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Abstract

We consider a polynomial collocation for the numerical solution of a second kind

integral equation with an integral kernel of Mellin convolution type. Using a sta-

bility result by Junghanns and one of the authors, we prove that the error of the

approximate solution is less than a logarithmic factor times the best approxima-

tion and, using the asymptotics of the solution, we derive the rates of convergence.

Finally, we describe an algorithm to compute the sti�ness matrix based on simple

Gauÿ quadratures and an alternative algorithm based on a recursion in the spirit

of Monegato and Palamara Orsi. All together an almost best approximation to the

solution of the integral equation can be computed with O(n2[logn]2) resp. O(n2)
operations, where n is the dimension of the polynomial trial space.

1 Introduction

A lot of mathematical problems in mathematics, physics, and engineering can be reduced

to the solution of a second kind integral equation over the interval with a kernel function

in form of a Mellin convolution or, more generally, to a Cauchy singular integral equa-

tion with additional terms of Mellin convolution type (cf. e.g. [8, 3]). For the numerical

solution of such equations, many di�erent methods have been proposed including spline

methods (cf. [33]), quadrature methods based on composite rules (cf. [16, 23]), h � p

methods (cf. [10]), as well as discretization schemes based on polynomial approximation

(cf. [7, 21, 33]). The polynomial methods are the best possible if weighted polynomi-

als form the eigenfunctions of the integral operators. Usually, these p-methods converge

exponentially fast. In applications where exponential convergence is not possible or not

realistic, we believe that, nevertheless, the polynomial methods are best even if asymp-

totic error estimates predict the same rate of convergence for h or for h-p methods. This

fact has been observed in many similar situations (cf. [31, 30, 36]). Moreover, inside the

class of polynomial methods, we expect the Nyström method to be faster than collocation

and collocation to be faster than Galerkin. The errors, however, should be smaller for

Galerkin than for collocation resp. smaller for collocation than for the Nyström method,

the last fact being con�rmed in [25]. So the polynomial collocation seems to be a good

compromise between low complexity and high approximation order.

Motivated by applications to complex iterative procedures for non-linear problems, Jung-

hanns, Roch, Silbermann, Weber, and one of the authors have started to analyze the

collocation for Cauchy singular equations in the case that no invariance property for the

polynomial trial spaces is satis�ed [22, 20, 18]. To combine the collocation method with

transformation techniques and to treat new kind of equations, Junghanns and one of the

authors have derived a quite general stability and convergence result for Cauchy singular

equations including perturbations of Mellin convolution type. On the other hand, Russo

and one of the authors have obtained new results on the Marcinkiewicz inequality and
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on the error of polynomial interpolation [26]. The goal of this paper is to combine the

stability and the approximation result to derive an error estimate for the collocation at

least for the special case of second kind equations including Mellin convolutions. Note

that a collocation for a special equation of this type has been proposed in [25], but no

proof has been given so far.

The decisive point for the applicability of such a collocation scheme is the computation

of the collocation matrix. A naive approach to compute the integrals of the global trial

functions in the entries of the collocation matrix may lead to an operation count of O(n3),
where n denotes the number of degrees of freedom. A more sophisticated approach based

on composite quadrature rules over geometrically graded meshes and on Gauÿ quadratures

for oscillatory weight functions leads to a complexity of O(n2[logn]2). Note that the proof
of the fact that the quadrature approximated collocation is a small perturbation of the

exact collocation and has the same order of convergence is a rather standard. Indeed,

one only has to apply exponential error estimates of Gauÿ rules for analytic functions.

However, we abstain from repeating these arguments here. Following an approach by

Monegato and Palamara Orsi, we consider special kind of rational Mellin convolution

kernels and propose a recursive algorithm for the assembling of the matrix. Unfortunately,

this recursion of [29] is unstable for integrals of smooth Mellin kernels, i.e. the recursion

applied to almost singular Mellin kernels is to be combined with a quadrature algorithm

for integrals of smooth Mellin kernels. Of course, the quadrature algorithm is more time

consuming than the recursion. So we present a new modi�cation of the recursive algorithm

which is stable. All together we arrive at an algorithmwith no more thanO(n2) arithmetic

operations. Moreover, we hope that the presented ideas can be useful also for the design

of fast O(n) algorithms, which are analyzed so far for h-methods, only.

For simplicity sake, we restrict ourselves throughout this paper to Mellin convolutions

with singularities �xed at the left end-point of the interval. The case of additional Mellin

kernels with singularities �xed at the right end-point of the interval can be analyzed in

the same manner. Moreover, the results remain true if the Mellin operators are multiplied

not only from the left but also from the right by a smooth function, or if a �nite sum

of such operators appears. The smoothness assumptions on the right-hand side, on the

kernels and on their Mellin transforms can, obviously, be relaxed. For instance, the C1

regularity can be replaced by a di�erentiability condition of �nite degree depending on the

rate of convergence. The error estimate and algorithm for the Cauchy singular operator

equation will be considered in a forthcoming paper.

The plan of this paper is as follows. First, we shall introduce the integral equation and

describe well-known invertibility results on the corresponding integral operator in Section

2. In Section 3 we shall recall the well-known asymptotic expansion for the solution and

the transformation technique to improve the asymptotics. The polynomial collocation

and a corresponding stability result from a previous paper will be introduced in Section

4. This stability result will be combined with the asymptotics and with results from

approximation theory to derive rates of convergence in Section 5. In Section 6 we shall

describe an algorithm based on a simple quadrature and an alternative algorithm based

on the exploitation of recurrence relations. In particular, we shall show that a polynomial

approximation of degree n can be computed with no more than O(n2) arithmetic oper-

ations. Numerical experiments will be presented in Section 7. All technical proofs are

shifted to Section 8.
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2 The Integral Equation

We consider the second kind integral equation Au = f with �xed singularities of Mellin

convolution type given by

u(x) + b(x)

Z 1

�1

k

�
1 + x

1 + y

�
u(y)

1 + y
dy +

Z 1

�1

k0(x; y)u(y) dy = f(x); �1 < x < 1: (2.1)

Here b is a function from the class C1[�1; 1]. The Mellin kernel k is supposed to be a

continuous functions over the half axis R+ := (0;1). For two real numbers � and � with

� < �, we suppose that the Mellin symbol

bk(z) :=

Z 1

0

yz�1
k(y) dy

is analytic in the strip fz 2 C : � < <e z < �g. Moreover, we assume the di�erentiability

and decay condition

sup
z: �<<e z<�

���� dk

dzk
bk(z)(1 + jzj)1+k

���� <1; k = 0; 1; 2; : : : : (2.2)

For simplicity, the kernel function k0 : [�1; 1] � [�1; 1] �! C and the right-hand side

f : [�1; 1] �! C are supposed to be C1 smooth. We consider (2.1) as an operator

equation in the weighted Lebesgue space L2
�
and seek the unknown solution u in L

2
�
.

Here, the norm and the inner product in the Hilbert space L2
�
is given by

hu; vi� :=

Z 1

�1

u(y)v(y)�(y) dy; kuk� :=
p
hu; ui� ; (2.3)

where � is a Jacobi weight �(y) := (1�y)�+(1+y)�� with exponents �+ and �� such that

�1 < �� < 1 and � < ��=2 + 1=2 < �. According to the three terms on the left-hand

side of (2.1) we split the operator A into the sum I + bK +K0.

The class of equations (2.1) resp. the class of systems of such equations includes impor-

tant boundary integral equations (cf. e.g. [2, 3]) and equations with �xed singularities

(cf. e.g. [8]). It is well known that the Mellin convolution operator I + b(�1)K over the

interval can be transformed into a Wiener-Hopf operator over the half axis R+ simply by

substituting the variables x = 2e�t � 1 and y = 2e�s � 1. The Fourier transform of the

arising Wiener-Hopf kernel is the Mellin transform bk of the Mellin convolution kernel k.

The perturbation operator bK � b(�1)K +K0 is compact. Hence, we get

Theorem 2.1 The operator A on the right-hand side of (2.1) is Fredholm if and only if

its symbol does not vanish, i.e. if

1 + b(�1)bk�1

2
+
��

2
+ i�

�
6= 0; � 2 R:

The index of A is zero if and only if the winding number around zero of the symbol curve�
1 + b(�1)bk�1

2
+
��

2
+ i�

�
: � 2 R

�
vanishes. Operator A is invertible if and only if it is Fredholm with index zero and if the

homogeneous equation Av = 0 has no solution di�erent from zero.
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Throughout this paper we shall assume that A is invertible. To guarantee the convergence

of the collocation method, to derive the rate of convergence, and to enable a simple

algorithm for the assembling of the sti�ness matrix, we need further assumptions on k

and �. These conditions will be introduced in the corresponding Sections 4, 5, and 6.

3 The Asymptotics of the Solution and a Transforma-

tion Technique

Clearly, the solution u is a C1 function over (�1; 1]. The technique to establish the

asymptotics of the solution u to (2.1) at �1 is well known for a long time. An abstract

setting for a quite general equation including (2.1) is treated in [9]. From this paper we

infer

Theorem 3.1 Suppose the assumptions of the last section are satis�ed and that the Mellin

transform bk(z) is meromorphic in fz 2 C : <e z < �g with no more than a �nite

number of poles �p
k
; k = 1; 2; : : : ; kp

m
and zeros �z

k
; k = 1; 2; : : : ; kz

m
in each complex strip

fz 2 C : �m < <e z < �g; m = 1; 2; : : : . Moreover, we suppose, for any " > 0,

sup
z: �m+"<<e z<��"

jz��p
k0
j>"; k0=1;2;:::;k

p

m

���� dk

dzk
bk(z)(1 + jzj)1+k

���� <1; k = 0; 1; 2; : : : :

Then the solution u of (2.1) admits the asymptotic expansion

u(x) �
1X
i=0

miX
k=0

�i;k(1 + x)�i [log(1 + x)]k; x �! �1: (3.1)

Here, the �i;k are complex coe�cients, the mi are non-negative integers, and the exponents

�i are complex numbers with <e �0 � <e �1 � <e �2 � : : : and <e �i �!1 for i �!1.

The numbers ��i are the poles of the Mellin transform bf of the right-hand side f in (2.1),

the zeros of the Mellin transform 1 + b(�1)bk, and the shifts of these points by negative

integers. The mi correspond to the multiplicity of these poles and zeros. Note that, for

smooth right-hand sides f , the zeros of bf are the non-positive integers. Since we consider

solutions in L2
�
only, we may suppose <e �0 > �1=2� ��=2.

Unfortunately, the singular terms in (3.1) are di�cult to approximate by polynomials

and by other continuous functions if �i is not an integer and if <e �i is small. Therefore,

we recommend to apply the following transformation technique to produce an equivalent

equation with larger exponents in the asymptotic expansion (3.1): We simply introduce

a bijective transformation of the interval � : [�1; 1] �! [�1; 1], substitute the variables
x and y in (2.1) by x = �(t) and y = �(s), and multiply the equation by the expressionp

�0(t)(1 + �(t))��=(1 + t)�� . Setting

~u(t) := u
�
�(t)

�s
�0(t)

(1 + �(t))��

(1 + t)��
; ~f(t) := f

�
�(t)

�s
�0(t)

(1 + �(t))��

(1 + t)��
(3.2)
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and assuming �(t) � t for a neighbourhood of the point 1, we get kuk� � k~uk�, and (2.1)

is equivalent to

~u(t) +

Z 1

�1

ek(t; s) ~u(s) ds = ~f(t); �1 < t < 1; (3.3)

ek(t; s) := �b��(t)�k� 1 + �(t)

1 + �(s)

�
1

1 + �(s)
+ k0

�
�(t);�(s)

��
�s

�0(t)
(1 + �(t))��

(1 + t)��

s
�0(s)

(1 + �(s))���

(1 + s)���
:

If the interval transformation satis�es 1 + �(t) � (1 + t)q with q a real number greater

or equal to one, then (3.3) is of the same structure as (2.1). Though, for practical

implementations, we recommend a transformation in the spirit of [23], we now consider

the simplest transformation 1 + �(t) = 21�q(1 + t)q with an integer parameter q � 1,

i.e. we set �(t) = 21�q(1 + t)q � 1. In this case the kernel ek takes the form

ek(t; s) :=

�
b
�
�(t)

�
k

�
(1 + t)q

(1 + s)q

�
1

21�q(1 + s)q
+ k0

�
�(t);�(s)

��
�

q21�q(1 + t)(q�1)=2 (1 + t)q��=2

(1 + t)��=2
(1 + s)(q�1)=2 (1 + s)�q��=2

(1 + s)���=2

= b
�
�(t)

�
m

�
1 + t

1 + s

�
1

1 + s
+

k0

�
�(t);�(s)

�
q21�q(1 + t)(q�1)(1+�

�
)=2(1 + s)(q�1)(1��

�
)=2;

m(t) := qk (tq) t(q�1)(1+�
�
)=2 ; bm(z) = bk�z + (q � 1)(1 + ��)=2

q

�
:

Though the kernel of the non Mellin part is not perfectly smooth, we get the asymptotic

expansion from (3.2) and (3.1).

~u(t) �
1X
i=0

miX
k=0

e�i;k(1 + t)e�i[log(1 + t)]k; t �! �1; (3.4)

e�i := q

�
�i +

1 + ��

2

�
�

1 + ��

2
:

Hence, due to <e �i > �1=2 � ��=2, we can make <e e�i as large as we like if we choose
q su�ciently large. Since (3.3) is of the same type as (2.1), the convergence results and

the results on the assembling of the sti�ness matrix from the subsequent sections apply

to the transformed equation (3.3) and provide improved orders of convergence. Moreover,

the presented transformation technique is also useful to enforce the condition (4.3) for the

convergence of the collocation.

Sometimes it is helpful to choose the parameter q of the transformation such that e�0 is

not large but a non-negative integer. If the multiplicity m0 is zero and if the real parts ofe�i; i > 0 are su�ciently large, then the resulting function ~u with the asymptotic expansion

(3.4) can be approximated by polynomials with high rates of convergence. On the other

hand, if �0 is the unique exponent �i in (3.1) with minimal real part and if its multiplicity
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index mi is zero, then often (2.1) is multiplied by (1+x)��0 and a new unknown function

~u(x) := u(x)(1+x)��0 is introduced. This way the badly behaving �rst term �i;0(1+x)�0

is transformed into a constant term which is easy to approximate by polynomial functions.

We note, however, that, in contrary to the transformation technique leading to (3.3), such

a multiplication step may change the invertibility properties of the equation and the new

solution may be a completely di�erent one.

4 Collocation Based on Polynomial Trial Functions

We set #� := 1=4� ��=2 and consider the new Jacobi weight #(x) := (1� x)#+(1+ x)#�.
For n 2 N , we introduce the trial space #Pn of complex valued polynomials of degree

less than n multiplied by #. The collocation points are the zeros of the nth orthogonal

polynomial corresponding to the the Chebyshev weight '(x) :=
p
1� x2, i.e. they are

de�ned by x
'

kn
:= cos(�k=(n+ 1)); k = 1; 2; : : : ; n. Now the collocation method consists

in seeking an approximate solution un 2 #Pn of u the solution to Au = f by solving

(Aun) (x
'

kn
) = f (x'

kn
) ; k = 1; 2; : : : ; n: (4.1)

This system can be written equivalently as Anun := Mnf , where An := MnAj#Pn and

where Mn denotes the interpolation projection given by Mnf 2 #Pn and Mnf(x
'

kn
) =

f(x'
kn
), k = 1; : : : ; n. Introducing the Chebyshev polynomial of the second kind Un(x) :=p

2=� sin((n+ 1) arccos(x))= sin(arccos(x)) and choosing the Lagrange basis

~̀'
kn
(x) :=

#(x)

#(x'
kn
)

Un(x)

(x� x'
kn
)U 0

n
(x'

kn
)
; (4.2)

the projection Mn is given by Mnf :=
P

n

k=1 f(x
'

kn
)~̀'
kn
.

Now the collocation is called convergent if, for any f 2 L
2
�
and for any fn 2 #Pn with

fn �! f , the solution un of Anun = fn exists uniquely at least for su�ciently large n

and if this un tends to the exact solution u of Au = f in the norm of L2
�
. Endowing the

trial space #Pn with the norm induced from the space L2
�
, we call the collocation method

stable if the approximate operators An are invertible at least for n su�ciently large and

if the norms kAnk and k[An]
�1k are bounded uniformly with respect to n. Note that

this notion is equivalent to the boundedness of the condition numbers of the matrices of

An with respect to the scaled basis f~̀'
kn
=!kng with !kn :=

p
�=(n+ 1)

p
'(x'

kn
)�(x'

kn
),

'(x) :=
p
1� x2 (cf. the subsequent Equation (8.3)).

Next we recall the main result from [19] for the special case of our equation (2.1). To

this end we need the following notation. We suppose the condition (recall the conditions

� < 1=2 + ��=2 < � and �1 < �� < 1 from Section 2)

� <
��

2
< 1 +

��

2
< �: (4.3)

Furthermore, we introduce the operator A� := (a�
j;k
)1
j;k=0 2 L(`

2), which is a limit of the

discretized operators An, as follows. We denote the matrix of An with respect to the

Lagrange basis f~̀'
kn
g by (an

j;k
)n
j;k=1 and de�ne the entry a�

j;k
of A� by the limit relation

a�
j;k

:= lim
n�!1

(j + 1)1=2���an(j+1);(k+1)(k + 1)�1=2+�
� :
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In [19] the existence of the limit A� has been shown and an integral representation has

been derived. Moreover, it has been proved that the limit belongs to the Gohberg-Krupnik

algebra of operators generated by Toeplitz matrices with piecewise continuous generator

functions. For operators of this algebra, Fredholm property and index are known. The

main result of [19] applied to the case of second kind equations with Mellin convolution

kernels claims

Theorem 4.1 Suppose the conditions of Section 2 and (4.3) are satis�ed. Then the col-

location method is convergent and stable if and only if

i) The operator A 2 L(L2
�
) is invertible (cf: Theorem 2.1).

ii) The null space of the operator A� 2 L(`2) is trivial.

Remark 4.1 In principle condition i) is easy to check. The Fredholm property with index

zero follows according to Theorem 2.1 if the Mellin symbol bk is known. The additional con-

dition on the triviality of the null space of A follows usually from the physical background

or from an equivalence to a boundary value problem for a partial di�erential equation. To

check condition ii), however, seems to be hopeless in the general case. Therefore, it is

good to know that condition ii) is not �essential� in the sense that the case of condition i)

ful�lled but condition ii) violated is very rare and exceptional: Indeed, �x a Mellin kernel

kM , and a smooth kernel k0, as well as �. Choose k = zkM with z 2 C . Consider the set

� of all complex numbers z such that condition i) holds. The set of points in � such that

condition ii) is violated is at most countable, and the accumulation points of this set are

in the complement C n�. If the exceptional case should occur, then the numerical method

should be modi�ed slightly. One way to do this is the so called i� modi�cation introduced

in [16] and used also e.g: in [23, 33].

Note that the additional assumption �� 6= 1=2 in (2.7) of [19] is dropped in the last

theorem. For our special case (2.1), this assumption is redundant. Indeed, let us have a

look, for instance, at the condition �� 6= 1=2. Since there is no Cauchy singular operator

in the equation, we may apply the main theorem of [19] equivalently to the modi�ed

equation (with a slightly relaxed continuity assumption on the kernel k0)

~u(x) + b(x)

Z 1

�1

k

�
1 + x

1 + y

��
1 + x

1 + y

�"
~u(y)

1 + y
dy +Z 1

�1

k0(x; y)

�
1 + x

1 + y

�"
~u(y) dy = f(x)(1 + x)"; �1 < x < 1;

where " > 0 is chosen su�ciently small and where the modi�ed integral operator is

considered in L2
e�
with e�(x) := (1 � x)�+(1 + x)���2". This way we arrive at the same

numerical solution and we measure the error in the same norm.

5 The Rate of Convergence

Next we derive the error estimate. We suppose that the conditions for the convergence of

the collocation method (cf. Theorem 4.1) are satis�ed and that the formula (3.1) for the

asymptotics is valid. Moreover, since the solution u is smooth in the neighbourhood of

7



1, we have to approximate u by polynomials without weight in the vicinity of 1. In other

words, we choose �+ := 1=2. We prepare the estimation of the error of collocation u� un
by the following three lemmata dealing with the interpolation error of u, with a smoothing

property of K, and with the continuity of the interpolation Mn mapping the space C�

into L2
�
. Here, for the Jacobi weight �(x) := (1 � x)�+(1 + x)��; �� := (�� + 1)=2, the

space C� is the Banach space of all functions v continuous on (�1; 1) such that the norm

kvk�;1 := sup
x: �1<x<1 jv(x)�(x)j is �nite. Moreover, from now on we use the letter C to

denote a generic constant the value of which varies from instance to instance.

Lemma 5.1 Suppose �+ := 1=2 and (3.1) for u 2 C
1(�1; 1]. Furthermore, denote by

j � 0 the lowest integer index such that the corresponding exponent �j in (3.1) satis�es

either [�j + ��=2 � 1=4] 62 Z \ [0;1) or mj 6= 0. Then the interpolation error can be

estimated as

ku�Mnuk� � Cn�1�2<e�j���
�

[ logn]mj if [�j + ��=2� 1=4] 62 Z \ [0;1)

[ logn]mj�1
if [�j + ��=2� 1=4] 2 Z \ [0;1):

(5.1)

Lemma 5.2 Suppose that k0 is a C1 kernel function and that k satis�es (2.2) with �

and � such that � < 1=2 + ��=2 < �. Both the Mellin convolution operator K with

the Mellin kernel k and the integral operator K0 with the kernel function k0 map L
2
�

continuously into C�.

Lemma 5.3 The interpolation projections Mn are continuous operators from C� to L2
�
,

and, for a constant C > 0 independent of n and of v 2 C�, we get

kMnvk� � C
p

logn kvk�;1: (5.2)

The proofs for the last three lemmata will be given in Section 8.

From the continuous equation Au = f and the approximate equation Anun = Mnf

including the stable sequence of approximate operators An, we arrive at

u� un = u�Mnu+Mnu� A�1
n
Mnf

= u�Mnu+ A�1
n

[MnAMnu�MnAu] ;

ku� unk� � ku�Mnuk� + CkMnA[Mnu� u]k�;
C := sup

n

kA�1
n
k < 1:

Using (5.2), A = I + bK +K0, and MnI[Mnu� u] = 0, we continue

ku� unk� � ku�Mnuk� + C
p

logn k[bK +K0][Mnu� u]k�;1:

However, the operator of multiplication by the bounded continuous function b is bounded

in C� and the smoothing properties of K and K0 in Lemma 5.2 yield

ku� unk� � ku�Mnuk� + C
p

logn kMnu� uk� � C
p

logn ku�Mnuk�:

This together with (5.1) implies

8



Theorem 5.1 Suppose the assumptions in Section 2 and the assumptions and conver-

gence conditions of Theorem 4.1 are ful�lled. Finally, suppose u 2 C1(�1; 1] and (3.1).

If j � 0 denotes the lowest integer index such that the corresponding exponent �j in (3.1)

satis�es either [�j + ��=2 � 1=4] 62 Z \ [0;1) or mj 6= 0, then the error u � un of the

polynomial collocation method (4.1) satis�es

ku� unk� � Cn�1�2<e �j���

(
[ logn]mj+1=2

if [�j + ��=2� 1=4] 62 Z\ [0;1)

[ logn]mj�1=2
if [�j + ��=2� 1=4] 2 Z\ [0;1):

6 The Assembling of the Collocation Equations

6.1 A Remark on the Complexity of the Algorithm

Recall that the collocation equations (4.1) can be written as Anun := Mnf where An :=
MnAj#Pn. If we use the Lagrange basis (4.2) and seek un in the form un :=

P
n

1 un(x
'

kn
)~̀'

kn
,

then Anun := Mnf is equivalent to the linear system of equations�
an
j;k

�n
j;k=1

�
un(x

'

kn
)
�n
k=1

=
�
f(x'

jn
)
�n
j=1

; an
j;k

:=
�
A~̀'

kn

�
(x'

jn
): (6.1)

Due to the stability result of Theorem 4.1 and the subsequent Marcinkiewicz equality (8.3),

the condition numbers of the diagonally preconditioned sti�ness matrices (an
j;k
)n
j;k=1 are

bounded uniformly with respect to n (compare [24]). Thus we can solve (6.1) iteratively

by no more than O(n2) arithmetic operations.

More precisely, such an iterative solution of the linear system up to the size of the dis-

cretization error of Theorem 5.1 requires O(logn) iteration steps and O(n2 logn) oper-
ations. To get rid of the logn factor in the asymptotic complexity analysis, one has to

consider a sequence of discretization levels with n = nk := 2k from the lowest level n0 = 1
to a highest level nK. On each level n = nk the corresponding system (6.1) is to be solved

iteratively up to an accuracy in the size of the discretization error for the level n = nk
described in Theorem 5.1. The initial solution for the iteration on level nk is taken to be

the interpolation of the �nal solution of the previous level nk�1 if k > 0 and to be zero

if k = 0. This way the number of necessary iteration steps stays bounded independently

of the level nk, and the number of all arithmetic operations is O(n2). If the system (6.1)

is selfadjoint positive de�nite or can be transformed to such a system by multiplying

with diagonal matrices, then one should choose the conjugate gradient method for the

iterations. If the system (6.1) is not of such a structure, then, for example, the GMRes

method seems to be a good choice.

In practical computations, however, the iterative solver is usually implemented such that

an estimated solution error is less than a prescribed tolerance like the machine precision.

Though this requires more operations than the preceding optimal multilevel approach, we

prefer the usual way for its simplicity.

In order to get an overall algorithm of complexity O(n2) we should be able to assemble the
sti�ness matrix (an

j;k
)n
j;k=1 with no more than O(n2) arithmetic operations. For special

Mellin kernel functions k, we present two di�erent approaches. First (cf. Section 6.2)

we introduce a quadrature algorithm which requires O(n2[logn]2) arithmetic operations.

Second (cf. Section 6.3.1), based on recurrence relations, we propose an algorithm ofO(n2)
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arithmetic operations (cf. the analogous methods for special weakly singular operators in

[32, 4, 28, 11] and for Mellin operators in [29]). Since the classical recurrence relation

becomes seriously unstable, we introduce a non-standard modi�cation in Section 6.3.2.

For a precise notion of instability and ill-conditioning, we refer to [5].

6.2 The Assembling by Quadrature

6.2.1. We need the sti�ness matrix with respect to the polynomial interpolation basis

f~̀'
kn

: k = 1; : : : ; ng. However, we shall compute the sti�ness matrix with respect to

the basis of orthonormal polynomials in the trial space, i.e. we consider the orthonormal

basis f#Um : m = 0; : : : ; n� 1g of the space #Pn � L
2
�
and determine the �rst of the two

matrices

B =
�
bn
j;m

�
j =1;:::;n;
m=0;:::;n�1

; bn
j;m

:=
�
(bK +K0)#Um

��
x
'

jn

�
;

C =
�
cn
j;k

�
j=1;:::;n;
k=1;:::;n

; cn
j;k

:=
�
(bK +K0)~̀

'

kn

��
x
'

jn

�
for K and K0 de�ned with the kernels k and k0, respectively. To get the matrix C with

respect to the interpolation basis f~̀'
kn

: k = 1; : : : ; ng, one has to apply the simple basis

transform T given by

T :
�
un (x

'

kn
)
�n
k=1

7!
�
�m

�n�1

m=0
; un =

n�1X
m=0

�m

h
#Um

i
=

nX
k=1

un (x
'

kn
) ~̀'

kn
;

�m =
nX

k=1

" p
2�

n+ 1
sin

�
�k(m + 1)

n + 1

�
% (x'

kn
)

#
un

�
x'
kn

�
; % := '=#:

Obviously, since the evaluation of the matrix product C = BT requires O(n3) operations,
this product is never computed. Instead, whenever the iterative solution of (6.1) requires

the multiplication of a vector by C, we multiply �rst by T and then by B.

6.2.2. First we consider the case of the kernel k0. We have to evaluate the entries of the

matrix

D =
�
dn
j;m

�
j =1;:::;n;
m=0;:::;n�1

; dn
j;m

:=
�
K0#Um

��
x'
jn

�
=

Z 1

�1

k0

�
x'
jn
; y
�
Um(y)#(y) dy:

Clearly, for this integral we use the Gauÿ quadrature based on the orthogonal polynomials

with the weight function #. Suppose this rule is given byZ 1

�1

f(y)#(y) dy �
NX
�=1

f(x#
�N
)!#

�N
:

Then the entry dn
j;m

of our sti�ness matrix is approximated by the quadrature sum

dn
j;m

�
NX
�=1

k0

�
x'
jn
; x#

�N

�
Um(x

#

�N
)!#

�N
=

NX
�=1

dny;n
j;�

dtr;n
�;m

; (6.2)
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Dny =
�
d
ny;n

j;�

�
j=1;:::;n;
�=1;:::;N

; d
ny;n

j;�
:= k0

�
x
'

jn
; x#

�N

�
!#

�N
;

Dtr =
�
dtr;n
�;m

�
� =1;:::;N
m=0;:::;n�1

; dtr;n
�;m

:= Um(x
#

�N
):

In other words, since we use the same quadrature rule for all entries, the matrix D is ap-

proximated by the product of the two matrices Dny and Dtr. The matrix Dny is a typical

Nyström discretization of K0 and Dtr is a transform which maps the vector of coe�cients

with respect to the basis of orthogonal polynomials to the vector of function values eval-

uated at the quadrature knots. To ensure a small quadrature error in (6.2), we choose N

such that the Gauÿ quadrature rule is exact at least for all polynomials Um with m < n,

i.e. such that n=2 < N < Cn. Using Um(x) :=
p

2=� sin((m+1) arccos(x))= sin(arccos(x))
and assuming that each value of the kernel k0 can be computed with a �xed number of

operations, the matrices Dny and Dtr can be computed with no more than O(n2) arith-
metic operations. Similarly to the matrix product C = BT in Subsection 6.2.1, for a fast

algorithm, the product DnyDtr must not be computed. Instead, whenever the iterative

solution of (6.1) requires the multiplication of a vector by D, we multiply by Dtr and by

Dny separately.

For the quadrature error in (6.2), we remark that at most n�1 degrees of the polynomial

exactness degree 2N � 1 of the Gauÿ quadrature are used to approximate the polynomial

Um in the quadrature. The remaining N 0 := 2N � 1� (n � 1) degrees are spent for the
approximation of the kernel k0. If this polynomial approximation error is less than the

discretization error (cf. Theorem 5.1) times an additional O(n�1), then the error due to

the quadrature approximation in (6.2) is less than the discretization error. In other words

the convergence estimate in Theorem 5.1 remains valid for the approximate solution un
computed with the quadrature discretization (6.2) if the Gauÿ order N is chosen such

that

sup
�1�x�1

sup
p2P

N0

k0(x; �)� p

L1

� C n�2�2<e�j��� [ logn]mj+1=2
:

No doubt, this is satis�ed for C1 kernels k0 if N > n(1=2 + ") for any prescribed small

real number " > 0. If " is su�ciently large, then the presented algorithm works even for

a kernel function k0 with �nite degree of smoothness.

Finally, we remark that, for N = n and � = '�1, we get # = ' and the Gauÿ knots

of the quadrature rule and the set of collocation points coincide. In this case Dtr is the

inverse of transform T from Subsection 6.2.1 and the sti�ness matrix with respect to the

Lagrange basis f~̀'
kn
g of the collocation discretization for K0 is simply the matrix Dny of

the Nyström method.

6.2.3. Next we turn to the integration of the Mellin kernels which are typically analytic

with the exception of �xed singularities at �1. The additional multiplication operator b in
A = I+bK+K0 results in a simple multiplication of bn

j;m
by b(x'

jn
). Hence, for simplicity,

we may suppose b � 1. Moreover, we restrict our consideration to the following special

case. We suppose that the function k involved in (2.1) takes the form

k(t) := t�
pN(t)

pD(t)
; (6.3)
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where � is a real number and pN and pD denote polynomials such that the di�erence of

the degrees deg pD � deg pN is greater than zero, such that pN(0) 6= 0, and pD(t) 6= 0 for

0 � t <1. Note that (2.2) holds for such a k with � = �� and � = ��+deg pD�deg pN .
For such kernels, we have to compute

E =
�
en
j;m

�
j =1;:::;n;
m=0;:::;n�1

;

en
j;m

:=
�
K#Um

��
x
'

jn

�
=

Z 1

�1

k

�
1 + x

'

jn

1 + y

�
1

1 + y
Um(y)#(y) dy:

In other words, we only have to set up an e�cient quadrature rule for the computation

of the integral Z 1

�1

f(y)Um(y)#(y) dy; f(y) := k

�
1 + x

'

jn

1 + y

�
1

1 + y
:

Here the integrand function f is analytic on [�1; 1] and meromorphic on C with poles

� well separated from the set [�1; 1], i.e. such that j� + 1j > "=n, that j� � 1j > "=n,

and that j<e �j > "minfj� + 1j; j� � 1jg holds for a �xed " > 0. Using the formula

Um(y) =
p

2=� sin((m+1) arccos(y))= sin(arccos(y)) and substituting y = cos(t), we have
to approximate

I :=

r
2

�

Z
�

0

f
�
cos(t)

�
#
�
cos(t)

�
sin
�
(m + 1)t

�
dt:

We de�ne an appropriate quadrature using the techniques of geometrical mesh re�nement

(cf. [35]) and of product quadrature for oscillatory integrals (cf. [4]). Thus we �rst in-

troduce a quadrature partition of [0; �] and then we de�ne a quadrature rule for each

subinterval.

The quadrature partition is introduced in two steps. First we de�ne a graded mesh with

subinterval lengths equal to �=(m+1) times a power of two. This special choice of lengths

will help us to restrict the number of precomputed quadrature weights and knots. Then

we further subdivide the two intervals adjacent to the end-points 0 and �.

The �rst partition is given by

0 =: etm0 < etm1 < : : : < etm
k0+k00+1 < etmk0+k00+2 := �; etm

k
:=

�lm
k

m + 1

lm
k
:=

8>>>>>>>><>>>>>>>>:

0 if k = 0

m0
k0

if k = 1

m0
k0
+
P

k�2

j=0 2
l
0

k0�1�j if 1 < k � k0 + 1

m0
k0
+
P

k0�1

j=0 2l
0

j +
P

k�k0�2

j=0 2l
00

j if k0 + 2 � k � k0 + k00 + 1

m + 1 if k = k0 + k00 + 2:

Here the integer numbers l0
k
; l00
k
; m0

k0+1; m
00
k00+1 with m+ 1 = 2l

0

0 + 2l
0

1 + : : :+ 2l
0

k0�1 +m0
k0
+

2l
00

0 + 2l
00

1 + : : :+ 2l
00

k00�1 +m00
k00

and l00 � l01 � : : : � l0
k0�1; l

00
0 � l001 � : : : � l00

k00�1; are de�ned

as follows. We �x a grading parameter q with 0 < q < 1. By recursion we de�ne the
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numbers l0
i
; m0

i
; i = 1; : : : ; k0 � 1 and l00

i
; m00

i
; i = 1; : : : ; k00 � 1. We choose m0

0 to be the

largest integer less or equal to (m+1)=2 and set m00
0 = (m+1)�m0

0. Starting with m
0
0, for

given m0
k
, we de�ne l0

k
such that 2l

0

k � q �m0
k
< 2l

0

k
+1 and m0

k+1 := m0
k
� 2l

0

k . We proceed

for k = 0; : : : ; k0 � 1 until we get q �m0
k0
< 1. Analogously, we de�ne the numbers l00

i
and

m00
k
beginning with m00

0. The resulting partition etmk is graded towards 0 and �. Indeed, we

observe

lm
l

= m0
k0+1�l; l = 1; : : : ; k0 + 1;

(1� q)m0
i
� m0

i+1 = m0
i
� 2l

0

i � m0
i
� 0:5 � 2l0i+1 � (1� q=2)m0

i
; i = 0; : : : ; k0 � 1

and, from these and from the analogous estimates withm00
i
and l00

i
, we conclude the grading

conditions

(1� q)etm
i

� etm
i�1 � (1� q=2)etm

i
; i = 2; : : : ; k0 + 1;

(1� q)[� � etm
i
] � [� � etm

i+1] � (1� q=2)[� � etm
i
]; i = k0 + 1; : : : ; k0 + k00:

The resulting subintervals [etm
i�1;etmi ] of the �rst partition have lengths of the desired form

power of two times �=(m+ 1) by construction.

To complete the quadrature partition in a second step, we subdivide the two intervals

[etm0 ;etm1 ] and [etm
k0+k00+1;etmk0+k00+2] adjacent to the end-points 0 and 1. We add the points ofn

(1� q)letm1 : l = 1; 2; : : : ; l0
o
[
n
� � (1� q)l

h
� � etm

k0+k00+1

i
: l = 1; 2; : : : ; l00

o
to the previous partition fetm

l
: l = 0; : : : ; k0+ k00+2g. Here the integer numbers l0 and l00

are chosen such that

(1� q)l
0 etm1 �

�

n
< (1� q)l

0�1 etm1 ;
(1� q)l

00

h
� � etm

k0+k00+1

i
�

�

n
< (1� q)l

00�1
h
� � etm

k0+k00+1

i
:

We denote the �nal partition by ftm;n

k
: k = 0; : : : ; Nm;ng. According to the quadrature

partition we split the integral I into the sum of integrals over the subdomains.

I =

r
2

�

Nm;nX
j=1

Ij; Ij :=

Z
t
m;n

j

t
m;n

j�1

f
�
cos(t)

�
#
�
cos(t)

�
sin
�
(m + 1)t

�
dt:

For each of these integrals, we have to introduce a quadrature. We distinguish three cases.

First we consider the integrals over the intervals [etm
k�1;etmk ]; k = 2; : : : ; k0 + k00 + 1, then

those over the remaining intervals not adjacent to the end-points, and �nally those over

the two adjacent intervals [tm;n

0 ; tm;n

1 ] and [tm;n

Nm;n�1; t
m;n

Nm;n
].

First suppose Ij is the integral over [etm
k�1;etmk ]; 2 � k � k0 + k00 + 1 and, without loss of

generality, that 2 � k < k0 + 1. Substituting t = etm
k�1 + s2

~l=(m + 1) with ~l = l0
k0�k+1, we

arrive at

Ij = (�1)l
m

k�1

2
~l

m + 1

Z
�

0

�
f#

� 
cos

 etm
k�1 + s

2
~l

m+ 1

!!
sin
�
2
~ls
�
ds:

To the last integral we apply a product quadrature rule of order np. More precisely, we

choose the function s 7! sin(2
~ls) as the product weight and the Gauÿ-Legendre nodes
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as quadrature knots. If fx1
l;np

: l = 1; : : : ; npg is the set of zeros of the np-th Legendre

polynomial, then we get

�k
l;np

:= �

�
1

2
+

1

2
x1
l;np

�
; wk

l;np
:=

Z
�

0

npY
l
0=1
l0 6=l

s� �k
l0;np

�k
l;np

� �k
l0;np

sin(2
~ls) ds;

Ij � (�1)l
m

k�1

2
~l

m + 1

npX
l=1

�
f#

� 
cos

 etm
k�1 + �k

l;np

2
~l

m+ 1

!!
wk

l;np
:

We note that the integrand s 7! [f#](cos(etm
k�1 + s2

~l=(m + 1))) is analytic, and, due to

the geometric quadrature partition, the quotient of length of subdomains over distance

to singularity point can be estimate by

Cjetm
k
� etm

k�1j=etmk�1 � Cetm
k
=etm

k�1 � C=(1� q):

Consequently, we get an error estimate less than any negative power n�r; r > 0 provided
we choose np > cp logn for a suitable constant cp = cp(r). In other words a small

order np is su�cient. For small np, the weights w
k

l;np
can be computed analytically using

integration by parts. Alternatively, the weights can be precomputed by quadrature with

a larger number of quadrature knots.

Second, we suppose that the integration interval [tm;n

j�1; t
m;n

j
] of Ij is not adjacent to the end-

points and that it is contained in [etm0 ;etm1 ] or [etmk0+k00+1;etmk0+k00+2]. For the sake of de�niteness,

we assume [tm;n

j�1; t
m;n

j
] � [etm0 ;etm1 ], i.e. 1 < j � l0. Now the length of the interval is

relatively small such that the factor t 7! sin((m + 1)t); tm;n

j�1 < t < tm;n

j
is not oscillatory

anymore. Again the integrand is analytic and we simply apply a Gauÿ-Legendre rule of

order ng > cg logn. We get

Ij �
ngX
l=1

�
f#

��
cos

�
tm;n

j
+ tm;n

j�1

2
+ x1

l;ng

tm;n

j
� tm;n

j�1

2

��
�

sin

�
(m+ 1)

�
tm;n

j
+ tm;n

j�1

2
+ x1

l;ng

tm;n

j
� tm;n

j�1

2

��
tm;n

j
� tm;n

j�1

2
wg

l;ng
;

wg

l;ng
:=

Z 1

�1

ngY
l0=1
l0 6=l

s� x1
l0;ng

x1
l;ng

� x1
l0;ng

ds:

The e�cient computation of the Gauÿ-Legendre nodes x1
l;ng

; l = 1; : : : ; ng and of the

corresponding quadrature weights w
g

l;ng
; l = 1; : : : ; ng is well established.

Third, we suppose the integration interval is [tm;n

0 ; tm;n

1 ] or [tm;n

Nm;n�1; t
m;n

Nm;n
]. For the sake

of de�niteness, we consider [tm;n

0 ; tm;n

1 ]. This time the factors t 7! f(cos(t)) and t 7!
sin((m + 1)t); tm;n

0 < t < tm;n

1 are analytic and non-oscillatory, but t 7! #(cos(t)) is

weakly singular. The singular factor in the last function is t 7! t2#+. Hence, we apply

the Gauÿ-Jacobi quadrature rule for the weight function [�1; 1] 3 s 7! e#(s) := (1+ s)2#+.

Setting ##(s) := e#([arccos(s) � tm;n

1 =2] 2=tm;n

1 )�1, the function [f###] turns out to be

smooth. With an order n0
p
> c0

p
logn and the Gauÿ-Jacobi nodes x

e#

l;n0
p

; l = 1; : : : ; n0
p
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corresponding to the weight e#, we obtain
I1 =

t
m;n

1

2

Z 1

�1

�
f#

��
cos

�
t
m;n

1

2
+ s

t
m;n

1

2

��
sin

�
(m+ 1)

�
t
m;n

1

2
+ s

t
m;n

1

2

��
ds

=
t
m;n

1

2

Z 1

�1

�
f###

��
cos

�
t
m;n

1

2
+ s

t
m;n

1

2

��
�

sin

�
(m + 1)

�
t
m;n

1

2
+ s

t
m;n

1

2

�� e#(s) ds
�

n
0

pX
l=1

�
f###

��
cos

�
t
m;n

1

2
+ x

e#

l;n0
p

t
m;n

1

2

��
�

sin

�
(m + 1)

�
t
m;n

1

2
+ x

e#

l;n0
p

t
m;n

1

2

��
t
m;n

1

2
w
p

l;n0
p

;

w
p

l;n0
p

:=

Z 1

�1

n
0

pY
l0=1
l
0 6=l

s� x
e#

l0;n0
p

x
e#

l;n0
p

� x
e#

l0;n0
p

e#(s) ds:

Again the computation of the Gauÿ-Jacobi nodes x
e#

l;n0
p

; l = 1; : : : ; n0
p
and of the corre-

sponding quadrature weights wk

l;n0
p

; l = 1; : : : ; n0
p
is well established.

All together we can compute each entry of the sti�ness matrix with no more than

O([logn]2) quadrature knots and arithmetic operations. For the whole matrix we need

no more than O(n2[logn]2) operations. The error is less than any prescribed power

Cn�r; r > 0 if the constants cp, cg, and c0
p
for the quadrature rules are chosen suit-

ably large. Hence, the discretized polynomial collocation converges with the same rate as

described in Theorem 5.1.

6.3 The Assembling by Recurrence Relations

6.3.1. In Subsection 6.2.2 we have seen how to compute the part of the matrix corre-

sponding to the smooth kernel k0 with no more than O(n2) arithmetic operations. Hence,

we need a fast recursive algorithm only for the part of the matrix corresponding to the

Mellin kernel k. To employ the recursion technique, we need the special type of kernels

introduced in (6.3). Clearly, we can split the kernel of (6.3) into the sum

k(t) :=
IX
i=1

LiX
l=1

Bi;l

t�

(t� �i)l
(6.4)

with constant coe�cients Bi;l, with �i the zeros of pD, and with Li the multiplicity of �i.

Therefore, we can restrict our consideration to kernels of the form

kl(t) :=
t�

(t� �)l
; bkl(z) := �� �z+��l

�
z + �� 1
l � 1

�
e�i�(z+�)

sin
�
�(z + �)

� ; (6.5)

�z := ez[log j�j+i arg �]; 0 < arg � < 2�
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with integer parameters l = 1; : : : ; L. We derive the subsequent formulae for this elemen-

tary type of kernel. Using (6.4), it is easy to compose the recursion for general kernels k

of the type (6.3).

For k = kl, we have to compute b
n;l

j;m
= (1 + x

'

jn
)�Mm;l

l
(x'

jn
) with the so called modi�ed

moments Mm;l

l
(x'

jn
), i.e.

M
m;l

0

l
(x'

jn
) :=

Z 1

�1

#(y)

(1 + y)��l+1

Um(y)h
[1 + x

'

jn
]� �[1 + y]

il0 dy: (6.6)

To compute these by recursion, we replace m by m + 1, insert the recurrence relation

Um+1(y) = 2yUm(y)� Um�1(y) valid for m = 1; 2; : : : , replace the factor y before Um by

the expression ��1[(1 + x
'

jn
)� �]� ��1[(1 + x

'

jn
)� �(1 + y)], and obtain

M
m+1;l0

l
(x'

jn
) = 2

h
��1(1 + x

'

jn
)� 1

i
M

m;l0

l
(x'

jn
)�M

m�1;l0

l
(x'

jn
)� 2��1M

m;l0�1
l

(x'
jn
);

m = 1; 2; : : : : (6.7)

Clearly, this is the recursion for the computation of the second kind Chebyshev poly-

nomials with the additional inhomogeneity �2��1Mm;l0�1
l

(x'
jn
). Moreover, the point y

from the interval [�1; 1] in the recursion for the Chebyshev polynomials is replaced by

��1(1 + x'
jn
) � 1. To get the initial values M1;l0

l
(x'

jn
) and M0;l0

l
(x'

jn
) of the recurrence

relation, we use U1(y) = 2yU0(y) and U0(y) =
p

2=� and get from (6.6) with m = 1 that

M1;l0

l
(x'

jn
) = 2

h
��1(1 + x'

jn
)� 1

i
M0;l0

l
(x'

jn
)� 2��1M0;l0�1

l
(x'

jn
): (6.8)

ForM0;l0

l
(x'

jn
) with #���+ l�1 > �1 and #+ > �1, we infer from [15, Equation 3.197.8]

M0;l0

l
(x'

jn
) :=

r
2

�

Z 1

�1

#(y)

(1 + y)��l+1

1h
[1 + x'

jn
]� �[1 + y]

il0 dy (6.9)

=

r
2

�
2#++#���+l(1 + x'

jn
)�l

0

B
�
#+ + 1; #� � �+ l

�
� 2F1

�
l0; #� � �+ l; 1 + #+ + #� � �+ l;

2�

1 + x'
jn

�
:

B(�; �) :=

Z 1

0

x��1(1� x)��1 dx;

2F1(a; b; c; z) :=
1X
k=0

(a)k(b)k
(c)k

zk

k!
; (a)k := a � (a + 1) � : : : � (a+ k � 1):

Here B is the beta function and 2F1 the hypergeometric series. If no good code for the

computation of B and 2F1 is available, then the integrals ofM
0;l0

l
(x'

jn
) can be computed by

quadrature. Since the integrand is analytic for y 6= �1, a composite quadrature, de�ned

over a partition geometrically graded towards the points �1 and with appropriate Gauÿ

rule over each subinterval of the partition, will do the job with O(logn) operations (cf.[35]
or compare Subsection 6.2.3). For all the n integrals O(n logn) arithmetic operations are

required.
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The recurrence relation (6.7),(6.8) for a �xed l0 requires that the valuesM
m;l

0�1
l

(x'
j;n
); m =

1; 2; : : : have been computed �rst. Thus we have to compute M
m;0
l

(x'
j;n
); m = 1; 2; : : : ,

and then we use (6.7),(6.8) to get the values M
m;1
l

(x'
j;n
); m = 1; 2; : : : . Using these we

use (6.7),(6.8) to get the values M
m;2
l

(x'
j;n
); m = 1; 2; : : : , and so on.

Finally, it remains to determine the values of M
m;0
l

:= M
m;0
l

(x'
jn
) which, in fact, are inde-

pendent of x
'

jn
. These modi�ed moments including the Jacobi weight #(y)(1 + y)��+l�1

and Chebyshev polynomials of the second kind Um can be computed analogously to the

modi�ed moments including the Jacobi weight #(y)(1 + y)��+l�1 and Chebyshev polyno-

mials of the �rst kind Tn (cf. [32]). We are grateful to D. Occorsio for pointing out this

fact and providing us with the formulae. The recursion is

0 =
�
#+ + #� � �+ l +m + 1

�
M

m+1;0
l

+ 2
�
#+ � #� + �� l + 1

�
M

m;0
l

+
�
#+ + #� � �+ l � 1�m

�
M

m�1;0
l

; (6.10)

M1;0
l

= 2
#� � � + l � 1� #+

#+ + #� � �+ l + 1
M0;0

l
; (6.11)

M0;0
l

=

r
2

�
2#++#���+lB

�
#+ + 1; #� � �+ l

�
; (6.12)

where B(�; �) stands again for the beta function. If no better code for B is available, then

the integralM0;0
l

can again be computed by quadrature similarly to the integrals in (6.9).

We emphasize that all these steps in the recursion for l0 = 0; : : : ; l and for x'
jn
; j = 1; : : : ; n

require no more than O(n2) arithmetic operations.

6.3.2. In Section 8 we shall analyze the stability of the recurrence relations. Unfortu-

nately, the recursive algorithm (6.7) is not stable. Therefore, we shall modify the algo-

rithm. Sometimes, if a recursive computation is not stable, it is recommended to take the

recursion in the backward direction starting from an approximate value for the number

with the largest index (cf. [5, 12, 32, 27]). Though this is not helpful in our situation, our

modi�cation is in the same spirit.

Clearly, setting z := [��1(1 + x'
jn
) � 1], the solution of the recurrence relations up to m

steps is equivalent to the solution of the linear system of equations Tm(g)� = � with

Tm(g) :=

26666666666666666664

1 �2z 1 0 : : : 0
0 1 �2z 1 0 0
0 0 1 �2z 1 0 0

: : :

0 1 �2z 1
: : : : : : 0 1 �2z

0 1

37777777777777777775

;

� :=
h
Mm+1;l0

l
(x'

jn
);Mm;l

0

l
(x'

jn
);Mm�1;l0

l
(x'

jn
); : : : ;
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M
2;l0

l
(x'

jn
);M1;l0

l
(x'

jn
);M0;l0

l
(x'

jn
)
iT
;

� :=
h
� 2��1Mm;l

0�1
l

(x'
jn
);�2��1Mm�1;l0�1

l
(x'

jn
);�2��1Mm�2;l0�1

l
(x'

jn
); : : : ;

�2��1M
1;l0�1
l

(x'
jn
);�2��1M

0;l0�1
l

(x'
jn
);M0;l0

l
(x'

jn
)
iT
:

If we suppose that the value M
m+1;l
l

(x'
jn
) is known, then we can delete the �rst column

and the last row and write the recursion in the form Tm�1(~g)~� = ~� with

Tm�1(~g) :=

266666666666666664

�2z 1 0 : : : 0
1 �2z 1 0 0
0 1 �2z 1 0 0

: : :

0 1 �2z 1
: : : : : : 0 1 �2z

377777777777777775
;

~� :=
h
Mm;l

0

l
(x'

jn
);Mm�1;l0

l
(x'

jn
); : : : ;M2;l0

l
(x'

jn
);M1;l0

l
(x'

jn
);M0;l0

l
(x'

jn
)
iT
;

~� :=
h
� 2��1Mm;l

0�1
l

(x'
jn
)�Mm+1;l0

l
(x'

jn
);�2��1Mm�1;l0�1

l
(x'

jn
);

�2��1M
m�2;l0�1
l

(x'
jn
); : : : ;�2��1M

1;l0�1
l

(x'
jn
);�2��1M

0;l0�1
l

(x'
jn
)
iT
:

Now the modi�ed recursion consist in the following. We compute the value Mm+1;l0

l
(x'

jn
)

by the quadrature approach of Section 6.2.3. The values M i;l

l
(x'

jn
); i = 0; 1; : : : ; m are

determined by solving the system Tm�1(~g)~� = ~�. This stable tridiagonal system (cf. the

last proof in Section 8) can be solved by a direct solver (the so-called sweeping method

which is called progonka in Russian [34]) in no more than O(n) operations. Doing so for

each x
'

jn
, we arrive at an algorithm for the assembling of the matrix with no more than

O(n2) operations.

7 Numerical Test

For our numerical test, we consider the second kind equation of Mellin convolution type

(2.1) choosing b � 1 and

k(t) := �
1

�

t

t2 + 1
; bk(z) = �

1

2 cos
�
�

2
z
� ; k0(x; y) :=

1

x+ y + 3
: (7.1)

Note that the main part I + K without the integral operator K0 corresponds to the

double layer kernel over a polygon with a reentrant corner of the size 3�=2. The solution
u belongs to the space L1 and (3.1) turns into

u(x) � �0 + �1(1 + x)2=3 + �2(1 + x)1 + �2(1 + x)4=3 + : : : ; x �! �1: (7.2)
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To improve the asymptotics, we apply the transformation technique of Section 3 setting

x = �(t) = 21�q(1+t)q�1 with q 2 Z\[1;1). More precisely, we apply the transformation

(3.2), (3.3) with �� = �1 since this choice results in an isometric transform of the space

L
1. This way we arrive at the equation (3.3) with ek(x; y) =m([1+ x]=[1 + y])=[1+ y] +ek0(x; y) and

m(t) := �q
1

�

tq

t2q + 1
; bm(z) = �

1

2 cos
�
�

2
z

q

� ;
ek0(x; y) :=

q21�q(1 + y)q�1

[21�q(1 + x)q � 1] + [21�q(1 + y)q � 1] + 3
:

The Mellin kernel k splits into the elementary kernels of Subsection 6.3 according to the

formulae

�q
1

�

tq

t2q + 1
=

i

2�

2q�1X
j=0

(�1)jei�[1=2+j]=q

t� ei�[1=2+j]=q
;

�
1

�

t

t2 + 1
= �

1

�
<e

1

t� i
;

�2
1

�

t2

t4 + 1
= �

1

�
=m

ei�=4

t� ei�=4
+

1

�
=m

ei3�=4

t� ei3�=4
:

The condition (2.2) for the transformed equation (3.3) is ful�lled with � = �q; � = q

and the asymptotic expansion (3.1) with

~u(x) � e�0 + e�1(1 + x)2q=3 + e�2(1 + x)q + e�2(1 + x)4q=3 + : : : ; x �! �1: (7.3)

Further, we consider L2
�
again and we choose �(x) = '(x) := (1 � x)1=2(1 + x)1=2. The

solution ~u 2 L
2
�
with (7.3) remains unchanged. Due to this weight �, we get #(x) � 1,

and our trial space is the polynomial space Pn without weight. This choice of the trial

space is the best possible because the �rst term �0 of the asymptotics (7.3) is contained

in Pn. The condition (4.3) holds at least for q � 2. Unfortunately, for q = 1, the technical
condition (4.3) is violated. Nevertheless, we conjecture that the polynomial collocation

is stable also with q = 1. For de�niteness, we choose the right-hand side f such that the

solution u is u(x) = (1 + x)2=3. In other words

f(x) := (1 + x)2=3 �
(1 + x)2=3

2�

"p
3

2
log

 
22=3 �

p
321=3(1 + x)1=3 + (1 + x)2=3

22=3 +
p
321=3(1 + x)1=3 + (1 + x)2=3

!

+2 arctan

�
21=3

(1 + x)1=3

�
+ arctan

�
2 � 21=3

(1 + x)1=3
+
p
3

�
+arctan

�
2 � 21=3

(1 + x)1=3
�
p
3

��
+
(2 + x)�1=3

6

�
9 � 22=3(2 + x)1=3 + 6(2 + x) log

�
21=3 + (2 + x)1=3

�
�3(2 + x) log

�
22=3 + (2 + x)2=3 � 21=3(2 + x)1=3

�
+6(2 + x)

p
3 arctan

�
2 + x� 2 � 21=3(2 + x)2=3

p
3(2 + x)

�
+

�
p
3�(2 + x)

�
: (7.4)

19



n en (q = 1) on (q = 1) en (q = 2) on (q = 2)

1 4.27�10�3 2.46�10�1

2 5.26�10�3 -0.30 9.97�10�3 4.63

4 2.69�10�3 0.97 8.52�10�4 3.55

8 8.51�10�4 1.66 6.71�10�5 3.67

16 1.99�10�4 2.10 4.58�10�6 3.87

32 3.96�10�5 2.33 2.87�10�7 4.00

64 7.20�10�6 2.50 1.69�10�8 4.08

128 1.24�10�6 2.54 9.74�10�10 4.12

256 2.08�10�7 2.58 5.51�10�11 4.14

512 3.42�10�8 2.60 3.09�10�12 4.16

1024 5.54�10�9 2.63 1.72�10�14 4.17

Table 1: Convergence of polynomial collocation with k0 from (7.1).

In accordance with Theorem 5.1, we expect that the error of the collocation method (4.1)

is of the size O(n�3=2�4q=3) if q is not a multiple of three.

We have applied the polynomial collocation under the choices q = 1; 2. Using the quadra-
ture algorithm of Section 6.2.3, we have computed the sti�ness matrices. The orders of

the quadratures np, ng, and n0
p
have been chosen to be the minimal numbers such that

increasing these values does not improve the discretization errors. E.g., for n = 512 and

q = 1, we have set np = 7, ng = 6, and n0
p
= 7. Clearly, the smaller discretization error

for n = 512 and q = 2 requires higher values of quadrature orders. In particular, we have

chosen np = 13, ng = 16, and n0
p
= 15. The linear systems of equations have been solved

up to an accuracy of 10�16 by a few number of GMRes iterations (for the preconditioning

of the iterative solver compare [24]). We have determined the approximate values (cf. the

subsequent Equation (8.3))

en := kMn~u� ~unkL2
�

=

vuut nX
j=1

���~u(x'jn)� ~un(x
'

jn
)
���2'(x'jn) sin� j�

n+ 1

�
�

n+ 1

for the weighted norm error k~u�~unkL2
�
of the collocation approximation ~un to the solution

of (3.3). Approximate values for the orders of convergence (i.e. minus the exponent of n

in the estimate of Theorem 5.1) have been computed by

on :=
log en=2 � log en

log 2
:

The values presented in Table 1 are quite close to the predicted values 2:8333 : : : for q = 1
and 4:1666 : : : for q = 2.

Next we have tested the recurrence relation of Section 6.3.1. First, we have computed the

generalized moments

Mm;l
0

1 (x) :=

Z 1

�1

Um(y)h
(1 + x)� i(1 + y)

il0 dy; l0 = 0; 1; m = 0; 1; 2; : : : :
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n en (q = 3) on (q = 3)

4 6.64�10�4

8 4.41�10�5 3.91

16 1.26�10�6 5.13

32 1.71�10�8 6.20

64 1.33�10�10 7.01

128 7.96�10�13 7.38

256 4.72�10�15 7.40

512 3.94�10�16 3.58

Table 2: Convergence of polynomial collocation with k0 � 0.

For l0 = 0, the recursion yields M
2m+1;0
1 = 0 and M

2m;0
1 =

p
2=� � 2=(2m + 1). Only for

the case l0 = 1, we need to compute by recursion. Choosing x = �0:9 (case of almost

singular integral in entry of sti�ness matrix), we get, for the recursive approximation of

M30;1
1 , an error of 4:22 � 10�13. In other words, to compute almost singular integrals, the

unstable recursion is acceptable. However, if x = 1 (case of smooth integrand in entry

of sti�ness matrix), then we get, for the recursive approximation of M
30;1
1 , an error of

1:71 � 103, and the unstable recursion must not been used. On the other hand, using the

stable recursion from Section 6.3.2, the corresponding errors for Mm;1
1 ; m = 0; 1; : : : ; 29

are less than 4:97 � 10�15 and 4:51 � 10�16, respectively. To check the assembling of the

sti�ness matrix by recursion, we have set the smooth kernel k0 to zero. Correspondingly,

to get the solution u(x) = (1 + x)2=3 we have deleted the third term of the right-hand

side f in (7.4). Using the recursion from Section 6.3.2 to compute the sti�ness matrix, we

have obtained exactly the same results as with the quadrature approximated collocation.

These results for the case k0 � 0 are quite similar to those in Table 1. Whereas the

calculations for q = 1 and n = 1; 2; 4; 8; : : : ; 1024 requires 579 seconds with quadrature,

the algorithm with recursion reduces the computing time to 10 seconds (pentium II, 233

MHz). The calculations for q = 2 and n = 1; 2; 4; 8; : : : ; 1024 requires 1237 seconds

with quadrature and 13 seconds with recursion. Though our quadrature code is not

optimized, a reduction in computing time is obvious. Remember that, for each entry of

the polynomial collocation, the quadrature is over the whole interval and not over the

small support of a �nite element function as for spline collocation. Using recursion, the

�quadrature� over the whole interval is realized by a very small number of arithmetic

operations.

Finally, we have applied the polynomial collocation with transformation parameter q = 3
to the convolution equation with k0 � 0 and k from (7.1). Again the right-hand side

f has been chosen such that u(x) = (1 + x)2=3 and ~u(t) = (1 + t)2. Now the proof of

Theorem 5.1 implies that the collocation solution converges faster than any �nite power

of 1=n. The numerical results in Table 2 con�rm this fact as far as this is possible with

the limited accuracy (double precision) of the computer.

8 The Proofs

Proof of Lemma 5.1. In this proof, without loss of generality, we shall assume that
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u(x) = (1 + x)�0 [log(1 + x)]m0 . The other terms in the asymptotic expansion (3.1) and

smooth remainder terms can be treated in a similar fashion. First, we assume the addi-

tional condition [�0 + ��=2� 1=4] 62 Z\ [0;1).

We denote the polynomial interpolation at the points x
'

kn
; k = 1; : : : ; n of a function v

by Ln('; v). Then we get Mnu = #Ln('; [#
�1u]) and

ku�Mnuk� =
h[#�1u]� Ln('; [#

�1u])
i
#
p
�

L2

=
h[#�1u]� Ln('; [#

�1u])
ip

'

L2
:

To estimate the error of interpolation applied to [#�1u] we utilize Theorem 3.1 of [26]

(compare also [6] for estimates similar to the following). According to this we continue

ku�Mnuk� �
C

n1=2

Z 1=n

0


k

'
([#�1u]; t)p';2

t1+1=2
dt; k � 1;


k

'
([#�1u]; t)p';2 := sup

0<h�t

(4k

h'
[#�1u])

p
'

L2(Ihk)

;

(4k

h'
[#�1u])(x) :=

kX
i=0

(�1)i
�
k

i

�
[#�1u]

�
x +

kh

2
'(x)� ih'(x)

�
;

Ihk := [�1 + 2h2k2; 1� 2h2k2]:

However, if we choose k su�ciently large and if we estimate the �nite di�erence operator

4k

h'
by the derivative, then we arrive at

��(4k

h'
[#�1u])(x)

�� � C

�
dk

dxk
[#�1u]

�
(x) [h'(x)]k

� Chk(1 + x)<e�0�1=4+�
�
=2�k=2[log(1 + x)]m0 ; (8.1)(4k

h'
[#�1u])

p
'
2
L2(Ihk)

� C h2k
Z 1�h2=C

�1+h2=C

���(1 + x)<e �0+��=2�k=2[log(1 + x)]m0

���2 dx
� C h2[2<e �0+��+1][logh�1]2m0 : (8.2)

Finally, we obtain


k

'
([#�1u]; t)p';2 � C t2[<e�0+(�

�
+1)=2][log t�1]m0 ;

C

n1=2

Z 1=n

0


k

'
([#�1u]; t)p';2

t1+1=2
dt �

C

n1=2

Z 1=n

0

t2[<e�0+(�
�
+1)=2]�3=2[log t�1]m0 dt

ku�Mnuk� �
C

n2[<e �0+(�
�
+1)=2]

[logn]m0 ;

which is the desired error bound.

Analogously, we get the error bound for the alternative cases. The only di�erence in the

treatment of the case [�0 + ��=2 � 1=4] 2 Z \ [0;1) and m0 > 0 is that one of the

logarithmic factors drops out in the estimate for the derivative of [#�1u] (cf. (8.1) and
(8.2)). The di�erence in handling the case [�0 + ��=2� 1=4] 2 Z \ [0;1) and m0 = 0 is

that the derivatives of [#�1u] in the corresponding estimates (8.1) and (8.2) stay bounded

such that the factor h2k leads to arbitrarily high orders of convergence.
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Proof of Lemma 5.2. The integral operator K0 with the smooth kernel function k0
is well known to map any kind of weighted Lebesgue space into any Banach space of

di�erentiable functions even without weight. In particular, it maps L2
�
compactly into

C�. Hence, we only have to prove the assertion for the Mellin operator K. Clearly, the

norm of this mapping from L
2
�
to C� can be estimated as

kKk2 � sup
x: �1<x<1

�(x)2
Z 1

�1

����k�1 + x

1 + y

�
1

1 + y
�(y)�1=2

����2 dy

� C sup
x: �1<x<1

Z 0

�1

����k�1 + x

1 + y

�����2 �1 + x

1 + y

�1+�
� 1

1 + y
dy + C

� C sup
x: 0<x<1

Z 1

0

����k�xy
�����2 �xy

�1+�
� 1

y
dy + C:

Substituting z = x=y and dz=z = �dy=y, we continue

kKk2 � C

Z 1

0

jk(z)j2 z1+��
1

z
dz + C � C

Z
<e z=(1+�

�
)=2

���bk(z)���2 dz + C;

where in the last step we have used the fact that the Mellin transform maps L2
�
�
=2 iso-

metrically onto the L2 space over the line fz : <e z = (1 + ��)=2g. This fact is a simple

reformulation of Plancherel's theorem according to which the classical Fourier transform

is unitary. In view of the last estimate, of � < (��+1)=2 < � and of (2.2), we obtain the

desired boundedness property.

Proof of Lemma 5.3. Since the nth order Gauss rule
R 1

�1
f' �

P
n

k=1 �
'

kn
f(x'

kn
) with

�'
kn

:= �['(x'
kn
)]2=(n + 1) corresponding to the Chebyshev weight function ' and the

Chebyshev nodes of the second kind x'
kn

is exact for polynomials of degree less than 2n,
we obtain (compare also the Marcinkiewicz inequality in [26])

kMnvk� =

vuut nX
k=1

!2
kn
jv (x'

kn
)j2; !kn :=

r
�

n+ 1
' (x'

kn
) � (x'

kn
): (8.3)

Consequently, we get

kMnvk� � sup
k=1;::: ;n

jv (x'
kn
) � (x'

kn
)j

vuut nX
k=1

!2
kn

���� (x'kn)�1
���2:

It remains to prove that the last square root is less than a constant times
p
logn. However,

due to 2(1=4 + ��=2 � ��) = �1=2, the square of the last square root can be estimated

by

�

n+ 1

nX
k=1

�
1� cos

�
�k

n + 1

���1=2�
1 + cos

�
�k

n + 1

���1=2

� C
1

n

n=2�1X
k=1

�
�k

n+ 1

��1

+ C
1

n

nX
k=n=2

�
�[n+ 1� k]

n + 1

��1

� C
1

n

n=2�1X
k=1

�
k

n

��1

+ C
1

n

n=2X
k=1

�
k

n

��1

� C logn :
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Proof of the Instability of (6.7) and the Stability of the Modi�cation.

First we consider the linear system of equations Tm(g)� = � (cf. Section 6.3.2). The

solution � and the right-hand side � are �nite sections of two in�nite vectors containing the

Fourier coe�cients of two integrable functions with respect to the orthogonal polynomials

Um. Hence, stability may be de�ned to mean that the condition number of the linear

system Tm(g)� = � is bounded uniformly with respect to m (cf. e.g. [17, Chapters 7

and 8]). However, the Tm(g) are �nite sections of a Toeplitz matrix with the analytic

generating function g(t) := 1 � 2zt�1 + t�2. The uniform boundedness of the condition

numbers of the Tm(g) is equivalent to the condition g(t) 6= 0 for any t 2 C with jtj � 1
(cf. [14] and compare the characteristic equation (34) in [13, Section V.4] and (8.7-4)

in [1, Section 8.7]). Thus the recursion is stable if and only if the two roots t�1
� of the

polynomial g(t) have a modulus less than one, i.e. if

jt�j > 1; t� := z �
p
z2 � 1: (8.4)

Unfortunately, we have jt�j = 1 for real z 2 [�1; 1]. For any other z, only one of the t�
has a modulus greater than one, and the other modulus is strictly less than one. Thus

(8.4) is violated and the recursion is unstable.

To get a better feeling for the kind of instability, we look at the recursion as a form of an

iteration. The latter reads as �m+1 = E�m + �m with �m := [Mm;l0

l
(x'

jn
);Mm�1;l0

l
(x'

jn
)]T

and �m := [Mm;l
0�1

l
(x'

jn
); 0]T . The matrix E is given by

E :=

�
2z �1
1 0

�
: (8.5)

If the spectral radius of E is larger than one, then the errors will grow exponentially during

the iterative process. The spectral radius of E is maxfjt�j; jt+jg with t� from (8.4). In

other words, we arrive at the same criterion of stability. However, if maxfjt�j; jt+jg is

equal or slightly larger than one and if the maximal number m of recursion steps is not

too big, then the errors grow slowly and the recursion computes acceptable values. In

particular, for x'
jn

close to �1, the value z is close to �1 resulting in a mild degree of

instability.

Next we consider Tm�1(~g)~� = ~� (cf. Section 6.3.2). The generating function ~g of the

Toeplitz matrix takes the form ~g(t) := t � 2z + t�1. The uniform boundedness of the

condition numbers of the Tm�1(~g) is equivalent to the conditions ~g(t) 6= 0; jtj = 1 and

wind ~g = 0 (cf. [14]). Here wind ~g is the winding number of the closed smooth curve

f~g(eis) : 0 � s � 2�g. Observing ~g(eis) = 2[cos s � z], we easily get wind ~g = 0 for

=m z 6= 0. For real z, we get wind ~g = 0 from jzj > 1.

Concerning the recursion (6.10) we remark the following. For large m the recurrence

relation is almost of the form M
m+1;0
l

= M
m�1;0
l

. This however can be analyzed as above.

The matrix E takes the form (compare (8.5))

E :=

�
0 1
0 0

�
:

The corresponding eigenvalues have modulus one, which means a slight instability, only.
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