3 we

introduce generalized steady states and de�ne carrier densities. In Section 4 we

de�ne the current density and compute it in terms of the characteristic function.

In particular, it turns out that if the steady state is given by % = f(K), then the

current density is zero. In Section 5 we comment the results, in particular, we

clarify the relation to the Lax-Phillips scattering theory and verify the continuity

equation. Finally, we give a rigorous setting of so-called dissipative Schrödinger-

Poisson systems which have the advantage that their current densities are di�erent

from zero for suitable chosen steady states.

2 Schrödinger-type operators

Following the proposal of [9] we consider the non-selfadjoint Schrödinger-type oper-

ator H on the Hilbert space H = L2([a; b]) given by the domain (1.12) and

(Hg)(x) = (l(g))(x); g 2 dom(H); (2.1)

where

(l(g))(x) := �
1

2

d

dx

1

m(x)

d

dx
g(x) + V (x)g(x); (2.2)

and V 2 L2([a; b]) is a real potential, the e�ectivemassm(x) > 0 obeysm(x)+ 1
m(x)
2

L1([a; b]) and �a; �b 2 C + . The operator H is maximal dissipative and completely

non-selfadjoint, see [11]. The spectrum of H consists of isolated eigenvalues in the

lower half-plane with the only accumulation point at in�nity. Since the operator

H is completely non-selfadjoint there do not exist real eigenvalues. To analyze the
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operator H it is useful to introduce the elementary solutions va(x; z) and vb(x; z),

l(va(x; z))� zva(x; z) = 0; va(a; z) = 1;
1

2m(a)
v0
a
(a; z) = ��a; (2.3)

l(vb(x; z))� zvb(x; z) = 0; vb(b; z) = 1;
1

2m(b)
v0
b
(b; z) = �b; (2.4)

x 2 [a; b], z 2 C , which always exist. The Wronskian W (z) of va(x; z) and vb(x; z)

is de�ned by

W (z) = va(x; z)
1

2m(x)
v0
b
(x; z)� vb(x; z)

1

2m(x)
v0
a
(x; z): (2.5)

We note that the Wroskian does not depend on x. Similarly, the functions v�a(x; z)

and v�b(x; z),

v�a(x; z) := va(x; z) and v�b(x; z) := vb(x; z); z 2 C ; (2.6)

x 2 [a; b], z 2 C , are elementary solutions of

l(v�a(x; z))� zv�a(x; z) = 0; v�a(a; z) = 1;
1

2m(a)
v0
�a
(a; z) = ��a; (2.7)

l(v�b(x; z))� zv�b(x; z) = 0; v�b(b; z) = 1;
1

2m(b)
v0
�b
(b; z) = �b; (2.8)

x 2 [a; b]. The Wronskian of (v�a(x; z) and v�b(x; z) is denoted by W�(z) and is

also independent of x. By these elementary solutions one gets for the resolvents the

representations

((H � z)�1f)(x) = (2.9)

�
vb(x; z)

W (z)

Z
x

a

dy va(y; z)f(y)�
va(x; z)

W (z)

Z
b

x

dy vb(y; z)f(y);

for z 2 %(H), f 2 L2([a; b]) and

((H� � z)�1f)(x) = (2.10)

�
v�b(x; z)

W�(z)

Z
x

a

dy v�a(y; z)f(y)�
v�a(x; z)

W�(z)

Z
b

x

dy v�b(y; z)f(y);

for z 2 %(H�) and f 2 L2([a; b]), see [12].

Since H is completely non-selfadjoint the maximal dissipative operator H can be

completely characterized by its characteristic function �H(z), z 2 %(H) \ %(H�),

cf. [8]. The de�nition of the characteristic function relies on the so-called boundary

operators T (z) : H �! C
2 , z 2 %(H) and T�(z) : H �! C

2 , z 2 %(H�), which are

de�ned in [12]. Writing

�a = qa +
i

2
�2
a

and �b = qb +
i

2
�2
b
; �a; �b > 0; (2.11)
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the boundary operators are de�ned by

T (z)f :=

�
�b((H � z)�1f)(b)
��a((H � z)�1f)(a)

�
(2.12)

and

T�(z)f :=

�
�b((H

� � z)�1f)(b)
��a((H� � z)�1f)(a)

�
; (2.13)

f 2 L2([a; b]). Using the resolvent representations (2.9) and (2.10) we obtain

T (z)f =
1

W (z)

 
��b

R
b

a
dy va(y; z)f(y)

�a
R
b

a
dy vb(y; z)f(y)

!
(2.14)

and

T�(z)f =
1

W�(z)

 
��b

R
b

a
dy v�a(y; z)f(y)

�b
R
b

a
dy v�b(y; z)f(y)

!
; (2.15)

f 2 L2([a; b]). The adjoint operators are given by

(T (z)��) (x) =
1

W (z)

�
��bva(x; z); �avb(x; z)

�
� (2.16)

=
1

W�(z)
(��bv�a(x; z); �av�b(x; z)) �;

and

(T�(z)
��) (x) =

1

W�(z)

�
��bv�a(x; z); �av�b(x; z)

�
� (2.17)

=
1

W (z)
(��bva(x; z); �avb(x; z)) �;

where

� =

�
�b

�a

�
2 C 2 : (2.18)

The characteristic function �H of the maximal dissipative operator H is a two-by-

two matrix-valued function which satis�es the relation

�H(z)T (z)f = T�(z)f; z 2 %(H) \ %(H�); (2.19)

f 2 L2([a; b]). It depends meromorphically on z 2 %(H) \ %(H�) and is contractive

in C � , i.e.

k�H(z)k � 1 for z 2 C � : (2.20)

Using the elementary solutions the characteristic function �H takes the form

�H(z) = IC2 + i
1

W�(z)

�
�2
b
v�a(b; z) ��b�a
��b�a �2

a
v�b(a; z)

�
: (2.21)
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for z 2 %(H) \ %(H�), cf. [12]

Since H is a maximal dissipative operator there is a larger Hilbert space K � H
and a self-adjoint operator K on K such that

P KH (K � z)
�1jH = (H � z)�1; =m(z) > 0; (2.22)

see [8]. The operator K is called a self-adjoint dilation of the maximal dissipative

operator H. Obviously, from the condition (2.22) one gets

P KH (K � z)
�1jH = (H� � z)�1; =m(z) < 0: (2.23)

K is called a minimal self-adjoint dilation of H if the condition_
z2CnR

(K � z)�1H = K (2.24)

is satis�ed. Minimal self-adjoint dilations of maximal dissipative operators are deter-

mined up to a certain isomorphism, in particular, all minimal self-adjoint dilations

are unitarily equivalent.

In the present case the minimal self-adjoint dilation of the maximal dissipative

operator H can be constructed in an explicit manner. Following [12] we introduce

the larger Hilbert space

K = D� � H�D+; (2.25)

where D� := L2(R�; C
2). Introducing the graph 
̂,

R� R+

R� R+

[a; b]

one can write the Hilbert space K as L2(
̂). Furthermore, we de�ne

~g := g� � g � g+; (2.26)

where

g�(x) :=

�
gb
�
(x)

ga
�
(x)

�
and g+(x) :=

�
gb+(x)
ga+(x)

�
; (2.27)

for x 2 R� and x 2 R+, respectively. Let the matrices Ka

�
and Kb

�
given by

Ka

�
:=

1

�a

�
0 0

1 �a

�
and Ka

+ :=
1

�a

�
0 0

1 �a

�
(2.28)

as well as

Kb

�
:=

1

�b

�
1 ��b
0 0

�
and Kb

+ :=
1

�b

�
1 ��b
0 0

�
: (2.29)
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Using these notations the self-adjoint dilation K is de�ned by

dom(K) :=

8>><
>>:~g 2 K :

g� 2 W 1;2(R�; C
2);

g; 1

m
g0 2 W 1;2([a; b]);

Ka

�
ga +Kb

�
gb = g�(0);

Ka

+ga +Kb

+gb = g+(0)

9>>=
>>; (2.30)

and

K~g := �i
d

dx
g� � l(g)��i

d

dx
g+; ~g 2 dom(K); (2.31)

where

ga =

�
1

2m(a)
g0(a)

g(a)

�
and gb =

�
1

2m(b)
g0(b)

g(b)

�
: (2.32)

With respect to a graph picture the operator K looks like

)

�bg
b

�
(0) = 1

2m(b)
g0(b)� �bg(b)

�i d
dx
gb
�

(

1
2m(b)

g0(b)� �bg(b) = �bg
b

+(0)

�i d
dx
gb+

)

�ag
a

�
(0) = 1

2m(a)
g0(a) + �ag(a)

�i d
dx
ga
�

(

1

2m(a)
g0(a) + �ag(a) = �ag

a

+(0)

�i d
dx
ga+

l(g)

The self-adjoint operator K is absolutely continuous and its spectrum coincides with

the real axis, i.e. �(K) = R. The multiplicity of its spectrum is two. The resolvent

of K admits the representation

(K � z)�1 (f� � f � f+) = (2.33)

i

Z
x

�1

dy ei(x�y)zf�(y) � (H � z)�1f + iT�(z)
�

Z 0

�1

dy e�iyzf�(y) �

i

Z
x

0

dy ei(x�y)zf+(y) + ieizxT (z)f + i�H(z)
�

Z 0

�1

dy ei(x�y)zf�(y)

for =m(z) > 0 and

(K � z)�1 (f� � f � f+) = (2.34)

�i
Z 0

x

dy ei(x�y)zf�(y)� ieizxT�(z)f � i�H(z)

Z
1

0

dy ei(x�y)zf+(y)�

(H� � z)�1f � iT (z)�
Z

1

0

dy e�iyzf+(y) � �i
Z

1

x

dy ei(x�y)zf+(y)

for =m(z) < 0. The generalized eigenfunctions ~ �(�; �; � ), � 2 R, � = a; b, of K are

given by

~ �(x; �; � ) :=  �
�
(x; �; � )�  �(x; �; � )�  �+(x; �; � ) = (2.35)

1
p
2�
eix�e� �

1
p
2�

(T�(�)
�e�)(x)�

1
p
2�
eix��H(�)

�e�
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where

eb :=

�
1

0

�
and ea :=

�
0

1

�
: (2.36)

The functions are mutually orthogonal, i.e. one has�
~ �(�; �; � ); ~ �(�; �0; � 0)

�
L2(
̂)

= Æ(�� �0)Æ�� 0; (2.37)

in the sense of distribution for �; �0 2 R, �; � 0 = a; b. Moreover, elements of the formZ
R

d�
X
�=a;b

~ �(�; �; � )ĝ�(�) (2.38)

where ĝ� (�), � = a; b, are smooth functions with compact support, are dense in K. We

note that the generalized eigenfunctions ~ �(�; �; � ) are usually called the incoming

eigenfunctions. Using the incoming eigenfunctions one de�nes a transformation

�� : K �! K̂ = L2(R; C 2)

(��~g)(�) =: ĝ(�) =

�
ĝb(�)
ĝa(�)

�
; (2.39)

where

ĝ� (�) :=

Z

̂

dx
�
~g(x); ~ �(x; �; � )

�
; � = a; b: (2.40)

�� is unitary and called the incoming Fourier transformation. The inverse incoming

Fourier transformation ��1
�

is given by

(��1
�
ĝ)(x) =

Z
R

d�
X
�=a;b

~ �(x; �; � )ĝ�(�); ĝ 2 L2(R; C 2): (2.41)

We note that

��K��1
�

=M (2.42)

where M is the multiplication operator by the independent variable � on K̂, i.e.

dom(M) := fĝ 2 L2(R; C 2) : �ĝ(�) 2 L2(R; C 2)g ;

(Mĝ)(�) := �ĝ(�); ĝ 2 dom(M):
(2.43)

The representation (2.43) induced by �� is called the incoming spectral representa-

tion of K.

Finally, we note that each bounded self-adjoint operator G on K, which commutes

with K, corresponds to a measurable family fG(�)g�2R of two-by-two matrices,

which are uniformly bounded, i.e., G(�) 2 L1(R;B(C 2)), such that the multiplica-

tion operator Ĝ on L2(R; C 2) de�ned by

dom(Ĝ) := fĝ 2 L2(R;C 2) : G(�)ĝ(�) 2 L2(R;C 2)g ;

(Ĝĝ)(�) := G(�)ĝ(�); ĝ 2 dom( ^G(�))
(2.44)
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is unitarily equivalent to G, i.e.

��G�
�1
�

= Ĝ: (2.45)

Indeed, if G commutes with K, then Ĝ commutes with M . Applying Theorem

VII.2.3 of [3] one immediately gets that Ĝ is a multiplication operator of type (2.44).

The representation (2.44) is called the incoming spectral representation of G.

3 Carrier density

In the following we call an operator % : K �! K a density matrix if % is a bounded,

non-negative operator. The operator % is called a steady state if % commutes with

K. Obviously, a steady state does not change in time. If % is a steady state, then

there is a measurable matrix-valued function %(�) 2 L1(R;B(C 2)) such that the

multiplication operator %̂ on L2(R; C 2) generated by %(�) is unitarily equivalent to

%, i.e.

% = ��1
�
%̂��; (3.1)

see above. Obviously, the measurable function %(�) takes the form

%(�) =

�
%bb(�) %ba(�)
%ab(�) %aa(�)

�
(3.2)

where %��(�) 2 L1(R), �; � = a; b. Since % � 0 one gets that %(�) � 0 a.e. (with

respect to the Lebesgue measure).

De�nition 3.1 A bounded self-adjoint operator A on K is called an observable. We

say the observable A

(i) is admissible with respect to % if %A is a nuclear operator on K, i.e. %A 2 L1(K),

(ii) is admissible with respect to K if EK(�)A 2 L1(K) for each bounded interval

� � R where EK(�) denotes the spectral measure of K.

If the observable A is admissible with respect to %, then its expectation value E%(A)

with respect to the density matrix % is de�ned by

E%(A) := tr(%A): (3.3)

In the following we show that the admissibility of A with respect to K leads to a

certain localization in the incoming spectral representation:

Proposition 3.2 Assume m + 1

m
2 L1([a; b]), V 2 L2([a; b]) and �a; �b 2 C + .

If the observable A is admissible with respect to K, then there exists a measurable
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matrix-valued function A(�) 2 L1
loc
(R;B(C 2)), such that A(�) = A(�)� for a.e. � 2 R

and

tr(%AEK(�)) =

Z
�

d� trC2 (%(�)A(�)) (3.4)

for any bounded Borel set � � R and any steady state % of K. The measurable

function A(�) is uniquely de�ned up to a Borel set of Lebesgue measure zero.

If the observable A is in addition admissible with respect to the steady state %,

then trC2 (%(�)A(�)) 2 L1(R) and the representation

tr(%A) =

Z
R

d� trC2 (%(�)A(�)) (3.5)

holds.

Proof. Notice that the spectral measure EK(�) of K is absolutely continuous with

respect to Lebesgue measure. Hence, the set function

�%;A(�) := tr(%AEK(�)); (3.6)

where � is bounded Borel set of R, is in fact a Lebesgue absolutely continuous

measure. Let
d��;A

d�
denote its Radon-Nikodym derivative and de�ne

TA(%̂) :=
d�%;A

d�
: (3.7)

Then TA(�) maps L1(R;B(C 2)) continuously into L1
loc
(R) (the latter in its canonic

Frechet topology) and, additionally, one has

tr(%AEK(�)) =

Z
�

d�
d�%;A

d�
(�) =

Z
�

d� TA(%̂)(�) (3.8)

for any bounded Borel set� � R. It is not hard to see that (3.8) implies the equality

TA(��%̂) = ��TA(%̂) (3.9)

for any bounded Borel set � � R where �� denotes its indicator function. We put

ebb :=

�
1 0
0 0

�
; eba :=

�
0 1
0 0

�
; eab :=

�
0 0
1 0

�
; eaa :=

�
0 0
0 1

�
(3.10)

and de�ne for any h 2 L1(R)

Aij(h) := TA(h � eji); i; j = a; b: (3.11)

Clearly, each of the mappings Aij(�) then maps L1(R) continuously into L1
loc
(R)

and (3.11) implies

Aij(��h) = ��Aij(h) (3.12)
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for any h 2 L1(R) and any Borel set �. Taking in particular h � 1, this yields

Aij(��) = ��Aij(1): (3.13)

Obviously, by the linearity of the mappings Aij(�), this last equation remains true

if �� is there replaced by any (�nite) linear combination of indicator functions.

Because the set of �nite linear combinations of indicator functions is dense in L1(R),

one gets for all h 2 L1(R) the equation

Aij(h) = h �Aij(1): (3.14)

Since

%(�) = %bb(�)ebb + %ba(�)eba + %ab(�)eab + %aa(�)eaa (3.15)

one gets

tr(%AEK(�)) =

Z
�

d� TA(%̂)(�) = (3.16)

X
i;j=a;b

Z
�

d� Aij(%
ij)(�) =

X
i;j=a;b

Z
�

d� %ij(�)Aji(1)(�):

Setting

A(�) :=
�
Abb(1)(�) Aba(1)(�)
Aab(1)(�) Aaa(1)(�)

�
(3.17)

we �nally obtain (3.4) for any bounded Borel set � � R and any steady state % of

K.

Assume that ~A(�) obeys also the conditions of the proposition. Setting G(�) :=

A(�)� ~A(�), � 2 R, one gets thatZ
�

trC2 (%(�)G(�)) = 0 (3.18)

for any bounded Borel set � and any steady state %. Hence trC2 (%(�)G(�)) = 0 for

a.e. � and any steady state % which immediately yields G(�) = 0 or A(�) = ~A(�)

for a.e. � 2 R.

If % is admissible with respect to A, then jtr(%AEK(�)j < k%AkL1 for any

Borel set � � R. By (3.4) this implies that tr(%(�)A(�)) 2 L1(R). Since one

has lim�"Rtr(%AEK(�)) = tr(%A) we obtain from (3.4) the equality (3.5). �

Proposition 3.2 says that the averaging procedure localizes with respect to the

incoming spectral representation. Indeed, the quantity tr(%(�)A(�)) can be regarded
as the local average of the observable A(�) with respect to the density matrix %(�)
at energy � 2 R, i.e.

E%(�)(A(�)) := tr(%(�)A(�)): (3.19)

Formula (3.5) has the meaning that the total average E%(A) is the sum of the local

averages E%(�)(A(�)), i.e.

E%(A) =

Z
R

d� E%(�)(A(�)): (3.20)

Proposition 3.2 gives rise to the following
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De�nition 3.3 Let A be an observable which is admissible with respect to K.

An element A(�) 2 L1
loc
(R;B(C 2)) is called a localizer of A with respect to K if

A(�)� = A(�) for a.e. � 2 R and

tr(%AEK(�)) =

Z
�

d� tr(%(�)A(�)) (3.21)

holds for any bounded Borel subset � � R and any steady state %.

Proposition 3.2 says that an observable which is admissible with respect to K has

always a unique localizer.

To calculate the carrier density we consider the observable U(!), ! � 
, given

by

(U(!)~f )(x) = 0� �!(x)f(x)� 0; ~f 2 L2(
̂); (3.22)

for any Borel subset ! � 
. We note that the observable U(!) is a projection on

K with ran(U(!)) � H. Loosely speaking, the projection acts in fact only on the

subspace H � K.

Lemma 3.4 Assume m+ 1
m
2 L1([a; b]), V 2 L2([a; b]) and �a; �b 2 C + . Then for

any Borel set ! � 
 the observable U(!) is admissible with respect to the minimal

self-adjoint dilation K of the maximal dissipative operator H. If the steady state %
satis�es the condition

C%̂ := sup
�2R

p
�2 + 1k%(�)kB(C2 ) <1; (3.23)

then for any Borel set ! � 
 the observable U(!) is admissible with respect to %.

Proof. The relation (2.33) implies

U(!)(K � z)�1 ~f = 0� �!(H � z)�1f + i�!T�(z)
�

Z 0

�1

dy e�iyzf�(y) � 0 (3.24)

for ~f 2 K and z 2 C + . By Theorem 3.1 of [11] one gets that (H � z)�1 is a trace

class operator for each z 2 C + . Hence U(!)(H � z)�1 is a trace class operator for

each ! � 
. Since the operator T�(z)
� acts from the two dimensional Hilbert space

C
2 into H one easily gets that the second addend of (3.24) is a trace class operator,

too. Hence U(!)(K � z)�1 2 L1(K) for each Borel set ! � 
 and z 2 C + . Using

the representation

U(!)EK(�) = U(!)(K � z)�1(K � z)EK(�); z 2 C + ; (3.25)

we �nd that U(!)EK(�) is a trace class operator for each Borel sets ! � 
 and each

bounded interval � � R. Hence, the observable U(!) is admissible with respect to

K for each Borel set ! � 
.
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Moreover, taking into account (3.23) and the representation

U(!) % = U(!)(K � i)�1(K � i)% (3.26)

one immediately gets that U(!) % is a trace class operator for each ! � 
, because

(K�i)% is bounded. Hence, %U(!) is a trace class operator for each Borel set ! � 


which yields that U(!) % is admissible with respect to % �

Since U(!) is admissible with respect toK for any Borel set ! � 
 by Proposition

3.2 there is a unique localizer U(!)(�) : R�! B(C 2). We are going to calculate this

localizer.

Proposition 3.5 Assume m + 1

m
2 L1([a; b]), V 2 L2([a; b]) and �a; �b 2 C + .

Then for any Borel set ! � 
 the localizer of U(!)(�) of the observable U(!) is

given by

U(!)(�) =

Z
!

dx D(x; �) (3.27)

where

D(x; �) :=

�
j �(x; �; b)j2  �(x; �; a) �(x; �; b)

 �(x; �; b) �(x; �; a) j �(x; �; a)j2

�
(3.28)

x 2 
, � 2 R.

If the steady state % satis�es the condition (3.23), then

E%(U(!)) =

Z
R

d� trC2 (%(�) U(!)(�)) (3.29)

for any Borel subset ! � 
.

Proof. By Lemma 3.4 the observable U(!) is admissible for any Borel set ! � 
.
By Proposition 3.2 there is a unique localizer U(!)(�) 2 L1

loc
(R;B(C 2)) such that

(3.21) is satis�ed for any bounded Borel set� � R and any steady state %. Following

the proof of Proposition 3.2 we consider the measure

�%;U(!)(�) = tr(% U(!)EK(�)) (3.30)

for any bounded Borel set � � R. We set Û (!) := ��U(!)�
�1
�

and Û�(!) :=

EM (�)ÛEM(�) where M = ��K��1
�
, see (2.42). By Lemma 3.4 the operator

Û�(!) is nuclear. Hence, we �nd

�%;U(!)(�) = tr(%̂ Û�(!)): (3.31)

Let us calculate the kernel of Û�(!). To his end we consider the scalar product

(Û�(!)ĝ; f̂), ĝ; f̂ 2 L2(�; C 2). Using (2.41) one has

(Û�(!)ĝ; f̂) = (3.32)Z
!

dx

Z
�

d�
X
�=a;b

 �(x; �; � )ĝ�(�)

Z
�

d�
X
�=a;b

 �(x; �; �)f̂ �(�):
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Setting

U
��

� (!)(�; �) :=

Z
!

dx  �(x; �; �) �(x; �; � ); �; � = a; b; (3.33)

we get

(Û�(!)ĝ; f̂) = (3.34)Z
�

d�

�Z
�

d�

�
U bb

� (!)(�; �) U ba

� (!)(�; �)

Uab

� (!)(�; �) Uaa

� (!)(�; �)

��
ĝb(�)

ĝa(�)

�
;

�
f̂ b(�)

f̂a(�)

��

what shows that

U�(!)(�; �) :=

�
U bb

� (!)(�; �) U ba

� (!)(�; �)
Uab

� (!)(�; �) Uaa

� (!)(�; �)

�
(3.35)

is the kernel of the integral operator Û�(!). Setting

D(x; �; �) :=

�
 �(x; �; b) �(x; �; b)  �(x; �; a) �(x; �; b)

 �(x; �; b) �(x; �; a)  �(x; �; a) �(x; �; a)

�
(3.36)

we obtain the representation

U�(!)(�; �) =

Z
!

dx D(x; �; �); �; � 2 �: (3.37)

Since U�(!)(�; �) = U�0(!)(�; �) for �; � 2 � � �0 it makes sense to de�ne

U(!)(�; �) := lim�"RU�(!)(�; �), �; � 2 R. Hence U�(!)(�; �) = U(!)(�; �) for

�; � 2 � and

U(!)(�; �) =

Z
!

dx D(x; �; �); �; � 2 �: (3.38)

Since the kernel depends continuously on � and � one gets that

tr(%̂ Û�(!)) =

Z
�

d� trC2 (%(�) U(!)(�; �)) (3.39)

for any bounded Borel set � � R and any steady state %. From (3.38) we �nd

that U(!)(�; �)� = U(!)(�; �) for � 2 R. Since the eigenfunctions  �(x; �; b) and

 �(x; �; a) are bounded on compact sets of x and � we obtain that U(!)(�; �) 2
L1
loc
(R;B(C 2)). By (3.39) the matrix-valued function U(!)(�) := U(!)(�; �), � 2 R,

is the unique localizer of the observable U(!). By condition (3.23) the observable

U(!) is admissible with respect to %. Applying Proposition 3.2 we verify (3.29).

It remains to verify (3.27) and (3.28). From (3.38) and (3.39) we obtain the

representation

tr(%̂ Û�(!)) =

Z
�

d�

Z
!

dx trC2 (%(�) D(x; �; �)): (3.40)

Setting D(x; �) := D(x; �; �), x 2 
. � 2 R, we immediately obtain (3.27) and

(3.28). �



Density and current of a dissipative Schrödinger operator 17

We set

u%̂(x; �) := trC2 (%(�) D(x; �)) (3.41)

for x 2 
 and � 2 R. A simple computation shows that the eigenvalues of D(x; �)

are equal to j �(x; �; b)j2 and j �(x; �; a)j2 which shows that the matrix D(x; �) is
non-negative for each x 2 
 and � 2 R. Since for a.e. � 2 R the matrix %(�) is
non-negative, too one gets that u%̂(x; �) � 0 for x 2 
 and a.e. � 2 R. This fact

can also be veri�ed taking into account the representation

u%̂(x; �) =

�
%t(�)

�
 �(x; �; b)

 �(x; �; a)

�
;

�
 �(x; �; b)

 �(x; �; a)

��
(3.42)

where %t(�) is the transposed matrix to (3.2). Moreover, if condition (3.23) is

satis�ed, then from Proposition (3.5) we obtain the representation

E%(U(!)) =

Z
R

d�

Z
!

dx u%̂(x; �) (3.43)

for Borel sets ! � 
. Taking into account Fubini's theorem we �nd that

E%(U(!)) =

Z
!

dx u%̂(x): (3.44)

where

u%̂(x) :=

Z
R

d� u%̂(x; �) � 0; x 2 
; (3.45)

and u%̂ 2 L1(
). The representation (3.44) shows that E%(U(�)) de�nes a measure

on 
 which is absolutely continuous with respect to the Lebesgue measure. Since

the expectation value E%(U(!)) has the meaning of the number of carriers in ! � 

its Radon-Nikodym derivative can be interpreted as the carrier density of the system

described by K and mutatis mutandis by H.

De�nition 3.6 Assume m+ 1

m
2 L1([a; b]), V 2 L2([a; b]) and �a; �b 2 C + . Then

the matrixD(x; �), x 2 
, and the value u%̂(x; �) are called carrier density observable
and carrier density at x 2 
 and at energy � 2 R of the system described by H,

respectively.

This de�nition is justi�ed by the fact that by (3.41) the carrier density u%̂(x; �)
is the expectation value of the carrier density observable D(x; �), i.e. u%̂(x; �) =

E%(�)(D(x; �)) at x 2 
 and at � 2 R. Moreover, we note that (3.45) can be written

as

u%̂(x) =

Z
R

d� E%(�)(D(x; �)); x 2 
; (3.46)

i.e, the carrier density at x 2 
 is the sum of expectation values of the carrier density

observable at x 2 
 over all energies.

On the Hilbert space K = L2(
̂) we consider the multiplication operator M(h),

(M(h)~f )(x) = 0� h(x)f(x)� 0; x 2 
; (3.47)
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for real functions h 2 L1(
). We note thatM(�!) = U(!) for any Borel set ! � 
.

In particular, one has M(�
) = U(
) = P KH . Obviously, the representation

% M(h) = % U(
)M(h); h 2 L1(
); (3.48)

is valid. Since the observable U(
) is admissible with respect to % the product

% U(
) is a nuclear operator on K which yields that %M(h) is a nuclear operator on

K, i.e. the observable M(h) is admissible with respect to %.

Proposition 3.7 Assume m + 1

m
2 L1([a; b]), V 2 L2([a; b]) and �a; �b 2 C + . If

the steady state % satis�es the condition (3.23), then the carrier density u%̂ de�ned

by (3.45) is a non-negative L1-function such that

tr(%M(h)) =

Z



dx u%̂(x)h(x) (3.49)

for real functions h 2 L1(
). In particular, one has

ku%̂kL1(!) = tr(%U(!)) � C%̂k(K � i)�1P KH kL1(K) (3.50)

for each Borel set ! � 
.

Proof. Setting ! = 
 we obtain from (3.44) that u%̂ 2 L1(
). We choose h = �!,

! � 
. By (3.44) we get

tr(%M(�!)) =

Z



dx u%̂(x)�!(x): (3.51)

By linearity this equation extends to

tr(%M(h)) =

Z



dx u%̂(x)h(x) (3.52)

where h is an arbitrary step function on 
. Since u%̂ is from L1(
) and %U(
) is
a nuclear operator both sides of (3.52) admit a continuation to L1-functions which
veri�es (3.49).

It remains to show the estimate (3.50). From (3.44) we immediately getZ



dx ug(x) = tr(%U(
)) = tr(%(K � i)(K � i)�1U(
)): (3.53)

Since U(
)(K � i)�1 2 L1(K) and %(K � i) is a bounded operator which norm can

be estimated by C%̂ we obtain

tr(%(K � i)(K � i)�1U(!)) � C%̂k(K � i)�1P KHkL1(K) (3.54)

which veri�es (3.50). �
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Obviously, the relation (3.49) takes the form

tr(%M(h)) = hu%̂; hiL1 (3.55)

where by h�; hi
L
1 , h 2 L1(
), we denote the linear functionals on L1(
).

We conclude this section with some considerations which we need in the follow-

ing section. Since f%(�)g�2R is a measurable family of non-negative self-adjoint

operators there is a measurable family fV (�)g�2R of unitary operators on C
2 such

that

%(�) = V (�)

�
�b(�) 0
0 �a(�)

�
V (�)� (3.56)

for a.e. � 2 Rwhere �b(�) and �a(�) are the non-negative eigenvalues of %(�). From

(3.56) we get that

%t(�) = V t(�)�
�
�b(�) 0

0 �a(�)

�
V t(�) (3.57)

for a.e. � 2 R where V t(�) is the transposed matrix to V (�). Inserting (3.57) into

(3.42) we obtain the expression

u%̂(x; �) = (3.58)��
�b(�) 0
0 �a(�)

�
V t(�)

�
 �(x; �; b)
 �(x; �; a)

�
; V t(�)

�
��(x; �; b)
��(x; �; a)

��
:

Let us introduce the unit vectors e�(�),

e� (�) = V (�)e� ; � = b; a (3.59)

which perform an orthonormal basis in C 2 . We set

~ (x; �; e�(�)) :=  �(x; �; e�(�)) �  (x; �; e�(�))�  +(x; �; e�(�)) = (3.60)

1
p
2�
eix�e�(�)�

1
p
2�

(T�(�)
�e�(�))(x)�

1
p
2�
eix��H(�)

�e�(�):

Obviously, the system f~ (x; �; e�(�))g�=b;a performs an orthonormal basis of gener-

alized eigenfunctions. Moreover, a straightforward computation shows that

V t(�)

�
 �(x; �; b)

 �(x; �; a)

�
=

�
 (x; �; eb(�))

 (x; �; ea(�))

�
(3.61)

which leads to

u%̂(x; �) = �b(�)j (x; �; eb(�))j2 + �a(�)j (x; �; ea(�))j2 (3.62)

for x 2 
 and � 2 R.
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4 Current density

In accordance with (1.11) the current density j%̂(x; �) for the energy � 2 R is de�ned

by

j%̂(x; �) := �b(�)=m
�

1

m(x)
 (x; �; eb(�))

0  (x; �; eb(�))
�
+

�a(�)=m
�

1

m(x)
 (x; �; ea(�))

0  (x; �; ea(�))
� ; (4.1)

x 2 
, where the eigenfunctions  (x; �; e�(�)), � = a; b, are de�ned by (3.61). We

are going to relate the current density to the characteristic function of the maximal

dissipative operator H.

Proposition 4.1 Assume m + 1

m
2 L1([a; b]), V 2 L2([a; b]) and �a; �b 2 C + .

Further, let % be a steady state. Then the current density j%̂(x; �), x 2 
, � 2 R, is
independent from x and admits the representation

j%̂(�) = trC2 (%(�)C(�)) (4.2)

where

C(�) := �
1

2�i

�a�b

W (�)
E�H(�)

� =
1

2�i

�b�a

W (�)
�H(�)E; (4.3)

� 2 R. Moreover, if trC2 (%(�)) 2 L1(R), then the total current j%̂,

j%̂ :=

Z
R

d� j%̂(�); (4.4)

is �nite and satis�es the estimate

jj%̂j �
1

2�

Z
R

d� trC2 (%(�)) (4.5)

Proof. From the de�nition (4.2) one gets that

j%̂(x; �) = (4.6)

=m

 *�
�b(�) 0

0 �a(�)

� 1

m(x)
 (x; �; eb(�))

0

1
m(x)

 (x; �; ea(�))
0

!
;

�
 (x; �; eb(�))
 (x; �; ea(�))

�+!
:

Taking into account (3.57) and (3.61) we get

j%̂(x; �) = =m

 *
%t(�)

 
1

m(x)
 �(x; �; b)0

1
m(x)

 �(x; �; a)0

!
;

�
 �(x; �; b)
 �(x; �; a)

�+!
(4.7)

which can be expressed by

j%̂(x; �) = trC2 (%(�)C(x; �)) (4.8)
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where

C(x; �) := (4.9)

=m

  
1

m(x)
 �(x; �; b)0  �(x; �; b) 1

m(x)
 �(x; �; a)0  �(x; �; b)

1

m(x)
 �(x; �; b)0  �(x; �; a) 1

m(x)
 �(x; �; a)0  �(x; �; a)

!!

We note that

C(x; �) =
1

i

�
W ( �(x; �; b);  �(x; �; b)) W ( �(x; �; b);  �(x; �; a))

W ( �(x; �; a);  �(x; �; b)) W ( �(x; �; a);  �(x; �; a))

�
(4.10)

where W (�; �) is the Wronskian de�ned by (2.5). Since

W ( �(x; �; b);  �(x; �; b)) = �
i

2�

�2
b
�2
a

jW (�)j2
(4.11)

W ( �(x; �; a);  �(x; �; b)) =
1

2�

�b�a

jW (�)j2
�
W (�) � i�2

b
va(b; �)

	
(4.12)

W ( �(x; �; b);  �(x; �; a)) = �
1

2�

�b�a

jW (�)j2
�
W (�)� i�2

a
vb(a; �)

	
(4.13)

W ( �(x; �; a);  �(x; �; a)) =
i

2�

�2
a
�2
b

jW (�)j2
(4.14)

we �nd

C(x; �) =
1

2�i

�b�a

jW (�)j2

�
�i�b�a �(W (�)� i�2

a
vb(a; �))

W (�)� i�2
b
va(b; �) i�a�b

�
: (4.15)

This yields

C(x; �) = (4.16)

�
1

2�i

�b�a

jW (�)j2

�
0 1
�1 0

��
W (�)� i�2

b
va(b; �) i�b�a

i�b�a W (�) � i�2
a
vb(a; �)

�
:

From (2.21) we obtain

�H(�)
� =

1

W (�)

�
W (�)� i�2

b
va(b; �) i�b�a

i�b�a W (�)� i�2
a
vb(a; �)

�
: (4.17)

Hence, one has

C(x; �) = �
1

2�i

�b�a

W (�)
E�H(�)

� (4.18)

where

E :=

�
0 1
�1 0

�
: (4.19)

This shows that C(x; �) is actually independent of x 2 
. By (4.8) this leads to the

representation

j%̂(x; �) = �
1

2�i

�b�a

W (�)
trC2 (%(�)E�H(�)

�) (4.20)
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which shows that the current density is also independent of x 2 
. Thus it makes

sense to denote C(x; �) and j%̂(x; �) by C(�) and j%̂(�), respectively. Hence, we have

proved one part of the assertion (4.2) and (4.3). Taking into account the identity

1

W (�)
E�H(�)

� = �
1

W (�)
�H(�)E (4.21)

we verify the other part.

It remains to show (4.4) and (4.5). To this end we note that from (4.17) one gets

J�H(�)
� = J +

i

W (�)

�
�b�a ��2

a
vb(a; �)

��2
b
va(b; �) �b�a

�
(4.22)

where

J :=

�
0 1
1 0

�
: (4.23)

Hence we �nd

trC2 (J�H(�)
�) = 2i

�b�a

W (�)
(4.24)

which yields
1

2�i

�b�a

W (�)
= �

1

4�
trC2 (J�H(�)

�): (4.25)

Using the de�nition (4.3) we �nally obtain

j%̂(�) = �
1

4�
trC2 (J�H(�)

�) trC2 (%(�)�H(�)E): (4.26)

This leads to the estimate

jj%̂(�)j �
1

4�
k�H(�)

�kL1(C2 )k%(�)kL1(C2 ): (4.27)

Since k�H(�)
�kL1(C2 ) � 2 and k%(�)kL1(C2 ) = trC2 (%(�)) we �nd

jj%̂(�)j �
1

2�
trC2 (%(�)) (4.28)

which immediately proves (4.5). �

In correspondence to the carrier density it seems to be useful to introduce the

following de�nition.

De�nition 4.2 Assume m+ 1

m
2 L1([a; b]), V 2 L2([a; b]) and �a; �b 2 C + . Then

the matrix C(�) and the value j%(�) are called the current density observable and

the current density at energy � 2 R of the system described by H, respectively.
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The de�nition is again justi�ed by the fact that the current density at energy � 2 R
is the expectation value of the current density observable at energy � 2 R, i.e.

j%̂(�) = E%(�)(C(�)) for � 2 R. Using this notation formula (4.4) takes the form

j%̂ =

Z
R

d� E%(�)(C(�)): (4.29)

In the following corollary we consider the case that the steady state % is a function

of K, i.e.

% = f(K); (4.30)

where, of course, f(�) 2 L1(R) and f(�) � 0 for a.e. � 2 R and. In this case the

density matrix % belongs to the bicommutant of K.

Corollary 4.3 Assume m + 1

m
2 L1([a; b]), V 2 L2([a; b]) and �a; �b 2 C + . If the

steady state % is given by (4.30) with a non-negative function f(�) 2 L1(R), then
j%̂(�) = 0 for a.e. � 2 R.

Proof. In this case one has

%(�) = f(�)IC2 ; � 2 R: (4.31)

which gives

j%̂(�) = f(�)tr(C(�)) = �
1

2�i
f(�)

�b�a

W (�)
trC2 (E�H(�)

�): (4.32)

By (4.17) we immediately get that trC2 (E�H(�)
�) = 0 for � 2 R. �

If the steady state % has the form

%(�) =

�
%bb(�) 0
0 %aa(�)

�
; (4.33)

then the current density is given by

j%̂(�) = �
1

2�

�2
a
�2
b

jW (�)j2
(%bb(�) � %aa(�)): (4.34)

This current density is di�erent from zero if %bb(�) 6= %aa(�) at least for a set of

positive Lebesgue measure. So a current density di�erent from zero arises only if we

have a occupation disparity between the two eigenstates  �(x; �; b) and  �(x; �; a).

This is the case if the steady state % belongs to the commutant of K but not to

the bicommutant. In other words, the density matrix (1.8) used for self-adjoint

boundary conditions and generalized by (4.30) to the dissipative case leads to a zero

current density.
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5 Remarks

1. The carrier density u%̂(�) performed by (3.41) and (3.44) is a straightforward

generalization of the corresponding de�nition (1.5) of the carrier density in the self-

adjoint case. Indeed, this correspondence relies on the replacements

l  ! fa; b; �g;

f lg1l=1  ! f~ (�; �; � )g�2R;�=a;b;P
1

l=1  !
R
�2R

d�
P

�=a;b

%l  ! %(�)

(5.1)

The same holds for the current density de�ned by (4.1) which is a straightforward

generalization of (1.11). However, in contrast to the self-adjoint case the current

density now is not necessarily zero!

2. There is consensus in the conviction that scattering states are responsible for

the current. This usually leads to a a relation between current density and scattering

matrix. Actually, the same takes place here. Formulae (4.2) and (4.3) relate the

current density j%̂(�) with the characteristic function �H�(�) of H�. It turns out

that the characteristic function �H�(�) of H� can be regarded as the scattering

matrix of an associated scattering system. Indeed, with the self-adjoint dilation K

one can associate a so-called Lax-Phillips scattering theory [2, 16]. To this end one

introduces the Hilbert space K0,

K0 := L2(R;C 2) = D� �D+ � K: (5.2)

and the identi�cation operators J� : K0 �! K,

~f = J�f := P K0
D�
f � 0� 0; f 2 K0;

~f = J+f := 0� 0� P K0
D+
f; f 2 K0:

(5.3)

The subspaces D� and D+ are called incoming and outgoing subspaces, respectively.

On the Hilbert space K0 one de�nes the self-adjoint operator K0,

(K0f)(x) = �i
d

dx
f(x) (5.4)

with the domain dom(K0) :=W 1;2(R; C 2). The Lax-Phillips wave operators

W� = s� lim
t!�1

eitKJ�e
�itK0 (5.5)

exist and are complete, i.e. ran(W�) = K. The corresponding Lax-Phillips scattering

operator S = W �

+W� : K0 �! K̂, is unitary and commutes with the self-adjoint

operator K0. By F : K0 �! K̂ we denote the Fourier transform

(Ff)(�) = f̂(�) :=
1
p
2�

Z
R

dx e�i�xf(x); f 2 K0; � 2 R: (5.6)
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We note that FK0F�1 = M where M is de�ned by (2.43). Since S commutes

with K0 the operator Ŝ = FSF�1 : K̂ �! K̂ commutes with M . Hence Ŝ is a

multiplication operator given by

(Ŝf̂ )(�) = S(�)f̂(�); f̂ 2 K̂; � 2 R; (5.7)

where fS(�)g�2R is a measurable family of unitary operators which is called the

Lax-Phillips scattering matrix. A rather involved computation shows that

S(�) = �H�(�) (5.8)

for a.e. � 2 R, see for example [1]. By the way one has

�� = FW �

+ and �+ = FW �

�
(5.9)

where is �� is the incoming Fourier transformation, cf. (2.41) and (2.42), and �+

is the so-called outgoing Fourier transform which was introduced in [12].

3. As mentioned above the quantity N%(!),

N%(!) := ku%̂kL1(!) =
Z
!

dx u%̂(x); (5.10)

has the meaning of the number of carriers on the Borel set subset ! � 
 = [a; b].
By (3.44) one has the representation

N%(!) = tr(%U(!)): (5.11)

Obviously N := N%(
) is the total number of carriers on the interval [a; b]. We note

that under the condition(3.23) by Proposition 3.7 the total number of carriers in 


is always �nite.

In accordance with [15] the time evolution of the density matrix % is given by

%(t) = e�itK%eitK; t 2 R: (5.12)

Hence, the number of particles at time t 2 R on ! is given by

N%(t)(!) := tr(%(t)U(!)); t 2 R: (5.13)

Since % commutes with K one has %(t) = % and N%(t)(!) = N%(!) or

d

dt
N%(t)(!) = 0; ! � 
; t 2 R: (5.14)

If the condition

C%̂ := sup
�2R

(1 + �2)k%(�)kB(C2 ) <1 (5.15)

is satis�ed, then

d

dt
N%(t)(!) = (5.16)

�itr(K%(t)U(!)) + itr(%(t)KU(!)) = �itr(K%U(!)) + itr(%KU(!)):



26 H.-Ch. Kaiser, H. Neidhardt, J. Rehberg

Hence

d

dt
N%(t)(!) = (5.17)

�i
Z
R

d�

Z
!

dx � trC2 (%(�)D(x; �)) + i

Z
R

d�

Z
!

dx � trC2 (%(�)D(x; �)):

By formula (3.42) we �ndZ
!

dx �(trC2 (%(�)D(x; �)) = (5.18)Z
!

dx �

�
%t(�)

�
 �(x; �; b)

 �(x; �; a)

�
;

�
 �(x; �; b)

 �(x; �; a)

��
:

Since l( �(x; �; � )) = � �(x; �; � ) one getsZ
!

dx �(trC2 (%(�)D(x; �)) = (5.19)Z
!

dx

�
%t(�)

�
l( �(x; �; b))
l( �(x; �; a))

�
;

�
 �(x; �; b)
 �(x; �; a)

��
:

Hence

d

dt
N%(t)(!) = (5.20)

�i
Z
R

d�

Z
!

dx

�
%t(�)

�
l( �(x; �; b))
l( �(x; �; a))

�
;

�
 �(x; �; b)
 �(x; �; a)

��
+

i

Z
R

d�

Z
!

dx

�
%t(�)

�
 �(x; �; b)
 �(x; �; a)

�
;

�
l( �(x; �; b))
l( �(x; �; a))

��

Let ! = [c; d] � [a; b]. Integrating by parts and taking into account formula (4.7)

we get
d

dt
N%(t)(!) =

Z
R

d� fj%̂(c; �) � j%̂(d; �)g : (5.21)

The total current j%̂(x) at the point x 2 [a; b] is de�ned by

j%̂(x) :=

Z
R

d� j%̂(x; �): (5.22)

This yields This yields
d

dt
N%(t)(!) = j%̂(c)� j%̂(d) (5.23)

which shows that the change of the number of carriers in the set [c; d] is equal to the
di�erence between the incoming current j%̂(c) at point c and the outgoing current

j%̂(d) at point d which very well corresponds to the physical intuition. Since by

Proposition 4.1 the current density j%̂(x; �) does not depend on x 2 [a; b] one gets
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j%̂(d) = j%̂(c) which again veri�es (5.14). The relation (5.23) is the integral form of

the so-called continuity equation which has the di�erential form

@

@t
u%̂(t)(x) +

@

@x
j%̂(t)(x) = 0; t 2 R; x 2 
; (5.24)

where u%̂(t)(x) is the carrier density at time t 2 R and j%(t)(x) is current density

at time t given by (5.22). Since u%̂(t)(x) = u%̂(x) is independent of t and j%(t)(x)

is independent of x the continuity equation (5.24) obviously holds in the present

situation.

4. On the basis of the considerations above we are able to give a mathematically

rigourous foundation of dissipative Schrödinger-Poisson systems. To this end we

consider di�erent species � of particles (holes and electrons) and assume that that

for these species the e�ective masses m�, external potentials V
�

0 and coe�cients

��
a
; ��

b
2 C + are given. For each species this leads to di�erent dissipative Schrödinger

operators H�(V�) de�ned in accordance with (1.12), (2.1) and (2.2). The potential

V entering into the de�nition of the Schrödinger operators is di�erent for di�erent

species. It takes the form

V� := V �

0 � '(u): (5.25)

where the electrostatic potential ' is a solution of the Poisson equation (1.1) with

boundary condition (1.3). The carrier densities u� entering into Poisson's equation

are obtained from the dissipative Schrödinger operators H�(V�) in accordance with
Section 3. To this end we assume that the families of matrices f%�(�)g�2R, which
obey

C%̂�
:= sup

�2R

p
�2 + 1k%�(�)kB(C2 ) <1; (5.26)

are given and we de�ne the carrier densities u�(x) := u�
%̂�
(V�)(x) in accordance

with Section 3, i.e., if D�(V�)(x) are the carrier density observables at x 2 
 and

at energy � 2 R, then the carrier densities are computed by

u�
%̂�
(V�)(x) =

Z
R

d� u�
%̂�
(V�)(x; �); x 2 
; (5.27)

where

u�
%̂�
(V�)(x; �) = trC2 (%�(�)D

�(V�)(x; �)); x 2 
; � 2 R: (5.28)

Moreover, if trC2 (%�(�)) 2 L1(R) is valid, then the current densities j�
%̂�
,

j�
%̂�

=

Z
R

d� j�
%̂�
(V�)(�) (5.29)

are also well-de�ned and �nite, cf. Section 4. The so described system is called a

dissipative Schrödinger-Poisson system. We note that the total number of carriers

N�(V�) is given by

N�(V�) =

Z



dx u�
%̂�
(V�)(x) (5.30)
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and is not �xed.

In a forthcoming paper [13] we show that under suitable conditions on �(�), C(�),
m�(�), V �

0 (�), ��
b
, ��

a
and %� this dissipative Schrödinger-Poisson system always

admits a self-consistent solution.
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