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Abstract. Langevin type equations are an important and fairly large class of systems

close to Hamiltonian ones. The constructed mean-square and weak quasi-symplectic

methods for such systems degenerate to symplectic methods when a system degenerates

to a stochastic Hamiltonian one. In addition, quasi-symplectic methods' law of phase vol-

ume contractivity is close to the exact law. The methods derived are based on symplectic

schemes for stochastic Hamiltonian systems. Mean-square symplectic methods were ob-

tained in [17, 18] while symplectic methods in the weak sense are constructed in this

paper. Special attention is paid to Hamiltonian systems with separable Hamiltonians,

with additive noise, and with colored noise. Some numerical tests of both symplectic and

quasi-symplectic methods are presented. They demonstrate superiority of the proposed

methods in comparison with standard ones.

1. Introduction

During the last 15-20 years a lot of attention in deterministic numerical analysis has been

paid to symplectic integration of Hamiltonian systems (see, e.g. [21, 4] and references

therein). This interest is motivated by the fact that symplectic integrators in compari-

son with usual numerical schemes allow us to simulate Hamiltonian systems on very long

time intervals with high accuracy. The phase �ows of some classes of stochastic systems

(stochastic Hamiltonian systems) possess the property of preserving symplectic structure

(symplecticness) [2] (see also [17]). For instance, systems of this type describe synchrotron

oscillations of particles in storage rings under the in�uence of external �uctuating electro-

magnetic �elds [23]. Another popular model from this class is the Kubo oscillator [8] which

is used in the theory of magnetic resonance and laser physics. In [17, 18] mean-square

symplectic methods for stochastic Hamiltonian systems were proposed. These methods

have signi�cant advantages over standard schemes for stochastic di�erential equations

(SDEs) [12, 7].

It is natural to expect that making use of numerical methods, which are close, in a sense,

to symplectic ones, also has some advantages when applying to stochastic systems close

to Hamiltonian ones. An important and fairly large class of such systems is Langevin

type equations which can be written as the following system of Ito SDEs

(1.1) dP = f(t; Q)dt� �f�(t; P;Q)dt+

mX
r=1

�r(t; Q)dwr(t); P (t0) = p;

dQ = g(P )dt; Q(t0) = q;

where P; Q; f; f�; g; �r are n-dimensional column-vectors, � is a parameter, and wr(t);
r = 1; : : : ; m; are independent standard Wiener processes. It is not di�cult to verify that

this system has the same form in the sense of Stratonovich.

The Langevin type equations (1.1) have the widespread occurrence in models from physics,

chemistry, and biology. They are used in dissipative particle dynamics (see, e.g., [20] and

references therein), for studying lattice dynamics in strongly anharmonic crystals [3],

descriptions of noise-induced transport in stochastic ratchets [10], investigations of the

dispersion of passive tracers in turbulent �ows (see [31, 22] and references therein), etc.
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In the present paper we construct special numerical methods (we call them as quasi-

symplectic) which preserve some speci�c properties of the Langevin type equations.

In Section 2, an auxiliary knowledge on numerical methods for SDEs is given to make the

whole exposition self-contained.

In Section 3, we construct mean-square quasi-symplectic methods for Langevin equations

which are an important particular case of (1.1) when f(t; q) = f(q); f�(t; p; q) = �p; � is

an n�n-dimensional constant matrix, g(p) = M�1p; M is a positive de�nite matrix, and

�r(t; q) = �r; r = 1; : : : ; m; are constant vectors. The proposed methods are such that

they degenerate to symplectic methods when the system degenerates to a Hamiltonian

one and their law of phase volume contractivity is close to the exact one. To construct

numerical methods, we use the splitting technique (see, e.g. [21, 25, 34]) and some ideas

of [28], where methods for deterministic second-order di�erential equations with similar

properties were obtained. In Section 4, we generalize mean-square methods of Section 3

to the Langevin type equations (1.1) and also to more general systems.

Mean-square methods are necessary for direct simulation of stochastic trajectories which,

for instance, can be useful in studying qualitative behavior of stochastic models. Be-

sides, they are the basis for construction of weak methods which are important for many

practical applications. As is known (see, e.g. [12, 7, 19]), weak methods are relevant to

calculate expectations of functionals of a solution to SDEs by Monte Carlo technique, and

they are simpler than mean-square ones in many respects. An important advantage of

weak approximations is that they give an opportunity to avoid the problem of simulating

complicated random variables.

Before constructing weak schemes for Langevin type equation, we derive symplectic meth-

ods in the weak sense for stochastic Hamiltonian systems. Consider the Cauchy problem

for the system of SDEs in the sense of Stratonovich

dP = f(t; P;Q)dt+

mX
r=1

�r(t; P;Q) Æ dwr(t); P (t0) = p;(1.2)

dQ = g(t; P;Q)dt+

mX
r=1



r
(t; P;Q) Æ dwr(t); Q(t0) = q;

where P; Q; f; g; �r; 
r are n-dimensional column-vectors with the components P i; Qi;
f i; gi; �i

r
; 
i

r
; i = 1; : : : ; n; and wr(t); r = 1; : : : ; m; are independent standard Wiener

processes.

We denote by X(t; t0; x) = (P |(t; t0; p; q); Q
|(t; t0; p; q))

|; t0 � t � t0 + T; the solution

of (1.2). A more detailed notation is X(t; t0; x;!); where ! is an elementary event. It

is known that X(t; t0; x;!) is a phase �ow (di�eomorphism) for almost every !: See its
properties in, e.g. [2, 6]. If there are functions Hr(t; p; q); r = 0; : : : ; m; such that (see [2]

and [17])

f i = �@H0=@q
i; gi = @H0=@p

i;(1.3)

�i
r
= �@Hr=@q

i; 
i
r
= @Hr=@p

i; i = 1; : : : ; n; r = 1; : : : ; m;
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then the phase �ow of (1.2) preserves symplectic structure:

(1.4) dP ^ dQ = dp ^ dq;

i.e., the sum of the oriented areas of projections onto the coordinate planes (p1; q1); : : : ;
(pn; qn) is an integral invariant [1]. To avoid confusion, we note that the di�erentials in

(1.2) and (1.4) have di�erent meaning. In (1.2) P; Q are treated as functions of time and

p; q are �xed parameters, while di�erentiation in (1.4) is made with respect to the initial

data p; q:

Let Pk; Qk; k = 0; : : : ; N; tk+1 � tk = hk+1; tN = t0 + T; be a method for (1.2) based on

the one-step approximation �P = �P (t + h; t; p; q); �Q = �Q(t + h; t; p; q): We say that the

method preserves symplectic structure if

(1.5) d �P ^ d �Q = dp ^ dq :

In Section 5, weak symplectic methods for stochastic Hamiltonian systems with multi-

plicative noise are constructed. Section 6 and 7 are devoted to symplectic integrators for

Hamiltonian systems with additive and colored noise respectively. The proposed symplec-

tic methods are the basis for construction of e�cient weak methods for systems close to

Hamiltonian ones and, in particular, for Langevin type equations.

In Section 8, we derive quasi-symplectic methods in the weak sense for Langevin type

equations using weak methods from Sections 5-7 together with the ideas of Sections 3-4.

It is known [33, 24, 11] that the Langevin di�usion is ergodic and for many applications

it is interesting to compute the mean of a given function with respect to the invariant law

of the di�usion. Ergodicity of numerical methods is investigated �rst in [29] in the case

of nondegenerate noise and globally Lipschitz coe�cients. For Langevin equations, noise

is degenerate and the coe�cients may not be globally Lipschitz. In this case ergodicity of

numerical schemes is considered in [11, 30]. To evaluate the mean values with respect to

the invariant law, one has to integrate a system over very long time intervals, especially

when dissipation is small. In such a situation numerical methods based on symplectic

integrators are fairly relevant.

We should note that �nite-time convergence of new methods derived in the present paper

is proved under traditional conditions on the drift and di�usion coe�cients which consist

in existence and boundedness of their derivatives up to a certain order. In particular, the

traditional conditions contain a rather restrictive one, namely a global Lipschitz condition.

However, the methods can undoubtedly be used much more widely. This fact is well known

in practice for many other methods. Some theoretical results on convergence of numerical

methods for equations with locally Lipschitz coe�cients are obtained in [5, 11].

An important instance of a stochastic system is given by a SDE with small noise, since

often �uctuations, which a�ect a dynamical system are su�ciently small. It was shown in

[15, 16] that numerical methods adapted to systems with small noise can be more e�cient

than general methods. The errors of these methods are estimated in terms of products

hi"j; where h is the step-size of discretization and " is a small parameter at noise. Usually,

their global errors have the form O(hj + "khl); where j > l; k > 0: Thanks to the fact

that the accuracy order of such methods is equal to a comparatively small l; they are
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not too complicated, while due to the large j and the small factor "k at hl, their errors
are fairly low. This allows us to construct e�ective (high-exactness) methods with low

time-step order but which nevertheless have small errors. Using these ideas, it is possible

to construct special symplectic methods in the weak sense for Hamiltonian systems with

small noise (see also [17, 18]) and special quasi-symplectic methods for Langevin equations

with small noise. However, we do not consider this issue here.

In Section 9, we present numerical tests of both symplectic and quasi-symplectic meth-

ods. They clearly demonstrate superiority of the proposed methods over very long time

intervals in comparison with standard methods.

2. Auxiliary knowledge on numerical methods for SDEs

In this section, we recall the main facts from the theory of numerical integration of SDEs

both in the mean-square and weak sense. Further details are available in [12, 7]. Consider

the system of SDEs in the Ito sense

(2.1) dX = a(t; X)dt+

mX
r=1

br(t; X)dwr(t); X(t0) = X0:

where X; a(t; x1; : : : ; xd); br(t; x
1; : : : ; xd) are d-dimensional column-vectors and wr(t);

r = 1; : : : ; m; are independent standard Wiener processes. Note that X0 may be a random

variable which does not depend on the Wiener processes wr(t); t 2 [t0; t0 + T ]:

Suppose the functions a(t; x) and br(t; x) are de�ned and continuous for t 2 [t0; t0 + T ];
x 2 Rd and satisfy a uniform (global) Lipschitz condition: for all t 2 [t0; t0+T ]; x; y 2 Rd

there exists a constant L > 0 such that

(2.2) ja(t; x)� a(t; y)j+
mX
r=1

jbr(t; x)� br(t; y)j � L jx� yj :

Introduce a discretization of the time interval [t0; t0 + T ]; for de�niteness the equidistant
one:

ti+1 = ti + h; i = 0; : : : ; N � 1; h =
T � t0

N
:

2.1. Mean-square methods for SDEs. A one-step mean-square approximation �X(t+
h; t; x); t0 � t < t + h � t0 + T; for (2.1) is constructed depending on t; x; h; and
fw1(#)�w1(t); : : : ; wm(#)�wm(t); t � # � t+hg: We pay attention that the dependence

on the Wiener processes is not re�ected in the notation �X(t+ h; t; x): We note also that

this notation is the same for both explicit and implicit approximations.

Using the one-step approximation, we recurrently obtain the approximation Xk; k =

0; : : : ; N : X0 = X(t0); Xk+1 = �X(tk+1; tk; Xk):

De�nition 1. If for some method�
E (X(tk)�Xk)

2
�1=2

� Khl;

where l > 0 and K does not depend on k and h, then we say that the mean-square order

of accuracy of the method is l:
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The following general convergence theorem holds [12].

Theorem 2.1. Suppose the one-step approximation �X(t+h; t; x) has order of accuracy l1
for the expectation of the deviation and order of accuracy l2 for the mean-square deviation;

more precisely, for arbitrary t0 � t � t0 + T � h; x 2 Rd the following inequalities hold:

(2.3)
��E �X(t+ h; t; x)� �X(t+ h; t; x)

��� � K � (1 + jxj2)1=2hl1 ;

(2.4)
h
E
��X(t+ h; t; x)� �X(t+ h; t; x)

��2i1=2 � K � (1 + jxj2)1=2hl2 :

Also, let

(2.5) l2 �
1

2
; l1 � l2 +

1

2
:

Then for any N and k = 0; : : : ; N the following inequality holds:

(2.6)
h
E
��X(tk; t0; X0)� �X(tk; t0; X0)

��2i1=2 � K � (1 + EjX0j2)1=2hl2�1=2;

i.e., the mean-square order of accuracy of the method based on the one-step approximation
�X(t + h; t; x) is l = l2 � 1=2:

2.2. Weak methods for SDEs.

De�nition 2. If for some method we have��EF ( �Xk)� EF (X(tk))
�� � Khl;

for F from a su�ciently large class of functions, where the constant K does not depend

on k and h; then we say that �Xk approximates the solution X(tk) of (2:1) in the weak

sense with (weak) order of accuracy l (or O(hl)).

De�nition 3. A function F (x); x 2 Rd; is said to belong to the class F; F 2 F; if there
are constants K > 0 and { � 0 such that the inequality

jF (x)j � K � (1 + jxj{)

holds for any x 2 Rd:

The following general convergence theorem is proved in [12] (see also [7]).

Theorem 2.2. Suppose that

(1) the coe�cients of (2:1) are continuous, satisfy a Lipschitz condition (2:2) and together

with their partial derivatives of order up to 2l + 2 belong to the class F;

(2) the following inequalities hold:

(2.7) jE(

sY
j=1

�ij �
sY

j=1

��ij )j � K(x)hl+1; s = 1; : : : ; 2l + 1;

(2.8) E

2l+2Y
j=1

j ��ij j � K(x)hl+1; l > 0; K(x) 2 F;

where �i := X i

t;x
(t + h)� xi and ��i := �X i

t;x
(t+ h)� xi;
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(3) the function F (x) together with its partial derivatives up to order 2l + 2 belong to the

class F;

(4) for a su�ciently large number �m; the moments EjXkj �m exist and are uniformly

bounded with respect to N; k = 0; : : : ; N:

Then the method Xk approximates the solution X(tk) with the weak order l:

In all the convergence theorems throughout the paper we suppose the conditions on certain

smoothness of the drift and di�usion coe�cients and boundedness of their derivatives to

be ful�lled. At the same time we underline once again (see Introduction) that these

traditional requirements are not necessary.

3. Quasi-symplectic mean-square methods for Langevin equations

Consider the Langevin equation

dP = f(Q)dt� ��Pdt+

mX
r=1

�rdwr(t); P (t0) = p;(3.1)

dQ = M�1Pdt; Q(t0) = q;

where P; Q; f are n-dimensional column-vectors, �r; r = 1; : : : ; m; are n-dimensional

constant column-vectors, � is an n�n-dimensional constant matrix, � � 0 is a parameter,

M is a positive de�nite matrix, and wr(t); r = 1; : : : ; m; are independent standard Wiener

processes. If there is a scalar function U0(q) such that

(3.2) f i(q) = �
@U0

@qi
; i = 1; : : : ; n;

and if � = 0; then the system (3.1) is a Hamiltonian system with additive noise, i.e., its

phase �ow preserves symplectic structure (see [2, 17]).

The system (3.1) can be written as the second-order di�erential equation with additive

noise:

M �Q = f(Q)� ��M _Q +

mX
r=1

�r _wr:

Let D0 2 Rd; d = 2n; be a domain with �nite volume. This domain may be random. We

suppose that D0 = D0(!) is independent of the Wiener processes wr(t); t 2 [t0; t0 + T ]:
The transformation (p; q) 7! (P;Q) maps D0 into the domain Dt: The volume Vt of the
domain Dt is equal to

(3.3)

Vt =

Z
Dt

dP 1 : : : dP ndQ1 : : : dQn =

Z
D0

����D(P 1; : : : ; P n; Q1; : : : ; Qn)

D(p1; : : : ; pn; q1; : : : ; qn)

���� dp1 : : : dpndq1 : : : dqn:
In the case of the system (3.1) the Jacobian J is equal to [2, 9, 17]:

(3.4) J =
D(P 1; : : : ; P n; Q1; : : : ; Qn)

D(p1; : : : ; pn; q1; : : : ; qn)
= exp (�� tr� � (t� t0)) :
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That is, the system (3.1) preserves phase volume for � = 0: If � > 0 and tr� > 0 then

phase-volume contractivity takes place.

Our aim is to propose mean-square methods based on the one-step approximations �P =
�P (t+ h; t; p; q); �Q = �Q(t+ h; t; p; q) such that

RL1. The method applied to (3.1)-(3.2) degenerates to a symplectic method when � = 0;
i.e., for � = 0 and f from (3.2) d �P ^ d �Q = dp ^ dq;

RL2. The Jacobian

�J =
D( �P; �Q)

D(p; q)

does not depend on p; q:

As it is understood, a method is convergent and, consequently, �J is close to J at any rate.

The requirement RL2 is natural since the Jacobian J of the original system (3.1) does not

depend on p; q: RL2 re�ects the structural properties of the system which are connected

with the law of phase volume contractivity. It is often possible to reach a more strong

property consisting in the equality �J = J: However, such an requirement is too restrictive

in general. In the context of deterministic equations the requirement RL2 was introduced

in [28].

To construct methods satisfying RL1-RL2, we use ideas of splitting technique (see, e.g.

[21, 25]). In connection with (3.1), introduce the systems

dPI = f(QI)dt+

mX
r=1

�rdwr(t); PI(t0) = p;(3.5)

dQI = M�1PIdt; QI(t0) = q;

(3.6)
dPII

dt
= ���PII ; PII(0) = p;

and denote their solutions as PI(t; t0; p; q); QI(t; t0; p; q) and PII(t; p); respectively. The

system (3.5) with f(q) from (3.2) is a Hamiltonian system with additive noise. The system

(3.6) is a deterministic linear system with constant coe�cients, and its solution PII(t; p)
can be found explicitly.

3.1. First-order methods. Let �PI = �PI(t0 + h; t0; p; q); �QI = �QI(t0 + h; t0; p; q) be a

one-step approximation of a symplectic �rst-order mean-square method for (3.5), (3.2)

(any explicit or implicit method from [17] can be used). Its Jacobian is equal to one, i.e.,

D( �PI(t0 + h; t0; p; q); �QI(t0 + h; t0; p; q))

D(p; q)
= 1:

We construct the one-step approximation �P ; �Q for the solution of (3.1)-(3.2) as follows

�P = �P (t0 + h; t0; p; q) := PII(h; �PI(t0 + h; t0; p; q));(3.7)

�Q = �Q(t0 + h; t0; p; q) := �QI(t0 + h; t0; p; q):
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We have

(3.8) �J =
D( �P; �Q)

D(p; q)
=
D(PII; �QI)

D( �PI; �QI)

D( �PI ; �QI)

D(p; q)
= J:

Further, if � = 0; then �P = �PI ; �Q = �QI ; i.e., the approximation (3.7) degenerates to

the symplectic method for (3.1)-(3.2) with � = 0: Thus, the approximation �P; �Q satis�es

both requirements RL1 and RL2.

Lemma 3.1. Let �PI ; �QI be a one-step approximation corresponding to any �rst-order

mean-square method for the system (3:5). Then �P ; �Q de�ned in (3:7) is a one-step ap-

proximation of the �rst-order mean-square method for the system (3:1).

Proof. Due to the assumption, we can write

�PI = p+

mX
r=1

�r�wr + hf(q) + r1;(3.9)

�QI = q + hM�1p+ r2;

where

�wr = �wr(h) = wr(t0 + h)� wr(t0)

and the remainders r1 and r2 are such that

jErij = O(h2); Er2
i
= O(h3); i = 1; 2:

We have

(3.10) PII(h; p) = p� h��p+ �; � = O(h2):

Using (3.9), (3.10), and (3.7), we get

(3.11) �P = p+

mX
r=1

�r�wr + h (f(q)� ��p) +R;

where

R = r1 + �� h�� � ( �PI � p):

It is not di�cult to see that

jERj = O(h2); ER2 = O(h3):

Denote by ~P; ~Q the Euler one-step approximation applied to (3.1). It follows from (3.9)

and (3.11) that����E
��

�P
�Q

�
�
�

~P
~Q

������ = O(h2);

"
E

��
�P
�Q

�
�
�

~P
~Q

��2
#1=2

= O(h3=2):

Then, recalling that the Euler method has the �rst mean-square order of accuracy for

systems with additive noise and using Theorem 2.1, we get the result. �

Thus, due to (3.8), we obtain the following convergence theorem.
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Theorem 3.1. Let �PI; �QI be a one-step approximation corresponding to a symplectic

�rst-order mean-square method for the system (3:5); (3:2). Then �P ; �Q de�ned in (3:7)
is a one-step approximation of the �rst-order mean-square method for the system (3:1)
such that (i) it is symplectic when applied to (3:1)-(3:2) with � = 0; (ii) its phase volume

changes according to the same law as the phase volume of (3:1) does, i.e., the Jacobians
�J = D( �P; �Q)=D(p; q) and J = D(P;Q)=D(p; q) are equal.

Let us take two concrete schemes for �PI ; �QI from [17]. The �rst one is explicit :

(3.12) Q = q + �hM�1p; P = p+ hf(Q);

�QI = Q+ (1� �)hM�1P; �PI = P +

mX
r=1

�r�wr;

where � is a parameter. The second method:

�PI = p+ hf((1� �) �QI + �q) +

mX
r=1

�r�wr;(3.13)

�QI = q + hM�1(� �PI + (1� �)p):

It is implicit for 0 < � < 1: Substitution of �PI ; �QI from (3.12) or (3.13) in (3:7) gives us
the concrete one-step approximations for (3.1).

To use the method (3.13), (3:7), we need solvability of (3.13) with respect to �PI ; �QI : If f is

globally Lipschitz, solvability is proved in [17]. But it can be proved in many other cases

as well. As an illustration, consider the following example of system (3.1) with locally

Lipschitz coe�cients and n = 1:

dP = (Q�Q3
)dt� �Pdt+ �dw(t)(3.14)

dQ = Pdt:

In the case of (3.14), substituting �PI in the right-hand side of the second equation of

(3.13), we obtain

(3.15) �QI � q � hp� �h2('( �QI)� '3( �QI))� ��h�w = 0;

where

'( �QI) = (1� �) �QI + �q:

We see that if

h <
1p

�(1� �)
;

then the left-hand side of (3.15) is a strictly increasing cubic parabola in �QI and therefore

there exists the only root of (3.15).

Of course, the convergence in locally Lipschitz cases has to be justi�ed additionally. We

recall that in all the proofs throughout this paper we assume existence and boundedness of

certain derivatives of the coe�cients, i.e., in particular, we assume the globally Lipschitz

conditions to be ful�lled. Some results on convergence in cases of one-sided Lipschitz

conditions are obtained in [5, 11]. One can be sure that the methods proposed are solvable

(if implicit) and convergent in a broad fashion.
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Remark 3.1. Theorem 3:1 also holds for the method based on the following one-step

approximation:

�P = �P (t0 + h; t0; p; q) := �PI(t0 + h; t0; PII(h; p); q);(3.16)

�Q = �Q(t0 + h; t0; p; q) := �QI(t0 + h; t0; PII(h; p); q):

Remark 3.2. In practice, it can be more convenient to use an approximation �PII of

the solution to (3:6) instead of the exact solution PII in (3:7) (or (3:16)): Since (3:6) is
a deterministic equation, we can exploit a high-order deterministic scheme in order to

obtain �PII : In this case the Jacobian �J approximates the original Jacobian J with the

accuracy of the deterministic scheme. Due to the linearity of (3:6); this �J does not depend

on the initial data p; q (it depends on �� and h only).

There is another possibility to propose methods for (3.1) satisfying RL1-RL2. It consists

in direct application of symplectic methods. For instance, the parametric �rst-order family

of implicit methods from [17] in application to (3.1) takes the form

�P = p+ hf((1� �) �Q+ �q)� h�� � (� �P + (1� �)p) +

mX
r=1

�r�wr;(3.17)

�Q = q + hM�1(� �P + (1� �)p):

However, it satis�es the requirement RL2 for � = 0 and � = 1 only. Moreover, due

to their speci�c structure, not all the symplectic methods (see, for example, the explicit

method (3.12)) can be directly applied to the Langevin equation (3.1) itself. Thus, on

the way of the direct application of symplectic methods to (3.1) we have rather restrictive

opportunities. Nevertheless, we can obtain on this way some new methods.

3.2. Second-order methods. In order to construct second-order methods for the Langevin

equation (3.1) with the properties RL1 and RL2, we use ideas of the method of fractional

steps [34, 21, 25]. In the deterministic case (i.e., when �r = 0; r = 1; : : : ; m) a second-order

method satisfying RL1 and RL2 can be based on the following one-step approximation

�P = �P (t0 + h; t0; p; q) := PII(
h

2
; �PI(t0 + h; t0; PII(

h

2
; p); q));(3.18)

�Q = �Q(t0 + h; t0; p; q) := �QI(t0 + h; t0; PII(
h

2
; p); q);

where �PI ; �QI corresponds to a one-step approximation of a symplectic method for (3.5),

(3.2) with �r = 0:

In the stochastic case the interconnection between terms in (3.1) is more complicated and

a correction to (3.18) is needed. Consider the following approximation for solution of
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(3.1):

�P = �P (t0 + h; t0; p; q) := PII(
h

2
; �PI(t0 + h; t0; PII(

h

2
; p); q))� �

mX
r=1

��r(Ir0 �
h

2
�wr);

(3.19)

�Q = �Q(t0 + h; t0; p; q) := �QI(t0 + h; t0; PII(
h

2
; p); q);

where �PI; �QI is a one-step approximation corresponding to a symplectic (explicit or

implicit) second-order mean-square method for (3.5), (3.2) (such methods are available in

[17]),

Ir0 =

Z
t

t0

(wr(s)� wr(t0))ds:

Lemma 3.2. Let �PI ; �QI be a one-step approximation corresponding to any second-order

mean-square method for the system (3:5). Then �P ; �Q de�ned in (3:19) is a one-step

approximation of the second-order mean-square method for the system (3:1).

Proof. Due to the assumption, we can write

�PI(t0 + h; t0; p; q) = p+

mX
r=1

�r�wr + hf(q) +
h2

2

nX
i=1

�
M�1p

�i @f
@qi

+ r1;(3.20)

�QI(t0 + h; t0; p; q) = q + hM�1p+

mX
r=1

M�1�rIr0 +
h2

2
M�1f(q) + r2;

where the remainders r1 and r2 are such that

jErij = O(h3); Er2
i
= O(h5); i = 1; 2:

We also have

(3.21) PII(h; p) = p� h��p+
h2

2
�2�2p+ �; � = O(h3):

We obtain from (3.19)-(3.21) that

�P = p+

mX
r=1

�r�wr + h (f(q)� ��p)� �

mX
r=1

��rIr0(3.22)

+
h2

2

"
nX
i=1

�
M�1p

�i @f
@qi

+ �2�2p� ��f(q)

#
+R1;

�Q = q + hM�1p+

mX
r=1

M�1�rIr0 +
h2

2
M�1 [f(q)� ��p] +R2;

where R1 and R2 are such that

jERij = O(h3); ER2
i
= O(h5); i = 1; 2:

It is not di�cult to show that the standard Taylor-type mean-square method of order 3=2
for systems with additive noise [12, p. 37] has the second order of accuracy when it is
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applied to (3.1). Comparing the one-step approximation of this standard method with

(3.22), we obtain that the method based on (3.19) is of mean-square order 2: �

One can easily check that the approximation (3.19) satis�es our requirements RL1 and

RL2. The following theorem summarizes the result.

Theorem 3.2. Let �PI; �QI be a one-step approximation corresponding to a symplectic

second-order mean-square method for the system (3:5); (3:2). Then �P ; �Q de�ned in (3:7)
is a one-step approximation of the second-order mean-square method for the system (3:1)-
(3:2) such that (i) it is symplectic when applied to (3:1)-(3:2) with � = 0; (ii) its phase

volume changes according to the same law as the phase volume of (3:1)-(3:2) does.

Let us give a concrete example of a method based on (3.19) (to this end, we use one of

explicit symplectic second-order partitioned Runge-Kutta (PRK) methods from [17]):

(3.23) P1 = PII(
h

2
;Pk); Q1 = Qk +

h

2
M�1P1;

P2 = P1 +

mX
r=1

�r�kwr + hf(Q1); Q2 = Q1 +

mX
r=1

M�1�r(Ir0)k +
h2

2
M�1f(Q1);

Pk+1 = PII(
h

2
;P2)� �

mX
r=1

��r(Ir0 �
h

2
�wr); Qk+1 = Q2; k = 0; : : : ; N � 1:

The random variables �kwr; (Ir0)k have a Gaussian joint distribution, and they can be

simulated at each step by 2m mutually independent N(0; 1)-distributed random variables

�
rk
and �

rk
; r = 0; : : : ; m :

(3.24) �kwr = h1=2�
rk
; (Ir0)k = h3=2(�

rk
+ �

rk
=
p
3)=2:

Note that Remark 3.2 is applicable here if one will approximate PII(t) using a deterministic

method of one-step order not less than 3:

3.3. Third-order methods. Using ideas of the method of fractional steps, as we did in

the previous subsections, it is possible to construct a third-order method for (3.1) which

satis�es the requirements RL1 and RL2. But such a method contains two fractional steps

at which we have to approximate the Hamiltonian system (3.5), (3.1) using a third-order

symplectic method. This makes a method of this kind too complicated, and we will

use another approach. In [28] a similar problem for deterministic second-order di�eren-

tial equations was solved by a modi�cation of symplectic Runge-Kutta-Nyström (RKN)

methods from [26]. Here we modify the symplectic RKN method from [17] using ideas of

[28].

As a result, we obtain the method

(3.25) Q1 = Qk +
7

24
hM�1Pk; P1 = Pk +

7

24
h [f(Q1)� ��P1] ;
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Q2 = Qk +
25

24
hM�1Pk +

h2

2
M�1

[f(Q1)� ��P1] ;

P2 = Pk +
2

3
h [f(Q1)� ��P1] +

3

8
h [f(Q2)� ��P2]

Q3 = Qk + hM�1Pk +
17

36
h2M�1

[f(Q1)� ��P1] +
1

36
h2M�1

[f(Q2)� ��P2] ;

P3 = Pk +
2

3
h [f(Q1)� ��P1]�

2

3
h [f(Q2)� ��P2] + h [f(Q3)� ��P3] ;

(3.26)

Pk+1 = P3+

mX
r=1

�r�kwr��
mX
r=1

��r �(Ir0)k+
mX
r=1

"
nX
i=1

(M�1�r)
i
@f

@qi
(Q3) + �2�2�r

#
(Ir00)k;

Qk+1 = Q3 +

mX
r=1

M�1�r � (Ir0)k � �

mX
r=1

M�1��r(Ir00)k; k = 0; : : : ; N � 1;

where

(Ir00)k :=

tk+hZ
tk

#1Z
tk

(wr(#2)� wr(tk)) d#2d#1:

Joint distribution of the random variables �kwr; (Ir0)k; (Ir00)k is Gaussian. They can be

simulated at each step by 3m independent N(0; 1)-distributed random variables �
rk
; �

rk
;

and �
rk
; r = 0; : : : ; m :

�kwr = h1=2�rk; (Ir0)k = h3=2(�rk + �rk=
p
3)=2;(3.27)

(Ir00)k = h5=2(�
rk

+
p
3�

rk
=2� �

rk
=(2
p
5))=6:

Using (3.27), the method (3.25)-(3.26) can be written in the constructive form. It is

implicit in the components P1; P2; P3 and can easily be resolved at each step since the

dependence on P is linear.

For � = 0 the method (3.25)-(3.26) coincides with the third-order symplectic method

from [17] and so it satis�es the requirement RL1. For �r = 0; r = 1; : : : ; m; (deterministic

case), the RKN method (3.25)-(3.26) satis�es conditions set up in [28, Section 5]. These

conditions ensure that the Jacobian of the deterministic RKN method depend on �� and

h only, more precisely [28, Section 5]:

�J0 = �J0(h; ��) :=
D(P3;Q3)

D(Pk; Qk)
=

det(I � 3

8
h��) det(I + 25

24
h��)

det(I + 7

24
h��) det(I + 3

8
h��) det(I + h��)

;

where I is the n� n unit matrix.

We have

�J :=
D(Pk+1; Qk+1)

D(Pk; Qk)
=
D(Pk+1; Qk+1)

D(P3;Q3)

D(P3;Q3)

D(Pk; Qk)
= �J0;

i.e., the Jacobian �J does not depend on the initial data Pk; Qk: Further, it is possible to
adopt the proof of the corresponding theorem in [17] and prove that the method (3.25)-

(3.26) is of mean-square order 3: Thus, we obtain the theorem.
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Theorem 3.3. The method (3:25)-(3:26) for the system (3:1) is of mean-square order 3

and it is such that (i) it is symplectic when applied to (3:1)-(3:2) with � = 0; (ii) the

Jacobian D(Pk+1; Qk+1)=D(Pk; Qk) (i.e., the change of phase volume per step) does not

depend on Pk; Qk.

Remark 3.3. A method of mean-square order 7=2 for (3:1) contains complicated Ito

integrals, and it is not e�cient with respect to simulation of the used random variables.

Remark 3.4. All the methods of this section can be carried over to nonautonomous

Langevin equations.

4. Quasi-symplectic mean-square methods for general Langevin

type equations

Here we generalize methods of Section 3 to the Langevin type system

(4.1) dP = f(t; Q)dt� �f�(t; P;Q)dt+

mX
r=1

�r(t; Q)dwr(t); P (t0) = p;

dQ = g(P )dt; Q(t0) = q;

where P; Q; f; f�; g; �r are n-dimensional column-vectors, � is a parameter, and wr(t);
r = 1; : : : ; m; are independent standard Wiener processes.

If there are Hamiltonians H0(t; p; q) = V0(p) + U0(t; q) and Hr(t; q); r = 1; : : : ; m; such
that

(4.2) f i = �@H0=@q
i; gi = @H0=@p

i; �i
r
= �@Hr=@q

i; i = 1; : : : ; n;

and if � = 0; then (4.1) is a Hamiltonian system with multiplicative noise [2, 17, 18]. Note

that the system (4.1) has the same form in the sense of Stratonovich.

Our aim is to construct methods for (4.1) such that they inherit the properties RL1-RL2

of the speci�c methods for the Langevin equation (3.1), more precisely we require

RLT1. The methods become symplectic when the system degenerate to Hamiltonian;

RLT2. The methods degenerate to those satisfying the requirement RL2 from Section 3

when the system degenerates to the Langevin equation (3.1).

We recall that the Euler method for general systems with multiplicative noise is of order

1/2. But due to speci�c features of system (4.1), the Euler method (and other usual

methods of order 1/2) applied to (4.1) is of order 1. Therefore, we start with methods of

order 1.

4.1. First-order methods based on splitting. In connection with (4.1) introduce the

systems (cf. (3.5)-(3.6)):

dPI = f(t; QI)dt+

mX
r=1

�r(t; QI)dwr(t); PI(t0) = p;(4.3)

dQI = g(PI)dt; QI(t0) = q;
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(4.4)
dPII

dt
= ��f�(t; PII ; q); PII(t0) = p;

and denote their solutions as PI(t; t0; p; q); QI(t; t0; p; q) and PII(t; t0; p; q) correspondingly.

The system (4.3), (4.2) is a Hamiltonian system with separable Hamiltonians. Symplectic

integrators for such systems are proposed in [18]. The system (4.4) is deterministic.

Let �PI; �QI be a one-step approximation corresponding to a symplectic method for (4.3),

(4.2) and �PII be a one-step approximation of a deterministic method for (4.4). Introduce

the approximation for (4.1) as follows

�P = �P (t0 + h; t0; p; q) := �PII(t0 + h; t0; �PI(t0 + h; t0; p; q); �QI(t0 + h; t0; p; q));(4.5)

�Q = �Q(t0 + h; t0; p; q) := �QI(t0 + h; t0; p; q):

Clearly, the approximation (4.5) satis�es the requirements RLT1 and RLT2. Further,

using arguments similar to those in the proof of Lemma 3.1, we prove that if �PI ; �QI

is a one-step approximation corresponding to any �rst-order mean-square method for

(4.3) and �PII is a one-step approximation corresponding to any �rst-order deterministic

method for (4.4), then �P ; �Q de�ned in (4.5) is a one-step approximation of the �rst-order

mean-square method for the system (4.1). Therefore, the following theorem holds.

Theorem 4.1. Let �PI ; �QI be a one-step approximation corresponding to a symplectic �rst-

order mean-square method for the system (4:3); (4:2) and �PII be a one-step approximation

corresponding to a �rst-order deterministic method for the system (4:4). Then �P ; �Q
de�ned in (4:5) is a one-step approximation of the �rst-order mean-square method for the

system (4:1) such that (i) it is symplectic when applied to (4:1)-(4:2) with � = 0; (ii)
it satis�es the requirement RL2 from Section 3 when (4:1) degenerates to the Langevin

equation (3:1).

Let us give a concrete example of a �rst-order splitting method (to this end we use a PRK

method from [18]):

(4.6) Q1 = Qk + �hg(Pk); P1 = Pk + hf(tk + �h;Q1);

Q2 = Q1 + (1� �)hg(P1); P2 = Pk + hf(tk + �h;Q1) +

mX
r=1

�r(tk;Q2)�kwr;

Qk+1 = Q2; Pk+1 = P2 � h�f�(tk;P2;Q2):

Remark 4.1. If we take �PII in (4:5) such that it corresponds to a high-order deterministic

method for (4:4); this will ensure better phase-volume contractivity properties of (4:5) (i.e.,
in this case the approximate volume contractivity law is closer to the exact one than in

the case of �rst-order deterministic method).

Remark 4.2. Theorem 4:1 also holds for the method based on the one-step approximation

�P := �PI(t0 + h; t0; �PII(t0 + h; t0; p; q); q);(4.7)

�Q := �QI(t0 + h; t0; �PII(t0 + h; t0; p; q); q):

Remark 4.3. The discussion in the end of Section 3:1 is also valid here: there are

�rst-order implicit symplectic methods which directly applied to (4:1) give the methods

satisfying the requirements RLT1-RLT2.
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The particular case of system (4.1), when f�(t; p; q) = �(q)p; � is an m�m-dimensional

matrix, is of a special interest, in particular due to its application in dissipative particle

dynamics (see, e.g. [20] and references therein). In this case the system (4.4) becomes

deterministic linear system with constant coe�cients, which can be solved exactly. If in

addition to f�(t; p; q) = �(q)p the system (4.1) is with additive noise (i.e., �r(t; q) = �r(t);
r = 1; : : : ; q) and g(p) = M�1p; then the method (4.9) (see Subsection 4.2) becomes of

mean-square order 2: An important example of such systems is the Van der Pol oscillator

under external excitations

�Q = �!2Q + "2(1�Q2) _Q+ � _w:

Further, our approach can easily be applied to a more general system of Stratonovich

SDEs

dP = (f(t; P;Q)� �f�(t; P;Q)) dt+

mX
r=1

�r(t; P;Q) Æ dwr(t); P (t0) = p;(4.8)

dQ = (g(t; P;Q)� �g�(t; P;Q)) dt+

mX
r=1



r
(t; P;Q) Æ dwr(t); Q(t0) = q;

where � � 0 is a parameter, P; Q and all the coe�cients are n-dimensional column-vectors,

and f , g; �r; 
r satisfy (1.3). For � = 0 it coincides with the general Hamiltonian system

(1.2). As usual, we can split (4.8) in two parts: in the Hamiltonian system (1.2) and the

deterministic system, and then use a relation like (4.5) or (4.7) to approximate (4.8). In

such an approximation we have �PI ; �QI corresponding to a full implicit symplectic method

from [18]. As a result, we obtain the approximation �P ; �Q for (4.8) which satis�es the

requirements RLT1-RLT2. The method for (4.8) based on this approximation is of order

1=2:

4.2. Methods of order 3=2. Using the fractional step method, we propose the following

approximation for (4.1)

�P (t0 + h; t0; p; q)(4.9)

:= �PII(t0 +
h

2
; t0; �PI(t0 + h; t0; �PII(t0 +

h

2
; t0; p; q); q); �QI(t0 + h; t0; �PII(t0 +

h

2
; t0; p; q); q))

��
mX
r=1

nX
i=1

�i
r

@f�

@pi
(t0; p; q)

�
Ir0 �

h

2
�wr

�
�
h2

4
�
@f�

@t
(t0; p; q);

�Q(t0 + h; t0; p; q) := �QI(t0 + h; t0; �PII(t0 +
h

2
; t0; p; q); q);

where �PI ; �QI is a one-step approximation corresponding to a symplectic method of order

3=2 for (4.3), (4.2) (such methods are available in [18]) and �PII is a one-step approximation

of a second-order deterministic method for (4.4).

By argument similar to those exploited in previous sections, we prove the following theo-

rem.

16



Theorem 4.2. Let �PI; �QI be a one-step approximation corresponding to a symplectic

mean-square method of order 3=2 for the system (4:3); (4:2); and �PII be a one-step ap-

proximation corresponding to a second-order deterministic method for the system (4:4).
Then �P; �Q de�ned in (4:9) is the one-step approximation of mean-square method of order

3=2 for the system (4:1) which satis�es the requirements RLT1-RLT2.

A remark analogous to Remark 4.1 is valid here. As it is also noted in Section 4.1, if

f�(t; p; q) = �(q)p; then PII(t) can be found explicitly. Consequently, in this important

case we can use an approximation of the form (3.19). The corresponding mean-square

method is again of order 3=2:

5. Symplectic methods in the weak sense for Hamiltonian systems

with multiplicative noise

5.1. Implicit �rst-order methods for general stochastic Hamiltonian systems.

In this subsection weak symplectic methods for the stochastic Hamiltonian system (1.2),

(1.3) are constructed. All the methods in this subsection are fully implicit (i.e., implicit

in both deterministic and stochastic components). Let us recall that in the case of de-

terministic general Hamiltonian systems symplectic Runge-Kutta (RK) methods are all

implicit [21]. The standard implicit methods for SDEs with multiplicative noise (see

[12, 7]) contain implicitness in deterministic terms only. Meanwhile to construct symplec-

tic methods for general stochastic Hamiltonian systems, full implicit methods are needed.

Such mean-square methods are proposed in [18]. Increments of Wiener processes in these

implicit schemes are substituted by some truncated random variables. As a result, general

mean-square symplectic methods are obtained in [18]. We should note that the problem

in obtaining full -implicit weak methods is much simpler because standard weak schemes

exploit bounded random variables for their construction.

On the basis of a symplectic method of mean-square order 1/2 from [18], we propose the

weak method:

Pk+1 = Pk + hf(tk + �h; �Pk+1 + (1� �)Pk; (1� �)Qk+1 + �Qk)(5.1)

+ h(
1

2
� �)

mX
r=1

nX
j=1

(
@�r

@pj
�j
r
�
@�r

@qj

j
r
) + h1=2

mX
r=1

�r�rk;

Qk+1 = Qk + hg(tk + �h; �Pk+1 + (1� �)Pk; (1� �)Qk+1 + �Qk)

+ h(
1

2
� �)

mX
r=1

nX
j=1

(
@
r
@pj

�j
r
�
@
r
@qj


j
r
) + h1=2

mX
r=1



r
�
rk
;

where �r; 
r; r = 1; : : : ; m; and their derivatives are calculated at (tk; �Pk+1 + (1 �
�)Pk; (1��)Qk+1+�Qk); the parameters �; � 2 [0; 1]; and �rk are i.i.d. random variables

with the law

(5.2) P (� = �1) = 1=2:
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Note that if � = � = 1=2 the method (5.1) becomes the derivative-free (midpoint) method.

The method requires solution of a nonlinear equation at each step (its solvability is proved

within the next theorem).

Theorem 5.1. The implicit method (5:1) for the system (1:2), (1:3) is symplectic and of

the �rst weak order.

Proof. The symplecticness is proved as in Theorem 3.2 from [18]. Let us prove conver-

gence of the method. Denote by �X = �X(t+ h; t; x) = ( �P |; �Q|)| the one-step approxima-

tion corresponding to the method (5.1):

�P = p+ hf(t+ �h; � �P + (1� �)p; (1� �) �Q+ �q)(5.3)

+ h(
1

2
� �)

mX
r=1

nX
j=1

(
@�r

@pj
�j
r
�
@�r

@qj

j
r
) + h1=2

mX
r=1

�r�r;

�Q = q + hg(t+ �h; � �P + (1� �)p; (1� �) �Q + �q)

+ h(
1

2
� �)

mX
r=1

nX
j=1

(
@


r

@pj
�j
r
�
@


r

@qj

j
r
) + h1=2

mX
r=1


r�r;

where �r; 
r; r = 1; : : : ; m; and their derivatives are calculated at (t; � �P + (1� �)p; (1�
�) �Q + �q):

Using the Lipschitz condition (2.2), one can prove (cf. Lemma 2.3 in [18]) that there are

constants K > 0 and h0 > 0 such that for any h � h0; t0 � t � t0+T; x = (p|; q|)| 2 Rd;
d = 2n; the equation (5.3) has a unique solution �X which satis�es the inequality

(5.4) j �X � xj � K(1 + jxj)
p
h;

and this solution can be found by the method of simple iteration with x = (p|; q|)| as

the initial approximation.

The condition (2.8) with l = 1 of Theorem 2.2 holds for the approximation (5.3) due to

(5.4). Let us check the ful�llment of condition (2.7) with l = 1: To this end, introduce

the weak Euler approximation X̂ = (P̂ |; Q̂|)| for the Stratonovich system (1.2), (1.3):

(5.5) P̂ = p+ hf +
h

2

mX
r=1

nX
j=1

(
@�r

@pj
�j
r
+
@�r

@qj

j
r
) + h1=2

mX
r=1

�r�r;

Q̂ = q + hg +
h

2

mX
r=1

nX
j=1

(
@


r

@pj
�j
r
+
@


r

@qj

j
r
) + h1=2

mX
r=1


r�r;

where f; g and �r; 
r; r = 1; : : : ; m; and their derivatives are calculated at (t; p; q):

Expanding the terms in the right-hand side of (5.3) around (t; p; q) and using (5.4) and

the corresponding conditions on smoothness and boundedness of the coe�cients, it is not

di�cult to obtain that

(5.6) jE(

sY
j=1

�̂ij �
sY

j=1

��ij )j � K(x)h2; s = 1; 2; 3; ij = 1; : : : ; 2n; K(x) 2 F;
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where ��i := �X i � xi; �̂i := X̂ i � xi:

Taking into account (5.6) and the fact that the Euler approximation (5.5) satis�es (2.7)

with l = 1 [12, 7], we get that the approximation (5.3) satis�es (2.7) with l = 1 as well.

Finally, to check the fourth condition of Theorem 2.2, we use Lemma 9.1 from [12, p.

114] which ensures existence and uniform boundedness of the moments Ej �Xkj �m under the

conditions: (i) jE ��j � K(1 + jxj)h and (ii) j ��j � M(�)(1 + jxj)
p
h with M(�) having

moments of all orders. The inequalities (5.6) and jE�̂j � K(1 + jxj)h imply ful�llment

of the condition (i), while the condition (ii) holds here due to (5.4). �

Remark 5.1. In the case of separable Hamiltonians at noise, i.e., when Hr(t; p; q) =

Ur(t; q) + Vr(t; p); r = 1; : : :m; the method (5:1) with � = 1; � = 0 acquires the form

Pk+1 = Pk + f(tk; Pk+1; Qk)h(5.7)

+
h

2

mX
r=1

nX
j=1

@�r

@qj
(tk; Qk) � 
jr(tk; Pk+1) + h1=2

mX
r=1

�r(tk; Qk)�rk;

Qk+1 = Qk + g(tk; Pk+1; Qk)h

�
h

2

mX
r=1

nX
j=1

@
r
@pj

(tk; Pk+1) � �jr(tk; Qk) + h1=2
mX
r=1



r
(tk; Pk+1)�rk

with not too complicated implicitness. Besides, when the Hamiltonians are such that

H0(t; p; q) = V0(t; p) + U0(t; q) and Hr(t; p; q) = �>
r
(t)p + Ur(t; q); r = 1; : : :m; �r(t) are

n-dimensional vectors, one obtains full explicit symplectic methods.

Remark 5.2. As is known [12, 7], there are e�ective methods of weak order 2 for general

systems of SDEs. These methods applied to (1:2), (1:3) are not symplectic. We have

not constructed a symplectic method of weak order 2 for the general Hamiltonian system

(1:2), (1:3); and this question requires further investigations. In the next subsection a

symplectic method of weak order 2 is proposed for a particular case of (1:2), (1:3):

5.2. Explicit �rst-order methods in the case of separable Hamiltonians. In this

and in the next subsections we consider a special case of the Hamiltonian system (1.2),

(1.3) such that

(5.8) H0(t; p; q) = V0(p) + U0(t; q); Hr(t; p; q) = Ur(t; q); r = 1; : : :m:

In this case we get the following system

dP = f(t; Q)dt+

mX
r=1

�r(t; Q)dwr(t); P (t0) = p;(5.9)

dQ = g(P )dt; Q(t0) = q;

with

(5.10) f i = �@U0=@q
i; gi = @V0=@p

i; �i
r
= �@Ur=@q

i; r = 1; : : :m; i = 1; : : : ; n:
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Recall that the system (5.9) has the same form in the sense of Stratonovich. Due to

speci�c features of the system (5.9), (5.10) we have succeeded in construction of explicit

PRK methods of a higher order.

On the basis of the mean-square PRK method (4.6) from [18] we obtain the weak PRK

method for (5.9):

Q1 = Qk + �hg(Pk); P1 = Pk + hf(tk + �h;Q1);(5.11)

Q2 = Q1 + (1� �)hg(P1);

(5.12) Pk+1 = P1 + h1=2
mX
r=1

�r(tk;Q2)�rk; Qk+1 = Q2; k = 0; : : : ; N � 1;

where 0 � � � 1 is a parameter and �
rk
are i.i.d. random variables with the law (5.2).

Theorem 5.2. The explicit method (5:11)�(5:12) for the system (5:9); (5:10) is symplectic

and of the �rst weak order.

Proof. Due to (5.10), @�i
r
=@qj = @�j

r
=@qi: Using this, we obtain dPk+1 ^ dQk+1 =

dP1 ^ dQ2. It is easy to prove that dP1 ^ dQ2 = dP1 ^ dQ1 = dPk ^ dQk: Therefore the
method (5.11)-(5.12) is symplectic. The order of convergence is proved as in Theorem 5.1

(even simpler). �

Remark 5.3. By swapping the roles of p and q, we can propose another symplectic

method of the �rst weak order for the system (5:9); (5:10): Namely, instead of (5:11)-
(5:12) one can propose

P1 = Pk + �hf(tk; Qk); Q1 = Qk + hg(P1);(5.13)

P2 = P1 + (1� �)hf(tk + h;Q1);

(5.14) Pk+1 = P2 + h1=2
mX
r=1

�r(tk;Q1)�rk; Qk+1 = Q1; k = 0; : : : ; N � 1:

5.3. Explicit second-order method in the case of separable Hamiltonians. In-

troduce the explicit PRK method for the system (5.9), (5.10):

(5.15) Q1 = Qk +
h

2
g(Pk); P1 = Pk + hf(tk +

h

2
;Q1) + h1=2

mX
r=1

�r(tk +
h

2
;Q1)�rk;

Pk+1 = P1; Qk+1 = Q1 +
h

2
g(P1); k = 0; : : : ; N � 1;

where �rk are i.i.d. random variables with the law

(5.16) P (� = 0) = 2=3; P (� = �
p
3) = 1=6:

It follows from Lemma 4.1 from [18] that this method is symplectic. Comparing (5.15)

with the standard Taylor type second-order weak method from [12, p. 115] applied to

(5.9), we prove that the method (5.15) is of weak order 2.

Theorem 5.3. The explicit method (5:15) for the system (5:9); (5:10) is symplectic and

of the second weak order.
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6. Symplectic methods in the weak sense for Hamiltonian systems

with additive noise

Consider Hamiltonian systems with additive noise

dP = f(t; P;Q)dt+

mX
r=1

�r(t)dwr(t); P (t0) = p;(6.1)

dQ = g(t; P;Q)dt+

mX
r=1



r
(t)dwr(t); Q(t0) = q;

where f and g satisfy (1.3).

The �rst order method for (6.1) follows from the method (5.1).

6.1. Implicit second-order methods in the case of general Hamiltonian system.

On the basis of a mean-square symplectic method of order 3=2 from [17], we construct

the weak method:

P1 = Pk +
�

2
hf(tk +

�

2
h;P1;Q1) + �1h

1=2

mX
r=1

�r(tk +
h

2
)�rk;(6.2)

Q1 = Qk +
�

2
hg(tk +

�

2
h;P1;Q1) + �1h

1=2

mX
r=1


r(tk +
h

2
)�rk;

P2 = Pk + �hf(tk +
�

2
h;P1;Q1) +

1� �

2
hf(tk +

1 + �

2
h;P2;Q2)

+�2h
1=2

mX
r=1

�r(tk +
h

2
)�

rk
;

Q2 = Qk + �hg(tk +
�

2
h;P1;Q1) +

1� �

2
hg(tk +

1 + �

2
h;P2;Q2)

+�2h
1=2

mX
r=1



r
(tk +

h

2
)�

rk
;

Pk+1 = Pk + h

�
�f(tk +

�

2
h;P1;Q1) + (1� �)f(tk +

1 + �

2
h;P2;Q2)

�

+h1=2
mX
r=1

�r(tk +
h

2
)�rk;

Qk+1 = Qk + h

�
�g(tk +

�

2
h;P1;Q1) + (1� �)g(tk +

1 + �

2
h;P2;Q2)

�

+h1=2
mX
r=1



r
(tk +

h

2
)�

rk
;
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where the parameters �; �1; �2 are such that

(6.3) ��1 + (1� �)�2 =
1

2
; ��21 + (1� �)�22 =

1

2
;

and �
rk
are i.i.d. random variables with the law (5.16).

For example, the following set of parameters satis�es (6.3):

(6.4) � =
1

2
; �1 = 0; �2 = 1:

The symplecticness follows from Lemma 3.5 of [17]. The order of convergence is proved

similarly to the proof of Theorem 5.1 comparing (6.2) with the standard Taylor type

second-order weak method from [12, p. 115] applied to (6.1).

Theorem 6.1. The implicit method (6:2); (6:3) for the system (6:1) is symplectic and of

the second weak order.

6.2. A third-order method in a particular case of Hamiltonian system. In this

subsection we propose a symplectic weak method of order 3 for the system with additive

noise:

dP = f(t; Q)dt+

mX
r=1

�r(t)dwr(t); f
i
(t; Q) = �

@U0

@qi
; P (t0) = p;(6.5)

dQ = M�1Pdt; Q(t0) = q:

On the basis of a symplectic mean-square method of order 3 from [17], we construct the

weak method:

Q1 = Qk +
7

24
hM�1Pk; P1 = Pk +

2

3
hf(tk +

7h

24
;Q1);(6.6)

Q2 = Q1 +
3

4
hM�1P1; P2 = P1 �

2

3
hf(tk +

25h

24
;Q2);

Q3 = Q2 �
1

24
hM�1P2; P3 = P2 + hf(tk + h;Q3);

Pk+1 = P3 + h1=2
mX
r=1

�r(tk)�rk + h3=2
mX
r=1

�0
r
(tk)(�r=2� �

r
)k + h5=2

mX
r=1

�00
r
(tk)�rk=6(6.7)

+h5=2
mX
r=1

nX
i=1

(M�1�r(tk))
i
@f

@qi
(tk;Q3)�rk=6;

Qk+1 = Q3 + h3=2
mX
r=1

M�1�r(tk)(�r=2 + �r)k + h5=2
mX
r=1

M�1�0
r
(tk)�rk=6;

k = 0; : : : ; N � 1;

where �
rk
; �

rk
are mutually independent random variables distributed by the laws

(6.8) P (� = 0) =
1

3
; P (� = �1) =

3

10
; P (� = �

p
6) =

1

30
;
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P (� = �1=
p
12) =

1

2
:

The symplecticness of this method follows from Theorem 5.3 of [17]. The order of con-

vergence can be proved by standard arguments [12, Section 10] using the fact that the

corresponding mean-square method from [17] has the third order of convergence or by

comparing the method (6.6)-(6.7) with the weak method of order 3 from [12, p. 126]

applied to (6.5).

Theorem 6.2. The explicit method (6:6)� (6:7) for the system (6:5) is symplectic and of

the third weak order.

7. Methods in the weak sense for Hamiltonian systems with

colored noise

Consider the system with colored noise

(7.1) dP = f(t; P;Q)dt+

mX
r=1

�r(t; P;Q)Y rdt; P (t0) = p;

dQ = g(t; P;Q)dt+

mX
r=1


r(t; P;Q)Y rdt; Q(t0) = q;

dY = �(t)Y dt+

lX
r=1

Ær(t)dwr(t); Y (t0) = y;

where P; Q; f; g; �r; 
r are n-dimensional column vectors, Y and Ær are m-dimensional

column vectors, �(t) is an m�m matrix, and

f i = �@H0=@q
i; gi = @H0=@p

i;(7.2)

�i
r

= �@Hr=@q
i; 
i

r
= @Hr=@p

i; i = 1; : : : ; n; r = 1; : : : ; m:

It can be proved that the transformation (p; q) 7! (P;Q) de�ned by (7.1) preserves sym-

plectic structure if the coe�cients f; g; �r; 
r satisfy (7.2). In particular, when all the

coe�cients �r; 
r at the colored noise do not depend on p and q; the phase �ow of (7.1)

preserves symplectic structure if f i = �@H0=@q
i; gi = @H0=@p

i; i = 1; : : : ; n:

Using speci�c features of a general system with colored noise, high-order mean-square

and weak methods were constructed in [13] (see also references therein). Here we propose

symplectic weak methods for the Hamiltonian system with colored noise (7.1), (7.2).

7.1. First-order methods. Consider the weak implicit method for (7.1), (7.2):

Pk+1 = Pk + hf + h

mX
r=1

�rY
r

k
; Qk+1 = Qk + hg + h

mX
r=1


rY
r

k
;(7.3)

Yk+1 = Yk + h�(tk)Yk + h1=2
lX

r=1

Ær(tk)�rk;
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where f; g; �r; 
r are calculated at (tk + �h; �Pk+1 + (1� �)Pk; (1� �)Qk+1 + �Qk); the
parameters �; � 2 [0; 1]; and �

rk
are i.i.d. random variables with the law (5.2).

It is not di�cult to prove the following theorem.

Theorem 7.1. The implicit method (7:3) for the system (7:1); (7:2) is symplectic and of

the �rst weak order.

7.2. Second-order methods. Introduce the method for (7.1), (7:2):

(7.4) Y = Yk +
h

2
�(tk)Yk +

1

2
h1=2

lX
r=1

Ær(tk)�rk;

Pk+1 = Pk + hf + h

mX
r=1

�rYr; Qk+1 = Qk + hg + h

mX
r=1



r
Yr;(7.5)

Yk+1 = Yk + h�(tk + h=2)Y + h1=2
lX

r=1

Ær(tk + h=2)�rk;

where f; g; �r; 
r are calculated at (tk + h=2; (Pk+1 + Pk)=2; (Qk+1 +Qk)=2) and �
rk
are

i.i.d. random variables with the law (5.16).

The symplecticness of this method follows from the symplecticness of the midpoint scheme

for deterministic Hamiltonian systems [21, 27]. Using the standard arguments [12] (see

also [13]), we prove that this method is of weak order 2.

Theorem 7.2. The implicit method (7:4)� (7:5) for the system (7:1); (7:2) is symplectic

and of the second weak order.

Remark 7.1. The method (7:4)� (7:5) is based on the implicit midpoint rule for deter-

ministic Hamiltonian systems. Using other deterministic symplectic integrators of order

2 (see e.g. [21, 27]), it is possible to obtain the other symplectic methods for (7:1); (7:2).

7.3. Third-order method. Introduce the notation

f(t; p; q; y) := f(t; p; q) +

mX
r=1

�r(t; p; q)y
r;

g(t; p; q; y) := g(t; p; q) +

mX
r=1



r
(t; p; q)yr;

Consider the implicit method for (7.1), (7.2):

(7.6) Y0 = Yk +
h1=2

3

lX
r=1

Ær(tk)�rk +
h

3
�(tk)Yk;

Y1 = Yk + {h1=2
lX

r=1

Ær(tk +
h

3
)(�rk=2 + �rk) +

{

2
h�(tk +

h

3
)Y0;

P1 = Pk + h
{

2
f(tk +

{

2
h;P1;Q1;Y1); Q1 = Qk + h

{

2
g(tk +

{

2
h;P1;Q1;Y1);
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Y2 = Yk + h1=2
lX

r=1

Ær(tk +
h

3
)(�

rk
=2 + �

rk
) +

h

2
�(tk +

h

3
)Y0;

P2 = Pk + h[{f(tk +
{

2
h;P1;Q1;Y1) +

1� 2{

2
f(tk +

h

2
;P2;Q2;Y2)];

Q2 = Qk + h[{g(tk +
{

2
h;P1;Q1;Y1) +

1� 2{

2
g(tk +

h

2
;P2;Q2;Y2)];

Y3 = Yk + (2� {)h1=2
lX

r=1

Ær(tk +
h

3
)(�rk=2 + �rk) +

(2� {)
2

h�(tk +
h

3
)Y0;

P3 = Pk + h[{f(tk +
{

2
h;P1;Q1;Y1) + (1� 2{)f(tk +

h

2
;P2;Q2;Y2)

+
{

2
f(tk +

2� {
2

h;P3;Q3;Y3)];

Q3 = Qk + h[{g(tk +
{

2
h;P1;Q1;Y1) + (1� 2{)g(tk +

h

2
;P2;Q2;Y2)

+
{

2
g(tk +

2� {
2

h;P3;Q3;Y3)];

Pk+1 = Pk + h[{f(tk +
{

2
h;P1;Q1;Y1) + (1� 2{)f(tk +

h

2
;P2;Q2;Y2)(7.7)

+{f(tk +
2� {

2
h;P3;Q3;Y3)];

Qk+1 = Qk + h[{g(tk +
{

2
h;P1;Q1;Y1) + (1� 2{)g(tk +

h

2
;P2;Q2;Y2)

+{g(tk +
2� {

2
h;P3;Q3;Y3)];

Yk+1 = Yk +
1

6
(�1 + 4�2 + �3);

where

�1 = h1=2
lX

r=1

Ær(tk)(�rk + 6�rk) + h�(tk)Yk;

�2 = h1=2
lX

r=1

Ær(tk +
h

2
)�

rk
+ h�(tk +

h

2
)(Yk +

1

2
�1);

�3 = h1=2
lX

r=1

Ær(tk+1)(�rk � 6�rk) + h�(tk+1)(Yk � �1 + 2�2);

�
rk
; �

rk
are mutually independent random variables distributed by the laws (6.8), and the

number { is equal to

{ =
1

3
(2 + 21=3 + 2�1=3):
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This method is based on the well-known deterministic symplectic method of order 4 [21]

and it is not di�cult to check that (7.6)-(7.7) is symplectic. We prove that this weak

method is of order 3 using the standard arguments [12, 13] (of course, the corresponding

calculations require much routine work).

Theorem 7.3. The implicit method (7:6)� (7:7) for the system (7:1); (7:2) is symplectic

and of the third weak order.

Remark 7.2. A Taylor type weak method of order 3 for a general system with colored

noise was proposed in [13] and an explicit Runge-Kutta weak method of order 3 for such

a system was constructed in [14]. These methods are not symplectic in application to the

Hamiltonian system (7:1); (7:2).

7.4. Explicit methods in the case of second-order di�erential equations with

colored noise. Here we consider the important particular case of the system with colored

noise (7.1), (7.2):

dP = f(t; Q)dt+

mX
r=1

�r(t; Q)Y rdt; P (t0) = p;(7.8)

dQ = M�1Pdt; Q(t0) = q;

dY = �(t)Y dt+

lX
r=1

Ær(t)dwr(t); Y (t0) = y;

with

(7.9) f i = �@H0=@q
i; �i

r
= �@Hr=@q

i; i = 1; : : : ; n;

and M is a constant positive de�nite matrix. This system can be written as a second-

order di�erential equation with colored noise. Some physical applications of such systems

are discussed in [23]. Since in this case we have the system with separable Hamiltonians,

we can construct both implicit and explicit symplectic methods.

The method (7.3) with � = 1 applied to (7.8)-(7.9) gives us the explicit symplectic method

of weak order 1 for the system (7.8)-(7.9).

7.4.1. Second-order method. Introduce the explicit PRK method for the system (7.8)-(7.9)

(cf. (5.15)):

(7.10) Y = Yk +
h

2
�(tk)Yk +

h1=2

2

lX
r=1

Ær(tk)�rk;

Q1 = Qk +
h

2
M�1Pk; P1 = Pk + hf(tk +

h

2
;Q1) + h

mX
r=1

�r(tk +
h

2
;Q1)Yr;

(7.12) Pk+1 = P1; Qk+1 = Q1 +
h

2
M�1P1;

Yk+1 = Yk + h�(tk + h=2)Y + h1=2
lX

r=1

Ær(tk + h=2)�rk;
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where �
rk
are i.i.d. random variables with the law (5.16).

It is not di�cult to prove the following theorem (cf. Theorem 5.3).

Theorem 7.4. The explicit method (7:10)�(7:12) for the system (7:8)�(7:9) is symplectic

and of the second weak order.

7.4.2. Third-order method. Introduce the notation

f(t; q; y) := f(t; q) +

mX
r=1

�r(t; q)y
r:

On the basis of deterministic third-order RKN method [21, 4] (cf. (6.6)-(6.7)), we propose

the explicit method for (7.8)-(7.9):

�1 = h1=2
lX

r=1

Ær(tk)(�rk + 6�
rk
) + h�(tk)Yk;(7.13)

�2 = h1=2
lX

r=1

Ær(tk +
h

2
)�

rk
+ h�(tk +

h

2
)(Yk +

1

2
�1);

�3 = h1=2
lX

r=1

Ær(tk+1)(�rk � 6�rk) + h�(tk+1)(Yk � �1 + 2�2);

Q1 = Qk +
7

24
hM�1Pk; P1 = Pk +

2

3
hf(tk +

7h

24
;Q1; Yk +

1

3
�1);

Q2 = Q1 +
3

4
hM�1P1; P2 = P1 �

2

3
hf(tk +

25h

24
;Q2; Yk +

5

6
�1 �

1

2
�2);

Qk+1 = Q2 �
1

24
hM�1P2; Pk+1 = P2 + hf(tk + h;Qk+1; Yk +

1

2
�1);(7.14)

Yk+1 = Yk +
1

6
(�1 + 4�2 + �3); k = 0; : : : ; N � 1;

where �
rk
; �

rk
are mutually independent random variables distributed by the laws (6.8).

It is not di�cult to check that this method is symplectic. Further, we prove that this weak

method is of order 3 using the standard arguments [12, 13] (of course, the corresponding

calculations require much routine work).

Theorem 7.5. The explicit method (7:13)-(7:14) for the system (7:8)-(7:9) is symplectic

and of the third weak order.

8. Weak methods for Langevin type equations

Symplectic methods in the weak sense proposed in Section 5-7 together with the ideas of

Sections 3-4 allow us to derive e�cient weak methods for Langevin type equations.
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8.1. Langevin equation: linear damping and additive noise. In this subsection we

propose weak methods for the Langevin equation (3.1), which satisfy the requirements

RL1-RL2 from Section 3.

Using splitting ideas presented in Section 3, we obtain the �rst-order method.

Theorem 8.1. Let �PI; �QI be a one-step approximation corresponding to a symplectic

method of �rst weak order for the system (3:5); (3:2). Then �P; �Q de�ned in (3:7) or in

(3:16) is a one-step approximation of the method of �rst weak order for the system (3:1)
which satis�es the requirements RL1-RL2.

As for �PI ; �QI appearing in the above theorem, one can take the approximation corre-

sponding to the symplectic implicit method (5.1) or to the explicit one (5.11)-(5.12).

Remark 8.1. The implicit method (5:1) can directly be applied to the Langevin equation
(3:1): Of course, it satis�es the requirement RL1. The method (5:1) satis�es the require-
ment RL2 for � = 0 and � = 1 only (see also the discussion in the end of Section 3:1):

Now we construct a method of weak order 2: To this end, consider the following approxi-
mation for (3.1) (cf. (3.19))

�P = �P (t0 + h; t0; p; q) := PII(
h

2
; �PI(t0 + h; t0; PII(

h

2
; p); q));(8.1)

�Q = �Q(t0 + h; t0; p; q) := �QI(t0 + h; t0; PII(
h

2
; p); q);

where �PI; �QI is a one-step approximation corresponding to any symplectic weak second-

order method for (3.5), (3.2) (for instance, one can use the implicit method (6.2) or the

explicit method (5.15)), and PII(t) is the exact solution of (3.6).

Theorem 8.2. Let �PI; �QI be a one-step approximation corresponding to a symplectic

method of second weak order for the system (3:5); (3:2). Then �P ; �Q de�ned in (8:1) is

a one-step approximation of the method of second weak order for the system (3:1) which

satis�es the requirements RL1-RL2.

Note that Remark 3.2 is applicable for both �rst and second order methods.

To get a method of weak order 3 for (3.1), we modify the symplectic RKN method (6.6)-

(6.7) as we did in Section 3.3 in the case of mean-square methods. On this way we obtain

the following method

(8.2) Q1 = Qk +
7

24
hM�1Pk; P1 = Pk +

7

24
h [f(Q1)� ��P1] ;

Q2 = Qk +
25

24
hM�1Pk +

h2

2
M�1 [f(Q1)� ��P1] ;

P2 = Pk +
2

3
h [f(Q1)� ��P1] +

3

8
h [f(Q2)� ��P2] ;

Q3 = Qk + hM�1Pk +
17

36
h2M�1 [f(Q1)� ��P1] +

1

36
h2M�1 [f(Q2)� ��P2] ;

P3 = Pk +
2

3
h [f(Q1)� ��P1]�

2

3
h [f(Q2)� ��P2] + h [f(Q3)� ��P3] ;
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Pk+1 = P3 + h1=2
mX
r=1

�r�rk � �h3=2
mX
r=1

��r � (�r=2 + �
r
)k(8.3)

+h5=2
mX
r=1

"
nX
i=1

(M�1�r)
i
@f

@qi
(Q3) + �2�2�r

#
�
rk
=6;

Qk+1 = Q3 + h3=2
mX
r=1

M�1�r � (�r=2 + �
r
)k � �h5=2

mX
r=1

M�1��r�rk=6; k = 0; : : : ; N � 1;

where �
rk
, �

rk
are mutually independent random variables distributed by the laws (6.8).

The weak order of this method can be proved by standard arguments [12] and its phase-

volume contractivity properties are proved by the same arguments as those before Theo-

rem 3.3.

Theorem 8.3. The method (8:2)-(8:3) for the system (3:1) has third weak order and

satis�es the requirements RL1-RL2.

Remark 8.2. The methods given in this subsection can be carried over to nonautonomous

Langevin equations. It is also possible to apply the presented approach to Langevin

equations with colored noise using symplectic methods from Section 7.

8.2. Langevin type equation: nonlinear damping and multiplicative noise. In

this subsection we propose weak methods for the Langevin type equation (4.1) which

satisfy the requirements RLT1-RLT2 from Section 4. As for �rst-order methods, we have

the theorem.

Theorem 8.4. Let �PI; �QI be a one-step approximation corresponding to a symplectic

method of �rst weak order for the system (4:3); (4:2); and �PII be a one-step approximation

corresponding to a �rst-order deterministic method for the system (4:4). Then �P ; �Q
de�ned in (4:5) or (4:7) is a one-step approximation of the method of �rst weak order for

the system (4:1) which satis�es the requirements RLT1-RLT2.

Remark 4.1 is applicable here. A concrete method based on �P; �Q from the above theorem

can be written using the implicit symplectic method (5.1) or the explicit one (5.11)-(5.12)

for �PI ; �QI . Further, as in the case of mean-square methods, the proposed approach can

be generalized to a more general system of the form (4.8) (see the comment in the end of

Section 4.1).

By the method of fractional steps (as in Sections 3.2 and 4.2) we construct the second

order weak method for (4.1) on the basis of the symplectic method (5.15). The method

has the form

P1 = �PII(tk +
h

2
; tk;Pk; Qk); Q1 = Qk +

h

2
g(P1);(8.4)

P2 = P1 + hf(tk +
h

2
;Q1) + h1=2

mX
r=1

�r(tk +
h

2
;Q1)�rk; Q2 = Q1 +

h

2
g(P1);

Pk+1 = �PII(tk +
h

2
; tk;P2;Q2)�

h2

4
�
@f�

@t
(tk;Pk; Qk); Qk+1 = Q2; k = 0; : : : ; N � 1;
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where �
rk

are i.i.d. random variables with the law (5.16) and �PII is a one-step approxi-

mation of any second-order deterministic method for system (4:4):

Using a speci�c approximation instead of �PII ; it is possible to modify the method (8.4)

in such a way that it will become a derivative-free method (i.e., the correction with the

derivative @f�=@t can be incorporated in �PII) but we do not consider this here.

The following theorem holds for the method (8.4).

Theorem 8.5. The method (8:4) has the second weak order and satis�es the requirements

RLT1-RLT2.

A remark analogous to Remark 4.1 is valid here. We also note that for f�(t; p; q) = �(q)p;
� � m�m dimensional matrix, PII(t) can be found explicitly. Consequently, we can put

PII instead of �PII in (8.4) (see also the discussion after Remark 4.3).

9. Numerical tests

9.1. Kubo oscillator. The system of SDEs in the sense of Stratonovich (Kubo oscillator

[8])

dX1 = �aX2dt� �X2 Æ dw(t); X1(0) = x1;(9.1)

dX2
= aX1dt+ �X1 Æ dw(t); X2

(0) = x2;

is often used for testing numerical methods (see, e.g., [32, 18]). Here a and � are constants

and w(t) is a one-dimensional standard Wiener process.

The phase �ow of this system preserves symplectic structure. Moreover, the quantity

H(x1; x2) = (x1)
2
+ (x2)

2
is conservative for this system, i.e.

H(X1(t); X2(t)) = H(x1; x2) for t � 0:

Here we test three speci�c methods of weak order 1. The weak Euler method in application

to (9.1) takes the form:

X1
k+1 = X1

k
� haX2

k
� h

�2

2
X1

k
� h1=2�X2

k
�
k
;(9.2)

X2
k+1 = X2

k
+ haX1

k
� h

�2

2
X2

k
+ h1=2�X1

k
�
k
;

where �k are i.i.d random variables with the law (5.2). This method is, of course, not

symplectic.

The weak midpoint method (the symplectic method (5.1) with � = 1=2) is written for

the autonomous system (9.1) as

X1
k+1 = X1

k
� ha

X2
k
+X2

k+1

2
� h1=2�

X2
k
+X2

k+1

2
�
k
;(9.3)

X2
k+1 = X2

k
+ ha

X1
k
+X1

k+1

2
+ h1=2�

X1
k
+X1

k+1

2
�k:

This is an implicit method in both deterministic and stochastic terms.
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Figure 1. The Kubo oscillator (9.1). Behavior of EH(X1
k
(t); X2

k
(t)) with

X1(0) = 1, X2(0) = 0; a = 1, � = 1, h = 0:05 on the time interval

t � 200 in the case of the Euler method (9.2) (left, computed due to (9.5)),

symplectic method (9.4) (dashed line on the right, computed by the Monte

Carlo technique, the Monte Carlo error is not greater than 0:0035 with

probability 0:95), and the midpoint method (9.3) (solid line on the right,

coincides with the exact value).

When applied to (9.1), the PRK method (5.7) has the form:

X1
k+1 = X1

k
� haX2

k
� h

�2

2
X1

k+1 � h1=2�X2
k
�
k
;(9.4)

X2
k+1 = X2

k
+ haX1

k+1 + h
�2

2
X2

k
+ h1=2�X1

k+1�k:

This method is symplectic and of the �rst weak order. It is implicit in the deterministic

part only.

Let us analyze how accurately these methods approximate EH(X1(t); X2(t)): In the case

of the Euler method we obtain

(9.5) EH(X1
k
; X2

k
) = (1 + h2(a2 +

�4

4
))k � H(x1; x2) � exp(

1

2
(a2 +

�4

4
)htk) � H(x1; x2);

i.e., the quantity grows exponentially fast as t increases.

It is not di�cult to check that H(x1; x2) is conserved by the midpoint method (9.3). But

the PRK method (9.4) does not preserve the quantity H(x1; x2): This is similar to the

deterministic case. Indeed, it is known [21] that symplectic deterministic RK methods

(e.g., the implicit midpoint rule) conserve all quadratic functions that are conserved by

the Hamiltonian system being integrated, while symplectic deterministic PRK methods

do not possess this property (see also a similar discussion concerning the mean-square

midpoint method in [18]).

Figure 1 illustrates behavior of EH(X1
k
(t); X2

k
(t)) in the case of the �rst order methods

(9.2), (9.3), and (9.4).
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Figure 2. The Kubo oscillator (9.1). Simulation of EX1(t) with X1(0) =

1, X2(0) = 0; a = 1, � = 0:2, h = 0:05 on the time interval t � 60:
The results obtained by the Euler method (9.2) � dashed line. The results

obtained by the midpoint method (9.3) and the symplectic method (9.4)

visually coincide with the exact solution (9.6) (solid line). The Monte Carlo

error is not greater than 0:03 with probability 0:95:

Further, it is not di�cult to �nd the following exact expressions for the Kubo oscillator

(9.1):

(9.6) EX1
0;x(t) = e��

2
t=2(x1 cos at� x2 sin at);

EX2
0;x(t) = e��

2
t=2(x2 cos at+ x1 sin at):

Figure 2 gives results of Monte Carlo simulation of EX1
0;x(t) by the methods (9.2), (9.3),

and (9.4). We see that the Euler method is not appropriate for simulation of the oscillator

(9.1) on long time intervals while the symplectic methods produce quite accurate results.

The Kubo oscillator is also considered with colored noise (see e.g. [13] and references

therein). Symplectic methods from Section 7 can be used for simulation of the Kubo

oscillator with colored noise.

9.2. A model for synchrotron oscillations of particles in storage rings. In [23] a

model describing synchrotron oscillations of particles in storage rings under the in�uence

of external �uctuating electromagnetic �elds was considered. This model can be written

in the following form

(9.7) dP = �!2 sin(Q)dt� �1 cos(Q)dw1 � �2 sin(Q)dw2;
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dQ = Pdt:

P and Q are scalars here. The system (9.7) is of the form (5.9) and therefore its phase

�ow preserves symplectic structure.

Let us mention that a certain weak numerical method for the system (5.9) with g(p) =

M�1p was proposed in [23]. In the absence of noise this method coincides with a determin-

istic symplectic method but in the stochastic case the method of [23] is not symplectic (also

see similar methods in [32]). Here we demonstrate an e�ciency of symplectic integrators

proposed in the present paper in comparison with ordinary (nonsymplectic) methods for

SDEs. We test four weak methods: two �rst-order methods (the Euler method, which is

not symplectic, and the symplectic method (5.11)-(5.12)) and two second-order methods

(a standard second-order weak method [12, 7] and the symplectic method (5.15)).

The weak Euler method for (9.7) takes the form

Pk+1 = Pk � h!2 sin(Qk)� h1=2(�1 cos(Qk)�1k + �2 sin(Qk)�2k);(9.8)

Qk+1 = Qk + hPk;

where �1k; �2k are i.i.d random variables with the law (5.2).

In application to (9.7) the �rst-order symplectic method (5.11)-(5.12) with � = 1 is

written as

Q = Qk + hPk;(9.9)

Pk+1 = Pk � h!2 sin(Q)� h1=2(�1 cos(Q)�1k + �2 sin(Q)�2k); Qk+1 = Q;

where �1k; �2k are i.i.d random variables with the law (5.2).

The standard second-order method from [12, 7] applied to (9.7) has the form

Pk+1 = Pk � h1=2(�1 cos(Qk)�1k + �2 sin(Qk)�2k)� h!2 sin(Qk)(9.10)

+
h3=2

2
(�1 sin(Qk)�1k � �2 cos(Qk)�2k)Pk �

h2

2
!2 cos(Qk)Pk;

Qk+1 = Qk + hPk �
h3=2

2
(�1 cos(Qk)�1k + �2 sin(Qk)�2k)�

h2

2
!2 sin(Qk);

where �1k; �2k are i.i.d. random variables with the law (5.16).

The second-order symplectic method (5.15) is written for the system (9.7) as

Q1 = Qk +
h

2
Pk; P1 = Pk � h!2

sin(Q1)� h1=2(�1 cos(Q1)�1k + �2 sin(Q1)�2k);(9.11)

Pk+1 = P1; Qk+1 = Q1 +
h

2
P1;

where �1k; �2k are i.i.d. random variables with the law (5.16).

Consider the quantity

E(p; q) =
p2

2
� !2 cos(q):
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Figure 3. The model (9.7). Simulation of EE(P (t); Q(t)) with P (0) = 1,

Q(0) = 0, ! = 2, �1 = �2 = 0:5, h = 0:05 on the time interval t � 200: the

Euler method (9.8) - dashed line; the results obtained by the symplectic

method (9.9) visually coincide with the exact solution (9.12) (solid line).

The Monte Carlo error is not greater than 0:43 for (9.8) and 0:2 for (9.9)

with probability 0:95:

Table 1. The model (9.7). Simulation of EE(P (t); Q(t)) with P (0) = 1,

Q(0) = 0, ! = 4, �1 = �2 = 0:3, t = 200 for various time steps h by

the Euler method (9.8), the �rst-order symplectic method (9.9), the stan-

dard second-order method (9.10), and the second-order symplectic method

(9.11). The exact solution is �6:5. M is a number of independent realiza-

tions in the Monte Carlo simulation. Note that the \� \ re�ects the Monte

Carlo error only (cf. (9.13)), it does not re�ect the error of a method.

h M (9.8) (9.9) (9.10) (9.11)

0:1 105 493:3� 0:3 �6:268� 0:059 462:2� 0:6 �6:316� 0:059

0:05 105 966:1� 0:7 �6:397� 0:059 0:896� 0:094 �6:421� 0:058

0:01 4 � 106 234:5� 0:06 �6:503� 0:009 �6:456� 0:009 �6:502� 0:009

Its mean value EE(P (t); Q(t)) is treated in physical literature (see e.g. [23] and references

therein) as a mean energy of the system. Under the assumption �1 = �2 = � one can

obtain that

(9.12) EE(P0;p;q(t); Q0;p;q(t)) = E(p; q) +
�2

2
t:
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Figure 3 illustrates Monte Carlo simulation of EE(P (t); Q(t)) by the �rst order methods

(9.8) and (9.9). In Table 1 we compare results produced by the four methods given above.

We have two types of errors in numerical simulations here: error of a weak method used

and a Monte Carlo error. The results in the table are approximations of EE( �P (t); �Q(t))
calculated as

(9.13) EE( �P (t); �Q(t))
:
=

1

M

MX
m=1

E( �P (m)(t); �Q(m)(t))� 2

r
�DM

M
;

where

�DM =
1

M

MX
m=1

[E( �P (m)(t); �Q(m)(t))]2 �

"
1

M

MX
m=1

E( �P (m)(t); �Q(m)(t))

#2
;

i.e., EE( �P (t); �Q(t)) belongs to the interval de�ned in this formula with probability 0:95
(we recall that for su�ciently small h the sampling variance is su�ciently close to the

variance of E( �P (t); �Q(t))): Note that the \� \ re�ects the Monte Carlo error only, it does

not re�ect the error of a method.

The above experiments with the model (9.7) demonstrate once again superiority of sym-

plectic methods in comparison with nonsymplectic ones. In [23] the system (9.7) is also

considered with colored noise. In this case symplectic methods from Section 7.4 can be

exploited. We note that the authors of [23] are interested in systems with small noise.

E�ective symplectic methods in the weak sense for Hamiltonian systems with small noise

can be obtained attracting ideas from [16] (see also [17, 18] where mean-square symplectic

methods for Hamiltonian systems with small noise were obtained).

9.3. Linear oscillator with linear damping under external random excitation.

Let us consider the linear oscillator with linear damping term and additive noise

(9.14) dX1 = !X2dt

dX2 = (�!X1 � �X2)dt+
�

!
dw(t);

where W (t) is a standard Wiener process, !; �; � are positive constants. The system

(9.14) is dissipative, its invariant measure � is gaussian N (0; R) with the density

(9.15) �(x) = (2�)�1(detR)
�1=2

expf�
1

2
(R�1x; x)g;

where R = (�2=2�!2)I is the covariance matrix for the two-dimensional process X =

(X1; X2)>; I denotes the unity matrix.

The discretized system by the explicit Euler scheme is

(9.16) �X1
k+1 =

�X1
k
+ ! �X2

k
h

�X2
k+1 =

�X2
k
� (! �X1

k
+ � �X2

k
)h+

�

!
�kw:
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The eigenvalues of the homogeneous part of (9.16) are

(9.17) �1;2 = 1�
�h

2
� h

r
�2

4
� !2:

We consider the case when the damping term is small, and that is why we suppose that

(9.18)
�

2
< !:

If (9.18) is ful�lled, then j�1;2j2 = 1��h+!2h2; and consequently (9.16) is asymptotically

stable if and only if

(9.19) h <
�

!2
:

In this case, the system (9.16) possesses a unique invariant measure �
h
(x) with a gaussian

density �
h
(x) corresponding to the normal lawN (0; Rh) with zero mean and the covariance

matrix

Rh =
�2

!2
{

�
1� �h=2 + !2h2=2 �!h=2

�!h=2 1

�
;

where

{ := 2� � 2!2h� �2h+
3�!2h2

2
�
!4h3

2
:

Due to (9.18) and (9.19), it is possible to prove that { > 0: The elements of Rh can be

represented as

Rjj

h
=

�2

2�!2
(1 +

!2h

�
+O(h�) +O(

h2

�2
)); j = 1; 2;

Rij

h
=

�2

2�!2
(�

!h

2
�
!3h2

2�
+O(h2�) +O(

h3

�2
)); i 6= j;

where, for instance, O(
h2

�2
) satis�es the inequality jO(

h2

�2
)j � C

h2

�2
for all � > 0; h > 0

such that the ratio h=� is su�ciently small, C is a positive number.

Therefore, if one would like to approximate �(x) by �h(x) quite accurately, then the step

h must be essentially less than �=!2; i.e., just the ful�llment of the stability condition

(9.19) is not enough. Suppose our aim is to evaluateZ
jxj2d�(x) =

Z
jxj2�(x)dx = lim

T!1

EjXx(T )j2:

We can approximate the limit by EjXx(T )j2 under a su�ciently large T: To evaluate

EjXx(T )j2 by the explicit Euler method, we need to perform N = T=h steps of (9.16). If

the damping factor � is small, then the time T is rather large and the step h of the Euler

method should be very small to satisfy the above condition h� �=!2: Consequently, the
number N is huge, and the Euler method is not appropriate for numerical solution of this

problem under small �.

Let us apply the implicit Euler method to system (9.14):

(9.20) �X1
k+1 =

�X1
k
+ ! �X2

k+1h
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�X2
k+1 =

�X2
k
� (! �X1

k+1 + � �X2
k+1)h+

�

!
�kw:

The eigenvalues of the homogeneous part of (9.20) are

�1;2 = 1�
�h+ 2!2h2

2(1 + �h+ !2h2)
�

p
�2h2 � 4!2h2

2(1 + �h + !2h2)
:

Under (9.18), the eigenvalues are again complex numbers and

j�1;2j2 = 1�
�h+ !2h2

1 + �h+ !2h2
:

Therefore, in contrast to the explicit Euler method, we need not any restriction on h
for asymptotic stability. This can give rise to the illusion about a possibility to choose a

comparatively big step h in the implicit Euler scheme. However, the coming up evaluations

show that such an illusion is very dangerous. Indeed, the system (9.20) possesses a unique

invariant measure �h(x) corresponding to the normal law N (0; Rh) with zero mean and

the covariance matrix Rh with the elements

Rjj

h
=

�2

2�!2
(1�

!2h

�
+O(h�) +O(

h2

�2
)); j = 1; 2;

Rij

h
=

�2

2�!2
(
!h

2
�
!3h2

2�
+O(h2) +O(

h3

�2
)); i 6= j;

and we are again forced to take a very small h to reach a satisfactory accuracy.

Now let us use the quasi-symplectic method based on the one-step approximation (3.7)

with �PI ; �QI from (3.12) with � = 0. For simplicity we take �PII = p� h�p instead of the

exact PII (see Remark 3.2). As a result, we get

(9.21) �X1
k+1 =

�X1
k
+ !h( �X2

k
� !h �X1

k
)

�X2
k+1 = ( �X2

k
� !h �X1

k
+
�

!
�kw)(1� �h):

In this case, if
�

2
< ! �

!2h

2
;

the eigenvalues �1;2 are complex and

j�1;2j2 = 1� �h:

For all not too large h the system (9.21) is asymptotically stable and possesses a unique

invariant measure with a gaussian density. The corresponding normal law has zero mean

and the covariance matrix with the elements

R11
h

=
�2

2�!2
(1� 2�h+O(h2));

R22
h

=
�2

2�!2
(1�

3

2
�h+O(h2));

Rij

h
=

�2

2�!2
(
!h

2
�

5

4
!�h2 +O(h3)); i 6= j:
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Figure 4. The linear oscillator with linear damping (9.14). Behavior of

E(X1(T ))2 with X1(0) = 0, X2(0) = 0; ! = 3, � = 0:1; � = 1, h = 0:1 (left)
and h = 0:01 (right) on the time interval t � 100 in the case of the weak

implicit Euler method (dashed line) and the weak quasi-symplectic method

(solid line, which visually coincides with the exact dependence E(X1(T ))2).
The Monte Carlo error is not greater than 0:00005 (left) and 0:0003 (right)
for the Euler method and 0:0005 for the quasi-symplectic method with

probability 0:95.

We see that the implicit Euler method has advantages in comparison with the explicit

Euler method due to its better stability properties. But both of them require too small

step to reach a su�cient accuracy, in particular, if � is small. At the same time, the quasi-

symplectic method (9.21) gives very good results for highly big steps. This is important,

for instance, for the problem of computing a mean due to an invariant law which needs

numerical integration on very long time intervals.

As an example, we evaluate E (X1(T ))
2
for a large T by weak analogues of the implicit

Euler method (9.20) and the quasi-symplectic method (9.21) (i.e., we replace �kw in this

methods by h1=2�k; �k are i.i.d. random variables with the law (5.2)). Notice that the

moments E (X i(t)Xj(t)) ; i; j = 1; 2; satisfy a system of linear di�erential equations and

E (X1(T ))
2
can be found exactly. The results of simulation are presented on Figure 4.

We see that even for the small step h = 0:01 the implicit Euler method tends to a wrong

limit with increasing T while the quasi-symplectic method gives quite accurate results,

e.g., for h = 0:1: The explicit Euler method is unstable for h = 0:1 (see (9.19)).

9.4. An oscillator with cubic restoring force under external random excitation.

Consider the oscillator with cubic restoring force and additive noise

(9.22) �Q = Q�Q3 � � _Q+ � _w :

Another form of this Langevin two-dimensional equation is (3.14) (see also (3.1) with

U0(q) =
1

4
q4 �

1

2
q2). The dynamical system (9.22) is ergodic (see, e.g. [11]) and its
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Figure 5. The oscillator with cubic restoring force (9.22). Behavior of

E(Q(T ))2 with P (0) = 0, Q(0) = 0; � = 0:05; � = 1, h = 0:1 (left) and

h = 0:01 (right) on the time interval t � 120 in the case of the weak implicit

Euler method (9.25) (dashed line) and the weak quasi-symplectic method

(9.24) (solid line). The Monte Carlo error is not greater than 0:005 with

probability 0:95. The dotted line presents the limit value of E(Q(T ))2 as
T !1 evaluated due to

R
1

�1

R
1

�1

q2�(p; q)dp dq with the invariant measure

�(p; q) from (9.23). This value is equal to 2:435:

invariant measure has the density

(9.23) �(p; q) = C exp(�
�

�2
(p2 +

1

2
q4 � q2));

where C is de�ned by the normalization condition.

Here we compare a quasi-symplectic method and the implicit Euler scheme. We use the

quasi-symplectic method based on the one-step approximation (3.7) and on the weak

symplectic method (5.11)-(5.12) with � = 0: For simplicity we take �PII = p�h�p instead
of the exact PII (see Remark 3.2). As a result, we get for (9.22):

Pk+1 = (1� �h)
�
Pk + h

�
Qk �Q3

k

�
+ h1=2��

k

�
(9.24)

Qk+1 = Qk + h
�
Pk + h

�
Qk �Q3

k

��
;

where �
k
are i.i.d. random variables with the law (5.2).

In application to (9.22) the weak implicit Euler scheme has the form

Pk+1 = Pk + h
�
Qk+1 �Q3

k+1 � �Pk+1

�
+ h1=2��k(9.25)

Qk+1 = Qk + hPk+1;

where �k are i.i.d. random variables with the law (5.2).

Figure 5 gives results of evaluation of E (Q(T ))
2
for a large T by these two methods. We

see again that even for the small step h = 0:01 the implicit Euler method tends to a wrong

limit with increasing T; while the quasi-symplectic method gives quite accurate results,

e.g., for h = 0:1:
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