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Abstract

It is shown that every symplectic map of R2n
can be approximated, in the

C1
-topology, on any compact set, by some iteration of some map of the form

(x; y) 7! (y + �;�x + �(y)) where x 2 Rn, y 2 Rn, and � is a polynomial

Rn ! Rn and � 2 Rn is a constant vector. For the case of area-preserving

maps (i.e. n = 1), it is shown how this result can be applied to prove that Cr
-

universal maps (a map is universal if its iterations approximate dynamics of

all Cr
-smooth area-preserving maps altogether) are dense in the Cr

-topology

in the Newhouse regions.

1 Polynomial approximations by Hénon-like maps

It is shown here that every (or, better say, almost every) symplectic dynamics in

R2n can be realized by iterations of Hénon-like maps, i.e. symplectic maps of the

following special form 8><
>:

�x = y

�y = �x + �(y)

(1)

where x 2 Rn, y 2 Rn and � is a smooth function Rn
! Rn. The precise for-

mulation is given in theorem 1, an interesting application is discussed in section

2. The main step of the construction is based on the fact that an arbitrary sym-

plectic map of R2n admits, on any compact set, arbitrarily good approximations

by polynomial symplectic maps of a special form � by superpositions of polynomial

Hénon-like maps, in fact. The possibility of a symplectic polynomial approximation

to any symplectic map is far of being immediately obvious, though I do expect that

somebody could have proved this before. However, I failed to �nd a corresponding

reference, as well as my discussions with prominent experts in symplectic dynamics

showed that the possibility of such an approximation is not widely known. There-

fore, a detailed proof of the symplectic polynomial approximation theorem is also

included.

Hénon-like maps (1) are, of course, quite special. They are reversible, so the inverse

of any of them is again a Hénon-like map. The superpositions of polynomial Hénon-

like maps form a group which is known to coincide [1], at least in dimension n =

2, with the so-called Cremona group of the symplectic polynomial maps with a

polynomial inverse. The general interest to Hénon-like maps is explained simply by

the fact that (1) gives, probably, the easiest way to de�ne a polynomial map which

preserves the standard symplectic form dx
V
dy. Maps (1) also appear in symplectic
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discretizations of natural Lagrangian systems (see e.g. (7),(8)). My interest to

Hénon-like maps is due to the fact that they appear as rescaled �rst-return maps at

homoclinic bifurcations, near a homoclinic tangency in particular (see section 2).

Theorem 1. Let U be a ball in R2n and let F be a Cr-smooth symplectic map

U ! R2n. Then for any compact C and for any " > 0 there exist a polynomial

� : Rn
! Rn, a constant vector � 2 Rn and an integer N > 0 such that the 4N-th

iteration of the symplectic map f : (x; y) 7! (�x; �y), where

�x = y + �; �y = �x + �(y); (x 2 Rn; y 2 Rn
); (2)

approximates F with the accuracy " in the Cr-topology:

sup
(x;y)2C

kF (x; y)� f 4N(x; y)k+ krF (x; y)�rf 4N(x; y)k+ : : :

: : :+ k

@r

@(x; y)r
F (x; y)�

@r

@(x; y)r
f 4N (x; y)k < ";

where we denote f 4N = f Æ : : : Æ f| {z }
4N

.

Before we start to prove the theorem, note that the map (2) is not an Hénon-like

map at � 6= 0, but it coincides with an Hénon-like map (namely, with the map

(�x = y; �y = �x + �(y � �) + �)) after the shift of coordinates y 7! y + �. It will

also be clear from the proof that if the map F depend continuously, or smoothly,

on some parameters �, then the approximation by the map (2) with � constant and

� depending, resp. continuously or smoothly, on � can be done uniformly on any

compact set of parameters �, and along with the derivatives with respect to � (in

the case of smooth parameter dependence). With this remark, theorem 1 thus says

us that every dynamical phenomenon which is robustly present in any symplectic

map or in any �nite-parameter family of symplectic maps can indeed be found in

iterations of polynomial Hénon-like maps (up to a shift of coordinates).

Note that one cannot assume � = 0 in this theorem, because any Hénon-like map

f of the form (1) (i.e. with � = 0) is reversible with respect to the involution

R : (x; y) $ (y; x), i.e. f�1 = R Æ f Æ R, and the same holds true for any iteration

of such map. So, if the map F which is to be approximated is not reversible with

respect to R and if it, for example, has a non-parabolic �xed point Q(x; y) while

the point RQ(y; x) is not a �xed point of F , any su�ciently close C1-approximation

of F must have a �xed point Q� close to Q while RQ� cannot be a �xed point.

Hence any su�ciently close C1-approximation of such map F cannot be reversible

with respect to R, i.e. any iteration of any Hénon-like map must be far from F in

C1-topology on a neighborhood of the points Q and RQ.

The map f� given by (2) with � 6= 0 is also reversible: f�1
�

= R� Æ f� ÆR� where R�

is the involution (x; y) 7! (y + �; x� �). However, by taking k�k large enough one

can always achieve that R�C \ FC = ; where C is the compact on which we want
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to approximate the map F . This means that the reversibility of the approximating

map f 4N
�

does not create obstacles anymore (by approximating the map F on the

set C one automatically obtains an approximation to F�1 on the set FC; from

the other hand, if the approximation is reversible, its inverse is uniquely de�ned on

the set R�C - this would obviously create a problem if FC and R�C would have a

non-empty intersection, so we cancel this problem by taking k�k large enough).

Theorem 1 is, in fact, easily derived from the following formally weaker statement.

Theorem 2 (symplectic polynomial approximation). Given any Cr-smooth sym-

plectic map F : U ! R2n, for any compact C � D and for any " > 0 there

exists a sequence of polynomial Hénon-like maps f1; : : : ; f4N such that the map F

is approximated on C by the superposition f4N Æ : : : Æ f1 with the accuracy " in

the Cr-topology. When F depends continuously on some parameters �, the func-

tions fi, i = 1; : : : ; 4N , depend continuously on � as well, and the approximation is

uniform on any compact set of �. When F is Cr-smooth with respect to (x; y; �),

the functions fi are C
r-smooth with respect to (x; y; �) as well, and the superposition

f4NÆ: : :Æf1 is "-close to F on C along with all the derivatives with respect to (x; y; �).

The rest of this section is occupied by the proof of these two theorems. Assume

for a moment that theorem 2 is proven, then theorem 1 is obtained as follows. Fix

any " > 0 and let f1; : : : ; f4N be the corresponding sequence of the Hénon-like maps

from theorem 2,

fi : (x; y) 7! (y;�x+ �i(x)): (3)

Let (x0; y0) be an arbitrary point in C and let (xi; yi) = fiÆ : : :Æf1(x0; y0). Note that

xi = yi�1 at i � 1, according to (3). Let L be such that the image fi Æ : : :Æf1(C) lies

inside the ball of the radius L around the point (xi; yi), for every i = 1; : : : ; 4N (if

F depends on parameters, we assume that these holds true for all parameter values

under consideration). Choose some � and take a sequence of points (x�
i
; y�

i
) (i =

0; : : : ; 4N) such that (x�0; y
�

0) = (x0; y0), (x
�

4N ; y
�

4N) = (x4N ; y4N), and x
�

i
= y�

i�1 + �

for i � 1. If we take � > L + kx4N � y0k, then we can always choose y�
i
such that

ky�
i
� y�

j
k > L for all 0 � i < j � 4N � 1 (our assumptions �x y�4N�1 = x4N � �, so

we must have � su�ciently large in order to push y�4N�1 on a distance larger than L

from y�0 = y0). Now, de�ne the function � such that

�(y) = �i(y � y�
i�1 + yi�1) + x�

i�1 � xi�1 + y�
i
� yi

on the cylinder ky � y�
i�1k � L, i = 1; : : : ; 4N (the functions �i are de�ned by

(3)). Due to our choice of y�
i
, the cylinders corresponding to di�erent i do not

intersect, so such Cr-smooth function � can be de�ned indeed. By construction

(recall that xi = yi�1 and x
�

i
= y�

i�1 + �), the map f : (x; y) 7! (y + �;�x + �(y))

acts on the cylinder ky � y�
i�1k � L (i = 1; : : : ; 4N) as a superposition of the

parallel translation (x; y) 7! (x�x�
i�1+xi�1; y�y

�

i�1+yi�1) (that takes the cylinder

ky � y�
i�1k � L onto the cylinder ky � yi�1k � L; at i = 1 this is just the identity

map since (x�0; y
�

0) = (x0; y0)), the map fi, and the parallel translation (x; y) 7!
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(x � x�
i
+ xi; y � y�

i
+ yi). Since every image fi Æ : : : Æ f1(C) lies in the cylinder

ky� yi�1k � L, it follows that f ijC is a superposition of fi Æ : : : Æ f1 and the parallel

translation (x; y) 7! (x � x�
i
+ xi; y � y�

i
+ yi). Since (x�4N ; y

�

4N) = (x4N ; y4N), we

have �nally that f 4N jC � f4N Æ : : : Æ f1jC . Hence, f 4N gives indeed the required

approximation to the original map F on C (as the superposition f4N Æ : : : Æ f1 does

according to theorem 2). By construction, the map f has the required form (2) (the

function � can be made polynomial by an arbitrarily small perturbation � this will

make approximation only slightly worse).

It remains to prove theorem 2. It is well-known that for any Cr-smooth symplectic

map F of an open 2n-dimensional ball D into R2n, for any compact C � D there

exists a time-dependent Hamiltonian H(x; y; t) de�ned at all x 2 Rn, y 2 Rn,

continuous in t and Cr+1-smooth in (x; y) (and its gradient is Cr-smooth with respect

to (x; y; �) if the map F is Cr-smooth with respect to some parameter � as well),

such that F coincides on C with the time-1 shift by the �ow de�ned via

_x =
@H

@y
(x; y; t); _y = �

@H

@x
(x; y; t): (4)

Thus, every symplectic map can be understood as a shift by a non-autonomous

Hamiltonian �ow, so we will work with the �ow given by (4) from the very begin-

ning. Since polynomials are dense among smooth functions, it is enough to prove

the theorem for the case when H is polynomial in (x; y) (with the coe�cients contin-

uously depending on time and continuously or smoothly depending on parameters

�), so let this be our standing assumption. Let Ft;� denote the map de�ned by the

�ow (4) from the moment of time t to the moment t + � . It is obvious that we

will prove the theorem if we will show that any map Ft;� can be approximated, as

� ! 0, by the superposition of Hénon-like maps with the accuracy O(� 2), uniformly

for any compact interval of values of t and on any compact set in the (x; y; �)-space.

Indeed, since

F � F0;1 = F1�1=m;1=m Æ : : : Æ F0;1=m

for any integer m, it follows that if all the maps Fl=m;1=m admit, uniformly for

all l = 0; : : : ; m � 1, an O(1=m2)-approximation by the superpositions of Hénon-

like maps, then the superposition of these superpositions will provide an O(1=m)-

approximation to F0;1: if we denote the approximation to Fl=m;1=m as Gl, then

kF0;1 �Gm�1 ÆGm�2 Æ : : : ÆG0k �

�

m�1X
l=1

kF 0

l=m;1�l=mk � kF(l�1)=m;1=m �Gl�1k = O(m) �O(1=m2
) = O(1=m)

(we use that all the derivatives of the map Ft;1�t are uniformly bounded for all

t 2 [0; 1]).

It follows then immediately that the theorem holds true for the Hamiltonians of the

type

H =
1

2
y2 + V (x; t); (5)
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i.e. for the systems of the type

_x = y; _y = �	(x; t); (6)

where 	 � rxV . Indeed, the time-� shift by the �ow of (6) has the form

xt+� = xt + �y +O(� 2); yt+� = y� � �	(xt; t) +O(� 2);

i.e. it is uniformly O(� 2)-close to the symplectic map (x; y) 7! (�x; �y):

�x = x+ �y; �y = y � �	(x + �y; t): (7)

Now note that the latter map is the superposition of four Hénon-like maps: (x; y) 7!

(x1; y1), (x1; y1) 7! (x2; y2), (x2; y2) 7! (x3; y3), (x3; y3) 7! (�x; �y), where

(�x = y3; �y = �x3); (x3 = y2; y3 = �x2);

(x2 = y1; y2 = �x1 + �	(�y1; t); (x1 = y; y1 = �x� �y):

(8)

Let us now prove the following

Lemma. Given any H(x; y; �; t), polynomial in (x; y), there exists a function

V (x; �; s), polynomial in x, such that the time-� map Ft;� of system (4) is uni-

formly O(� 2)-close (on any compact domain in the (x; y; �)-space and any compact

interval of the values of t) to the time-2� map of the Hamiltonian system

_xj = yj; _yj = �
2
j
xj � �

@

@xj
V (x1; x2; : : : ; xn; �; s) (j = 1; : : : ; n) (9)

for some appropriately chosen integers 
1; : : : ;
n.

Note that the theorem follows from this lemma immediately: since (9) is a Hamilto-

nian system of type (6), its time-2� map can be arbitrarily closely approximated by

a superposition of Hénon-like maps, hence Ft;� can be O(� 2)-approximated by such

superposition as well, which gives the theorem as it was explained above.

It remains to prove the lemma. We start with the case n = 1, i.e. when x and y are

scalars, and we take 
1 = 1. Equations (9) take the form

_x = y; _y = �x� �V 0

x
(x; s) (10)

(we suppress, notationally, the dependence on the parameters � from now on). So-

lutions of (10) at small � can be written as

x(s) = x(0) cos s+ y(0) sin s� �

Z
s

0
V 0

x
(x(�); �) sin(s� �)d� +O(� 2);

y(s) = �x(0) sin s+ y(0) cos s� �

Z
s

0
V 0

x
(x(�); �) cos(s� �)d� +O(� 2):

(11)
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Thus, the time-2� map is written as

�x = x + �
@

@y

Z 2�

0
V (x cos s + y sin s; s)ds+O(� 2);

�y = y � �
@

@x

Z 2�

0
V (x cos s+ y sin s; s)ds+O(� 2)

(12)

The time-� map Ft;� of the Hamiltonian system (4) has the form

�x = x+ �
@

@y
H(x; y; t) +O(� 2);

�y = y � �
@

@x
H(x; y; t) +O(� 2):

(13)

By comparing (12) and (13) we see that to prove the lemma we must show that for

every polynomial function H(x; y) there exists a polynomial in z function V (z; s)

such that

H(x; y) �

Z 2�

0
V (x cos s+ y sin s; s)ds: (14)

Let H be a polynomial of degree M :

H(x; y) =
X

0�p+q�M

hpqx
pyq:

We will look for V (z; s) in the form

V (z; s) =
X

0�k�M

vk(s)z
k

where the coe�cients vk(s) have to be de�ned in such a way that (14) would be

satis�ed.

It is easy to see that relation (14) is ful�lled if and only if, for every k = 0; : : : ;M ,

hpq = C
q

k

Z 2�

0
vk(s) cos

p s sinq sds (15)

for all p � 0; q � 0 such that p + q = k. We will look for the function vk(s) in the

form

vk(s) =
X

0�q�k

�qgqk(s)

where we denote gqk(s) = cosk�q s sinq s, and �q are coe�cients to be de�ned. So,

the problem reduces to �nding such coe�cients �q which satisfy the following system

of linear equations:

hpq=C
q

k
=

X
0�q0�k

�q0 < gq0k; gqk >

6



where < �; � > denotes the inner product of functions: < gq0k; gqk >=

Z 2�

0
gq0k(s)gqk(s)ds.

This system has a solution if and only if the system of the functions gqk(s) (here k

is �xed and q runs integer values from 0 to k) is linearly independent. Moreover,

the coe�cients �q are determined uniquely and depend linearly on the coe�cients

hpq involved. Now note that the linear independence of the system of functions

cosk s; cosk�1 s sin s; : : : ; cos s sink�1 s; sink s is equivalent to the linear independence

of the system of functions 1; tan s; : : : ; tank s, and the latter is obvious, of course.

This gives the lemma in case n = 1.

The case with n > 1 is more involved: we should be careful with the choice of the

frequencies 
1; : : :
n. At small � the solution of system (9) has the form

xj(s) = xj(0) cos 
js+
1


j
yj(0) sin
js�

�


j

Z
s

0
	j(x(�); �) sin
j(s� �)d� +O(� 2);

yj(s) = �
jxj(0) sin
js+ yj(0) cos 
js� �

Z
s

0
	j(x(�); �) cos
j(s� �)d� +O(� 2)

(16)

where we denote 	j �

@

@xj
V . Thus, the time-2� map is written as

�xj = xj + �
@

@yj

Z 2�

0
V (x1 cos s+

1


1

y1 sin s; : : : ; xn cos s+
1


n
yn sin s; s)ds+O(� 2);

�yj = yj � �
@

@xj

Z 2�

0
V (x1 cos 
1s+

1


1

y1 sin
1s; : : : ; xn cos 
ns+
1


n
yn sin
ns; s)ds+O(� 2)

(17)

(recall that 
j are integers).

The time-� map Ft;� of the Hamiltonian system (4) is still given by the formula (13)

(just x and y are not scalars now). By comparing (17) with (13) we see that to

prove the lemma we must �nd for every polynomial function H(x; y) a polynomial

in z function V (z; s) such that

H(x; y) �

Z 2�

0
V (x1 cos 
1s+

1


1

y1 sin
1s; : : : ; xn cos 
ns+
1


n
yn sin
ns; s)ds;

(18)

for some set of integers 
1; : : : ;
n.

Let H be a polynomial of degree M :

H(x; y) =
X

0�jpj+jqj�M

hp1;:::;pn;q1;:::;qnx
p1

1 x
p2

2 : : : xpn
n
y
q1

1 : : : yqn
n
:

Take 
1 = 1; 
j = (M j
� 1)=(M � 1); j = 2; : : :. What is important for us in this

choice is that for every n > 1


n > M max(
1; : : : ;
n�1): (19)

7



We will look for V (z; s) in the form

V (z; s) =
X

0�jkj�M

vk1;:::;kn(s)z
k1
1 z

k2
2 : : : zkn

n

where every function vk(s) is a linear combination of the functions

gqk(s) =
nY
j=1

cos
kj�qj 
js � sin

qj 
js (20)

where q = (q1; : : : ; qn) runs all possible multiindices such that 0 � qj � kj; j =

1; : : : ; n.

Relation (18) is ful�lled if and only if the following holds for every k = (k1; : : : ; kn)

and every p = (p1; : : : ; pn) and q = (q1; : : : ; qn) such that pj + qj = kj for all

j = 1; : : : ; n:

hpq

nY
j=1



qj

j =
nY
j=1

C
qj

kj
=

Z 2�

0
vk(s)gqk(s)ds: (21)

In other words, given any multiindex k, the problem reduces to �nding such coe�-

cients �q that the standard inner product of the function gqk(s) with the function

vk(s) =
X
q

�qgqk(s) (22)

acquires the value hpq
Q
n

j=1

qj

j =
Q
n

j=1C
qj

kj
. This problem is equivalent to the following

system of linear equations for the coe�cients �:

hpq

nY
j=1



qj

j =
nY
j=1

C
qj

kj
=
X
q0

�q0 < gq0k; gqk >

where < �; � > denotes, as before, the inner product of functions. If the system of

the functions gqk(s) (here k is �xed and q runs all possible multiindices such that

0 � qj � kj; j = 1; : : : ; n) is linearly independent, the coe�cients �q are determined

uniquely and depend linearly on the corresponding coe�cients hpq. Therefore, if we

prove the linear independence of the functions gqk(s) for any �xed k, it will follow

that the required function V exists and its coe�cients depend on coe�cients of H

smoothly. This will provide that the maps (17) and (13) are O(� 2)-close to each

other, uniformly on compact intervals of values of t. Hence, to �nish the lemma and

the theorem, it remains to show that if

X
q

�qgqk(s) � 0 (23)

for some choice of coe�cients �q, then all �q must be zero.

We will do it by induction in n (we have already considered the case n = 1). Before

we go further, note that gqk(s) = e�i(k;
)sPqk(e
2is) where Pqk is a polynomial of

degree (k;
) = k1
1 + k2
2 + : : :+ kn
n. Any linear combination of the functions

8



gqk (with �xed k) has, obviously, the same structure, so any such linear combination

has no more than (k;
) zeros at 0 � s < �.

If the functions gqk were linearly dependent, then at least one of the coe�cients �q
in (23) could be non-zero. Let Q be the maximal value of qn for which there exists

a non-zero �q1;:::;qn. Then (23) can be rewritten as

sinQ 
ns cos
kn�Q
ns�

X
q0

�q0;Qgq0k0(s) � �

Q�1X
qn=0

sinqn 
ns cos
kn�qn 
ns�

X
q0

�q0;qngq0k0(s)

or, after cancelling the common multiplier coskn�Q
ns, in the form:

sinQ
ns �
X
q0

�q0;Qgq0k0(s) � � cos 
ns
Q�1X
qn=0

sinqn 
ns cos
Q�qn�1
ns �

X
q0

�q0;qngq0k0(s)

(24)

where we denote k0 = (k1; : : : ; kn�1), q
0 = (q1; : : : ; qn�1) runs multiindices of length

(n�1) such that 0 � q0
j
� kj; j = 1; : : : ; n�1, and at least one of the coe�cients �q0;Q

is non-zero - hence, by the induction hypothesis
P
q0 �q0;Qgq0k0(s) is not identically

zero.

If Q = 0, the right-hand side of (24) is zero, but the left-hand side is non-zero,

as we just mentioned, so we have Q > 0. The linear combination
P
q0 �q0;Q~gq0k0(s)

has no more than (k0;
) = k1
1 + : : : + kn�1
n�1 zeros at 0 � s < �, as it was

explained above. Hence, the left-hand side of (24) has no more than (k0;
) zeros

di�erent from the zeros of sin
ns. From the other hand, the right-hand side is a

multiple of cos 
ns, so it has at least 
n such zeros. Since jkj � M , we have that

(k0;
) � M max(
1; : : : ;
n�1), so (k0;
) < 
n by virtue of (19). Hence, identity

(24) cannot hold, which means linear independence of the functions gqk. End of the

proof.

2 Universal maps in Newhouse regions.

The results above show that dynamics of Hénon-like symplectic maps is as rich as

the dynamics of all symplectic maps. This statement can be used in proving a

much more discouraging result, as I will demonstrate now on the example of area-

preserving maps of a plane.

Let f be a Cr-smooth area-preserving map of R2. De�ne the dynamical conjugacy

class of f as the set of all maps fn; of a unit disc U1 into R2 obtained by the

rule fn; =  �1 Æ fn Æ  , where n is an integer, fn is the n-th iteration of f and

 is an arbitrary Cr-smooth map of U1 into R2 with a constant Jacobian (so, by

construction, all the maps fn; in the class are area-preserving).

When we speak about dynamics of the map, we somehow describe its iterations, and

the description should be insensitive to smooth coordinate transformations. There-

fore, the class of the map f , as we have just introduced it, gives some representation

9



of the dynamics of f indeed. Note that the coordinate transformations  are not

area-preserving (they preserve the standard symplectic form up to a constant fac-

tor), i.e. the image  (U1) can be a disc of an arbitrarily small radius, with the center

situated anywhere. Thus, the class of f contains information about the behavior of

arbitrarily long iterations of f on arbitrarily �ne spatial scales.

The general intuition here is that if the class of the map is large, then the dynamics is

rich, while if the dynamics is su�ciently simple, then the class is somehow restricted.

For example, if the topological entropy of f is zero, then every map in the class of

f has zero entropy as well. Or if f possesses a uniformly hyperbolic structure (like,

say the linear map (x; y) 7! (�x; ��1y)), then every map in the class is uniformly

hyperbolic. It is interesting in these examples that the uniform hyperbolicity is a

robust (or rough) property � it cannot be destroyed by a small smooth perturbation

of f , whereas examples of maps of zero entropy can be provided which can be

perturbed to produce a maximally rich dynamical class (see below).

De�nition. A Cr-smooth map f is called universal (or Cr-universal) if its dynam-

ical class is dense in the Cr-topology among all Cr-smooth maps of the unit disc U1

into R2.

By the de�nition, the detailed understanding of the dynamics of any single universal

map is not simpler than understanding of all other area-preserving maps altogether,

i.e. it is beyond human abilities. What is surprising, is that such universal maps

are, in fact, quite often. Namely, we have the following

Proposition A. Cr-universal maps exist in any neighborhood (in the Cr-topology)

of any area-preserving map with a homoclinic tangency.

A homoclinic tangency is a point where the stable and unstable manifolds of some

saddle �xed point or a periodic orbit are tangent to each other. Typically, the

tangency is quadratic, although higher order tangencies are, of course, possible.

For example, a time-1 map of a conservative �ow with a homoclinic loop (an orbit

which is asymptotic to a saddle equilibrium state both as t! �1) has a homoclinic

tangency of in�nite order (the stable and unstable curves of the saddle �xed point

which corresponds to the saddle equilibrium of the �ow coincide). Such map has

zero entropy, but proposition A says that after an arbitrarily small perturbation the

dynamical class of the map can become extremely rich.

A quadratic homoclinic tangency is a codimension-1 bifurcation: in a generic one-

parameter unfolding the tangency between the stable and unstable invariant curves

is removed near a given point. However, the stable and unstable curves are not

compact, so one cannot immediately reject the possibility that while the original

tangency is removed some new homoclinic tangencies appear. Indeed, it was proven

by Newhouse [2] that maps with homoclinic tangencies are dense in some open

10



regions in the space of Cr-maps (with r � 2). In [3] Duarte proved that in the

space of area-preserving maps the Newhouse regions exist arbitrarily close (in the

Cr-topology) to any area-preserving map with a homoclinic tangency. In fact, a

combination of the results of [3] and [4] shows that the Newhouse regions exist in

any generic one-parameter unfolding of any area-preserving map with a homoclinic

tangency [5], e.g. in the quadratic Hénon map (x; y) 7! (y;M � y2 � x) (M is a

parameter), in the standard map (x; y) 7! (y;�x+M sin y) (see also [6]), etc..

The Newhouse regions do not just exist in popular examples, they also seem to be

quite large. In [7] Newhouse proved that maps with homoclinic tangencies are dense

in the C1-topology among all area-preserving maps which are not uniformly hyper-

bolic. Of course, the C1-topology is inadequate for symplectic dynamics. However,

this result suggests a conjecture on the Cr-denseness of the maps with homoclinic

tangencies among all non-hyperbolic area-preserving maps for any r. This seems

to be a very di�cult conjecture to prove. However, regardless of it, the fact that

homoclinic tangencies appear in so many models, for so many parameter values, and

practically near any point in the phase plane, can be taken as an experimental ob-

servation (see [8], or take any area-preserving map with chaotic behavior and follow,

numerically, its stable and unstable curves; the usual picture is that, after a number

of iterations, folds in the unstable curve come su�ciently close to the stable curve,

so the tangencies can be created by �ne parameter tuning).

Proposition A says that the universal maps are as often as homoclinic tangencies are.

So, if we have any explicitly given area-preserving map with chaotic behavior, then

by changing parameters slightly we can, probably, encounter a homoclinic tangency.

Then, if we have enough parameters to tune, we can make some iteration of our

map become as close as we want to any other area-preserving map in some carefully

chosen coordinates. In other words, it looks like right-hand sides do not matter at

all: any two-dimensional area-preserving dynamics can be modelled by any non-

hyperbolic map after a proper transformation of coordinates and a small variation

of parameters.

This is a strangely sound statement, but proposition A strongly supports it. Some-

thing like that can be true in the higher-dimensional case as well (here, obviously,

the absence of uniform partial hyperbolicity should be assumed to create universal

maps). One can fantasize about an in�nite-dimensional case as well. Can it be true

that any nonlinear wave equation with chaotic dynamics describes any possible dy-

namical process after an appropriate transformation of the variables and time and

an appropriate tuning of the nonlinearity?

I should note that in other (non-conservative) situations universal maps were dis-

cussed in [9] and, in the C1-topology, in [10], more or less with the same implications.

The proof of the proposition A is based on the following statement.

Proposition B. Area-preserving maps each having, for every n � 1, in�nitely

many isolated homoclinic tangencies of order n exist in any neighborhood (in the
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Cr-topology) of any area-preserving map with a quadratic homoclinic tangency.

Analogous statement about non-symplectic maps was proven in [11] by Gonchenko,

Shilnikov and myself (a very detailed version of the proof is published in [12], the

presentation given in [13] is useless for the area-preserving case because it uses

contraction of areas in an essential way, contrary to the original proof in [11, 12]).

The proof of the proposition B for the symplectic case is in preparation now and we

will publish it in a forthcoming paper.

The fact that, say, cubic tangencies can be obtained by a small Cr-smooth pertur-

bation of a quadratic tangency seem to contradict usual scheme of the singularity

theory where the order of degeneracy decreases in the unfolding. Here, of course, the

order of the original tangency does not increase, but some new tangencies appear

after iterations of the map, and the order of these tangencies can be made arbitrarily

high indeed. For an illustration one may again take, say, a quadratic Hénon map and

start to iterate stable and unstable manifolds of a saddle �xed point. Then, after

some number of iterations, folds on the unstable manifold (which appear because

the nonlinearity is quadratic) are folded once again, and one can see how �in�ection

points� on the unstable manifold are created. Tangencies of order higher than cubic

are harder to see, but the technique of proving their existence is available from the

non-symplectic case (see [14] for more explanations and illustrations).

A homoclinic tangency of order n is a bifurcation phenomenon of codimension n, i.e.

it may appear in general position only in n0-parameter families of maps where n0 � n.

A quadratic homoclinic tangency is a codimension-1 bifurcation phenomenon. The

main reason why bifurcations of higher codimensions can be created by small pertur-

bations of bifurcations of low codimension (in proposition B: homoclinic tangencies

of any order n by a small perturbation of a map with a quadratic homoclinic tan-

gency) is the existence of some hidden parameters, the so-called local moduli, in the

unperturbed system. The existence of moduli (continuous invariants) of the local


-conjugacy, and even the existence of in�nitely many independent moduli, is a typ-

ical feature of systems with homoclinic tangency [15, 16, 17, 11]. Arbitrarily small

variations in the value of any of these invariants change, by de�nition, the structure

of the set of orbits lying in a small neighborhood of the orbit of the point of the

homoclinic tangency, without destroying the tangency. Thus, by varying the values

of moduli one can obtain new bifurcating orbits without destroying the original one,

hence the degeneracy of the bifurcation can indeed be increased by an arbitrarily

small perturbation (see [18] for more discussions). The moduli which were used in

[11, 12] in the proof of proposition B in the non-conservative case do not exist (they

degenerate into constants) in the area-preserving case. Moduli for the conservative

case were found in [19], and proposition B can indeed be proven with the use of

them.

Let us now prove that proposition B implies proposition A indeed. Let f be a map

with in�nitely many isolated homoclinic tangencies of any order. Let P be a point

of homoclinic tangency of order n. Since P belongs to the stable manifold of some
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saddle periodic orbit, its forward iterations tend to this periodic orbit (we assume,

for simplicity, that this is a �xed point of f ; otherwise, one should consider some

power of f for which this periodic orbit is a �xed point � then the rest of construction

will be the same), i.e. Pm � fmP ! Q as m ! +1 where fQ = Q. Analogously,

since P is a homoclinic point, it belongs to the unstable manifold of Q as well, so

its backward iterations also tend to Q: Pm ! Q as m! �1.

Let P+ and P� be a pair of points of the orbit of the homoclinic point P , lying in

the local stable manifold W s

loc and, respectively, in the local unstable manifold W u

loc

of the �xed point Q, su�ciently close to Q. Since P� and P+ are the points of the

same orbit, it follows that f �mP� = P+ for some �m � 1.

The point P+ lies in the stable manifold of Q, so its forward iterations never leave a

small neighborhood of Q. However, the points arbitrarily close to P+ which are not

lying inW s

loc will leave the small neighborhood of Q after su�ciently many iterations

of f . Moreover, one can show (see [20] or [12]) that for any small neighborhoods

�+ and �� of the points P+ and P�, respectively, and for any su�ciently large k

there exist points in �+ whose k-th forward iteration belongs to ��. We denote

the set of these points as �k (for an illustration: if f is locally linear, i.e. if it is

written as (x; y) 7! (�x; ��1y) near Q(0; 0), where 0 < � < 1, then W s

loc = fy = 0g,

W u

loc = fx = 0g and P+ = (x+; 0), P� = (0; y�), for some small x+, y�; if �� are the

"-neighborhoods of P� for some small " > 0, then �k = fjx�x+j < "; ky��ky�k <

�k"g). Recall that the map f �m takes a small neighborhood of P� into the small

neighborhood of P+, and we also have that fk takes �k into a small neighborhood

of P�. Hence, the map Tk � f �m+k : �k ! �+, called a �rst-return map, is de�ned

for all su�ciently large k.

We will also consider n-parameter perturbations f� of the map f . We assume that

the perturbations are localized in a small neighborhood of one homoclinic point (say,

the point f�1P+), i.e. f� coincides with f outside this small neighborhood. Thus,

our perturbations will not a�ect other homoclinic tangencies which f has (because

the homoclinic tangency we consider is isolated by assumption). We choose our

perturbations in such a way that the tangency between the stable and unstable

invariant curves of Q at the point P+ unfolds generically. It is a tangency of order

n, so we need n-parameters (�1; : : : ; �n) for the unfolding. In the local coordinates

(�; �) near point P+ in which the stable manifold is a curve � = �(�) and the unstable

manifold is a curve � =  (�), we have �(�)� (�) = C�n+1+ o(�n+1) for the map f

itself (C is a non-zero constant) and �(�)�  (�) =
P
n�1
i=0 �i+1�

i + C�n+1 + o(�n+1)

for the map f�.

At small �, the �rst-return maps Tk are still de�ned for all su�ciently large k. Since

the domain �k where the map Tk is de�ned is very small (of sizeO(�k) in the direction

transverse to the stable manifold), it makes sense to rescale the coordinates in order

to make the size of the domain bounded away from zero (this has been proven quite

useful in the study of homoclinic bifurcations). Doing this by formulas given in [14],

lemma 2 (see also [19] for the case of quadratic tangency), one can see that there

exists a rescaling (i.e. a smooth coordinate transformation) which brings the map
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Tk to the following Hénon-like form

�X = Y + o(1); �Y = �X +

n�1X
i=0

Mi+1Y
i + CY n+1 + o(1)

where the o(1)-terms tend to zero along with all derivatives as k! +1, uniformly

on any compact set of values of (X; Y ). The coe�cients (M1; : : : ;Mn) are func-

tions of (�1; : : : ; �n) and k, they can be considered as free parameters, no longer

small: when � run an arbitrarily small ball around zero, M run a ball of an ar-

bitrarily large �xed size, provided k is taken su�ciently large (roughly, we have

Mi � �i�
�k(n+2�i)=n). The domain of Tk in the coordinates (X; Y ) becomes large as

well and it covers all �nite values in the limit k ! +1 (essentially, the rescaling

blows the O(�k)-thin strip �k up to a rectangle of size O(��k=n)).

Hence, by taking k su�ciently large, we can �nd � arbitrarily close to zero, such

that the map f� will have in its dynamical conjugacy class a map which is as close

as we want to any given polynomial Hénon-like map of degree n. Our perturbations

are localized, so they do not destroy other homoclinic tangencies, neither in�uence

the dynamics near these tangencies. We can apply the same procedure near the rest

of the homoclinic tangencies as well, and since we have in�nitely many tangencies of

arbitrarily high orders, this will give us, at the end, a map f �, arbitrarily close to the

original map f , the closure of whose dynamical class contains all Hénon-like maps.

Now we may apply theorem 1, which says that such map f � is universal. Since, by

proposition B, our map f with in�nitely many homoclinic tangencies could be taken

arbitrarily close to any map with a quadratic homoclinic tangency, proposition A

follows.

I would like to acknowledge useful discussions with P.Duarte, V.Gelfreich, S.Gonchenko,

M.Herman, L.Lerman, L.Shilnikov, D.Treshjov, M.Wolfrum.
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