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Abstract

We consider the problem of recovering a two-dimensional periodic structure
from scattered waves measured above the structure. Following an approach by
Kirsch and Kress, this inverse problem is reformulated as a nonlinear optimiza-
tion problem. We develop a theoretical basis for the reconstruction method in
the case of an arbitrary Lipschitz grating profile. The convergence analysis is
based on new perturbation and stability results for the forward problem.

1 Introduction

The problem of recovering a periodic structure from illuminating the structure by
incident plane waves is of great practical importance in modern diffractive optics,
e.g., in quality control and design of diffractive elements with prescribed far field
patterns (see [3], [20]). The efficient numerical solution of inverse problems of this
type is challenging due to the fact that they are both nonlinear and severely ill-
posed in general. We refer to [9], [10] for an overview on inverse scattering problems
in general (nonperiodic) structures. An introduction to electromagnetic scattering
by periodic structures (diffraction gratings) can be found in [19].

In this paper we restrict ourselves to the two—dimensional Dirichlet problem for
perfectly conducting gratings. Uniqueness results and local stability estimates were
obtained in [2], [4], [13], [16], and a first result on global stability was proved in [5].
Ito and Reitich [14] proposed a conjugate gradient algorithm based on analytic con-
tinuation for the numerical solution of this problem, which appears to be efficient for
sufficiently smooth profile curves. An alternative algorithm for the inverse Dirichlet
problem was presented in [6], following an approach first developed by Kirsch and
Kress [17] (see also [10], Chap. 5) for acoustic obstacle scattering.

In that method, the inverse problem is decomposed into the ill-posed linear
problem of reconstructing the scattered wave from measurements above the grating
structure and into the well-posed nonlinear problem of determining the unknown
profile as the location of the zeros of the total field. The resulting optimization
problem then leads to a nonlinear least squares problem which may be solved by
using the Levenberg-Marquardt algorithm. The numerical performance of the opti-
mization method, whose implementation turns out to be rather easy, is discussed in
[6]. The goal of the present paper is to clarify its mathematical foundation in the
practically important case of nonsmooth grating profiles. As in the case of acoustic
obstacle scattering (cf. [22], [23] for smooth boundaries), it is surely possible to
extend the results to the TE and TM transmission problems for diffraction gratings.

The paper is organized as follows. In Section 2 we will give mathematical for-
mulations of the direct and inverse diffraction problems. Section 3 is devoted to



the variational method for the direct problem with a Lipschitz grating profile and
presents new perturbation and stability results which are needed in the convergence
analysis of the reconstruction method. Theorem 3.1 extends, in particular, a re-
sult of Kirsch [15] on the continuous dependence of the variational solution on the
boundary to perturbations of the profile in the C' norm. Another main tool is a
uniform L? estimate for the Neumann data of radiating solutions to the Helmholtz
equation (Theorem 3.3). For the proof, which is postponed to the final section, we
adapt Necas’ approach [18] of approximating the profile by smooth curves and ap-
plying a Rellich identity to our periodic boundary value problem. As a by—product
we obtain uniqueness for the forward problem with an arbitrary Lipschitz profile.
This result seems to be known; see |7, Chap. 5.2] where an integration by parts
argument was used but not justified for nonsmooth boundaries.

In Sections 4 and 5, we introduce and analyze the profile reconstruction method.
Most effort here will be spent on proving a convergence result in the general case of
Lipschitz grating profiles.

2 Direct and inverse diffraction problems
Let the profile of the diffraction grating be described by the curve
A= Af = {(.’El,ﬂ?z) € RZ L Lo = f(fEl)}

with f € C)'', i.e., f is a periodic Lipschitz function of period 2m. The space below
A is filled with some perfectly reflecting material. Let

QfZZ{QL'ERZZ.’E2>f(£E1), $1€R}

be filled with a material whose index of refraction (or wave number) k is a positive
constant. Suppose further that a plane wave given by

v (z) = exp(iaz; — iBz7)

is incident on A from the top, where o = ksin6, 8 = kcosf, and 0 € (—7/2,7/2)
is the incident angle. Then the scattered field in the TE (transverse electric) mode
satisfies the Helmholtz equation with a Dirichlet boundary condition

(A+kHv=0 in Q, v=-—v" on A;. (2.1)
Moreover, v is assumed to be a-quasiperiodic
v(zy + 27, z3) = exp(2iam)v(zy, x2) , (2.2)

and we require that v satisfies a radiation condition, i.e., the diffracted field can be
expanded as an infinite sum of plane waves

v(z) =Y Anexp{i(n+ a)zy +iBaza}, @2 > ||fllcg := max |f(t)], (2.3)

0<t<2m
nez



with the Rayleigh coefficients A,, € C. Here 8, = B,.(a, k) is defined by

2 2y1/2 .
ﬂn‘_{ (k2 — (n+a)2)* if |n+a|<k, 2.4

) i(n+a)? k)Y i In+al>k.

Since [, is real for at most a finite number of indices, we see that only a finite number
of plane waves in the sum (2.3) propagate into the far field, with the remaining
evanescent waves decaying exponentially as zo — o0.

The Dirichlet problem (2.1)—(2.3) admits a variational formulation in a bounded
periodic cell in R?, enforcing the radiation condition (cf. [2], [15]). Introduce an
artificial boundary

Ii={(z1,0): 0 <z <27}, 0> [ fllco,
and the bounded domain
Q=Q:={z€R: f(z1) <T2<b, 0< z; < 27}.

The function u := exp(—iaz;)(v + v™), which is 27-periodic in z;, satisfies the
boundary value problem

Aqu+ku=0 in Q, u[p,=0, (2.5)
where we use the notation
Vo=V +i(a,0), Aq:=Vy-Vo=A+2iad —a’.
The radiation condition is equivalent to the nonlocal boundary condition
dyulr + Tu = —2if exp(—ifb) =: g, (2.6)

where v denotes the exterior normal and 7" is the periodic pseudodifferential operator
(of order 1)

: 1 [ :
Tu="T(a,k)u:=— Z iBntne ™™ g = — u(zy,b)e”"™dzy . (2.7)
2w J,

nez

The operator T is continuous from H}(T') to H;~'(T') for any s € R, where H;(T)
stands for the 2m-periodic Sobolev space of order s. For s > 0 let H}(£2) denote the
Sobolev space of functions on 2 which are 27-periodic in z;. Integrating by parts
then leads to the variational formulation of the direct diffraction problem (2.5)—(2.6):
Determine v € V' such that

Blu,p) = B9 9) i= [ (Vou- Vo~ Kug) + [ (Tuyg

N
Z/gosb, VoeV.
T
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Here V' denotes the energy space
V=V(Q):={ueH)(Q):uly =0} .

The inverse problem or the profile reconstruction problem can be stated as follows:
Suppose that u € V solves the diffraction problem (2.8). Determine the profile
function f by the knowledge of the trace u|r of u.

Note that this problem also involves near field measurements since the evanescent
waves cannot be measured far away from the grating profile.

3 Stability and perturbation results for the direct
problem

For the reader’s convenience, we first recall some properties of the sesquilinear form
B defined in (2.8); see [12] in the case of the TE and TM transmission problems. In
the following the energy space V() is equipped with the norm

1/2
lully = ( / |vau|2) |
Q

which is equivalent to the norm in H'(Q) because of u|y, = 0 and Friedrichs’ in-
equality; see [18, Thm. 1.1.9].

1) Since T : H,}/Z(F) — H;l/Z(F) is continuous, the form B generates a contin-
uous linear operator

B:V(Q) - V(Q).

Here V' denotes the dual space of V' with respect to the duality (-, :)q extending the
L*(Q2) scalar product.
2) Setting U :={n € Z: |n + a| < k}, we have

B(u,u) = /Q(|Vau|2 — Ru) + (= 2im) (K — (n + 0)?) 2P
neu (3.1)
+ 3 2n((n+ )’ —K)liaf, weV.

neZ\U

Defining

A(u, @) ::/Qvau-WJr/F(Tu)@, K(u,p) := —kz/ugb, (3.2)

Q
we then obtain B = A+ K and from (3.1)
Re {e™*A(u,u)} > c/ Voul =c|lul}, uveV, (3.3)
Q
where ¢ does not depend on u and k. Note that the form K is compact over V.
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3) The operator B : V — V' takes the form B = A+ K with a compact operator
K of norm < ck? and a coercive operator A satisfying

Re {e™*(Au,u)o} > cllu|?, u eV, (3.4)

where c¢ is independent of k£ and wu.

Hence the operator B is always invertible if k is sufficiently small. For arbitrary
k > 0, it is invertible provided the homogeneous problem (2.8) (i.e., go := 0) has
only the trivial solution. The latter is always true for C? profiles; see [15]. We
will generalize this result to arbitrary Lipschitz profiles using an approach of Necas
[18, Chap. 5|. For this and later purposes, we need the following results on the
uniform boundedness of the norm of the inverse operator B~! and on the continuous
dependence of the solution to (2.8) on the grating profile.

THEOREM 3.1. Assume for f € C)* that the solution u of (2.8) is unique, and
that fn,n € N, is a sequence of Lipschitz profile functions such that || fo — fllco — 0
asn — 0o. Then:

(i) The operators B, : V(Q,) — V(Q,)" generated by the sesquilinear forms
B(-, ), Q, = Qy, 5, are invertible for any sufficiently large n and satisfy the
stability estimate

||B;1||V(Qn)’—>V(Qn) <c, Vn>ny. (3.5)

(ii) For an arbitrary domain G with G C Q\A, the (unique) solutions u,, of the
perturbed forward problems converge to u in the norm of H'(G).

Remark 3.2. If Q, C Q for all n, then we have u, — u in V(Q) which is a
consequence of the weak convergence u,, — u in V(Q) (cf. the proof of Theorem 3.1
in Section 6) and the decomposition of B into a coercive form and a compact one.
If additionally & is small, then this is a special case of [18, Thm. 3.6.7] and follows
directly from the coerciveness of the form B.

The next theorem shows that the first assumption of Theorem 3.1 can be omitted,
and it is also crucial for proving convergence of our reconstruction method.

THEOREM 3.3. For any h € L*(Q) the boundary value problem
(A +kHDu=h in Q, ul,=0, Bulp+Tu=0 (3.6)
has a unique solution u € V() satisfying the estimate
10vul[z2(a) < cllhl|L2(@) (3.7)

where ¢ only depends on | |01 and 1B~ vy

Note that a solution u € V() of (3.6) satisfies d,ulr € Hp_l/2(A), where the
trace is defined by the relation

/A (B,u)@ = Blu, 3 Q) + / he, Ve H(Q); (3.8)
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see [11]. Thus Theorem 3.3 says that the trace even exists in the L? sense.
In particular, we have

Corollary 3.4. For f € C’I?’l, the direct diffraction problem (2.5) and (2.6) possesses
a unique solution u € V().
The proof of Theorems 3.1 and 3.3 will be given in Section 6.

4 An optimization method for the inverse problem

We now study an optimization method for determining the profile function f from
the output of the total field

uy = ulp = u'|p + Z A, exp(inz; + i6,b) , (4.1)
nez

where u™™ = exp(—ifz,) and all Rayleigh coefficients A,, are assumed to be known.
Suppose that we have the a priori information about our inverse diffraction problem
that, without loss of generality, the unknown profile A; lies below I' and above
the line I'y := {(z1,0) : 0 < z; < 27}. We try to represent the scattered field
u*¢ = u — u™ in the form

u*(z) = Sp(z) := Z cn exp(inzy + ifpz2), (4.2)

nez

where

p(z) =Y cqexp(ina;) € L*(T)

nez

is an unknown density function. Introduce the linear operators
Svp(e) == Sp(ar,b), 2 €15 Spp(a) = Sela, f@r), e €Ay, (43)

where f € C’g’l is fixed. Note that Sy approximates the output of the scattered
field on I', whereas Sy (which is nonlinear with respect to f) represents an approx-
imation of u* on the profile A;. Obviously, the operator S; : L*(Ty) — L3(T) is
compact with exponentially decreasing singular values. Hence the determination of
the density ¢ from the first kind equation

SbQD = Up — ’U,in|1" (44)

is a severely ill-posed problem. To reformulate the inverse diffraction problem as an
optimization method, we then combine Tikhonov’s regularization for equation (4.4)
with the minimization of the defect

Ju™ + Srollren,y, feM

of the Dirichlet boundary condition over a class M of admissible curves Ay.

6



Definition 4.1. Let f and f,, (n € N) be Lipschitz profile functions. We shall write
fo— fif

|fo— fllco =0 as n—oo and supn€N||fn||Cg,1 < 00. (4.5)

In the sequel we choose M to be a compact set of C’S’l with respect to the
convergence introduced above and such that

0<inf{||f||cg . f eM} , Sup{||f||cg . f eM} <b.

Examples of compact sets are, e.g., given by the following:

1) {feC*: If[lgza < ¢} for some A > 0, with the norm in Cp” defined by

Ifllgra = 1flleg + 1" leg + suPocrarcan{ (7 = )X F'(7) = £},

Q{f=afi+ - +enfn: D |cl < c} where N is fixed and fi,..., fy are fixed
Lipschitz functions,
3) set of continuous piecewise linear functions where the number of corner points is
bounded together with the slope of the segments.

We define the cost functional F' by

Fp, f;7) = [u™ + Spp — wpl Ty + Y@l T2mg) + o™ + Ssoll 7o,y (4.6)

Here v > 0 denotes the regularization parameter, and p > 0 is a coupling param-
eter which has to be chosen appropriately for the numerical implementation. For
theoretical purposes we may assume p = 1 in the following.

Our reconstruction method, which was first introduced by Kirsch and Kress [17]
(see also [10, Chap. 5.4]) in the case of scattering by bounded obstacles with C?
boundaries, now consists in solving the following optimization problem.

(OP): Find ¢ € L*(T) and f € M such that

F(p, f;7v) =m(y) := inf{F (¢, g;7) : ¥ € L*(To), g € M}.

We shall prove the following theorems which are the analogues of Theorems 5.20—
5.22 in [10].

THEOREM 4.2. For each v > 0 the problem (OP) has a solution.

THEOREM 4.3. Let u, be the exact pattern of the total field on I which corre-
sponds to some profile function f € M. Then we have:

(i) lim, g m(y) = 0.

(ii) Let (y,) be a null sequence and let (¢n, fn) be a corresponding sequence of
solutions to (OP) with regularization parameter vy,. Then there exists a convergent
subsequence of (f,), and every limit point f* of (f,) represents a profile function
such that the total field u vanishes on Ay-..

If we have the a priori information that our inverse problem has at most one
solution (e.g., for sufficiently small wave number or height of the grating; see [5],
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[13]), then from Theorem 4.3 (ii) we obtain convergence of the total sequence (f,) to
f. In the general case we can try to achieve uniqueness of the inverse problem and
more accurate reconstructions by using more incident waves u* (j = 1,..., N) with
different wavelengths and/or incident angles. In fact, it was proved in [13| that the
grating profile is uniquely determined by a finite number of wave numbers if some
a priori information on the amplitude of the periodic structure is available. For the
optimization method (OP) we then have to replace the cost functional (4.6) by a
corresponding sum over j, and the results of the preceding theorems carry over to
this case.
The proof of Theorems 4.2 and 4.3 will be given in the next section.

5 Proof of Theorems 4.2 and 4.3

To establish Theorem 4.2, which guarantees the existence of a minimizer of the cost
functional (4.6), one can proceed similarly as in [10, Thm. 5.20]. We present the
arguments for the convenience of the reader.

Proof of Theorem 4.2: Let (¢, f,) be a minimizing sequence in L?(T'y) X M, i.e.,

F(n, fa;vm) = m(y) as n— oo.

We can assume that f, — f € M in the sense of Definition 4.1 since M is compact.
From v > 0 and

YNenlZoiwe) < F(on, fn;v) = m(v)

we conclude that the sequence (¢,,) is bounded, hence some subsequence converges
weakly, ¢, — ¢ in L?*(T'y) as n — oo. Since the operators (cf. (4.2), (4.3))

Sy L*(Ty) — L*(T), Sj:L*(Tg) — L*(Ay)
are compact, we obtain
Sppn — Spp in LX), Sppn, — Spe in L*(Af), n— .
We then deduce that
[u™ + S5, @nlltan,y = [lu™ + S5olliea,) - (5.1)
Here we used the fact that the last term in the estimate
|Sen(z1, f(21)) = Sen(@1, fulz))?

< lenllZeqey) Y lexp(if;f (21)) — exp(iBifu(z1))?, 0 <21 <21
=

can be made as small as desired, uniformly in z, if n is chosen sufficiently large.
To see this, estimate the sum over |j| > J with J large enough and apply the mean
value theorem and the relations (4.5) to the terms with |j| < J.
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The relation (5.1) now implies
’Y||90n||%2(1“0) = m(7) — [[u™ + Sy — “b”%z(r) = [lu*™ + 5f€0||%2(Af)
<ellza@yy, n— oo,

hence limsup,, ,||¢n|| < [|¢]|- On the other hand, from the weak convergence we
have ||¢|| < liminf, ,o||@n||. Thus we have ¢, — ¢ in L?(T) and lim,,_,||@n|| =
|ell, so that ¢, — ¢ in L?(Ty). Finally, by continuity

F(p, fi7) = im F(pn, fa;7) =m(7). ®

To prove our second theorem, we need the following lemmas. The first lemma
shows that the range of the operator Sy is dense in L?(A;) which justifies the ansatz
(4.2) and the choice of the cost functional (4.6).

LEMMA 5.1. Let f € M, and introduce the set
W := span{exp(inz, + iB,z2) : n € Z} . (5.2)

Then W |, is dense in L?*(A) for any profile A = A;.
Proof: For C? profiles, we refer to [16] in the case when the Rayleigh frequencies
are excluded, i.e.,

Bn=Bu(a, k) £0 forall neZ, (5.3)

and to [1] in the general case. The arguments can be extended to Lipschitz profiles
as follows.

If the condition (5.3) holds, then the free space 2m-periodic Green function of
the operator A, + k? takes the form (cf. [8], [21])

Clo) = 23 greowplines —w) +ibulma—wilh o #v, G4
ne

with B, = Bn(a, k). It is sufficient to verify the lemma in the case that G, :=
Bn(—a, k) = B_n(a, k) in (5.2). Suppose that ¢ € L?(A) satisfies

/A () exp{ings + B n(a, K)ys} ds(y) =0, neZ, (5.5)

and consider the single layer potential

mm:ﬂcmwwwmw,xemm

where R denotes the rectangle (0,27) x (0,b). The curve A divides R into the domain
Q2 and a lower subdomain ;. Adapting Costabel’s approach [11] to our periodic
boundary value problem, we obtain that u € HI}(R) and that the jump of the normal

derivative across A satisfies [8,u]y = —¢ in the H, “/*(A) sense. Now (5.4) and (5.5)
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imply v = 0 in €, so that u € V(Q) solves the homogeneous diffraction problem in
2. Therefore v = 0 in R. Here we used the uniqueness result of Section 3. By the
jump relation we then have ¥ = 0 which finishes the proof.

If some (3, vanishes, the nth term in (5.4) must be replaced by (cf. [21])

—(4m) s — yo| exp(in(zy — y1)),

and one can proceed similarly to deduce ¢ = 0 from (5.5). n
Let A = Ay, f € M, and consider the boundary value problem

(A +E)w=0 in Q, wlra=h, Owlr+T(ak)w=0. (5.6)

The next lemma implies that the trace on I' of a solution w to (5.6) depends con-
tinuously on the boundary data, uniformly with respect to f € M.

LEMMA 5.2. If w € H;() solves the problem (5.6), then the estimate
[wllz2y < exllwliro@) < ellhllza) (5.7)

holds, where the positive constants ¢ and ¢, only depend on || f|| 01 and the stability
p
constant ||B7Y||y: .

Proof: Consider the problem
(A ,+k)z=w in Q, z[p=0, 0,zr+T(—a,k)z=0, (5.8)

which has a unique solution z € V() by Theorem 3.3. Using Green’s formula we
obtain from (5.6) and (5.8) that

/ lw|? = / w (A 4+ k)2 = / (w Oy —az — 2 Oy qw)
Q Q 00

:/wa,,z:/ha,,z,
A A

where 0, , := 0, + tav;. Applying estimate (3.7) to problem (5.8) now gives
w2y < 1Pll2ay 1802]|z2eay < € |Pllz2ay 1wl L2y

hence the second inequality of (5.7). Using the Rayleigh expansion of w in a rectangle

2 = (0,27) x (b1,b) lying above A, it is easy to check the bound

[wllzzry < ellwligzy

where ¢ only depends on b;. This finishes the proof of (5.7). |

Proof of Theorem 4.3: (i) By Lemma 5.1, given £ > 0 there exists ¢ € L*(Ty) such
that

1Spo + w2y <&, A=Ay (5.9)

10



If u denotes the solution of (2.5) and (2.6), then w := S¢+u‘™ —u solves the problem
(5.6) with h := Sy + u™|5. Lemma 5.2 together with (5.9) implies

||Sb§0+u _Ub“LZ < C||h||L2 < ce.
Thus we obtain

F(p, f;7) < (L+c)e” +9llelz e, = 1+, v —0,

which finishes the proof of assertion (i).

(ii) The existence of a convergent subsequence f, — f* (in the sense of Definition
4.1) follows from the compactness of M. Since f,, is optimal for the parameter ~,,
there exists ¢, € L?(Ty) such that

F(Qonafn;’Yn) :m('}’n), n € N.
Note that w, := Sy, + u™ solves the problem
(Aa + k2)wn =0 in Qn , wn|An = hn , 8,,’U)n|1" =+ Twn =Qqo,

where h,, := (S¢, +u™)|s, and the dependence of Q2 and A on f, is indicated by n.
Furthermore, let u,, € V(€,,) be the solution of the forward problem (2.5) and (2.6)
corresponding to the profile function f,. Then v, := w, — u,, satisfies the boundary
value problem

(Ap +EDv, =0 in Q, Vpla, = hny Outp|r +Tv, =0. (5.10)
Applying Lemma 5.2 to the problems (5.10), we get upon using Theorem 3.1 (i)
a2y < ellbnllzza,), n €N, (5.11)

where ¢ does not depend on n. Let u* denote the solution of the direct problem
(2.5) and (2.6) for the profile function f*. Since ||Ay||12(a,) — 0 by Theorem 4.3 (i),
it follows from (5.11) that ||v,|[z2r) — 0 as n — oo. Moreover applying Theorem
3.1 (ii) one obtains

lwn — u*||z2ry < llvnllzo@) + [Jun — w2y =+ 0, n—o0.

By Theorem 4.3 (i) we also have ||w, — us||z2@ry — 0 so that uy = u*|r. Together
with u*[s,, = 0, this completes the proof of assertion (ii). |

6 Proof of Theorems 3.1 and 3.3

Proof of Theorem 3.1: (i) Consider the operators

B,.=A,+K,: V(,) = V()
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generated by the sesquilinear forms (2.8) and (3.2) on Q,. We prove the stability
estimate (3.5) arguing by contradiction. If (3.5) were not true, there would exist a
sequence v, € V() such that

||Un||V(Qn) =1 and ||ann||V(Qn)’ — 0, n—o0. (61)

Choose Qp D 2 such that Q, C Qg (n > ng), and extend v, by zero to €. Then
v, — v in V() (for a subsequence). Since vp|s, =0 and [|f, — fllco — 0, we have

v =0 in Q\Q, hence v € V(Q). Furthermore, for any C5° function ¢ with support
in Q\A, we obtain

(Botn, ©)a, — (Bv,9)a, (Bavn,9)a, =0, n—oo.

Consequently, (Bv,¢)q = 0 for any ¢ € V(), which implies v = 0 since B is
assumed to be invertible. Furthermore, we have

[ o] lelvian <1} (6:2)
Qo

Since v, — 0in V(£p) and the form K (defined on €2j) generates a compact operator
of V() into V' (€)', the inequality (6.2) then gives ||Knvn ||y @,y — 0 which implies
upon using (6.1)

| Knvnllv(@.) < sup {k2

||Anvn||V(Qn)’ Z |(Anvnavn)ﬂn| — 0.

This is a contradiction since A,, is uniformly coercive with respect to n; note that
the constant ¢ in (3.3) does not depend on A.

(ii) For n sufficiently large, let u, € V(Q,) C V() be the solution of the
problem (2.8) for Q,. From (i) we obtain that ||u,||v(a,) is uniformly bounded and
that u,, — uin V(Qq), where w is the solution of the forward problem for  extended
by zero to €. Let ¢ € C$°(Q\A) be 2r—periodic in z; and such that ¥ = 1 on G.
Then for all n > ng

1By (un = uw)llviay = cll$p(un = u)llvia) = cllun — ullrvo) - (6.3)

It remains to show that the left side of (6.3) tends to zero as n — oo. For any
© € V() we have

(B (n — u), @) = Blun — u,0)
+ /Q (Vb — ) - Vo — Vel — 1) - VD) |

where the first term on the right side vanishes. The last integral takes the form
(note that 1) = 1 near I')

/Q {(un —u)VY - Vap — 9Va(u, —u) - Vio}
= [ 4 =)V o+ a0~ )T 5V}
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Since u,, — u in L?(£), we then obtain

1Bt (un — w)llviay = sup {|(By(un — u), @)al : lollvie) < 1}

< c|lup — u||z2@) — 0

which completes the proof of assertion (ii). |

Proof of Theorem 3.3: Step 1. First we establish the uniform estimate (3.7) when
A = Ay is an infinitely smooth profile. A variational solution to (3.6) then satisfies
u € H2(Q) NV(Q), and integrating by parts we obtain

2 Re / (Aot + kPu) 8y = / (Bt Bt + Br 0w Bru + 1ok ul?) ,  (6.4)
Q o

where
Opa =101 o+ 120y, Org:i=—13014+110:, 014:=0; +ia.

On the segment I, the integral on the right hand side of (6.4) takes the form (cf.

(2.4), (2.7))

/(|Tu|2 Bl + 2 [uf2) = 27 3 (1Bal? + K2 — (n + 0)2) [ ?

nez

_Z4w — (n+ a))|d.)?,

with the index set U defined in (3.1). Since u|s = 0 and also 0, ,ulx = 0, we have
from (3.6) and (6.4)

2Re/h82ﬂ:/1/2|8 ul? —I—Z47r — (n+ a@)?)]i,|?. (6.5)
Q

ncld

This is just the analogue of the Rellich identity for our periodic diffraction problem;

see [18, Chap. 5|. As in [15], it follows from (6.5) and the variational formulation

that A = 0 implies v = 0. Hence (3.6) has a unique solution u € V(Q).
Furthermore, for a rectangle Q = (0,27) x (by,b) C Q, we have the bound

[inl* < cllully gy < cllullig), nel, (6.6)

()
where ¢ only depends on b;. Moreover,
lullviey < IB7H [1Bllviy < clIB7| IAllz2 @) (6.7)

where ¢ depends on || f[[co. The last inequality of (6.7) follows by duality from
the estimate ||¢||z2@) < c||g0||V ), which is a consequence of Friedrichs’ inequal-
ity. Combining (6.5) (6.7) gives the desired bound (3.7), with ¢ only depending
on || f|loo and the stability constant ||B![|. Note that the exterior normal v to A
satisfies p_VQ > C > 0on A, where C only depends on the Lipschitz constant of f.
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Step 2. Now we consider the case when f € C}' and k is sufficiently small.
Then B : V(Q) — V(Q) is invertible and (3.6) has a unique solution u € V(Q).
Proceeding as in the proof of [18, Thm. 5.1.1], we choose C* profiles A; = Ay, such
that Q; C Q for all n and

1f5 = flleg = 0, fillor < e, j— 00,

where ¢ only depends on ||f||cg,1. Let u; € V(Q;) C V(Q) be the solution of the

problem (3.6) for Q;. Applying Theorem 3.1 (i) and the arguments used in Step 1,
we obtain the uniform bound

| st < cliblf (69
with ¢ depending on [|f|e and [[B7H|.
In the following we identify the spaces L*(A;) and L?(A) with L?(0,27) via the
norm
1/2

2
||v0f||L2<o,zw)=</0 Iv(f(:vl))l2d:v1> L we (A,

which is a uniformly equivalent norm when f varies in a set of profile functions with
uniformly bounded C)'' norm. From (6.8) we then get 8,u; — v in L*(0,2m) (for

some subsequence). It remains to check that v coincides with the H,fl/z trace of O,u
on A.

By Remark 3.2 u; — u in V(2), and Lemma 2.4.5 in [18] implies @[x; — ¢|a in
L?(0,2m) for any ¢ € H, (). Hence, passing to the limit in the identity

/A_(auuj)sﬁ = B(uj, ;) +/

ho, Yo € Hy (),
7 Q;

we obtain (3.8) with v in place of d,u, which finishes the proof.

Step 3. We finally consider the case of a Lipschitz profile and an arbitrary
wave number k£ > 0. We only have to show that a solution u € V() to the
homogeneous problem (3.6) (with A = 0) must vanish in Q. The estimate (3.7) for

the inhomogeneous problem then follows as in Step 2. Consider the problem
(Ay+k)v=Ff:=(kE—k)u in Q, (6.9)
v[a =0, Our+ T(a,k)v=0, .

where kg is chosen sufficiently small. Exactly as in Section 3 one verifies that the
operator By : V. — V' generated by the sesquilinear form

By(v, ¢) i= / (Vv - Vg — K0) + / T, kv
Q T

is invertible. Hence v = u is the unique solution of (6.9) in V(). Denote by v; the
solution to problem (6.9) for Q;, where A is again approximated by a sequence of
C* profiles A;. Arguing as in Step 2, one now obtains

8,vjla; = Oyuls in L*(0,2m), as j— oo.
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Rewriting the differential equation for v; as
(Aq + k%)v; = hy = (kg — k%) (u — v;)
and applying the Rellich identity (6.5), we have
2 Re / h; 0y0; = / va|0,v; >+ An(k® = (n+ @)?)|b;a], (6.10)
Q Aj nel

where ¥;,, are the Fourier coefficients of v;(z1,b).
On the other hand, from the variational formulation we obtain

[ Ve = RloP) + [ @b = - [ hoy, (6.11)
Q r Q
where the integral on I" takes the form

—i2m Y Bultjnl® + 210 D |Bal* il

neld nezZ\U

Since v; — u in V() by Theorem 3.1 and Remark 3.2 (applied to problem (6.9)
instead of (2.5), (2.6), in which case the proof remains the same), one has h; — 0
in L?(Q) and it follows from (6.11) by taking imaginary parts that

Ujn—0, neld, as j—oo.
Then (6.10) implies
||8,,u||Lz(A) S hrnlnf]_mo ||8,,v]-||Lz(AJ.) = 0,

hence v = 0,u = 0 on A, which gives v = 0 in Q and concludes the proof of the
theorem. m
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