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Abstract

The atomic chain whose dynamics evolve according to Newton's equa-

tions of motion serves as a simple microscopic many-particle system for an

analysis of the macroscopic or thermodynamic limit. If the interaction po-

tential has a su�cient strong repulsive part, it is possible to create a special

microscopic motion, that we call oscillator motion, which is simpler as the

classical thermal motion. However, also the oscillator motion leads to temper-

ature, a Gibbs equation and an entropy.

In the current paper we derive the thermodynamics for the oscillator motion

without the subtle replacement of the many-particle sytem by a single equation

of motion as it is done in [4]. Furthermore we introduce a di�erent mathemat-

ical setting for micro-macro transitions as in [4], which is better suited for a

rigorous treatment.

1 Introduction

1.1 The problem

The atomic chain whose dynamics evolve according to Newton's equations of

motion serves as a simple microscopic many-particle system for an analysis of the

macroscopic limit which sometimes is also called thermodynamic limit. If the inter-

action potential has a su�cient strong repulsive part, it is possible to create a special

microscopic motion, that we call oscillator motion, which is simpler as the classical

thermal motion. We indicate by the notion classical thermal motion that the veloc-

ities and distances of the particles are completely uncorrelated. Oscillator motion

denotes the other extreme case, where velocities and distances are completely cor-

related by the equations of motion. However, both kinds of microscopic motions

have in common that they produce on the macroscopic scale an evolution which

relies on the conservation laws for mass, momentum and energy and on constitutive

functions obeying the laws of thermodynamics. Despite its deterministic features,

the oscillator motion even leads to temperature, a Gibbs equation and an entropy.

On the other hand, the mathematical structure of the oscillator motion is much

simpler as for the classical thermal motion, and this makes the former very attrac-

tive for rigorous micro-macro transitions. The oscillator motion and its properties

was �rst observed and described byDreyer &Kunik in [4], where they reported on

an interesting scaling behaviour of the solutions of Riemann initial value problems
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in the macroscopic limit. The authors motivate by computer experiments that the

many-particle problem of the oscillator motion can be reduced to a single equation

of motion for a single oscillator. Relying on this assumption they derived the ther-

modynamics of the atomic chain.

In the current paper we derive the same thermodynamics for the oscillator motion

without the subtle replacement of the many-particle sytem by a single equation of

motion. Furthermore we introduce a di�erent mathematical setting for micro-macro

transitions as in [4], which is better suited for a rigorous treatment. The di�erent

setting relies on the introduction of Lagrange coordinates instead of Euler coor-

dinates. Lagrange coordinates are the canonical coordinates for the establishment

of micro-macro transitions because their microscopic counterpart is the particle in-

dex which appears explicitely in the equations of motions. They were already used

by Friesecke & Pego in [1] for the �rst rigorous transition from the microscopic

equations of motion to the Korteweg-deVries equation.

1.2 The organization of this study

In Section 2 we introduce the macroscopic conservation laws for mass, momentum

and energy in Euler and Lagrange coordinates. The objective of this this study

is formulated explicitely in Section 3. The microscopic model and the Riemann

initial value problems are introduced in Sections 4 and 5.

In Section 6 we report on some numerical observations from [4], where the authors

have identi�ed the oscillator motion of the atomic chain.

The main part of this study is contained in Section 7, which is decomposed into

several subsections. In section 7.1 we reformulate the equations of motions so that

the relation of the oscillator motion to the general motion becomes apparent. The

scalings of space and time and of various quantities, which appear in the equations

of motion, are introduced in Section 7.2. The introduction of the scaling behaviour

is the most subtle procedure, because macroscopic convergence of microscopic quan-

tities can only be achieved if the introduced scaling �ts to the considered class of

initial conditions. In Section 7.3 we derive the conservation law of mass, which is in

Lagrange coordinates simply a kinematic condition. The other conservation laws

and the constitutive functions are derived in the Sections 7.6 and 7.7. To this end

a prerequisite knowledge of mean values of highly oscillating functions is necessary.

Mean values are introduced in Section 7.4. In 7.5. we calculate the explicit form of

the phase density of the oscillator motion.

We conclude the study in section 8 with a summary and we give some perspec-

tives.
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2 The macroscopic conservation laws

The macroscopic behaviour of the atomic chain relies on the conservation laws for

particle number, momentum and energy. The densities of these quantities are

� � number densitiy; �� � momentum density and �e � energy density: (1)

Here � and e are the velocity and the speci�c energy, respectively.

2.1 The conservation laws in Euler coordinates

In regular space time points (t; x) the conservation laws read

@ �

@ t
+
@ ��

@ x
= 0;

@ ��

@ t
+
@ P

@ x
= 0;

@ �e

@ t
+
@ Q

@ x
= 0: (2)

The quantities P and Q are the momentum �ux and the energy �ux, respectively.

It is well known that shocks may arise during the evolution of these �elds, so that

the considered space time region decomposes into two regions + and �, which are

seperated by a shock curve, xs(t); whose tangent gives the shock speed Vs. On

singular points where this happens, the jumps [[ ]] :=  + �  
�
of the �elds follow

from the jump conditions

�Vs[[�]] + [[��]] = 0; �Vs[[��]] + [[P ]] = 0; �Vs[[�e]] + [[Q]] = 0: (3)

The principle of Gallilei invariance implies decompositions of the energy density,

the momentum �ux and the energy �ux so that their dependence on the velocity

becomes explicit:

P = ��
2 + p;

�e =
1

2
��

2 + �u; (4)

Q = (
1

2
��

2 + �u)� + p� + q:

Here p, u and q are the pressure, the speci�c internal energy and the heat �ux,

respectively. These quantities do not depend on the velocity, rather these are con-

sidered to be constitutive quantities which must be given by constitutive relations

so that the conservation laws become a closed system of �eld equations. The given

scheme represents the conservation laws in Euler coordinates t and x which are

best suited for the discussion of the evolution of the �elds, because the Euler

coordinates give the point of view of a �xed observer.

3



2.2 The conservation laws in Lagrange coordinates

There are other coordinates t and � which are called Lagrange coordinates. These

are introduced here, because Lagrange coordinates are more appropriate than Eu-

ler coordinates to establish micro-macro transitions.

The Lagrange coordinate � is de�ned by

�(t; x) =

xZ
0

�(t; �) d�: (5)

We conclude that for given time t, the coordinate � is a monotone function of x:

There holds
@ �

@ x
(t; x) = �(t; x) > 0; (6)

and we can invert � = �(t; x) to obtain x = x̂(t; �):

Next we de�ne the �elds �, � and u in Lagrange coordinates according to

�̂(t; �) = �
�
t; x̂(t; �)

�
; �̂(t; �) = �

�
t; x̂(t; �)

�
; û(t; �) = u

�
t; x̂(t; �)

�
; (7)

and in the same manner

p̂(t; �) = p
�
t; x̂(t; �)

�
; q̂(t; �) = q

�
t; x̂(t; �)

�
: (8)

These de�nitions can now be used to derive the conservation laws in Lagrange

coordinates from the conservation laws in Euler coordinates. We obtain in regular

points

@ d̂

@ t
�

@ �̂

@ �
= 0;

@ �̂

@ t
+
@ p̂

@ �
= 0;

@ (û+ 1

2
�̂
2)

@ t
+
@ (p̂�̂ + q̂)

@ �
= 0: (9)

and in singular points, which move with the speed VS with respect to Lagrange

coordinates, there follows

�VS[[d̂]]� [[�̂]] = 0; �VS[[�̂]] + [[p]] = 0; �VS[[û+
1

2
�̂
2]] + [[p̂�̂ + q̂]] = 0: (10)

The �eld d̂ = 1= �̂ denotes the speci�c volume, which is a speci�c length in the 1D
case.

3 The objective of this study

For the description of the macroscopic state of the atomic chain, we consider the

speci�c length, the velocity and the internal energy as the basic variables. Conse-

quently, the conservation laws become �eld equations if we will be able to relate the

constitutive quantities pressure and heat �ux to the variables.
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It is the objective of this study to derive the system of conservation laws and con-

stitutive relations from an underlying microscopic many-particle model. In general

this task has not been solved up to now. In [4] it is demonstrated that the resulting

macroscopic system of �eld equations strongly depends on the class of intial con-

ditions for which the many-particle system is solved. The authors describe in [4]

that there exists a special class of initial conditions, which induce a simple kind of

microscopic motion. They call these initial conditions cold Riemann data and the

resulting microscopic motion oscillator motion.

Riemann data consists of two constant states which are separated by a single discon-

tinuity. The notion cold indicates that there is initially no thermal motion. However,

it was numerically observed that the microscopic system develops temperature and

entropy in the vicinity of the discontinuity. Furthermore it was observed that the

resulting macroscopic �elds exhibit a very astonishing scaling behaviour. For Rie-

mann data with the initial discontinuity at x = L=2, the space time dependence of

the macroscopic �elds is simply given by the ratio (x� L=2)=t.

This observation motivates a special scaling which is the starting point of the current

study, where we derive the macroscopic system of �eld equations completely from

the microscopic many-particle system.

With the introduction of the microscopic model, which will be given next, there

appear two time and space scales. From now on, the macroscopic coordinates are

denoted by

t; x and �; (11)

whereas t, x, � are their corresponding microscopic counterparts.

4 The microscopic model

We consider an atomic chain consisting ofN structureless particles with massm = 1.
At time t the particles have the positions and velocities�

x1(t); x1(t); :::; xN(t)
	

and
�
_x1(t); _x1(t); :::; _xN (t)

	
; (12)

repectively. The �rst and the Nth particle are �xed at x1 = 0 and xN = L: The

other particles move according to nearest neighbour interactions with the potential

'(r) =
1

8

1

r4
�

1

4

1

r2
; so that '

0(1) = 0 and '
00(1) = 1: (13)

The dynamics of the particles is described by Newtons law of motion

�x� = '
0(x�+1 � x�)� '

0(x� � x��1) with � 2 f2; N � 1g: (14)

The initial conditions are given by the initial positions

fx1(0) = 0; x2(0) = x
0
2; :::; xN�1(0) = x

0
N�1; xN (0) = Lg (15)
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and the initial velocities

f _x1(0) = 0; _x2(0) = _x02; :::; _xN�1(0) = _x0
N�1; _xN(0) = 0g: (16)

The potential (13) may be replaced by other potentials, for instance by the Toda

potential, which reads

'(r) =
a

b
exp(�b(r � 1)) + a(r � 1); with a; b > 0: (17)

The Toda potential has some advantages regarding the analytical treatment of the

many-particle problem. In the vicinity of r = 1, the Toda potential has the same

properties as the potential (13).

5 The Riemann problem with cold initial data

We consider macroscopic initial data with a constant state for x � 1

2
L and a di�erent

constant state for x > 1

2
L, so that there is initially a single discontinuity at x = 1

2
L.

Riemann initial data are best suited to exhibit the scaling behaviour that appears

along with micro-macro transitions. There are special Riemann initial data that

lead to a very interesting microscopic motion. These data are called cold initial

data.

Cold initial data can be described as follows. The macroscopic state of a chain with

N particles is determined by only four constants �
�

, �+, ��, �+. The corresponding

macroscopic initial �elds number density and velocity read

� (0; x) =

8<
:

�
�

x �
1

2
L

for

�+ x >
1

2
L

; � (0; x) =

8<
:

�
�

x �
1

2
L

for

�+ x >
1

2
L

: (18)

According to these macroscopic initial data we prepare the microscopic initial data

of the atomic chain as follows. Let be N
�
and N+ be the numbers of atoms which

are initially left and right from the discontinuity, respectively, and let L = NL be

the length of the chain in microscopic space units. According to [4] we can calculate

N
�
, N+ and L by

L = 2
N � 1

�
�

+ �+

; N
�
+N+ = N � 1;

N
�

�
�

+
N+

�+

= L: (19)

Finally, the microscopic initial positions of the atoms result as

x
0
�

=
�� 1

�
�

if � = 1; ::; N�; and (20)

x
0
�

=
N
�

�
�

+
�� 1�N

�

�+

if � = N
�
+ 1; ::; N: (21)

Since there is initially no temperature, we set

_x0
�

= �
�

if � = 1; ::; N
�
; and (22)

_x0
�

= �+ if � = N
�
+ 1; ::; N: (23)
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6 Numerical observations

Numerical observations of the cold initial value problem in [4] has revealed the

following phenomena:

� The macroscopic �elds U(t; x) scale so that there holds

U(t; x) = Û(
x� L=2

t
): (24)

� The evolution of the macroscopic �elds U(t; x) consists of constant states,

rarefaction waves and shocks, which is the usual behaviour of a quasi-linear

hyperbolic sytem of conservation laws, see [5], [6] and [8] for details.

� Temperature develops in the vicinity of the shocks.

� In the space time regions with temperature, the underlying microscopic motion

is the oscillator motion. The atoms of the chain move according to the oscil-

lator motion, if for any � the two atomic distances

x�+1(t)� x�(t) and x�+3(t)� x�+2(t) (25)

have about the same size. In [4] the oscillator motion is modeled by only

two di�erent atomic distances r (t) and s (t), so that the microscopic atomic

distances y� := x�+1 � x� are given by

:: ; y�(t); y�+1(t); y�+2(t); y�+3(t); :: = :: ; r(t); s(t); r(t); s(t); :: :

Consequently, r (t) and s (t) are restricted by the condition

r (t) + s (t) =
2

�
: (26)

Furthermore it was argued in [4] that there is only one representative equation of

motion, viz.

�r (t) = 2

�
'
0

�
2

�
� r (t)

�
� '

0 (r (t))

�
: (27)

Relying on this single microscopic equation, Dreyer & Kunik calulated the macro-

scopic system of �eld equations. In the current study we will also start from the

reported scaling behaviour (24). However, we will not assume that only two micro-

scopic distances may appear.
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7 The macroscopic limit

7.1 Preliminary reformulation of the N-particle system

We start from (14) in the form

�x� = '
0(x�+1 � x�)� '

0(x� � x��1); (28)

where � 2 f1; ::; Ng. For simplicity we assume that N = 2M is odd. Furthermore,

for the theoretical setting we consider periodic boundary conditions. In particular

we set

x0 := xN and xN+1 := x1: (29)

Note that the energy per particle, which is de�ned by

e� =
1

2
_x2
�
+

1

2
'(x�+1 � x�) +

1

2
'(x� � x��1); (30)

leads to a conservation law, viz.

d

dt

 
NX
�=1

e�

!
= 0: (31)

Next we rearrange the particle indices according to

� =
1

2
� with � 2 [1; M ]; (32)

and we introduce new variables, viz.

r� = x2� � x2��1; m� =
1

2
(x2� + x2��1);

s� = x2�+1 � x2�; n� =
1

2
(x2� + x2�+1): (33)

Motivation

The introduction of the new particle index � is closely related to the oscillator

motion, cf. [4]. The positions of the particles in an atomic chain that performs the

oscillator motion, are depicted in Figure 1. In particular, the functions r� and s�
vary slowly with respect to �.

Assumption

Within this paper we assume, that the atoms of the chain move according to the

oscillator motion. All results that we will derive below, are valid only under this
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x

x2��3 x2��2 x2��1 x2� x2�+1 x2�+2 x2�+3

r��1 s��1 r� s� r�+1 s�+1

Figure 1: The atomic positions of the oscillator motion

assumption. However, this assumption can be justi�ed numerically for a class of

special initial data. For a more detailed discussion we refer to [4].

Among the new variables (33) there a several identities:

r� + s� = 2(n� �m�) = 2(n� � n��1=2) = 2(m�+1=2 �m�); (34)

which will be used in the following. The variables r� and s� are adjacent distances,

whereas m� and n� indicate adjacent centers of mass of two neighbouring particles.

The equations of motion for the atom with index 2� and its two neighbours read

�x2��1 = '
0(r�)� '

0(s��1);

�x2� = '
0(s�)� '

0(r�); (35)

�x2�+1 = '
0(r�+1)� '

0(s�):

From the variables (33) we form the canonical variables for the establishment of a

macroscopic limit. These are de�ned by

d� =
1

2
(r� + s�) = n� �m�;

q� =
1

4
(s� � r�) =

1

2
(d� � r�); (36)

f� =
1

2
(m� + n�):

The time derivative of f� will be identi�ed later as the macroscopic velocity. For

this reason we introduce the notation

�� = _f�: (37)

Remarks

1. Recall that it was observed in [4], that d� is a slowly varying function of time.

Variations of d� can be observed on the macro scale only. The same holds for

the variable f�: On the other hand, the variable q� describes rapid oscillations

that can be observed exclusively on the microscale.

2. All variables vary slowly with respect to the particle index �.

9



3. The variables m�, n� and f� depend monotonically on the particle index �.

Newton's equations of motion for the variables d�, q� and f� read

�d� =
1

2
('0 (r�+1)� '

0 (r�) + '
0 (s��1)� '

0 (s�));

�q� = '
0 (r�)� '

0 (s�) + �f�; (38)

�f� =
1

4
('0 (r�+1)� '

0 (r�) + '
0 (s�)� '

0 (s��1)):

Interpretation

The three equations of motion (38) for the variables d�; q� and f� play di�erent

roles. Equation (38)2 describes the microscopic oscillators. It is used to calculate

the constitutive functions. On the other hand, (38)1 and (38)3 form the basis for

the macroscopic conservation laws of momentum and energy. In contrast to the fact

that d�(t) is a slow function, Equation (38)1 is macroscopically not directly observ-

able, and it is only used for some preliminary calculations.

Let us use the new variables to form the energy

e� =
1

4
_x22�+1 +

1

2
_x22� +

1

4
_x22��1 + ' (r�) + ' (s�)

=
1

8
_r2
�
+

1

8
_s2
�
+

1

2
_m2
�
+

1

2
_n2
�
+ ' (r�) + ' (s�)

= _q2
�
+

1

2
_d2
�
+ _f 2

�
+ ' (r�) + ' (s�) ; (39)

so that there holds

d

dt

 
MX
�=1

e�(t)

!
= 0: (40)

Note that e� contains the energy of two particles.

7.2 Scalings, Part 1: De�nitions and �rst conclusions

The natural scaling parameter is given by the number of particles N . In order to

establish the macro limit N ! 1 we introduce " = 1=N and consider the limiting

case " ! 0. According to the chosen class of initial conditions, namely those that

lead to waves, we scale time, space and the two particle indices by

t = "t; x = "x; � = "�; � = "�: (41)

There follows

� 2 [0; 1]; � 2 [0;
1

2
]; � =

1

2
� and

@

@ �
= 2

@

@ �
: (42)
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We call the scaled particle index � a Lagrange position. Obviously, for any �nite

N the scaled particles indices � and � remain discrete quantities. However, � as well

as � become continuous if N !1. The transition from discrete particle indices to

continuous ones, is studied in detail in [2].

In order to obtain a more intuitive notation, we write

r
"(t; �) instead of r�(t); s

"(t; �) instead of s�(t); ::: (43)

However, recall that � is a discrete variable with � 2 f1; :::; Mg. Furthermore we

write for the velocities

@ r
"

@ t
(t; �) instead of _r�(t);

@ s
"

@ t
(t; �) instead of _s�(t); ::: (44)

There is only one exception to the latter convention. For reasons that will become

obvious in Section 7.4, we de�ne

_q "(t; �) := _q�(t): (45)

Since m�, n� and f� are center of mass coordinates, they scale like the space coor-

dinate. The other variables r�, s�, d� and q� represent atomic distances, thus these

variables are scale invariant. We write

m
"(t; �) := "m

"

�
t

"
;
�

"

�
= "m

"(t; �);

n
"(t; �) := "n

"

�
t

"
;
�

"

�
= "n

"(t; �); (46)

f
"

(t; �) := "f
"

�
t

"
;
�

"

�
= "f

"(t; �);

and for the other group of variables

r
"(t; �) := r

"

�
t

"
;
�

"

�
= r

"(t; �);

s
"(t; �) := s

"

�
t

"
;
�

"

�
= s

"(t; �); (47)

d
"

(t; �) := d
"

�
t

"
;
�

"

�
= d

"(t; �);

q
"(t; �) := q

"

�
t

"
;
�

"

�
= q

"(t; �):

Furthermore we set

�
"(t; �) :=

@ f
"

@ t
(t; �) =

@ f
"

@ t

�
t

"
;
�

"

�
= �

"

�
t

"
;
�

"

�
= �

"(t; �): (48)

The appropriate scaling of the energy will be discussed in Section 7.7.
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Regarding their dependence on time, the variables must be categorized di�erently.

There exist slow variables that vary on the macro time scale, and there are fast

variables that change on the micro time scale. The group of slow variables consists

of the quantities d, f , m and n. The functions

d
"

(t; �); f
"

(t; �); n
"(t; �) and m

"(t; �) (49)

have thus an immediate macroscopic meaning. Note that only d
"

and f
"

are alge-

braically independent, because from (36) there follow the identities

n
"(t; �) = f

"

(t; �) +
1

2
d
"

(t; �) and (50)

m
"(t; �) = f

"

(t; �)�
1

2
d
"

(t; �): (51)

The quantities r, s and q are fast variables. In particular, the functions

r
"(t; �); s

"(t; �) and q
"(t; �) (52)

exhibit rapid oscillations with respect to the macro time t. In the next section we

shall explain, how these oscillations can be described in the limit "! 0.

Remarks

1. The classi�cation into slow and fast variables can be justi�ed both numerically

and analytically.

2. The scaling behavior of a quantity, cf. (46) and (47), is independent from its

classi�cation as a fast or a slow variable.

7.3 Scalings, Part 2: The macroscopic conservation law of

mass

The de�nitions of the last section immediately imply some conclusions regarding

the slow variables. With (33) and (34) we �nd two expressions for 2d " = r
" + s

",

namely

2d "(t; �) = 2
�
m

"(t; � +
1

2
)�m

"(t; �)
�

=
2

"

�
m

"(t; � +
"

2
)�m

"(t; �)
�

(53)

and

2d "(t; �) = 2
�
n
"(t; �)� n

"(t; � �
1

2
)
�

=
2

"

�
n
"(t; �)� n

"(t; � �
"

2
)
�
: (54)
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If we assume that the limits

d(t; �) := lim
"!0

d
"

(t; �) and f(t; �) := lim
"!0

f
"

(t; �) (55)

exist, we obtain from (53) and (54)

d(t; �) =
1

2

@ m(t; �)

@ �
=

1

2

@ n(t; �)

@ �
; (56)

and �nally

d(t; �) =
1

2

@ f

@ �
(t; �): (57)

Di�erentiating (57) with respect to t leads to

@ d

@ t
(t; �) =

1

2

@ �

@ �
(t; �): (58)

This equation is the �rst of the three macroscopic conservation laws in Lagrange

coordinates, because it can be written in the form

@ d

@ t
�

@ �

@ �
= 0: (59)

The remaining two macroscopic conservation laws rely on Newtons equations of

motion. Their derivation requires more elaborated techniques.

7.4 The microscopic oscillators

In order to study the macroscopic meaning of Equation (38)2, we introduce two new
auxiliary quantities ~q " by ~_q " by

~q "(t; �) = q
"

�
t;
�

"

�
; and ~_q "(t; �) = _q"

�
t;
�

"

�
: (60)

Note that the functions ~q " and ~_q " depend on the micro time t but on the macro

particle index �. Equation (38)2 transforms into

@
2~q"

@ t 2
(t; �) =

@ ~_q "

@ t
(t; �)

= '
0

�
d
"

("t; �)� 2~q"(t; �)
�
� '

0

�
d
"

("t; �) + 2~q"(t; �)
�
+

"
@
2
f
"

@ t
2
("t; �): (61)

This equation describes a family of microscopic oscillators indexed by �. We observe

that the microscopic oscillator, which corresponds to �xed �, is disturbed by the

following two slow functions

t ; d
"

("t; �) and t ; "
@
2
f
"

@ t
2
("t; �): (62)
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The oscillating system (61) and the in�uence of the slow functions have to be studied

carefully. Therefore we have investigated systems like (61) in [3]. The results from

[3] regard the following oscillating system

@
2
q
"

@ t 2
(t) = '

0

�
g1("t)� 2q"(t)

�
� '

0

�
g1("t)� 2q"(t)

�
+ "g2("t); (63)

which is very similar to (61) for �xed �. Obviously, the di�erence between both

systems is caused by the explicit "-dependence of the slow perturbations in (61).

However, we expect that (61) and (63) behave similar if "! 0.

Before we summarize the main results from [3], we introduce further notations.

With Q = (q; _q) we denote the variable in the phase space of the oscillator (61).

Furthermore, we de�ne the oscillator energy eosc = eosc(Q; d) by

eosc(Q; d) :=
1

2
_q2 + �osc(q; d) with (64)

�osc(q; d) :=
1

2

�
'(d� 2q) + '(d+ 2q)

�
; (65)

where �osc is the potential of the microscopic oscillator (61).

If we use the potential (13) as atomic interaction potential, we must restrict our

considerations to the range

d �

r
5

3
: (66)

The upper bound guarantees that the function

q ; �osc(q; d) (67)

has a unique global minimum.

The evolution of the oscillator energy is given by

~e "osc(t; �) :=
1

2

�
~_q "(t; �)

�2
+ �osc

�
d
"

("t; �); ~q "(t; �)
�
: (68)

As we will see in Section 7.7, the oscillator energy is closely related to the internal

energy of the atomic chain. Finally we introduce the scaled oscillator energy by

e
"

osc(t; �) := ~e "osc

�
t

"
; �

�
: (69)

We now assume that the methods that are developed in [3] can be applied to (61).

Under this assumption, the following propositions will result.
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1. The macroscopic behavior of the oscillating system (61) can be described by

a family of Young measures indexed by �. The corresponding family of

disintegrations leads to a family of probability measures

(t; �) ; �(t; �; dQ) 2 Prob (R2): (70)

2. The macroscopic in�uence of the term

"
@
2
f
"

@ t
2
("t; �) (71)

can be neglected. This is due to the factor " in front of the second derivative

of f
"

.

3. If " ! 0, the scaled oscillator energy converges to a function eosc(t; �) that
satis�es a di�erential equation. We will derive this equation in Section 7.7.

4. The probability measure �(t; �; dQ) is completely determined by eosc(t; �)
and d(t; �).

5. For any (t; �) the measure �(t; �; dQ) can be characterized in di�erent ways.

This will be explained in the following.

Let (t; �) be �xed and let 	 = 	(Q) be an observable. There exist three di�erent,

but equivalent characterizations of �(dQ) = �(t; �; dQ).

1. The measure �(dQ) is the solution of the stationary Liouville equation that

corresponds to the following dynamical system

@
2
q

@ � 2
(�) = '

0

�
d� 2q(�)

�
� '

0

�
d+ 2q(�)

�
; d = d(t; �): (72)

Note that there is no coupling between � and t. We call (72) the associated

system to (61). The corresponding stationary Liouville equation reads

_q
@ �

@ q
(dQ) +

�
'
0(d� 2q)� '

0(d+ 2q)
�
@ �

@ _q
(dQ) = 0: (73)

2. The integral of an observable 	 with respect to �(dQ) can be expressed by

means of temporal averaging. Let ("i)i and (
j)j be two sequences with 
j ! 0
and "i ! 0. Then there holds

Z
R2

	(Q)�(t; �; dQ) = lim
j!1

lim
i!1

1


j

t+
jZ
t

	
�
Q

"i
(s; �)

�
ds: (74)

Here Q
"

is the scaled solution of (61), i.e.

Q
"

(t; �) =
�
~q "(

t

"
; �); ~_q "(

t

"
; �)

�
: (75)
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The integral on the right hand side of (74) describes time means with respect

to time intervals that are microscopically extremely large but macroscopically

very small. In [4], Dreyer and Kunik describe a more general setting for

time averaging. To this end they introduce a windows function and scale its

support with ". However, this approach leads to the same results.

3. The measure �(dQ) can be calculated directly from the associated system (72).

For any observable 	 we �nd

Z
R2

	(Q)�(t; �; dQ) = lim
�end!1

1

�end

�endZ
0

	
�
Q(�)

�
d�; (76)

where Q(�) is the solution of the associated system (72). Recall that (72)

depends on (t; �) via the speci�c volume d = d(t; �). In the next section we

use (76) in order to derive explicit expressions for time means.

7.5 Mean values with respect to time

We have mentioned in the last section, that

1. The macroscopic behavior of the fast variable q is governd by a family of

probability measures �(t; �; dQ).

2. The measures �(t; �; dQ) can be evaluated by averaging with respect to time.

In this section we give a more detailed description of the resulting time means. As in

the last section, Q = (q; _q) denotes the variable in the phase space of the oscillating

system (61).

Let 	 = 	(Q) be an observable. For time means of 	 we use the following no-

tation D
	
�
Q(t; �)

�E
:=

Z
R2

	(Q)�(t; �; dQ)

= lim

!0

lim
"!0

1




t+
Z
t

	
�
Q

"

(s; �)
�
ds: (77)

Recall that

1. Q
"

denotes the scaled solution of the microscopic oscillators (61), i.e.

Q
"

(t; �) =
�
q
"(
t

"
;
�

"
); _q "(

t

"
;
�

"
)
�
: (78)
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2. The last identity in (77) was already stated in the last section, cf. (74).

Let (t; �) be �xed. In order to derive explicit expression for the time means of 	,
we consider the associated system (72) and Equation (76). As before,

Q(�) =
�
q(�); _q(�)

�
(79)

denotes the solution of (72).

As in the last section, we restrict the range of the speci�c length d by d �

q
5

3
.

This leads to the following properties of the oscillator potential �osc = �osc(q; d),
cf. (65). The function q ; �osc(q; d)

1. is odd with respect to q,

2. has a global unique minimum at q = 0,

3. increases for q > 0 and decreases for q < 0.

We conclude that the oscillator (72) runs along a closed path in the (q; _q) space.
There exist two turning points q = q

�
and q = q+ in which _q = 0. For �xed d and

given value of the oscillator energy eosc, the turning points q
�
and q+ are given as

solutions of the equation

eosc = �osc(q�; d): (80)

In particular, q+ = q? = �q
�
and 2eosc = '(d� 2q?) + '(d+ 2q?) .

The total period �per of the motion can be decomposed into two half-periods with

_q(�) < 0 and _q(�) > 0. Both half periods have the same duration �? = �?(q?; d).
Since the oscillator energy is conserved, the velocity _q(�) is an algebraic function of

q(�). Within the two half-periods we �nd

_q(�) = _q
�

�
q(�)

�
and _q(�) = _q+

�
q(�)

�
; (81)

respectively, where

_q
�
(q) = �

q
'
�
d� 2q

�

�
+ '

�
d+ 2q

�

�
� '

�
d� 2q

�
� '

�
d+ 2q

�
: (82)

In order to establish the following limit theorem exclusively in the q space, we

introduce three functions  
�
(q),  +(q) and  (q) by

 
�
(q) := 	

�
q; _q

�
(q)
�

and  (q) =
1

2

�
 
�
(q) +  +(q)

�
: (83)

Since the motion of the oscillator (72) is periodic, the right hand side in Equation

(76) simpli�es to

lim
�end!1

1

�end

�endZ
0

	
�
Q(�)

�
d� =

1

�per

�perZ
0

	
�
Q(�)

�
d� =:



	
�
: (84)
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Without loss of generality we can assume that q(0) = q
�

= �q?. Using (81) we

obtain



	
�
=

1

�per

�?Z
0

	
�
q(�); _q+

�
q(�)

��
d� +

1

�per

2�?Z
�?

	
�
q(�); _q

�

�
q(�)

��
d�: (85)

In the �rst integral we substitute � by q(�). Since

dq = _q(�)d� = _q+
�
q(�)

�
d� (86)

there results

�?Z
0

	
�
q(�); _q+

�
q(�)

��
d� =

+q?Z
�q?

 +

�
q
� 1

_q+(q)
dq:

In the same way we transform the second time integral in (85). We end up with



	
�

=
1

2�?

+q?Z
�q?

 +

�
q
� 1

_q+(q)
dq +

1

2�?

�q?Z
+q?

 
�

�
q
� 1

_q
�
(q)

dq

=
1

�?

+q?Z
�q?

 
�
q
� 1

_q+(q)
dq: (87)

The half-period �? follows from

�? =

+q?Z
�q?

1

_q+(q)
dq: (88)

In the last step we introduce a phase density W (q?; d; q) which is de�ned by

W (q?; d; q) =
1

�?(q?; d)
q
'
�
d� 2q

�

�
+ '

�
d+ 2q

�

�
� '

�
d� 2q

�
� '

�
d+ 2q

� :
Finally, we obtain from (76), (84) and (87) the identity

D
	
�
Q(t; �)

�E
=

+q?(t; �)Z
�q?(t; �)

 (q)W
�
q?(t; �); d(t; �); q

�
dq: (89)

Recall that q? depends algebraically on d and on the oscillator energy eosc.
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Next we give by a brief summary regarding the time means of the other variables.

If we apply the time mean approach to slow functions, we obtain

D
	
�
d(t; �)

�E
= lim


!0
lim
"!0

1




t+
Z
t

	
�
d
"

(s; �)
�
ds

= 	
�
d(t; �)

�
= lim

"!0
	
�
d
"

(t; �)
�
: (90)

Similar identities hold for the other slow variables f , m, n and even for their macro-

scopic derivatives, as for instance for the velocity �.

The limiting behavior of the fast variables r and s must also be described by time

means. However, we can express the time means of r and s by time means of q.

Since r = d� 2q and s = d+ 2q, there holds

D
	
�
r(t; �)

�E
:= lim


!0
lim
"!0

1




t+
Z
t

	
�
r
"(s; �)

�
ds

= lim

!0

lim
"!0

1




t+
Z
t

	
�
d
"

(s; �)� 2q"(s; �)
�
ds: (91)

The following propositionsD
_q(t; �)

E
= 0; and

D
'
0

�
r(t; �)

�E
=
D
'
0

�
s(t; �)

�E
; (92)

are immediate consequences of (89) and (91). They will be used in the next sections.

7.6 Scalings, Part 3: The macroscopic conservation law of

momentum

In this section we derive from the equation of motion (38)3 for the variable f� the

second macroscopic conservation law.

Equation (38)3 can be written as

@ �
"

@ t
(t; �) =

@
2
f
"

@ t
2
(t; �)

=
1

4"

�
'
0

�
r
"(t; � + ")

�
� '

0

�
r
"(t; �)

��
+

1

4"

�
'
0

�
s
"(t; �)

�
� '

0

�
s
"(t; � � ")

��
: (93)
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Next we discuss the macroscopic limit of this equation. We assume as before that

the limit functions exist, and form the time means of both sides to obtain

@ �(t; �)

@ t
=

1

4

@

@ �

D
'
0

�
r(t; �)

�E
+

1

4

@

@ �

D
'
0

�
s(t; �)

�E
: (94)

This law can obviously be identi�ed with the macroscopic conservation law of mo-

mentum, see (9)2. Thus the pressure is de�ned by

p(t; �) = �

1

2

D
'
0

�
r(t; �)

�E
�

1

2

D
'
0

�
s(t; �)

�E
: (95)

Using this de�nition we can transform Equation (94) into

@ �

@ t
+
@ p

@ �
= 0: (96)

The evaluation of the right hand side of (95) will lead to the constitutive law, that

relates the pressure to the basic variables speci�c volume and speci�c energy. This

will be done in the next section.

7.7 Scalings, Part 4: The macroscopic conservation law of

energy

The macroscopic conservation law of energy is a consequence of the corresponding

microscopic conservation law (40) for the energy

MX
�=1

e�: (97)

Recall that e� represents the energy of two particles. For this reason we de�ne the

energy function e "(t; �) by

e
"(t; �) :=

1

2
e�(t) (98)

so that e "(t; �) is a speci�c energy, i.e. an energy per particle. e "(t; �) is thus given
by

e
"(t; �) =

1

2

�
_q "(t; �)

�2
+

1

4

�
@ d

"

@ t
(t; �)

�2
+

1

2

�
@ f

"

@ t
(t; �)

�2
+

1

2
'

�
r
"(t; �)

�
+

1

2
'

�
s
"(t; �)

�
: (99)

In order that the rescaled energy has a macroscopic meaning, we de�ne

e
"(t; �) := e

"(
t

"
;
�

"
) = e

"(t; �): (100)
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Next we form the time derivative of the oscillator energy, which is given by

e
"

osc(t; �) =
1

2

�
_q "(t; �)

�2
+

1

2
'
0

�
r
"(t; �)

�
+

1

2
'
0

�
s
"(t; �)

�
: (101)

From the equations of motion (38 ) for d�; q� and f� we obtain

@ e
"

osc

@ t
(t; �) = _q "(t; �)

@
2
f
"

@ t 2
(t; �) +

1

2

�
'
0

�
r
"(t; �)

�
+ '

0

�
s
"(t; �)

��@ d "

@ t
(t; �); (102)

which transforms after rescaling to

@ e
"

osc

@ t
(t; �) = _q

"

(t; �)
@
2
f
"

@ t
2
(t; �) +

1

4

�
'
0

�
r
"(t; �)

�
+ '

0

�
s
"(t; �)

��@ � "

@ �
(t; �): (103)

We now form the time mean of both sides according to section 7.5 and pass to the

limit " ! 0. As before we assume that the limit function of the oscillator energy

exists and write

eosc(t; �) = lim
"!0

e
"

osc(t; �): (104)

With (92) and (95) we obtain

@ eosc

@ t
(t; �) = �

1

2
p(t; �)

@ �

@ �
(t; �): (105)

The speci�c energy, which is given by

e
"(t; �) = e

"

osc(t; �) +
1

4

�
@ d

"

@ t
(t; �)

�2
+

1

2

�
�
"(t; �)

�2
; (106)

reads after rescaling

e
"(t; �) = e

"

osc(t; �) +
"
2

4

�
@ d

"

@ t
(t; �)

�2
+

1

2

�
�
"(t; �)

�2
: (107)

The time derivative of e "(t; �) yields

@ e
"

@ t
(t; �) =

@ e
"

osc

@ t
(t; �) + �

"(t; �)
@ �

"

@ t
(t; �) +

"
2

2

@ d
"

@ t
(t; �)

@
2
d
"

@ t
2
(t; �): (108)

In the limit "! 0 there results

@ e

@ t
(t; �) =

@ eosc

@ t
(t; �) + �(t; �)

@ �

@ t
(t; �): (109)
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Using (58) and (105) we �nd the third conservation law

@ e

@ t
(t; �) = �

1

2
p(t; �)

@ �

@ �
(t; �)�

1

2
�(t; �)

@ p

@ �
(t; �)

= �

1

2

@ (p �)

@ �
(t; �); (110)

which can be written as

@ e

@ t
+
@ (p �)

@ �
= 0: (111)

Remarks

1. A comparison with the macroscopic conservation law (9)3 reveals that the

heat �ux is zero. In other words, the macroscopic equations describe local

equilibria.

2. The speci�c energy is the sum of the oscillator energy and the energy of the

macroscopic motion

e(t; �) = eosc(t; �) +
1

2

�
�(t; �)

�2
: (112)

Thus we �nd that internal energy is identical to oscillator energy.

3. The pressure p(t; �) is an algebraic function of the internal energy eosc(t; �)
and the speci�c volume d(t; �). This is a consequence of (80), (89), (91), (92)
and (95). There results

p(t; �) = �

D
'
0

�
r(t; �)

�E

= �

+q?(t; �)Z
�q?(t; �)

'
0

�
d(t; �)� 2q

�
W

�
q?(t; �); d(t; �); q

�
dq; (113)

where q?(t; �) is determined by means of the oscillator potential �osc, i.e.

�osc

�
q?(t; �); d(t; �)

�
= eosc(t; �): (114)

4. The conservation law of mass is a kinematic consequence of the de�nitions of

d� and f�.

5. The equation of motion for f�, cf. (38)3, leads to the conservation law of

momentum. However, we have used all equations of motion from (38) to

derive the conservation law of energy.
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6. Finally we discuss the meaning of Equation (38)1 for the variable d�. After

the rescaling of this equation we end up with

"
@
2
d
"

@ t
2
(t; �) =

1

2"

�
'
0

�
r
"(t; � + ")

�
� '

0

�
r
"(t; �)

��
+

1

2"

�
'
0

�
s
"(t; � � ")

�
� '

0

�
s
"(t; �)

��
: (115)

If we pass to the limit "! 0, we obtain an identity, namely

0 =
1

2

@

@ �

hD
'
0

�
r(t; �)

�E
�

D
'
0

�
s(t; �)

�E i
= 0: (116)

Consequently, Equation (38)1 has no macroscopic meaning. This is a surprising

fact because the limit function d(t; �) has such a macroscopic meaning.

7.8 The introduction of temperature and entropy

Note that we have already obtained a closed system of �eld equations, so that there

is actually no need to introduce further variables. However, there are two more

quantities which play a fundamental role in thermodynamics, and these are temper-

ature and entropy.

As in [4], we identi�y the temperature T with two times the mean kinetic energy of

the rapid oscillator motion. In particular we de�ne

T (t; �) :=
D
_q(t; �)2

E
: (117)

Thus having de�ned the speci�c internal energy u(t; �), the pressure p(t; �), the
speci�c length d(t; �) and the temperature T (t; �), we may now pose the question,

whether these quantities are related to each other by the Gibbs equation

T dh = du + p dd; (118)

where h denotes the speci�c entropy. The existence of the Gibbs equation, and thus

the de�nition of the speci�c entropy results from the study whether the integrability

condition
@

@ d

� 1
T

�
=

@

@ u

�
p

T

�
(119)

is satis�ed or not.

Because we have justi�ed in the current study the intuitive derivation of mean

values in [4], we only must cite the proof of the integrability condition that is found

to be in that paper. The speci�c entropy then follows by a simple integration of

(118) and reads

h(t; �) = log
� +q?(t; �)Z
�q?(t; �)

_q+
�
q?(t; �); d(t; �); q

�
dq

�
(120)
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with

_q+(q?; d; q) =

q
'(d� 2q?) + '(d+ 2q?)� '(d� 2q)� '(d+ 2q) : (121)

8 Summary and perspectives

Relying on an observed scaling behaviour, which is generated by cold Riemann

inital data and on the assumption (!) that the limit " ! 0 exists, we have derived

from Newton's equations of motion for the atomic chain

�x� = '
0(x�+1 � x�)� '

0(x� � x��1) (122)

1. the macroscopic conservation laws in Lagrange coordinates

@ d

@ t
�

@ �

@ �
= 0;

@ �

@ t
+
@ p

@ �
= 0;

@ e

@ t
+
@ (p �)

@ �
= 0; and (123)

2. the constitutive law for the pressure p.

Furthermore we have introduced the quantities temperature and speci�c entropy,

and we have shown that all these quantities are related to each other in a thermo-

dynamic consistent way.

Up to now, a rigorous mathematical treatment of a limit, that starts from a many-

particle system and ends up with some partial di�erential equations, is only consid-

ered for microscopic motions without temperature, cf. [1]. The simple microscopic

oscillator motion develops temperature and may thus serve as the test case for a

mathematical treatment with temperature. The oscillator motion is much easier to

handle as classical thermal motion, because in contrast to classical thermal motion,

the atomic distancies and velocities are completely coupled via the microscopic equa-

tions of motion.

The current study has provided the mathematical setting for micro-macro tran-

sitions of a simple microscopic motion with temperature. The main results are as

follows

1. Derivation of the conservation laws and the contitutive equation.

2. For micro-macro transitions, the use of Lagrange coordinates is prior to

Euler coordinates.

3. Furthermore we have justi�ed, that the constitutive laws can be derived from

a single oscillator equation, cf. (72). The full many-particle system is not

needed for this purpose. Dreyer's & Kunik's conjecture from [4] could thus

be veri�ed.

24



However, we obtained the results under some assumptions regarding

1. the convergence of the slow variables,

2. the decoupling of fast and slow variables, cf. Section 7.4,

3. the convergence of time means of fast variables.

The veri�cation of this assumptions is the subject of a forthcoming study. The �rst

steps in this direction are already included in [2] and [3].

Finally we mention that the oscillator motion can even be used to study phase

separation processes. Recall that we have restricted the range of the speci�c length

d by 0 < d �
p

5=3. This condition guarantees that the oscillator potential exhibits

a global unique minimum. If d >
p

5=3, the oscillator potential changes to a double
well potential and phase transitions may appear.
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