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Abstract

We Perform a bifurcation analysis of the Lang-Kobayashi system for a laser

with delayed optical feedback in the situation of moderate delay times. Using

scaling methods, we are able to calculate the primary bifurcations, leading to

instability of the stationary lasing state. We classify di�erent types of pulsa-

tions and identify a codimension two bifurcation of fold-Hopf interaction type

as the organizing centre for the appearance of more complicated dynamics.

1 Introduction

Delayed optical feedback is one of the fundamental mechanisms, leading to insta-

bility and complicated dynamics in semiconductor lasers [12]. Especially the sit-

uation of large delay times has been studied extensively, both numerically and in

experiments. In this case a complicated behaviour with high dimensional chaos is

observed (so called low-frequency �uctuations [2]). In contrast to that, the situation

of smaller feedback time, as it arises for example in integrated multi-section devices,

has received much less attention.

In this paper, we will perform a bifurcation analysis for the Lang-Kobayashi sys-

tem, restricted to the case of small and moderate feedback times. This will lead

to a re�ned investigation of how the stationary state of the laser without feedback

changes, loses its stability, and with growing feedback gives rise to more complicated

behaviour. Our approach will provide a unifying and more detailed view to earlier

results of Tromborg e.a. [13, 7], Petermann and Tager [11], and Erneux e.a. [8, 9, 3]

for the Lang-Kobayashi system, as well as to results for multi-section lasers [1, 14].

Using scaling techniques, we will calculate the primary bifurcations from stationary

lasing, distingush di�erent types of pulsations, and discuss a codimension two bi-

furcation as an organizing centre for the appearance of more complicated dynamics.

Especially, we discuss the role of the resonator properties of the compound cavity

for the dynamical behaviour of the system.

The behaviour of a single moded laser under the in�uence of delayed optical feedback

can be described by the Lang-Kobayashi rate equations

dE

dT
=

1

2
(G(N; jE(T )j2)� 1

�p
) � E(T ) + �e�i!0�f � E(T � �f ) (1)

dN

dT
= I � N

�c
� Re

h
G(N; jE(T )j2)

i
� jE(T )j2 (2)
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for the �eld amplitude E and the carrier density N [6]. The lasing frequency !0 of

the laser without feedback is used as the reference frequency, i.e. the actual �eld

amplitude is given by 1
2
(E(T )ei!0T + c.c.). With I we denote the pumping current,

and G(N; jE(T )j2) is the complex gain function; �p; �c; �f are photon lifetime, carrier

lifetime, and feedback time. The feedback rate � has to be computed from the

re�ectivities, external losses, and the internal round trip time (see [11]). Equations

of this type have been shown to be able to describe a variety of di�erent dynamical

phenomena in good coincidence with experimental data. Moreover they can serve

as a prototype model to obtain an understanding of the basic mechanisms leading

to complicated dynamics in the presence of delayed optical feedback.

To adopt the general system (1), (2) to our more speci�c situation, we will now

introduce some simpli�cations and rescalings. We want here to restrict our attention

to situations, where the external round-trip time is not more than one order of

magnitude bigger than the internal round-trip time. Consequently, we may rescale

the time as

t :=
T

�f
:

Since we are not interested in high intensity e�ects, we neglect nonlinear gain sat-

uration and linearize the complex gain function around the stationary lasing state

!0; N0 of the laser without feedback

G(N; jE(T )j2)� 1

�p
:= GN (1 + i�)(N �N0)

With the rescaling

Nres :=
1

2
�fGN (N �N0)

we have simpli�ed the optical equation to

dE(t)

dt
= (1 + i�)Nres � E(t) + �e�i� � E(t� 1); (3)

with the e�ective feedback strength � := ��f . The phase factor � := !0�f we want

to treat as an additional free parameter. This seems naturally to us in the sense

of a separation of scales: already slight changes of �f change the phase condition

completely, while all other parameters are not changed signi�cantly.

We introduce now the above rescalings into the carrier equation, and additionally

set

Eres :=
q
�cGNE:

Of course, this rescaling of E does not a�ect the linear equation (3). From this we

obtain
dNres(t)

dt
= "

�
J �Nres � (Nres + �)jEresj2

�
(4)

with

" :=
�f

�c
(5)
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J :=
�fGN

2
(�cI +N0) (6)

� :=
�f

2�p
(7)

Note that �� corresponds to the transparency density for the rescaled N .

In the sequel we will use only the rescaled equations (3), (4), omitting for simplicity

the subscripts for the rescaled variables N and E. The feedback parameters � and �

will be our primary bifurcation parameters. In addition we will make use of the fact

that " is small with respect to the other coe�cients. This is still true for a length

of the compound cavity of some millimeters.

2 The optical equation

2.1 Rotating waves and saddle-nodes

We start with collecting some basic facts about stationary lasing states for the Lang-

Kobayashi system, which can be found similarly in earlier works such as e.g. [13],

[12], [11]. Looking for rotating wave solutions of the form

E(t) = Ese
i!st; N(t) = Ns (8)

in (3), one obtains the equation

i!s = (1 + i�)Ns + �e�i(�+!s): (9)

Splitting this into real and imaginary part gives the conditions

Ns = �� cos(�+ !s) (10)

!s � �Ns = �� sin(�+ !s); (11)

or, plugging (10) into (11),

!s = ��(� cos(�+ !s) + sin(�+ !s)) (12)

The carrier equation (4) may be used to determine the intensity

jEsj2 = J �Ns

Ns + �
;

but the carrier equation does not a�ect the conditions (10), (11) forNs and !s. These

rotating wave solutions are called in the literature external cavity modes (ECMs),

and can be represented as points in the (!;N)-plane. In our coordinates the origin in

this plane corresponds to the stationary state of the laser without feedback. Then,

for small feedback � , there is only one stable solution close to the origin, which

under di�erent phase conditions changes slightly its threshold density and optical
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frequency. For larger feedback, the number of solutions increases and some of them

may be unstable.

Indeed, from (10), (11) it is clear that in the (!;N)-plane all ECM solutions for �xed

� are located on an ellipse around zero. This ellipse grows for increasing values of �.

Changing only �, all the solutions move along the ellipse (see [13]). These solutions

are determined only by the optical equation (3), and we can use this equation also

to some extend for a study of the stability and bifurcations of the stationary points.

If !s is a double root of (12), then we have a saddle-node bifurcation of rotating

waves. To this end we di�erentiate (12) with respect to !s and obtain

1 = �(� sin(�+ !s)� cos(�+ !s)) (13)

Together with the conditions (10) and (11) this gives in the (!;N)-plane the straight

line (compare [13])

!s = �Ns � 1�Ns

�
(14)

Solutions above this line are always unstable, the solutions below may be stable or

unstable. We want now to represent the condition for this bifurcation, as usually

done in bifurcation theory, in the space of the main parameters � and �. To this

end, we �rst solve the transcendental equations (10), (11) for � and �, obtaining

� =
q
N2 + (! � �N)2 (15)

� =

8><
>:

0

arccos(�N

�
)� ! for ! � �N � 0

� arccos(�N

�
)� ! for ! � �N < 0

(16)

and then plug in the saddle-node condition (14). In Figure 1, we have plotted the

saddle-node condition (14) for �xed � = 2, and the resulting curve in the parameter

plane (compare [12]). Note that this curve has a singular point (called cusp point)

which corresponds to a triple root of (12). Its location in the (!;N)-plane can be

computed as

!s = 0; Ns =
1

1 + �2
; (17)

and in parameter space

� =
1p

1 + �2
; � = (2k + 1)� � arctan(�): (18)

This value of � is the minimal feedback which is necessary to have under an appro-

priate phase condition more than one ECM on the ellipse .

Of course, the phase � is only determined up to addition of multiples of 2�; looking

at the interval � 2 [0; 2�], any bifurcation curve which leaves this interval at one

side enters at the same time at the other side. At each branch of the saddle-node

curve the number of solutions changes by two, leading to more and more ECMs for

increasing � (see Figure 1). The situation with �ve ECMs on the ellipse, given in the

left part of the �gure corresponds to the parameter values, indicated by the cross in

the right hand side of the �gure.
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Figure 1: saddle-node curve with cusp-point (circle) for � = 2. Left: (!;N)-plane,

ellipse for � = 3:1 with 5 ECMs for � = �. Right: (�; �)-plane, number of ECMs

2.2 The Petermann-Tager condition

It was �rst observed by Petermann and Tager in [11] that the existence of two

ECM with the same carrier density may lead to stable pulsations of the laser with

a frequency, given by the di�erence of the two ECM frequencies. These numerical

observations were con�rmed by results of Erneux e.a., showing by asymptotic ex-

pansion techniques [3] and later also with numerical path-following techniques [8, 9]

the existence of such pulsating solutions.

Here, we �rst want to derive an explicit condition for the existence of two ECMs

with equal N . This can be done again using only the optical equation (3). We start

with two copies of the equations (10) and (11)

N1;2 = �� cos(�+ !1;2) (19)

!1;2 � �N1;2 = �� sin(�+ !1;2); (20)

Assuming N := N1 = N2 and !1 6= !2, the equations (19) give

!1 + � = 2k� � (!2 + �): (21)

Adding now the two equations (20) yields

!1 + !2

2
= �N; or

!1 � !2

2
= !1 � �N (22)

Inserting the relation (21) gives

� = k� � �N: (23)

5



–2

–1

0

1

2

–4 –2 0 2 4 0

1

2

3

4

5

6

1 2 3 4 5 6

�

N �

!

Figure 2: Petermann-Tager condition (24) for � = 2. Left: (!;N)-plane; an arbi-

trary ECM ellipse for � > 1 intersects the curve at two ECM solutions with equal

N . Right: (�; �)-plane; due to the periodicity of � the �rst (thick line) and second

branch (thin line) appear repeatedly in the interval � 2 [0; 2�]

Since we excluded the case !1 = !2, corresponding to !1 � �N = 0 (see (22)), we

may divide (19) by (20) to eliminate �, giving �nally

N = (!1 � �N) cot(!1 � �N): (24)

In Figure 2, we have plotted the resulting curve for � = 2 in the (!;N)-plane and,

using again (15), (16), also in the (�; �)-plane of our primary bifurcation parame-

ters. According to (24), a variation of the parameter � does not change the picture

qualitatively. At the intersection points of the di�erent solution branches in the pa-

rameter plane, we have two coexisting pairs of PT modes. However, the picture in

the (!;N)-plane indicates that the pair from the �rst branch should have the lowest

threshold density. At the other hand, the existence of a stable pulsating solution

can be expected only, if one mode of the PT pair is stable.

2.3 Mode degeneracy

Writing the condition (9) for rotating wave solutions as

� = (1 + i�)Ns + �e�i�e�� (25)

with a complex spectral parameter � instead of !s, it turns out to be the character-

istic equation for the linear delay di�erential equation (3), depending parametrically

on N . Hence, the ECM frequencies !s are eigenvalues � which are in addition pure

imaginary. An optical mode degeneracy occurs, if there is a double eigenvalue , i.e.
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Figure 3: Petermann-Tager (PT) and saddle-node bifurcation (SN) curves, mode-

degeneracy (MD) and cusp-point (CU) in the (!;N)-plane (left) and in the (�; �)-

plane (right)

a double root of (25). Di�erentiating (25) by �, we obtain

1 = ��e�i�e��:

Together with (25) this has the unique solution � = (1 + i�)N � 1, which is pure

imaginary exactly for N = 1, giving � = i!s = i�. This point with a degenerate

ECM solution plays an important role for the dynamics of the system. Note that the

saddle-node condition (14) is satis�ed there. Also the �rst branch of the PT curve

limits to this point, indicating that two ECM with equal Ns merge in the degeneracy

point with the frequency di�erence going to zero. Correspondingly, there is a point

of tangency of the ECM ellipse for � = 1 and the PT curve (see left part of Figure

3).

There are also further intersections between the PT curve and the saddle-node curve,

however, without a mode degeneracy. They also lead to interesting bifurcations, but

shall not be studied here, since they occur at much higher feedback levels.

3 Linearized dynamics at external cavity modes

After having obtained so far a lot of information from the optical equation (3) alone,

we proceed in our stability and bifurcation analysis of the external cavity modes by

considering now the full system, including also the carrier equation (4). For the

theoretical background of our treatment of nonlinear di�erential delay systems we

refer to [4], [15].
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First, we introduce for a particular ECM solution

E(t) = Ese
i!st; N(t) = Ns; (26)

where !s; Ns; Es satisfy the ECM conditions (9), the corotating coordinates

Enew(t) = e�i!stE(t):

Then the rotating wave solution (26) becomes a stationary state of the transformed

system

_Enew(t) = ((1 + i�)N � i!s) � Enew(t) + �e�i(�+!s) � Enew(t� 1) (27)

_N(t) = "(J �N � (N + �)jEnew(t)j2): (28)

Splitting the equation for the optical �eld amplitude into real and imaginary part

as Enew(t) = x(t) + iy(t), we obtain

_x(t) = (x(t)� �y(t))N + !sy(t) + �[x(t� 1) cos(�+ !s) + y(t� 1) sin(�+ !s)]

_y(t) = (�x(t) + y(t))N � !sx(t) + �[y(t� 1) cos(�+ !s)� x(t� 1) sin(�+ !s)]

_N (t) = "(J �N � (N + �)(x(t)2 + y(t)2):

This system can now be easily linearized in the form

d

dt
~v(t) = A~v(t) +B~v(t� 1)

with ~v = (v1; v2; v3) corresponding to variation of x; y;N , respectively. The matrices

A and B can be computed as

A =

0
B@ N !s � �N x� �y

�(!s � �N) N �x+ y

�2"x(N + �) �2"y(N + �) �"(1 + x2 + y2)

1
CA (29)

B =

0
B@

� cos(�+ !s) � sin(�+ !s) 0

�� sin(�+ !s) � cos(�+ !s) 0

0 0 0

1
CA (30)

The characteristic equation for the eigenvalues of this linear system is now given by

the transcendental equation

�(�) = det(� Id�A� e��B) =h
(��N � e��� cos(�+ !s))

2 + (!s � �N + e��� sin(�+ !s))
2
i
(� + "(1 + x2 + y2))

+2"(x2 + y2)(N + �)
h
�� (1 + �2)N + �!s + e���(� sin(�+ !s)� cos(�+ !s))

i
with the complex spectral parameter �. Using the ECM conditions

jEsj2 = x2 + y2; N = Ns = �� cos(�+ !s); !s � �Ns = �� sin(�+ !s)

we obtain the characteristic equation for the linearization at the ECM solution as

�(�) =
h
(� +Ns(e

�� � 1))2 + (!s � �Ns)
2(e�� � 1)2

i
(� + "(1 + jEsj2))

+
h
� + ((1 + �2)Ns � �!s)(e

�� � 1)
i
2"jEsj2(Ns + �) (31)
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3.1 The Hopf condition

For a Hopf bifurcation it is necessary to have pair of pure imaginary solutions to

(31), i.e.

�(�) = 0; � = i
; 
 2 R
The resulting equation can again be split into real part

0 = 2
(cos 
 � 1)
h
sin
(N2

s
+ (!s � �Ns)

2)� 
Ns

i
+"(1 + jEsj2)

h
�
2 + 2 cos 
(cos 
� 1)(N2

s
+ (!s � �Ns)

2) + 2Ns
sin

i

+2"jEsj2(Ns + �)((1 + �2)Ns � �!s)(cos
 � 1) (32)

and imaginary part

0 = 

h
�
2 + 2 cos 
(cos 
� 1)(N2

s
+ (!s � �Ns)

2) + 2Ns
sin

i

�2"(1 + jEsj2)(cos 
� 1)
h
sin 
(N2

s
+ (!s � �Ns)

2)� 
Ns

i
+2"jEsj2(Ns + �)(
� ((1 + �2)Ns � �!s) sin
): (33)

Note that, due to the phase shift invariance of the rotating waves, zero always solves

the eigenvalue equation (31). Moreover, zero is a double solution to (31) exactly at

the saddle node curve (14). Correspondingly, 
 = 0 is exactly there also a solution

to the equations (32), (33).

3.2 Approximate solutions by scaling methods

In order to �nd analytically further solutions to (32), (33), we use the smallness of ".

Assuming that there are solutions where 
 stays away from zero also for " tending

to zero, we can put " = 0. From the remaining terms

0 = sin
(N2
s
+ (!s � �Ns)

2)� 
Ns

0 = �
2 + 2 cos 
(cos 
� 1)(N2
s
+ (!s � �Ns)

2) + 2Ns
sin 
; (34)

we obtain immediately that

Ns = � 
sin 


2(cos 
� 1)
(35)

!s � �Ns =



2
(36)

Ns = (!s � �Ns) cot(!s � �Ns) (37)

This result is the same which we get from the Petermann-Tager condition (24) for

the existence of two ECM solutions with the same threshold value. Moreover, the

Hopf-frequency 
 coincides with the di�erence of the two ECM frequencies (compare

(36) and (22)). It was already noticed in [3] that the Petermann-Tager condition
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Figure 4: Thick lines: Bifurcation curves for the DQS-Hopf (� = 2). Grey: low

intensity (jEj2 = 0:2), black: high intensity (jEj2 = 2)

coincides with the zero order approximation of the Hopf-condition. With Figure

2, we give here the bifurcation curves both in the (!;N)- and (�; �)-plane. Note

that the two branches of solutions to (37) which emanate from the point of mode

degeneracy in the (!;N)-plane, are mapped to the same branch in the (�; �)-plane.

If �rst order corrections in " are taken into account, this coincidence will disappear,

and two Hopf-branches, both close to the approximate curve will appear. This

coincides also with the results in [8], where for changing � corresponding pairs of

Hopf points have been found near the PT condition.

But in addition to these solutions, we get another type of solutions to (32) and (33),

if we assume that 
2=" remains �nite for " tending to zero (compare [14]). Here

we may replace trigonometric functions by Taylor expansions and obtain for the

rescaled variable


r =

p
"

in leading order of " the equations

0 = 
2
r
(Ns �N2

s
� (!s � �Ns)

2)� (1 + jEsj2)((Ns � 1)2 + (!s � �Ns)
2)�

jEsj2(Ns + �)((1 + �2)Ns � �!s)

0 = �
2
r
((Ns � 1)2 + (!s � �Ns)

2) + 2jEsj2(Ns + �)(1 �Ns + �(!s � �Ns)):

Eliminating 
2
r
, and using the new coordinates

�n = 1�Ns; �! = !s � �Ns; (38)

we get the Hopf condition

� 1

jEsj2 = 1 + (1� �n+ �)

 
�n + ��!

�n2 + �!2
� (�n+ ��!)2 � (1 + �2)�!2

(�n2 + �!2)2

!
: (39)
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The corresponding Hopf-frequency is given by


2 = "
2jEsj2(Ns + �)(�n+ ��!)

�n2 + �!2
: (40)

From this, we get the constraint �n + ��! > 0 in addition to the condition (39).

Note that according to (40) the Hopf frequency along this branch of solutions is

comparable to the relaxation frequency


2 � 
2
rel

= "jEsj2�

of the solitary laser. Hence we can interpret this branch of Hopf-bifurcations as an

undamping of the relaxation oscillation. Similar phenomena in two-section DFB

lasers were called in [1] DQS-pulsations (dispersive self Q-switching). Here, obvi-

ously the Fabry-Perot dispersion of the external cavity leads to this type of insta-

bility.

We have plotted in Figure (4) this DQS-Hopf curve, together with the bifurcation

curves, calculated before. The �gure shows also the dependence of the DQS-Hopf

curve on the intensity jEsj2, which is of course related with the pumping J , and the

parameter � (transparency level), which originate from the carrier rate equation (4)

and do not in�uence the bifurcation curves, computed above.

Note that this curves again start and end at the point of mode degeneracy

�n = �! = 0:

There, however, both the limits of �nite 
 and 
 = O(
p
") are not valid, so that

both the PT and DQS curves do not give a correct approximation of solutions

to the Hopf condition (32), (33). To derive an approximate formula for the Hopf

bifurcation curves near the mode degeneracy point, one should notice that near this

point both the quantities 
 and
"


2
are small. Note also that the closeness to the

mode degeneracy point means that the quantities �n and �! are small as well. By

expanding in powers of 
,
"


2
, �n and �!, and omitting higher order terms, we obtain

from equation (32) the approximate relation

�n� �!2 � "


2
S(1 + �)) +


2

6
� 0;

and from (33) the approximate relation


2

4
� �n2 � �!2 + 2

"


2
S(1 + �)(��! + �n) � 0:

To the leading order in 
 and
"


2
these equations give

�n � "


2
S(1 + �) +


2

12
;
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�! � �
"


2
S(1 + �)�

s�
"


2
S(1 + �)

�2
(1 + �2) +


2

4
:

Note that we have here two disjoint branches of the Hopf bifurcation curve. At

small 
 and
"


2
we get small �n and �!, i.e. these branches are indeed close to

the mode degeneracy point (N = 1; ! = �). Each branch is parametrized by the

value of 
 which runs monotonically from O(
p
") to small �nite values, i.e. each

branch connects one of the ends of the DQS-type Hopf-curve with one of the two

Petermann-Tager curves.

It should also be noted that the �minus� branch intersects the saddle-node curve

�! = ��n=� (cf. equation (14)). Indeed, the equation for the intersection point is

� "

�
2
S(1 + �)� 
2

12�
� �

"


2
S(1 + �) �

s�
"


2
S(1 + �)

�2
(1 + �2) +


2

4
;

which gives indeed a unique solution


3 � 2"
S(1 + �)

�

p
1 + �2:

This intersection point (called �fold-Hopf interaction�, or �Gavrilov-Guckenheimer

point�) is remarkable because its presence implies further nontrivial dynamics, such

as bifurcation of invariant tori and homoclinic phenomena (see e.g.[5]). In fact, also

the curve of torus bifurcation, which has been found in [9], seems to be a consequence

of this point.

3.3 Numerical solutions for the Hopf condition

After having studied analytically the two types of Hopf-bifurcations and their tran-

sition regime near the point of mode degeneracy, we present now some numerical

results: Figure 5 shows our numerical solution to the system of equations (32), (33)

for �xed values of the secondary parameters �; �; "; jEj2. To make di�erences to the

asymptotic curves (in the Figure dashed) better visible, we have chosen " = 0:01 only

of moderate smallness. Apart from the point of Mode-Degeneracy, the computed

curve shows a good coincidence with the asymptotic PT and DQS curve.

Note that there are indeed two branches of the Hopf curve, both approaching the

PT curve in the (�; �)-plane). Each of them is connected with one of the two ends of

the DQS curve. Moreover, one can see that in the vicinity of the mode degeneracy

one branch of the Hopf curve meets the saddle-node line in a point of tangency (fold-

Hopf interaction). Recall that in the (!;N)-plane the region above the saddle-node

line contains the ECM solutions of saddle type, whereas below the saddle-node line

the nodes are located. This corresponds to the well known fact that at a fold-Hopf

interaction point the type of the bifurcating equilibrium changes along the Hopf

curve [5].
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Figure 5: Numerically obtained Hopf curves for " = 0:01, � = 1, jEj2 = 0:5 (left:

(!;N)-plane, right: (�; �)-plane); dashed: curves from the asymptotic approxima-

tions (34), and (39); thin line: saddle-node curve; FH; fold-Hopf interaction
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Figure 6: PT Hopf frequency 
 for changing feedback level �, according to (41).

As an organizing center of the whole scenario acts the point of optical Mode De-

generacy. It separates the two di�erent regimes of DQS and PT pulsations, and

leads to the nearby fold-Hopf interaction as well as to a second appearance of the

Hopf curve in the vicinity of this point, exactly where the frequency on this branch

changes from order
p
" to order 1. Since for the PT pulsation, the Hopf frequency

is given by the beating frequency of the two modes, we can calculate explicitly the

relation of this frequency 
 and the feedback level �: Inserting (36) and (23) into

(11), we obtain

� =

����� 


2 sin(

2
)

����� (41)

Note that apart from the speci�c scaling of � and the time unit, there enters no

speci�c parameter into this formula. Figure 6 shows that the PT frequency on the

�rst branch is tunable between zero and the value 2� in our rescaled time. However,
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Figure 7: Right: Hopf frequency 
 for changing feedback level � along the part of

the Hopf curve indicated in black at the right (dashed: asymptotic approximation

for PT frequency, cf. Figure 6)

it is necessary to meet the appropriate phase condition. For larger � there appear

also more and more pairs of PT modes with larger frequency di�erence, the �rst of

which leads to the second branch in Figure 6.

In Figure 7 we show also the numerically obtained Hopf frequency along the part

of the Hopf curve, connecting with increasing � the DQS and the PT regime. One

can observe, that for � < 1 (i.e. the DQS case) the frequency is indeed of order
p
".

Then, after an intermediate regime around � = 1, the curve follows the curve given

by (41).

4 Conclusions

We have studied Hopf bifurcations, leading to pulsation instability of lasers with

optical feedback. Restricting to a moderate feedback time, one can distinguish two

di�erent types of pulsations, the DQS- and Petermann-Tager (PT) pulsations. The

frequency of the �rst type is related to the relaxation frequency of the solitary

laser, whereas for the second type it is determined by the frequency di�erence of

two external cavity modes with the same threshold density. The occurrence of

these two types of pulsations is separated by a distinguished feedback level (in our

rescaled variables � = 1). Using the ratio of feedback time and carrier lifetime as

a small parameter, we were able to compute explicit expressions for the bifurcation

curves, showing also the in�uence of secondary parameters. Moreover, we studied

the transition from one type to the other, which is organised by the point of mode

degeneracy and comes along with a codimension-two bifurcation of Guckenheimer-

Gavrilov type (fold-Hopf interaction). This codimension two bifurcation is known
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to give rise to a lot of complicated dynamics and nonlocal bifurcations.

The two presented mechanisms for pulsations seem to be fundamental for laser

devices where a moderately delayed feedback is present. Especially the role of the

point of mode degeneracy as an organizing center for the di�erent types of pulsations

seems to be a more general feature [14]. Indeed, similar bifurcation scenarios have

been obtained in [10] for three-section lasers with one active section. These results,

however, are based on a time domain model, and have been obtained by center

manifold techniques and numerical path-following of bifurcation curves.

The high frequency pulsations of the PT type (for appropriate device parameters

more than 40 GHz should be possible), together with the shown tunability of their

frequency seem to be a promising feature for applications in optical communication

technique.
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