
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

On safe crack shapes in elastic bodies

Dietmar Hömberg1 and Alexander M. Khludnev2

submitted: 20 Feb 2002

1 Weierstrass Institute for Applied Analysis and Stochastics

Mohrenstraÿe 39, D � 10117 Berlin, Germany

E-Mail: hoemberg@wias-berlin.de
2 Lavrentyev Institute of Hydrodynamics

of the Russian Academy of Sciences

Novosibirsk 630090, Russia

E-Mail: khlud@hydro.nsc.ru

Preprint No. 716

Berlin 2002

WIAS



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

According to the Gri�th criterion, a crack propagation occurs provided

that the derivative of the energy functional with respect to the crack length

reaches some critical value. We consider a generalization of this criterion to the

case of nonlinear cracks satisfying a non-penetration condition and investigate

the dependence of the shape derivative of the energy functional on the crack

shape. In the paper, we �nd the crack shape which gives the maximal deviation

of the energy functional derivative from a given critical value and, in particular,

prove that this optimality problem admits a solution.

Key words: Gri�th criterion, nonlinear crack, shape derivative

AMS subject classi�cations: 74G65, 74P99, 74R99

1 Introduction

The well-known Gri�th criterion of a crack propagation says that a propagation

occurs provided that the derivative of the energy functional with respect to the

crack length reaches some critical value. This derivative depends, in particular, on

the crack shape. In this work we analyse the dependence of the derivative of the

energy functional on the crack shape for the nonlinear crack theory. Having in mind

the usual application of the Gri�th criterion, our goal is to �nd the crack shape

providing the maximal deviation of the derivative of the energy functional from the

critical value. We prove the existence of such a crack shape. The result obtained in

the paper is new both for the classical linear crack problem and for the nonlinear

crack problem.

Note that the classical linear approach to the crack problem is characterized by

the equality type boundary condition at the crack faces. This approach does not

exclude the mutual penetration of crack faces which has been remarked in many

works. In contrast with this linear approach, the nonlinear models considered in

the present work do not allow the mutual penetration between crack faces, and

consequently, from the standpoint of applications these nonlinear models are more

suitable. Boundary problems describing nonlinear cracks with the nonpenetrationon

conditions for many constitutive laws are widely presented in [6]. In this case in-

equality type restrictions are imposed on the solution which implies the nonlinearity

of the analysed problems.

Dependence of solutions on parameters for di�erent domain perturbations has

been analysed in many works. The case of smooth domains was considered in [16].

Nonsmooth domains are analysed in [17]. Results on di�erentiability of the energy
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functional for domains with cuts (cracks) in elastic problems can be found in [11],

[15]. General problems related to solution singularities for nonsmooth domains are

presented in [3]�[5], [10] and [13]. For concrete solutions and theory applications we

refer to [2], [12] and [14].

The di�erentiability of the energy functional for the nonlinear crack theory is

connected with the necessity to exclude the material derivative of the solution with

respect to the perturbation parameter. Such an analysis was provided in [7], [8].

Optimal control in boundary value problems for elastic bodies with restrictions

imposed on the solutions can be found in [9]. For classical approaches to optimal

control problems in the linear elasticity we refer the reader to [1].

In the next section, we consider perturbations of the equilibrium problem of

an elastic body with a crack through a family of domains f
Æg and present the

corresponding shape derivative of the energy functional. In Section 3 we formulate

an optimal control problem related to the generalization of the Gri�th criterion and

prove existence of a solution to this problem.

2 Perturbation of the equilibrium problem

Let 
 � IR2 be a bounded domain with smooth boundary �0, and �c0 be a smooth

curve without sel�ntersections such that �c0 � 
 (see Figure 1). Denote 
0 = 
n��c0.

Ω0

Γ         

c

0

Γ0

ν

Figure 1: The unperturbed domain 
0 with crack �c0.

It is assumed that an elastic body occupies the domain 
0, and �c0 corresponds

to the crack in the body. The equilibrium problem for the body can be formulated

as follows. We have to �nd the displacement vector u = (u1; u2) such that
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��ij;j = fi ; i = 1; 2 ; in 
0 ; (2.1)

�ij = bijkl"kl(u) ; i; j = 1; 2 ; in 
0 ; (2.2)

u = 0 on �0 ; (2.3)

[u]� � 0 ; �� � 0 ; [��] = 0 ; �� = 0 ; �� � [u]� = 0 on �c0 : (2.4)

Here "kl = "kl(u) =
1
2
(uk;l + ul;k) are the strain tensor components, uk;l =

@uk
@yl
; y =

(y1; y2) 2 
0; �ij = �ij(u) are the stress tensor components,

f�ij�jg
2
i=1 = �� � � + �� ; �� = �ij�j�i :

The brackets [v] = v+� v� mean the jump of the function v through �c0, and v
� �t

the positive and negative crack faces �c�0 with respect to the unit normal vector �

on �c0.

As usually, we assume the coe�cients bijkl to satisfy the conditions

bijkl = bklij = bjikl ; bijkl�kl�ij � cj�j2 ; c > 0 ; �ij = �ji :

To simplify the formula below we consider the case bijkl = const . Finally, we assume

f = (f1; f2) 2 [C1
loc (IR

2)]2.

Boundary conditions (2.4) correspond to the mutual nonpenetration between the

crack faces without friction (see [6]).

Problem (2.1)�(2.4) is uniquely solvable, and it admits the variational formula-

tion. Namely, let H1;0(
0) be the Sobolev space of functions having the �rst square

integrable derivatives and equal to zero at the external boundary �0. Consider the
closed convex set

K0 =
n
v = (v1; v2)j vi 2 H

1;0(
0) ; i = 1; 2 ; [v]� � 0 on �c0
o
:

Then the problem (2.1)�(2.4) is equivalent to minimizing the functional

1

2

Z

0

bijkl"kl(v)"ij(v)�
Z

0

fv

over the set K0, and it can be written in the variational inequality form

u 2 K0 :
Z

0

bijkl"kl(u)("ij(�u)� "ij(u)) �
Z

0

f(�u� u) 8�u 2 K0 : (2.5)

We can de�ne the energy functional

�(
0) =
1

2

Z

0

bijkl"kl(u)"ij(u)�
Z

0

fu
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for the problem (2.5).

Consider next the family of perturbations of the domain 
0,

x = 'Æ(y) ; y 2 �
 :

We assume that 'Æ establishes a one-to-one correspondence between �
 and 'Æ(�
),

'0(y) = y, and the Jacobian
���@'Æ(y)

@y

��� is positive. Also, the smoothness ';'�1 2

C2(�Æ0; Æ0;C1
loc (IR

2)) is assumed, where Æ0 > 0 is a given number. For any �xed

Æ 2 (�Æ0; Æ0) we can consider the perturbation of the problem (2.1)�(2.4). In fact,

let �Æ = 'Æ(�0);�
c
Æ = 'Æ(�

c
0), 
Æ = 'Æ(
0). Then the perturbed problem can be

formulated in the following form. We have to �nd the displacement vector uÆ =

(uÆ1; u
Æ
2) such that

��Æij;j = fi ; i = 1; 2 ; in 
Æ ; (2.6)

�Æij = bijkl"kl(u
Æ) ; i; j = 1; 2 ; in 
Æ ; (2.7)

uÆ = 0 on �Æ ; (2.8)

[uÆ]�Æ � 0 ; �Æ�Æ � 0 ;
h
�Æ�Æ

i
= 0 ; �Æ�Æ = 0 ; �Æ�Æ � [u

Æ]�Æ = 0 on �cÆ : (2.9)

Here �Æ is the unit normal vector to �cÆ, "kl(u
Æ) = 1

2
(uÆk;l + uÆl;k), �

Æ is a tangential

vector to �cÆ.

As before, the problem (2.6)�(2.9) admits the variational formulation. If

KÆ =
n
v = (v1; v2)j vi 2 H

1;0(
Æ) ; i = 1; 2 ; [v]�Æ � 0 on �cÆ

o

then the relations (2.6)�(2.9) are equivalent to the variational inequality

uÆ 2 KÆ :
Z

Æ

bijkl"kl(u
Æ)("ij(�u)� "ij(u

Æ)) �
Z

Æ

f(�u� uÆ) 8�u 2 KÆ : (2.10)

The Sobolev spaceH1;0(
Æ) is introduced similar toH1;0(
0), in particular, functions
from H1;0(
0) are equal to zero on �Æ:

Observe that the problem (2.6)�(2.9) (or the problem (2.10)) reduces to (2.1)�

(2.4) as Æ = 0.

As it was proved in [7], the energy functional

�(
Æ) =
1

2

Z

Æ

bijkl"kl(u
Æ)"ij(u

Æ)�
Z

Æ

fuÆ

has the derivative R with respect to Æ as Æ = 0 provided that 'Æ establishes a

one-to-one correspondence between K0 and KÆ for small Æ. Moreover, the following

formula holds,

R =
d�(
Æ)

dÆ

�����
Æ=0

=
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Z

0

�
1

2
�ij"ij(u) div�� �kluk;p�

p
;l

�
�
Z

0

uk div (fk�) ; (2.11)

where the vector-�eld �(y) is de�ned by the relation

�(y) =
d'Æ(y)

dÆ

�����
Æ=0

and �ij = �ij(u).

Note that if the perturbation 'Æ describes the crack length change, the formula

(2.11) provides the derivative of the energy functional with respect to the crack

length. Such a derivative is used in the classical Gri�th criterion to answer the

question on the crack propagation.

3 Choice of a safe crack shape

To simplify the arguments we assume that the curve �c0 coincides with the graph of

the function y2 =  (y1), y1 2 (0; 1). The function  will be a control function. For

any �xed  we can �nd the derivative (2.11) and obtain therefore that R = R( ).

Consider the space

H2
0 (0; 1) = fv 2 H2(0; 1)j v = vy1 = 0 at y1 = 0; 1g ;

where vy1 =
@v
@y1
: Let 	 � H2

0 (0; 1) be a bounded and weakly closed set,  2 	, and
� 2 IR be a �xed number. In applications � is used to be a critical value to describe

a crack propagation. We assume that for any  2 	 the graph of the function

y2 =  (y1), y1 2 (0; 1), belongs to 
.

Consider the optimal control problem

max
 2	

fR( )� �g : (3.12)

This means that we want to �nd the crack shape which guarantees the maximal

deviation of the derivativeR( ) from the critical value �. In particular, the solution

of the problem (3.12) gives the most safe crack shape provided that 'Æ describes

the crack length change, and the classical Gri�th criterion is used for the crack

propagation.

The aim of the arguments below is to prove the existence of a solution to the

optimal control problem (3.12). We �rst establish an auxiliary result concerning the

strong convergence of solutions which guarantees the continuity of the derivative

with respect to the crack shape.

Assume that we consider the family of cracks described by the graphs �c� of

functions y2 = � (y1), y1 2 (0; 1), where � is a small parameter converging to zero.
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Figure 2: The family of cracks �c� in the respective domains 
�0.

We want to prove that solutions of the problems like (2.1)�(2.4) corresponding

to the parameter � converge strongly as � ! 0.

Let 
�0 be a domain corresponding to �c� (see Figure 2), i.e., 

�
0 = 
n��c�. In this

case for � = 0 we have 
0
0 = 
0, �

c
0 = (0; 1) � f0g. So, in fact, we consider the

perturbation of the crack shape through the parameter �. Let

�� =
(�� 0; 1)q
1 + (� 0)2

be a unit normal vector to �c�,

K� =
n
v = (v1; v2)j vi 2 H

1;0(
�0) ; i = 1; 2 ; [v]�� � 0 on �c�
o
:

Consider a solution u� of the problem

u� 2 K� :
Z


�
0

bijklu
�
k;l(�u

�
i;j � u�i;j) �

Z


�
0

f(�u� � u�) 8�u� 2 K� : (3.13)

Analogously, for � = 0 we can consider the solution u of the unperturbed problem

u 2 K0 :
Z


0

0

bijkluk;l(�ui;j � ui;j) �
Z


0

0

f(�u� u) 8�u 2 K0 (3.14)

with a convex and closed set

K0 =
n
v = (v1; v2)j vi 2 H

1;0(
0
0) ; i = 1; 2 ; [v]�0 � 0 on �c0

o
:
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Note that K0 coincides with K0 if �
c is a straight line.

It is possible to establish a one-to-one correspondence between the domains 
�0
and 
0

0. To this end, we introduce a transformation of the independent variables

x1 = y1 ; x2 = y2 � ��(y) (y1) ; x 2 
0
0 ; y 2 
�0 ; (3.15)

with � 2 C1

0 (
), � = 1 in a neighbourhood of �c0. Let us recall that

 2 	 � H2
0 (0; 1). Hence, we can extend the function  beyond (0; 1) by zero

to have a correct de�nition of the map (3.15).

Let u�(y) = u�(x), y 2 
�0 , x 2 
0
0. Denoting H the vector-valued counterpart of

any real-valued Banach spaceH (i.e. H = H �H), we prove the following assertion:

Lemma 3.1 Let u be a solution of the problem (3.14). Then as � ! 0; u� ! u

strongly in H1;0(
0
0).

Proof. The di�culty in proving the strong convergence is that the transformation

(3.15) does not provide the one-to-one correspondence between K� and K0. Denote

K0� =
n
v = (v1; v2)j vi 2 H

1;0(
0
0) ; i = 1; 2 ; [v]�� � 0 on �c0

o
:

Then that the transformation (3.15) maps K� onto the set K0�.

It was proved in [6] that as � ! 0

u� ! u weakly in H
1;0(
0

0) : (3.16)

Moreover, it was shown that for any �xed w 2 K0 there exists a sequence w� 2 K0�

such that

w� ! w strongly in H
1;0(
0

0) : (3.17)

Now introduce the bilinear form on the space [H1;0(
0
0)]

2

B�(v;w) =
Z


0

0

bijklvk;lwi;jg
�1
� ;

where g�(y) =
���@x(y)
@y

��� is the Jacobian of the transformation (3.15). It is clear that

g�(y) = 1 � � �y2 > 0 for small �. We change the domain integration 
�0 by 
0
0 in

(3.13) in accordance with (3.15). This provides the relation

u� 2 K0� : B�(u�; �u� � u�) +
R

0

0

F (u2�x; �u�xu�x; �; ( �)y)g
�1
�

�
Z


0

0

~f(�u� � u�)g
�1
� 8�u� 2 K0� :

(3.18)
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Here ~f(x) = f(y(x)), and we have used the following formulae for the �rst derivatives

u�y1 = u�x1 � �u�x2(� )y1 ; u
�
y2
= u�x2(1 � ��y2 )

with the above notations, u�(y) = u�(x), y 2 
�0 , x 2 
0
0. The function F linearly

depends on u2�x, �u�xu�x, and it has a quadratic dependence on �. In particular, as

�! 0
Z


0

0

F (u2�x; �u�xu�x; �; ( �)y)g
�1
� ! 0 (3.19)

provided that u�, �u� are bounded in H1;0(
0
0) uniformly in �.

From (3.13) it follows the uniform in � estimate

ku�k
H1;0(
�

0
) � c ;

consequently, uniformly in �

ku�kH1;0(
0

0
) � c : (3.20)

By (3.17), for the solution u 2 K0 of the problem (3.14) we can �nd a sequence

�u� 2 K0� such that

�u� = u+ v� ; v� ! 0 strongly in H
1;0(
0

0) : (3.21)

Taking these relations into account, the inequality (3.18) implies

B�(u� � u; u� � u) � B�(u; u� u�) +B�(u; v�) +B�(u� � u; v�)

+
Z


0

0

~f (u� � u)g�1� �
Z


0

0

~fv�g
�1
�

+
Z


0

0

F (u2�x; u�x(ux + v�x); �; ( �)y)g
�1
� :

(3.22)

Hence, by (3.16), (3.19), (3.20), (3.21), from (3.22) the needed convergence follows,

ku� � ukH1;0(
0

0
) ! 0 ; �! 0 :

Lemma 3.1 is proved.

For any �xed �, in accordance with (2.11), we can �nd the derivative of the

energy functional with respect to the perturbation parameter Æ provided that 'Æ
establishes a one-to-one correspondence between K� and K�Æ for small Æ. Here

K�Æ =
n
v = (v1; v2)j vi 2 H

1;0('Æ(

�
0)) ; i = 1; 2 ; [v]��Æ � 0 on 'Æ(�

c
�)
o

8



and ��Æ is a unit normal vector to 'Æ(�
c
�). Thus, the following formula for the

derivative of the energy functional with respect to Æ can be obtained, with ��ij =

�ij(u
�),

R(� ) =
Z


�
0

�
1

2
��ij"ij(u

�) div�� ��klu
�
k;p�

p
;l

�
�

Z


�
0

u�k div (fk�) : (3.23)

Note that the inequality (3.14) follows from (3.18) as �! 0. Consequently

R(0) =
Z


0

0

�
1

2
�ij"ij(u) div�� �kluk;p�

p
;l

�
�
Z

0

uk div (fk�) : (3.24)

Now change the integration domain from 
�0 to 
0
0 in (3.23) in accordance with

(3.15). By Lemma 3.1, we derive

R(� )!R(0) ; �! 0 : (3.25)

So we have obtained the continuity of the derivative of the energy functional with

respect to the crack shape. Let

K
 
0 =

n
v = (v1; v2)j vi 2 H

1;0(
 0 ) ; i = 1; 2 ; [v]� � 0 on � 0
o
;

K
 
Æ =

n
v = (v1; v2)j vi 2 H

1;0(
 Æ ) ; i = 1; 2 ; [v]�Æ � 0 on � Æ
o
;

where 
 Æ = 'Æ(

 
0 ), and � , �

Æ
 are unit normal vectors to � 0 , �

 
Æ , respectively. Here,

we have used the obvious notations, � 0 , for the graph of the function y2 =  (y1),

� Æ = 'Æ(�
 
0 ), 


 
0 = 
n�� 0 , and 
 Æ = 'Æ(


 
0 ).

Now we are in a position to state the following result:

Theorem 3.1 Assume that 'Æ establishes a one-to-one correspondence between K 
0

and K
 
Æ for small Æ and all  2 	. Then there exists a solution of the optimal

control problem (3.12).

Proof. Let  n 2 	 be a miximizing sequence in the problem (3.12). Since 	 is

bounded in H2
0 (0; 1) we can assume that as n!1

 n !  weakly in H2
0 (0; 1) ; ( 

n)0 !  0 in C[0; 1] : (3.26)

For any �xed n 2 N we can �nd the solution un of the problem

un 2 K n

0 :
Z



 n

0

bijklu
n
k;l(�ui;j � uni;j) �

Z



 n

0

f(�u� un) 8�u 2 K n

0 :

Here the domains 
 
n

0 correspond to the graphs of functions y2 =  n(y1), respec-
tively.

Consider the change of the variables,

x1 = y1 ; x2 = y2 + �(y)( (y1)�  n(y1)) ; (3.27)

9



where y 2 
 
n

0 , x 2 
 0 , and the function � is being chosen from C1

0 (
), � = 1 in

a neighbourhood of the graph of the function y2 =  (y1). All functions  2 	 are

extended beyond (0; 1) by zero. Hence the de�nition (3.27) is correct.

Let us �nd the derivative of the energy functional with respect to Æ for a given

n 2 N . This gives

R( n) =
Z



 n

0

�
1

2
�nij"ij(u

n) div�� �nklu
n
k;p�

p
;l

�
�

Z



 n

0

unk ( div fk�) : (3.28)

Analogously, for the function  we can get

R( ) =
Z



 

0

�
1

2
�ij"ij(u) div�� �kluk;p�

p
;l

�
�

Z



 

0

uk div (fk�) ;

where u is a solution of the problem

u 2 K 
0 :

Z



 

0

bijkluk;l(�ui;j � ui;j) �
Z



 

0

f(�u � u) 8�u 2 K 
0 :

Similar to Lemma 3.1, it can be proved that

un ! u strongly in H
1;0(
 0 ) ; (3.29)

where un(y) = un(x), y 2 
 
n

0 , x 2 
 0 . We can change the integration domain

from 
 
n

0 to 
 0 in (3.28) in accordance with (3.27). Analogously to (3.25) the

convergences (3.26), (3.29) allow us to pass to the limit as n ! 1 in the relation

obtained. This provides the convergence

R( n)� �!R( )� � :

Since  2 	, u = u( ), the limit function  solves the problem (3.12). Theorem

3.1 is proved.
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