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Abstract

We prove in this paper an existence result for in�nite-dimensional station-

ary interactive Brownian di�usions. The interaction is supposed to be small

in the norm k � k1 but otherwise is very general, being possibly non-regular

and non-Markovian. Our method consists in using the characterization of such

di�usions as space-time Gibbs �elds so that we construct them by space-time

cluster expansions in the small coupling parameter.

1 Introduction

Let 
 = C(R;R)Z
d

be the con�guration space, and F be the canonical �-�eld in

it. For ! 2 
 we write ! = (!i(t))i2Zd;t2R. Suppose we are given the following

in�nite-dimensional stochastic di�erential equation (s.d.e.)

dXi(t) =
�
�

1

2
'
0(Xi(t)) + b(�i;tX)

�
dt + dBi(t) ; i 2 Zd

; t 2 R (1)

where

� ' is a suitable self potential, to be chosen in a class that will be de�ned in

Section 2;

� b : C((�1; 0];R)Z
d

!R is a measurable bounded local function, say b(!) =

b(!�0), where !�0 is the restriction of ! to a �nite subset �0 � Z
d of space-

coordinates, containing the origin;

� �i;t is the space-time translation on 
 given by (�i;t!)j(s) = !i+j(t + s);

� (Bi)i2Zd is a sequence of independent real-valued Brownian motions.

Our aim in this paper is to prove the existence of a stationary weak solution of (1)

with possibly non-Markovian and non-gradient drift in an in�nite time-interval.

Such di�usions restricted to a �nite time-interval (say [0; 1]), with b(!) = b(!(0))

(Markovian drift), and when b is the gradient of a smooth Hamilton function, were

described as lattice Gibbs states on C([0; 1];R)Z
d

�rst by Deuschel in [5, 6] and

later in [3]. We will use here the description of weak solutions of (1) as space-time

Gibbs states on 
. To be more precise, let Q 2 Ps(
) be a space-time invariant

probability measure on (
;F), and b be a given function as above. We denote by P

the reference measure in Ps(
), law of the stationary solution of equation (1) with
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b � 0. We take assumptions on ' which guarantee existence and uniqueness of such

�free� in�nite-dimensional di�usion without interaction P . Under the integrability

condition

H(Q) < +1;

where H denotes the speci�c entropy of Q with respect to P (see formula (11)), the

main result in [4] was the equivalence of the following assertions:

(i) Q is a stationary weak solution of the stochastic di�erential equation (1).

(ii) Q is a space-time invariant Gibbs state for a speci�cation which is built on

an Hamiltonian functional H de�ned on C([0; 1];R)Z
d

and given in (10). This

speci�cation is de�ned as a perturbation of a reference speci�cation, which in

this model consists of stochastic bridges derived from P .

No existence result of solution of equation (1) was proved in [4].

When the drift b(!) = b(!(0)) is a regular Markovian one, existence and uniqueness

of strong solutions of (1) were proved in [7] and [26]. But it is not clear whether

among the solutions there is one that is time stationary. Furthermore, not having

assumed any smoothness on the drift b and no Markovianity, it is not known whether

the s.d.e. (1) admits any weak solution. Indeed, we show here that a stationary

solution of (1) with general drift b can be constructed by cluster expansion, provided

kbk1 is su�ciently small.

Gibbs �elds on the trajectory space C(R;R) were introduced in the context of Eu-

clidean quantum �eld theory as quasi-invariant measures (see Courrège and Re-

nouard [2], Royer and Yor [25] and references therein). One of the di�culties in

dealing with Gibbs �elds on path spaces comes from the fact that disjoint time

regions are not independent under the reference measure. More recently Betz and

Lörinczi [1] used D-L-R approach for constructing P (�)1-processes, and Osada and

Spohn [21] used it for constructing a class of Gibbsian non Markovian real valued

stochastic processes. One �nd also in [15] and [16] the use of cluster expansion

methods to solve existence problems of Brownian paths under di�erent types of

interaction.

In this paper, following the notions introduced by Minlos, R÷lly and Zessin in [19],

we deal with Gibbs �elds on C(R;R)Z
d

, that are parametrized by space and time

Z
d � R. Some of these �elds are related with quantum Gibbs states through the

Feynman-Kac-Nelson representation - cf. [20] for a very clear description of the

relation with physical quantum models -. The originality of the model we present

here comes from the generality of the Hamiltonian functional H, which is neither

a quadratic or a polynomial one as in [19] (formula (35) or (74)), nor a bounded

functional. It includes a stochastic integral term, and therefore is highly explosive.
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The paper is devided into the following sections.

1. Introduction.

2. In�nite-dimensional di�usion as space-time Gibbs states.

3. Cluster representation and cluster estimates

2 In�nite-dimensional di�usion as space-time Gibbs

state

First of all we introduce our one dimensional reference process, whose law on C(R;R)

is denoted by W , as the time-stationary solution of the scalar di�erential equation

dx(t) = �
1

2
'
0(x(t))dt+ dw(t) (2)

where w is a real valued Brownian motion and the self potential ' is a C2(R;R)

function satisfying the following properties :

lim
jxj!+1

'(x) = +1; and 9C0 2 R such that ~' =: '00 �
1

2
('0)2 � C0 (3)

e
�' 2 L

1(R): (4)

0 < lim inf
jxj!+1

'
00(x) and

Z
1 1

'
0(x)

dx < +1: (5)

Property (3) guarantees that, for any given initial condition, a unique non-exploding

strong solution of (2) exists (see Theorem 2.2.19 in [24]). Property (4) is in fact a

consequence of the �rst part of (5) since the assumption lim infjxj!+1 '
00(x) > 0 im-

plies that the measure e�'(x)dx has tails not bigger than Gaussian. It insures that the

measure e�'dx, which is invariant, is normalizable. Let �(dx) = e
�'(x)

dx=

R
e
�'(y)

dy

denote this unique invariant Probability measure associated to (2). Property (5) in-

sures that the process x(t) is su�ciently ergodic against �, in the sense that its

associated semi-group is ultracontractive.

2.1 The in�nite-dimensional di�usion

Let 
 = C(R;R)Z
d

be the canonical con�guration space, and F be the canonical

�-�eld. With P(
) we denote the space of probability measures on 
, and Ps(
)

is the subset of P(
) consisting of those probabilities that are invariant for the

space-time shift maps (�i;t)i2Zd; t2R.

In what follows we let P be the law of the reference non-interacting in�nite system,

i.e.

P = 
ZdW 2 Ps(
):
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The main object of this paper is an in�nite-dimensional di�usion that is obtained by

perturbing through an interaction a system of independent particles each evolving

with dynamics given by (2): we �x a �nite subset �0 � Z
d, and assume we are given

a measurable bounded �0-local function b(!) = b(!�0) on C((�1; 0];R)�0 , where

this path space is provided with the topology of uniform convergence on compact

subsets of R� , and the corresponding Borel �-�eld.

We consider the associated stochastic di�erential system

dXi(t) =

�
�

1

2
'
0(Xi(t)) + b(�i;tX)

�
dt+ dBi(t) ; i 2 Zd

; t 2 R+ : (6)

Remark that, in the time-stationary situation, we can also consider the above sys-

tem for any time t 2 R.

We recall that a weak solution of the s.d.e. (6) is a probability measure Q on 
 such

that the scalar processes�
Xi(�)�

Z
�

0

�
�

1

2
'
0(Xi(s)) + b(�i;sX)

�
ds

�
i2Zd

are Q-independent Brownian motions, where X is the canonical process on 
:

Xi(t; !) = !i(t) for ! 2 
, i 2 Zd and t 2 R.

2.2 Its characteristics as Gibbs �eld

For Q 2 P(
), and G sub-�-�eld of F , we denote by Q(�=G) a regular version of Q

conditioned to G, while QjG denotes the restriction of Q to G. To de�ne space-time

Gibbs �elds, we need to introduce di�erent �ltrations on the space-time structure.

Let V be the set of space-time volumes V having the form V = �� I where � � Z
d

�nite, and I =]a1; a2[ is a bounded open interval. For a space-volume � � Z
d we

de�ne its enlargement �+ and its boundary @� by

�+ = fi 2 Zd : (�0 + i) \ � 6= ;g; and @� = (�+)+ n �:

For a time-volume I =]a1; a2[� R we de�ne its enlargement I+ by I+ =]�1; a2].

For V = �� I 2 V the forward �-�eld FV and the backward �-�eld F̂V are de�ned

by

FV = �f!i(t) : i 2 �++
; t 2 I

+g; and F̂V = �f!i(t) : (i; t) 62 V g:

The boundary �-�eld @FV is given by

@FV = FV \ F̂V :

For future use, we also let

BV = �f!i(t) : i 2 �; t 2 Ig:
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Now, the reference speci�cation �0 we consider is the following kernel based on P :

8V 2 V; A 2 FV ; �
0
V (A) = P (A=F̂V ) P � a.s. (7)

It is easy to see that, for V = ��]a1; a2[, �
0
V is given by

�0
V (!; d!

0) = 
(i;t)62V Æ!i(t))(d!
0

i(t)) 
 
i2�W
!i(a1);!i(a2)

[a1;a2]
(d!0i) (8)

where W
x;y

[a1;a2]
is the law of the stochastic bridge on [a1; a2] obtained by conditioning

W to be x at time a1 and y at time a2. That �
0 is a space-time speci�cation in the

Gibbsian sense has been proved in [19], Example 2, Section 1.4.2.

On the path level, the interaction functional is given through a potential � =

(�V )V 2V which is de�ned on a subset 
0 � 
 as follows :8><
>:

���I � 0 if 6 9i 2 Zd : � = i + �0

�(i+�0)�I(!) = �
R
I
b(�i;t!)d!i(t) +

1
2

R
I

h
b(�i;t!)(b(�i;t!)� '

0(!i(t)))
i
dt

= �
R
I
b(�i;t!)d ~Bi(t) +

1
2

R
I
b
2(�i;t!)dt otherwise

(9)

where the process ~
B is de�ned by

~
Bi(t) = !i(t) +

1

2

Z t

a1

'
0(!i(s))ds; t 2]a1; a2[;

and satis�es that ~
Bi(a1 + :) � ~

Bi(a1)'s are independent Brownian motions under

P . Note that the potential � is not de�ned a priori on the whole 
, but only for

! 2 
0 for which the stochastic integral
R
I
b(�i;t!)d!i(t) makes sense (in particular,

P (
0) = 1). Anyway �(i+�0)�I 2 L
2(P ), and therefore is �nite P -almost surely. We

make the convention that it is always chosen in such a way that it does not assume

the value �1.

The associated Hamiltonian is de�ned on 
0 for V = �� I by

HV (!) =
X

�0\�6=;

��0�I(!) = �
X
i2�+

�Z
I

b(�i;t!)d ~Bi(t)�
1

2

Z
I

b
2(�i;t!)dt

�
; ! 2 
0

:

(10)

We observe that � and H are space-time translation invariant, and that HV is

FV -measurable.

We can now de�ne for V 2 V, ! 2 
 the speci�cation �H
V (!; :) as the following

Probability measure on 
 with support included into 
0

�H
V (!; d!

0) =

(
1

ZH
V (!)

1
0(!0) exp(�HV (!
0))�0

V (!; d!
0) if 0 < Z

H
V (!) < +1

0 otherwise,

where

Z
H
V (!) =

Z

0

exp(�HV (!
0))�0

V (!; d!
0)

is the (@FV -measurable) normalization factor.
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De�nition 1 A probability measure Q on 
 is said to be a space-time Gibbs state

with speci�cation �H
if there exists a subset 
0 � 
 such that Q(
0) = 1, H is well

de�ned on 
0
and, for all V 2 V and A 2 FV

Q(A=F̂V ) = �H
V (A) Q� a.s.

The set of space-time Gibbs states for �H will be denoted by either G(�H) or

G(H;�0).

Moreover we let Gs(�
H) denote the set of space-time invariant Gibbs states, i.e.

Gs(�
H) = G(�H) \ Ps(
):

For Q 2 Ps(
) we also de�ne its speci�c entropy with respect to P by

H(Q) =

Z
h(Q(�=B�)jB1;P (�=B�)jB1) dQ (11)

where h(�; �) denotes the relative entropy between two measures,

B1 = Bf0g�]0;1[

and

B� = �f!i(t) : (t � 0; i 2 Zd) or (0 < t � 1 and i < 0)g:

Here we use as order in Zd (denoted also by "<") the lexicographic order.

Let us now enounce the key point on which our existence theorem is based (it is a

condensed version of Proposition 1, Theorems 1 and 2 in [4] ).

Proposition 2 Let Q 2 Ps(
) be a weak solution of the s.d.e. (6). Then Q 2

Gs(�
H) where the Hamiltonian H is given by (10). Reciprocally, if Q 2 Gs(�

H) is

such that H(Q) < +1, then Q is a weak solution of the s.d.e. (6).

2.3 The Existence theorem

We are now able to state our main result.

Theorem 3 If the drift b has a norm kbk1 su�ciently small, then there exists a

stationary weak solution Q of the s.d.e. (6) . This Probability measure Q admits a

cluster expansion and is invariant with respect to space-time translations. Moreover

it satis�es the property of short range correlations, i.e. for every � � Z
d
�nite, I

bounded interval of R and F;G : 
! R F��I-measurable, we have

lim
jij+jtj!+1

Q[F (G Æ �i;t)] = Q(F )Q(G):
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The proof of this theorem is based on the following convergence result.

Without loss of generality, we may assume that �0 = fi 2 Zd : jij � r0g. De�ne,

recursively, �n+1 = �+
n . Moreover, let I(n) be an increasing sequence of bounded

intervals whose union is R. Note that Vn = �n � I(n) � Z
d � R is an increasing

sequence of bounded sets which tends to Zd � R as n tends to in�nity. Finally, for

� 2 
, we de�ne �(n) by

�

(n)
i (t) =

�
�i(t) for t � inf I(n)

�i(inf I(n)) otherwise.

Lemma 4 Let Qn be the Probability measure on 
 de�ned by :

Qn(d�) = exp
�
�HVn(�

(n))
�
P (d�):

If, for each local bounded measurable function F ,

lim
n
Qn(F ) =: Q(F );

then the weak limit Probability measure Q belongs to G(�H).

Proof : For � 2 
, we write �V the restriction of � to (i; t) 2 V . Observe that

Qn(d�) = �H
Vn
(�

(n)
V c
n
; d�)ZH

Vn
(�

(n)
V c
n
)PjBV c

n
(d�V c

n
);

since �0
Vn
(�

(n)
V c
n
; d�) = �0

Vn
(�V c

n
; d�). Moreover, by Girsanov Theorem, it is easy to

check that Z
Z
H
Vn
(�

(n)
V c
n
)PjBV c

n
(d�V c

n
) = 1:

Thus, Qn is a mixture of the local speci�cations �H
Vn
(�V c

n
; d�). The conclusion then

follows as in Proposition 1 in [19]. �

The next section is devoted to the proof of the convergence of Qn which is based on

the method of cluster expansion.

3 Cluster representation and cluster estimates

3.1 The cluster representation of statistical sums

The di�erent steps of the proof to obtain a cluster representation of the measures Qn

are the same as in [19] Section 4. The new di�culty comes in the next subsection for

the computation of the cluster estimates since the Hamiltonian functional is highly

non regular.
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The main idea is to discretize in time the volume Vn, to have a better understanding

of the local structure of Qn. After having performed the discretization, the typical

strategy in cluster expansion is to expand the partition function

Zn =

Z
exp

�
�HVn(�

(n))
�
P (d�);

that in our case equals 1, due to the P -martingale property of exp�HVn(�). The

cluster estimates for the integral above are, however, exactly what is needed for our

purposes. Let a > 0 be a real number which we will choose later and Za � R the

one-dimensional time lattice with step length a. We let, for j 2 Z, Ij = [ja; (j+1)a].

Moreover, we let

Z
d+1
a = Z

d � Za

be the space-time lattice with scale a for the time. We call temporal edge in

Z
d+1
a a pair of the form (i; Ij), i 2 Z

d
; j 2 Z : The points (i; ja); (i; (j + 1)a) are

called the vertices of the edge.

We call contour on the interval Ij a sequence of �0-connected temporal edges 
j of

the following type :



j = f(i1; Ij); : : : ; (im; Ij)g;

where �0-connected means that, for k = 1; : : : ; m � 1, (ik+1 + �0) \ (ik + �0) 6= ;.

If the meaning is clear, then we write sometimes k 2 

j instead of (k; Ij) 2 


j.

For every set B of temporal edges we denote by [B] � Z
d+1
a the set of vertices of the

elements of B. For example, [f(i; Ij)g] = f(i; j); (i; j + 1)g � Z
d+1
a .

We now assume that the time interval I(n) which appears in Qn is of the form

I(n) = [�Na;Na] =

N�1[
j=�N

Ij;

where N = pn for some p 2 Z, p > 0.

We de�ne the transition density qt(x; y) of the one-dimensional reference process x(t)

solution of (2) with respect to its invariant probability measure � by the following

equation :

W (x(t) = dx=x0 = y) = qt(x; y)�(dx):

Since the process x(t) is Markovian, we have :

W (�=x(ja) = yj; j = �N; : : : ; N) = 
N�1
j=�NW

yj ;yj+1
Ij

(�):

Let also denote by yn the (2N +1)j�n+2j-dimensional vector (yi;j)(i;j)2�n+2�f�N;:::;Ng,

where j�n+2j is the number of elements in �n+2; let also @I(n) = finf(I(n)); sup(I(n))g.

With these notations, and after having noticed that HVn(�
(n)) depends only on �i(t),

8



i 2 �n+2, t 2 I(n), one can write the partition functions Zn as follows

Zn =:

Z



Z



exp
�
�HVn(�

(n))
�
�0
�n+2�I(n)

(!; d�)PjB�n+2�@I(n)(d!)

=

Z
R
j�n+2j(2N+1)

Zn(yn)
Y

i2�n+2
j=�N;::;N�1

qa(yi;j+1; yi;j)
 i2�n+2
j=�N;::;N

�(dyi;j) (12)

where

Zn(yn) =

Z



exp
�
�HVn(�

(n))
�

 i2�n+2

j=�N;::;N

W

yi;j ;yi;j+1
Ij

(d�i): (13)

Since the Hamilton functional H��I is additive with respect to the time interval

I and the integration in (13) is under a product measure, the coe�cient Zn(yn)

decomposes into the following product of integrals :

Zn(yn) =

j=N�1Y
j=�N

Z



exp
�
�H�n�Ij(�

(n))
�

i2�n+2 W

yi;j ;yi;j+1
Ij

(d�i)

=

j=N�1Y
j=�N

Z



Y
k2�n+1

exp
�
��(k+�0)�Ij(�

(n))
�

i2�n+2 W

yi;j ;yi;j+1
Ij

(d�i):(14)

For simpli�cation, let us denote by

�k;j(�) =: �(k+�0)�Ij (�
(n)):

We �rst analyze the product on the space-lattice in the last expression, in order to

exchange it later with the integration on 
.Y
k2�n+1

exp(��k;j(�))� =
Y

k2�n+1

�
1 + exp(��k;j(�))� 1

�

= 1 +
X
L

Y
k2L

�
exp(��k;j(�))� 1

�

= 1 +
X
s�1

X


j
1;:::;


j
s

sY
m=1

Y
k2


j
m

�
exp(��k;j(�))� 1

�
(15)

where the summation
P

L takes into account all non empty subsets of �n+1, and the

summation
P



j
1;:::;


j
s
takes into account all maximal ��0-connected� components of

(L; Ij), id est

(L; Ij) � f(k; Ij); k 2 Lg = 


j
1[� � �[


j
s and this decomposition is the �nest one such

that 

j
1; : : : ; 


j
s are disjoint sets satisfying for m 6= m

0,(
jm+�0)\ (
jm0 +�0) = ; - in

an obvious way, 
j + �0 � f(k; Ij); k = k
0 + i where (k0; Ij) 2 


j and i 2 �0g -. So

Zn(yn) =

j=N�1Y
j=�N

Z



�
1+
X
s�1

X


j
1;:::;


j
s

sY
m=1

Y
k2


j
m

�
exp(��k;j(�))�1

��

i2�n+2W

yi;j ;yi;j+1
Ij

(d�i):

(16)
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To avoid an excessively heavy notation, we do not write the condition that the

contours 
k appearing in the sum above are formed by temporal edges of the type

(i; Ij), with i 2 �n+1. Before inserting the expression (16) into (12), we analyse the

time-product :Y
j=�N;:::;N�1

qa(yi;j+1; yi;j) =
Y

j=�N;:::;N�1

�
1 + qa(yi;j+1; yi;j)� 1

�

= 1 +
X
�

Y
Ij2�

�
qa(yi;j+1; yi;j)� 1

�

= 1 +
X
p�1

X
� i1:::;�

i
p

pY
u=1

Y
Ij2� iu

�
qa(yi;j+1; yi;j)� 1

�
(17)

where the summation
P

� is over all non ordered collections of intervals of the type

Ij included in I(n) and the summation
P

� i1:::;�
i
u
is over all pairwise non intersecting

collections of consecutive (connected) time intervals � iu = (Ij; Ij+1; : : : ; Ij+r). The

�
i
u's, called temporal series, are then the connected components of � and can also be

represented by the following collection of temporal edges:

�
i
u = f(i; Ij); : : : ; (i; Ij+r)g:

Then, inserting expressions (16) and (17) into (12), we obtain

Zn =

Z
R
j�n+2j(2N+1)

j=N�1Y
j=�N

Z



�
1 +

X
s�1

X


j
1 ;:::;


j
s

sY
m=1

Y
k2


j
m

�
exp(��k;j(�))� 1

��


i2�n+2W
yi;j ;yi;j+1
Ij

(d�i)Y
i2�n+2

�
1 +

X
p�1

X
� i1:::;�

i
p

pY
u=1

Y
Ij2� iu

�
qa(yi;j+1; yi;j)� 1

��

 i2�n+2

j=�N;::;N

�(dyi;j):

So,

Zn = 1 +
X
v�1

X
�1;:::;�v

�u2Bn

vY
l=1

K�l ; (18)

where the last summation is taken on all non ordered collection of

pairwise non intersecting aggregates �l, an aggregate � being a non empty collection

� = f

j1
1 ; : : : ; 


js
s ; � i11 ; : : : ; �

ip
p g

of �0-connected contours and temporal series satisfying : for m 6= m
0
; (
jm + �0) \

(
jm0 + �0) = ? and for u 6= u
0
; �

i
u \ �

i
u0 = ?. Moreover, Bn is the set of aggregates

corresponding to the volume Vn, i.e. � = f

j1
1 ; : : : ; 


js
s ; � i11 ; : : : ; �

ip
p g 2 Bn if the

10



temporal edges in the 

jh
h are of the form (i; Ij) with i 2 �n+1, Ij � I(n), and the

ones in the �
ik
k are of the form (i; Ij) with i 2 �n+2, Ij � I(n).

The decomposition (18) is called a cluster representation of the statistical sum Zn

and the coe�cient K� is given by the following expression :

K� =

Z sY
m=1

Z



Y
k2


jm
m

�
exp(��k;jm(�))� 1

�



i2

jm
m +�o

W

yi;jm ;yi;jm+1

Ijm
(d�i)

pY
u=1

Y
Ij2�

iu
u

�
qa(yiu;j+1; yiu;j)� 1

�

(i;j)2[��] �(dyi;j) (19)

where �� is the set of all temporal edges which compose �.

3.2 The cluster estimates

The following proposition is the key point of the convergence proof of the measures

Qn .

Proposition 5 Under a suitable choice of the time scale a there exists some con-

stant �(") which tends to 0 as " goes to 0 such that, if the norm kbk1 of the interac-

tion is smaller than ", the weight K� of the aggregate � = f
j11 ; : : : ; 

js
s ; � i11 ; : : : ; �

ip
p g

satis�es the estimate : ��
K�

��
< �(")j�j (20)

where j�j = j��j is the number of temporal edges which compose �.

Proof of Proposition 5 : To estimate the coe�cientK� de�ned by (19), we need to

commute several times integration and products. To this aim, the following abstract

integration lemma, which generalizes Hölder inequalities, will be very useful. It is

proved in [20] Lemma 5.2 :

Lemma 6 Let (�x)x2X be a family of Probability measures, each one de�ned on a

space Ex, where the elements x belong to some �nite set X . Let also de�ne a �nite

family (fi)i of functions on EX = �x2XEx such that each fi is Xi-local for a certain

Xi � X , in the sense that

fi(e) = fi(ejXi); for e = (ex)x2X 2 EX :

Let �i > 1 be numbers satisfying the following conditions :

8x 2 X ;
X
Xi3x

1

�i

� 1: (21)

Then ����
Z
EX

Y
i

fi 
x2X d�x

���� �Y
i

�Z
EXi

jfij
�i 
x2Xi d�x

�1=�i
(22)

11



Lemma 6 allows us to exchange the second product with the integral over 
 in the

expression (19). Let us de�ne

K(
jm) =

Z



Y
k2


j
m

�
exp(��k;j(�))� 1

�

i2


j
m+�o

W

yi;j ;yi;j+1
Ij

(d�i):

Then, by Lemma 6 applied to X = 

j
m + �o; Xi = i + �o; Ex = C(R;R); �i =

W

yi;j ;yi;j+1
Ij

, fi = exp(��i;j)� 1 , we get

��
K(
jm)

�� � Y
k2


j
m

|k;j(yn) (23)

where

|k;j(yn) �

 Z



�
exp(��k;jm(�))� 1

��1

i2+�o W

yi;j ;yi;j+1
Ij

(d�i)

!1=�1

and �1 is an even natural number greater than j�0j, in such a way that the condition

(21) holds: for every �xed i

jfk; k + �0 3 igj
1

�1

=
j�0j

�1

� 1:

So, returning to (19), we obtain

��
K�

�� =
���Z sY

m=1

K(
jmm )

pY
u=1

Y
Ij2�

iu
u

(qa(yiu;j+1; yiu;j)� 1)
(i;j)2[��] �(dyi;j)
���

�

Z sY
m=1

Y
k2


jm
m

|k;jm(yn)

pY
u=1

Y
Ij2�

iu
u

��
qa(yiu;j+1; yiu;j)� 1

��
(i;j)2[��] �(dyi;j)(24)

Applying once more Lemma 6, we obtain

��
K�

�� �

sY
m=1

Y
k2


jm
m

 Z
|k;jm(yn)

�1 
(i;j)2[(k+�0);Ijm ] �(dyi;j)

!1=�1

pY
u=1

Y
Ij2�

iu
u

 Z ��
qa(yiu;j+1; yiu;j)� 1

���2
�(dyiu;j)�(dyiu;j+1)

!1=�2

(25)

where �1 and �2 have to satisfy the adapted condition (21) : for every �xed (k; ja)

jf(k0; j 0); (k0 + �0; Ij0) 3 (k; ja)gj
1

�1

+
2

�2

� 1;

12



which is equivalent to
2j�0j

�1

+
2

�2

� 1:

The choice (�1; �2) = (4j�0j; 4) is a possible one and we will take it. Then

jK�j �M

Ps
m=1 j


jm
m j

1 M

Pp
u=1 j�

iu
u j

2 (26)

where M1 is an upper bound independent of k and j of R R



�
exp(��k;j(�))�1

�4j�0j

i2k+�0W

yi;j ;yi;j+1
Ij

(d�i)
i2k+�0�(dyi;j)�(dyi;j+1)

! 1
4j�0j

=

 R



�
exp(��k;j(�))�1

�4j�0j�Q
i2k+�0

qa(�i((j+1)a); �i(ja))
��1


i2k+�0WIj(d�i)

! 1
4j�0j

=

 R



�
exp(��k;j(�))� 1

�4j�0j�Q
i2k+�0

qa(�i((j + 1)a); �i(ja))
��1

PIj(d�)

! 1
4j�0j

and M2 is an upper �bound of

 Z
(qa(y; x)� 1)4�(dy)�(dx)

!1=4

: (27)

Lemma 7 If kbk1 � " and for a time unit a su�ciently large, we have

 Z



�
exp(��k;j(�))�1

�4j�0j� Y
i2k+�0

qa(�i((j+1)a); �i(ja))
��1

PIj(d�)

!1=(4j�0j)

� C"
1=2

where C is a positive constant independent of k; j and n.

Proof of Lemma 7 : First note that under assumption (5) given in section 2 on

the interaction of the one dimensional reference process W , its semi-group is ultra-

contractive and, in particular, qt(x; y) converges, when t tends to in�nity, towards 1

uniformly in x and y -the precise rate will be computed a few later to estimate M2,

see (29) -. So, for t large enough, qt(x; y) is bounded

from below uniformly in x and y by some strictly positive constant, that is :

8A > 0; 9a0 2 R
+
; 8a > a0; 8x; y; qa(x; y)

�1 � A:

We now have to estimate for a large enough the 4j�0j-moment of (e��k;j � 1) under

the Probability P . To simplify, let us use the notation � =: 4j�0j.Z



�
e
��k;j(�) � 1

��� Y
i2k+�0

qa(�i((j + 1)a); �i(ja))
��1

PIj (d�)

13



� A
j�0j

Z � Z 1

0

�k;j(�)e
���k;j(�)

d�

��
PIj (d�)

and Z � Z 1

0

�k;j (�) e
���k;j(�)

d�

��
PIj(d�)

=

Z



�k;j(�)
�

Z
[0;1]�

e
�(�1+���+��)�k;j(�)

d�1 : : : d��PIj(d�)

=

Z
[0;1]�

Z



�k;j(�)
�
e
�(�1+���+��)�k;j(�)

PIj(d�)d�1 : : : d��

=

Z
[0;1]�

d
�

dz
�
S(z)jz=�1+���+��d�1 : : : d�� (28)

where

S(z) =

Z



e
�z�k;j(�)

PIj (d�)

is the Laplace transform of the r.v. �k;j. Extending S to complex numbers, we

have, for any r such that S is well de�ned on B(z; r),

�� d�
dz

�
S(z)

�� � �!

r
�

sup
f�2C ;j��zj=rg

��S(�)��:
But, for � = x+ iy; x; y 2 R,

��S(�)�� � Z



��
e
���k;j(�)

��
PIj(d�) =

Z



e
�x�k;j(�)

PIj(d�):

To bound this exponential moment of �k;j under P , we will use the fundamental

property that, for each � � Z
d �nite and a1 2 R the process

�
exp(�H��]a1;a2[)

�
a2>a1

is a P -martingale for the �ltration (F��]a1;a2[)a2>a1 . In particular, exp(��k;j) is the

value at time (j + 1)a of a P -martingale which equals 1 at time ja. So we have

e
�x�k;j(�)

= exp
�
x

Z
Ij

b(�k;t�
(n))d ~Bk(t)�

x
2

2

Z
Ij

b
2(�k;t�

(n))dt
�
exp

�
x
2 � x

2

Z
Ij

b
2(�k;t�

(n))dt
�

where the �rst term in the product of the R.H.S. is the value at time (j + 1)a of a

P -martingale which equals 1 at time ja.

To bound (independently of �) the second term in the product of the above R.H.S.

note that, since x is the real part of a complex number � satisfying j��(�1+� � �+��) =

rj, x is bounded above by �+ r. So

exp
�
x
2 � x

2

Z
Ij

b
2(�k;t�

(n))dt
�
� exp

�(� + r)2

2
akbk2

1

�
:

14



This implies that,

sup
f�2C ;j��zj=rg

��S(�)�� � exp
�(� + r)2

2
akbk2

1

�
Z



exp
�
x

Z
Ij

b(�k;t�
(n))d ~Bk(t)�

x
2

2

Z
Ij

b
2(�k;t�

(n))dt
�
PIj(d�)

� exp
�(� + r)2

2
akbk2

1

�
:

Returning to (28), we obtain for r � 0,Z



�
e
��k;j(�) � 1

��
PIj(d�) �

�!

r
�
exp

�(� + r)2

2
akbk2

1

�
�

�!

r
�
exp

�
2akbk2

1
r
2
�
:

Since this last upper bound holds for any r � �, we choose the r which minimizes

the R.H.S., and obtain

Z



�
e
��k;j(�) � 1

��
PIj (d�) � �! exp(�=2)

 
4akbk2

1

�

!�=2

� C
�
a
�=2kbk�

1
:

Taking now the time scale a(") = 1=" and being � � 1, we obtain the desired bound

of Lemma 7. �

Let us now give a bound called M2(") for the expression (27), when the time scale

a tends to in�nity with the rate a(") = 1=". We work under the assumptions (5)

given in section 2 on the interaction of the one dimensional reference process and

will now use the ultracontractivity of x(t). So, to compute the rate of convergence

to 0 of Z
(q1="(y; x)� 1)4�(dy)�(dx)

as a function of ", we will directly bound jq1="(y; x)� 1j uniformly in x and y, using

similar arguments as in the appendix of [4] :

sup
y;x2R

jqt(y; x)� 1j = sup
y;x2R

jq1 � (qt�2 � 1) � q1(y; x)j

� sup
x2R

Z
sup
y2R

q1 � jqt�2 � 1j(y;w)q1(w; x)�(dw):

where qt � qs is de�ned by

qt � qs(y; x) =

Z
qt(y;w)qs(w; x)�(dw):

15



By Theorem 1.4 in [13] under assumptions (5), the semigroup associated to x(t) is

ultracontractive, i.e. it maps L2(�) into L1(�); so there exists C1 > 0 such that

sup
y2R

q1 � jqt�2 � 1j(y;w) � C1k(qt�2 � 1)(�;w)kL2(�):

So

sup
y;x2R

jqt(y; x)� 1j � C1 sup
x2R

Z
q1(w; x)k(qt�2 � 1)(�;w)kL2(�)�(dw)

� C
2
1kw!k(qt�2 � 1)(�; w)kL2(�)kL2(�):

Now, is it known that ultracontractivity implies L2-contractivity. Thus, denoting

by � the spectral gap,

k(qt�2�1)(�;w)kL2(�) =





qt�2(�;w)�
Z

qt�2(z;w)�(dw)






L2(�)

� e
�(t�3)�kq1(�;w)�1kL2(�)

which implies

sup
x;y2R

jqt(y; x)� 1j � C
2
1e

�(t�3)�

 Z Z
(q1(x; y)� 1)2�(dx)�(dy)

!1=2

(29)

which converges exponentially to zero as t tends to in�nity. Then, there exists a

constant C2 such that, for " small enough,

 Z
(q1="(y; x)� 1)4�(dy)�(dx)

!1=4

� C2 e
��=" � C2 "

1=2
:

Introducing this last estimate together with Lemma 7 into inequation (26) we obtain

the following cluster estimate :

jK�j � C3 "
1=2j�j

: (30)

This concludes the proof of Proposition 5 with �(") = "
1=2.

�

3.3 The cluster expansion of the measures Qn

As usually when techniques of cluster expansions are used (cf. [18]) the represen-

tation (18) of Zn and the estimates (20) allow to obtain in a canonical way an

expansion for the measures Qn. In our particular situation, the expansion of Qn

is very similar of that computed in Section 4 of [19] for polynomial interaction.

Nevertheless, by care of completeness, we sketch here the important steps of this

method.
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We shall now get a representation for the integral
R
FBdQn, where FB is a local

bounded measurable function on 
 localized on B, and for n large enough, B is

included in the set Bn of all temporal edges of Vn = �n � I(n).

First we formulate some important consequence of the cluster representation (18).

Let � be a �nite set of temporal edges and let us introduce the partition function

Z� = 1 +
X

�1;:::;�v

vY
l=1

K�l ;

where the summation is taken over all non ordered non empty collections f�1; : : : ;�vg

of pairwise non intersecting aggregates �l such that ��l � � , and K�l is de�ned by

(19).

For any set of temporal edges � 0 � � we de�ne

f
� 0

� =
Z� 0n��

Z� 0
(31)

where �� is the set of edges which have common points with edges from � .

The following lemma, which can be found in [18], Chapter 3, holds :

Lemma 8 For " small enough,

i) there exists a constant C4 > 0 independent on � and �
0
such that��

f
� 0

�

��
< C4 2

j� j (32)

ii) the following expansion holds :

f
� 0

� = 1 +

�X
�=f�1;:::;�vg;��i�� 0

D� (�)
Y
�i2�

K�i (33)

where the summation is over collections � of aggregates �i such that � is

connected, � \ [i
��i 6= ; and [i

��i � �
0
. The coe�cients D� (�) do not depend

on �
0
and the serie is absolutely convergent.

iii) there exists a limit for the expansion (33) when �
0
tends to the set of all tem-

poral edges in Z
d+1
a :

f� = lim
� 0"�Zd+1a

f
� 0

� = 1 +

�X
�=f�1;:::;�vg

D� (�)
Y
�i2�

K�i (34)

iv) there exists a constant C5 > 0 such that the following estimate holds :

��
f
� 0

� � f�

��
< C5

2j�� j

2d(�;�
0c)

(35)

where d (�; �
0c) is the length of the smallest path which goes from � to the

complement of �
0
in �Zd+1

a .
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v) there exists a constant C6 > 0 such that the following estimate holds : for �1,

�2 � �
0 ��

f
� 0

�1[�2
� f

� 0

�1
� f �

0

�2

��
< C6 3

j�1j+j�2j
�(")d(�1;�2)

and (36)��
f�1[�2 � f�1 � f�2

��
< C6 3

j�1j+j�2j
�(")d(�1;�2):

We now return to the expansion of the integral of the functional FB. We haveZ
FBdQn =

Z



FB(�) exp
�
�HVn(�

(n))
�
P (d�)

=: Zn(FB)

which has the following representation :

Zn(FB) =
X

�=f�lg
��l�Bn

K�(FB)

 
1 +

X
�=f�ig

��i�Bnn(B[��)

Y
�i2�

K�i

!
(37)

and, modifying in the right way equation (19),

K�(FB) =

Z Z



FB(�)
Y
�l

 
sY

m=1

Y
k2


jm
m

�
exp(��k;jm(�))� 1

�
pY

u=1

Y
Ij2�

iu
u

�
qa(yiu;j+1; yiu;j)� 1

�!

i2


jm
m +�o

W

yi;jm ;yi;jm+1

Ijm
(d�i)
(i;j)2[ ��l]

�(dyi;j):

From (37) and (33) we �ndZ
FB dQn =

X
�

K�(FB)f
Bn

B[��

=
X
�;�

K�(FB)DB[��(�)
Y
�2�

K�:

Using estimates (32) and (34), we can conclude that for " small enough (which

implies �(") small enough) the above serie converges absolutely and uniformly in n,

so that

lim
Vn"Zd�R

Z
FB dQn =

X
�

K�(FB) fB[��

=:

Z
FB dQ:

The functional FB 7�!
R
FBdQ is linear bounded and positive on the algebra of

bounded local functions. Then there exists a unique probability measure Q such

that

Q = lim
Vn"Zd�R

Qn :
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By computing the cluster expansion for
R
(FB � FB Æ �i;t) dQn we can also conclude

that Q is space-time shift invariant.

Furthermore, the fact that Q satis�es the property of short range correlations is a

consequence of a cluster representation forZ
FB1

FB2
dQn �

Z
FB1

dQn

Z
FB2

dQn

and (36).

By Lemma 4 and Proposition 2, in order to complete the proof of Theorem 3, we

only have to show that the measure Q we have just constructed has a �nite speci�c

entropy with respect to P . We �rst note that the map Q!H(Q) is well de�ned by

(11) for all Q 2 P(
), and it is lower semicontinuous. In particular,

H(Q) � lim inf
n

H(Qn) � sup
n

H(Qn): (38)

Under Qn and for t 2 I(n), the canonical process is a weak solution of the s.d.e.

dXi(t) =
�
�1

2
'
0(Xi(t)) + b(�i;tX

(n))
�
dt+ dBi(t) for i 2 �n+1

dXi(t) = �1
2
'
0(Xi(t))dt+ dBi(t) for i 62 �n+1:

Consider the �-�eld

B̂� = �f!i(t) : (t � 0; i = 0) or (t � 1; i 6= 0)g:

We may assume that n is large enough so that [0; 1] � I(n) and (f0g+)+ � �n. By

the same argument of Lemma 2 in [4],

dQn(�=B̂
�)

dP (�=B̂�)

���
B1

=
1

Z(n)
exp

2
4 X
i2f0g+

�Z 1

0

b(�i;t!
(n))d ~Bi(t)�

1

2

Z 1

0

b
2(�i;t!

(n))dt

�35
;

where Z(n) is a normalization factor. - Let us remark that P (�=B̂�)jB1(!) =

W

!0(0)

[0;1]
(�), where W x

[0;1] is the law on [0; 1] of the one dimensional reference process

W de�ned in (2) conditioned to be x at time 0.- De�ne

Ĥ(Qn) =

Z
h(Qn(�=B̂

�)jB1;P (�=B̂�)jB1) dQn:

It is the local entropy de�ned by Föllmer et al. in [10] de�nition 2.1. Since B� � B̂�,

by Jensen's inequality, H(Qn) � Ĥ(Qn). Thus, we are left to show that Ĥ(Qn) is

bounded in n. But

Ĥ(Qn) =

Z 24 X
i2f0g+

�Z 1

0

b(�i;t!
(n))d ~Bi(t)�

1

2

Z 1

0

b
2(�i;t!

(n))dt

�35
dQn�

Z
logZ(n)dQn:

(39)
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We analyze separately the two summands in (39).

Using the fact that

Bi(t) = ~
Bi(t)�

Z t

0

b(�i;s!
(n))ds; i 2 f0g+;

are independent Brownian motions under Qn, we get

Z 24 X
i2f0g+

�Z 1

0

b(�i;t!
(n))d ~Bi(t)�

1

2

Z 1

0

b
2(�i;t!

(n))dt

�35
dQn

=

Z 24 X
i2f0g+

�Z 1

0

b(�i;t!
(n))dBi(t) +

1

2

Z 1

0

b
2(�i;t!

(n))dt

�35
dQn

=

Z 24 X
i2f0g+

1

2

Z 1

0

b
2(�i;t!

(n))dt

3
5
dQn

� j�0jkbk
2
1
:

Moreover,

� logZ(n) = � log

Z
exp

2
4 X
i2f0g+

�Z 1

0

b(�i;t!
(n))d ~Bi(t)�

1

2

Z 1

0

b
2(�i;t!

(n))dt

�3
5dP (�=B̂�)jB1

� �

Z 2
4 X
i2f0g+

�Z 1

0

b(�i;t!
(n))d ~Bi(t)�

1

2

Z 1

0

b
2(�i;t!

(n))dt

�3
5 dP (�=B̂�)jB1

= �

Z 2
4 X
i2f0g+nf0g

�Z 1

0

b(�i;t!
(n))dBi(t) +

1

2

Z 1

0

b
2(�i;t!

(n))dt

�3
5 dP (�=B̂�)jB1

+
1

2

Z Z 1

0

b
2(�0;t!

(n))dt dP (�=B̂�)jB1

� �

Z 2
4 X
i2f0g+nf0g

Z 1

0

b(�i;t!
(n))dBi(t)

3
5 dP (�=B̂�)jB1

+
1

2

Z Z 1

0

b
2(�0;t!

(n))dt dP (�=B̂�)jB1

where we have used the fact that ~
B0(�) is a Brownian motion under dP (�=B̂�).

Thus, proceeding as above,

�
R

logZ(n)dQn

� �

Z X
i2f0g+nf0g

�Z 1

0

b(�i;t!
(n))dBi(t)

�
dP (�=B̂�)jB1dQn +

1

2
kbk2

1
(40)

=
1

2
kbk2

1
:
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The last equality is due to the fact that the �rst term in the R.H.S. of (40) vanishes;

indeed :

P (d!=B̂�)jB1 Qn(d!) = W

!0(0)

[0;1] (d!0) Qn(d!)

= W

!0(0)

[0;1] (d!0) exp
�
�HVn(!

(n))
�
P (d!)

= W
x
[0;1](d!0) exp

�
�HVn(!

(n))
�
W

x(d!0)�(dx)
i6=0 W (d!i)

= exp
�
�HVn(!

(n))
�
W

x(d!0)�(dx)
i6=0 W (d!i)

= Qn(d!) ;

which implies that the stochastic integrals under Bi's have a dP (�=B̂�)jB1 dQn- mean

equal to 0.

This completes the proof.

�
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