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Abstract

Nonlinear dynamical e�ects of a multi-section DFB semiconductor laser

such as self-pulsations or hysteresis can be described by the traveling wave

model. The present paper demonstrates that such a model can be e�ectively

approximated by a low dimensional system of ordinary di�erential equations

where only few dynamically varying longitudinal modes of optical �eld are

taken into account. A bifurcation analysis of the reduced models allow us to

identify the mechanisms of switching on and switching o� of the self-pulsations

by tuning model parameters. An explanation of hysteresis is given as well.

1 Introduction

Multi-section semiconductor lasers are of great interest in the process of developing

all optical signal processing in optical communication systems. For example, high-

frequency self-pulsations (SP) in three-section DFB lasers were successfully applied

for all-optical clock recovery [1].

In designing lasers with prescribed dynamical behaviour, modelling plays a crucial

role. There are many di�erent models describing the photon and carrier behaviour

inside semiconductor lasers, ranging from complex multidimensional partial di�eren-

tial equation models [2, 3] down to simple rate equation models where only temporal

change of averaged photon and carrier densities are considered [4].

In order to keep everything as simple as possible but still to be able to resolve the

multi-section structure of the considered devices, the present paper combines the

traveling wave (TW) equation model with included in�uence of polarization and

rate equations for the spatially averaged carrier densities inside each section [5, 6].

This partial di�erential equation model has only one spatial dimension what allows

to compute the solutions in reasonable time. We have shown already in [5, 6, 7] that

this model is able to recover such dynamical e�ects as SP, hysteresis and excitability

demonstrated experimentally.

Simple computations of the model equations by changing one or another parameter

can give only partial insight into the dynamics of semiconductor lasers. When opti-

mizing design parameters to have a required robust behaviour of the laser, a much

deeper understanding of the bifurcations separating di�erent dynamical regimes is

desired. The methods to analyze stability of the stationary states of the TW model

were discussed in [8, 9]. But the study of nonstationary solutions requires more

advanced tools, allowing to make a full bifurcation analysis of the TW model.
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Well developed path-following and bifurcation analysis tools [10] are mainly suited

to analyze dynamics of nonlinear ordinary di�erential equations and still cannot be

directly applied to the TW model. In order to analyze our model, we approximate

it with a system of ordinary di�erential equations, where only few most important

dynamically varying longitudinal modes are taken into account [11, 12]. After de-

termining the number of necessary modes and con�rming the precision of mode

approximation (MA) equations, we demonstrate the power of the bifurcation analy-

sis explaining the origin of dynamical e�ects observed in three-section self pulsating

DFB lasers [5, 7]. The bifurcation analysis of the single or two mode approximations

explains hysteresis and di�erent mechanisms of switch on and switch o� of the self-

pulsations in this particular device. An analysis of two mode approximation allows

also to understand complex pro�les of pulses computed by the �full� TW model and

to identify a homoclinic bifurcation, which is important when designing excitable

lasers [6].

Our paper is organised as follows: In the second chapter we shortly describe TW

model for multi-section semiconductor DFB laser, introduce notion of instantaneous

modes, derive a �nite-dimensional system of MA equations and discuss an algorithm

allowing to select all important modes. The third chapter shows a performance of

the TW model simulating a particular self pulsating three-section DFB laser. The

fourth chapter analyses corresponding MA equations. Two di�erent bifurcation

mechanisms of switching on and o� of SP, the observed hysteresis and the pro�les

of computed pulses are explained. Finally, some conclusions are drawn.

2 Mathematical model

2.1 Traveling wave equations

Our mathematical model of a m-section semiconductor laser is based on the trav-

elling wave (TW) equations for the slowly varying complex optical �eld amplitudes

inside the laser cavity

 (z; t) = ( +(z; t);  �(z; t))T ; (z; t) 2 S � (0;1);

and on the rate equations for carriers

nr(t) � n(zjz2Sr ; t); r = 1; : : : ; m;

within each laser section Srj
m
r=1 with the length Lr. Here the superscript �T� indicates

the transpose and S = [0; L] is a whole laser cavity. By appropriate normalization,

j �(z; t)j2 and nr(t) are the photon density in the forward/backward travelling wave

and an averaged over the section Sr carrier density, respectively. To model nonlinear

gain dispersion we use the polarization equations (see [5]) for the functions

p(z; t) = (p+(z; t); p�(z; t))T ; (z; t) 2 S � (0;1):
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Now the TW model reads as follows:
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2
(nr � ntr);

b:c:  
+(0; t) = r0 

�(0; t);  �(L; t) = rL 
+(L; t): (1)

The notations (�1; �2)r and [�1; �2]r which we use for two and four component vector-

functions

�j = (�+j ; �
�

j )
T
; �j = (�+j; ; �

�

j; ; �
+
j;p; �

�

j;p)
T

are given by

(�1; �2)r =
Z
Sr

�
+�
1 �

+
2 + �

��

1 �
�

2 dz; [�1; �2]r = (�1; ; �2; )r + (�1;p; �2;p)r:

If the integral in the above formula is computed over the whole laser cavity S, we

will drop the index r.

The parameters �, Æ, �, �H , g, �, n
tr, I, V , A, B and C show real valued �eld

coupling coe�cient, static frequency detuning, internal loss of the �elds, Henry

linewidth enhancement factor, di�erential gain, the transversal modal �ll factor,

transparency carrier density, current injection, volume of the active zone and three

recombination parameters. gP , 2
P and !P indicate height, full width at half max-

imum and central frequency of the Lorentzian which �ts a dispersive gain function

G(n;
) at the complex frequency 
:

G(n;
) = g�(n� ntr)� gP + gP<e
�
�(
)

�
; �(
) =


P


P + i(
� !P )
:

In general, all the parameters described above can be adjusted individually in each

section. When referring to some parameter, function, operator or scalar product

within the Sr section, we use the subscript r.

In addition we are using an electron charge constant e and a group velocity vgr

which is supposed to be constant within all laser. The complex coe�cients r0 and

rL entering boundary conditions in (1) represent �eld re�ectivities from the facets,

i.e., jr0j; jrLj � 1.

2.2 Mode approximations

Similarly as in [11] we introduce instantaneous, or density dependent modes as

couples of the complex valued objects (�k(n; z);
k(n)), where

�k(n; z)=

 
�k(n; z)
�k(n; z)

!
= (�+

k ;�
�

k ;�
+
k ;�

�

k )
T
; �+

k (0)=r0�
�

k (0); �
�

k (L)=rL�
+
k (L):
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For each �xed n the complex number 
k(n) and complex vector-function �(n; z)
solve the spectral equation H(n)�k(n; z) = 
k(n)�k(n; z), which in each section Sr
is equivalent to the system

(
�k(z; n) = �r(
k(n))�k(z; n);�
H0;r(n) + ivgrgP;r(1� �r(
k(n)))=2� 
k(n)

�
�k(z; n) = 0

r = 1; : : : ; m: (2)

Since the operator H(n) is not self-adjoint, the eigenfunctions �k, in general, are

not orthogonal. We can exploit, nevertheless, the orthogonality of �l(n; z) and an

adjoint function

�y

k(n; z) =

 
�y

k(n; z)
�y

k(n; z)

!
=
�
���

k ;�+�
k ;

vgrgP

2
P
���

k ;
vgrgP

2
P
�+�
k

�T
;

which is an eigenfunction of the adjoint problem

H
y(n)�y

k = 
�

k(n)�
y

k; where [Hy(n)�1; �2] = [�1; H(n)�2]:

Similarly as in [11], for each n we normalize the eigenfunctions �k(n; z)j
q
k=1 in order

to satisfy the relation

[�y

k(n);�l(n)] = L Æ
l
k: (3)

This normalization can be done, provided the eigenvalues 
k(n) and 
l(n) remain

algebraically simple for all actual values of carrier density1.

It was proved in [13], that a center manifold technique to reduce dimension of the

TW model can be used, provided the ratio between photon propagation time along

cavity and carrier life time, as well as variation of carrier densities n are small

enough. This means, that the vector function ( p ) entering (1) can be e�ectively

approximated by the function ( c

pc
) belonging to the �nite dimensional subspace

spanned on q (generalized) eigenfunctions of the operator H(n). Solution of the

resulting mode approximation equations can be considered as a small perturbation

of the solution  , p on the exponentially attracting invariant manifold. In the

present paper we shall demonstrate how the theory of [13] is formally implemented

and e�ective reduced �nite dimensional models approximating �full� TW model (1)

are obtained.

Let us assume that the eigenvalues 
k(n)j
q
k=1 of the most important modes remain

algebraically simple for all reasonable values of n. Therefore, the eigenfunctions

�k(n; z)j
q

k=1 can be normalized as in (3) and selected as the basis of the corresponding

�nite dimensional subspace. After substituting �eld and polarization functions in

(1) by

 
 c(z; t)
pc(z; t)

!
=

qX
k=1

fk(t)�k(n(t); z) =
qX

k=1

fk(t)

 
�k(n(t); z)

�(
k(n(t))�k(n(t); z)

!
; (4)

1The Fredholm alternative and the algebraic simplicity of 
k(n) for each �xed n implies

[�
y
k
;�k] 6= 0 and [�

y
l
;�k] = 0.
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one can derive the MA system of ordinary di�erential equations for the complex

modal amplitudes fk(t) describing the evolution of optical �eld and the sectional

averaged carrier densities nr(t):

_fk = i
k(n)fk �
qX

l=1; l 6=k

mX
r=1

M
r
k;l(n) _nrfl; k = 1; : : : ; q;

_nr =
Ir

eVr
� (Arnr +Brn

2
r + Crn

3
r)�<e

qX
k;l=1

K
r
k;l(n)f

�

kfl; r = 1; : : : ; m: (5)

Di�erent laser parameters entering TW model (1) but not visible explicitly in MA

system (5) are contained implicitly within the complex carrier dependent functions

K
r
k;l(n) =

vgr

Lr

�
gr�r(nr � ntr)� gP;r + gP;r�r(
l)

�
(�k(n);�l(n))r; 
k(n);

M
r
k;l(n) =

1

L
[�y

k(n); @nr�l(n)] =
vgr(i + �H;r)�rgr
2L(
k(n)� 
l(n))

�
�y

k(n);�l(n)
�
r
: (6)

When applying the MA system (5) one needs to approximate properly the functions

(6). In general, this can be done by solving the spectral equations (2) at each nec-

essary �xed n. The numerical procedure to approximate these functions in advance

before starting simulation and analysis of (5) is brie�y described in appendix.

The �nite dimensional MA model (5) has a rotational invariance, i.e., a whole class

of functions ei�fk(t)j
q
k=1 can satisfy these equations simultaneously. This rotational

invariance can be eliminated transforming q complex amplitude equations to the

equation for real function jf1j
2 and q � 1 equations for complex functions f1f

�

k j
q
k=2.

The disadvantage of such reduction is the appearance of the unknown function jf1j
2

in the denominator of some terms at the right-hand side of the resulting equations.

Nevertheless, when considering an active laser with nonzero �eld  (t) at any t and
selecting properly the �rst mode, we can keep jf1j

2 strictly positive. The advantages

of such approach will be seen when making bifurcation analysis and using path-

following algorithms. Always appearing critical eigenvalue � = 0 of the linearized

MA system at the stationary states will be absent when analysing MA system with

eliminated rotational invariance.

2.3 Mode selectivity

Let us discuss now the determination of the most important modes and their number

q. Mathematical theory [13] and physical feeling suggests to use the modes (�k;
k)
with the smallest values of =m(
k) indicating damping (=m(
k) > 0) or gain

(=m(
k) < 0) of the corresponding mode.

Nevertheless, such a mode selection can be wrong when considering particular lasers

[5, 7]. The left part of the Fig. 1 shows dynamics of the eigenfunctions 
l(n(t))
(above) and the modal amplitudes jfl(t)j (below) during the self pulsation in a

three-section DFB laser. Here the k-th mode with the second smallest damping
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=m(
k) has only small amplitude jfk(t)j, while the mode with the second biggest

amplitude jf2(t)j has a large damping value =m(
2).

Such a situation occurs due to the special form of the not self-adjoint operator H(n).
The eigenvectors �k(n) are nonorthogonal and carrier dependent, photon density

( ;  )r=Lr can contain relatively large coupling terms Kr
k;lf

�

kfl. The growth or decay

of jfkj is determined not only by =m(
k), but also by the coupling terms

<e
h
M

r
k;l(n)e

i(arg(fl)�arg(fk))
i
jflj _nr:

These terms are proportional to the amplitude jflj, change the sign approximately

with an angular frequency <e(
l � 
k) � @t(arg(fk) � arg(fl)) and are inverse

proportional to j
k(n) � 
l(n)j (see (6)). Therefore, there is no wonder, that for

su�ciently large jf1j and close complex frequencies 
1 and 
2 (note di�erent scaling

of axes in the left upper diagram of Fig. 1) the coupling terms can be slowly changing

and large enough to support a signi�cant growth of jf2j. At the same time, for the

k-th mode j
1(n)�
k(n)j � 1, the coupling with the �rst mode is small, the growth

of jfkj is determined mainly by the term =m(
k(n)) which is not su�cient to give

a signi�cant contribution of this mode to the optical �eld.

Also, the computed eigenvalues 
l(n) do not give an answer how much and which

modes are needed to approximate su�ciently the optical �eld  in each particular

case. For this reason, when making mode analysis and approximation of TW model

(1), close to the numerically observed bifurcations of stable solutions we apply the

following iterative procedure:

� Decompose computed nonstationary �eld/polarization functions at some set

of time moments tj into �nite number of modes �l(n(tj); z)j
s
k=1 (see (4)). After

normalisation of the modes (3), adjust the mode numbers to have

max
j
jf1(tj)j � max

j
jf2(tj)j � � � � � max

j
jfs(tj)j:

� Select q modes, guaranteeing a su�ciently small approximation error:

max
j;z

��� (tj; z)�Xq

l=1
fl(tj)�l(n(tj); z)

��� � ":

This number q should be as small as possible.

� Make a bifurcation analysis of the MA system based on the q mode approxi-

mation.

� Compare nonstationary solutions and bifurcations of the MA system with the

solutions and bifurcations of the TW model (1).

� If the agreement between the solutions and bifurcation diagrams of the TW

and the MA systems is weak, adjust q := q + 1 and repeat the last two steps

of the algorithm.
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Figure 1: Left: traces of modal gain/damping values (above) and modal amplitudes (below)

versus optical frequency during SP at �xed ' (thin lines). Thick points indicate situation

at �xed time t0 and density n(t0). Re�ectivity spectra of DFB sections is depicted on the

top. Right: �eld intensity inside active section at stationary states or its local maxima

and minima during SP observed by TW model. Solid and dashed lines represent increase

or decrease of parameter '. A,B,C and D are the values of ' where bifurcations of stable

states are observed.

In general, this procedure can give a good approximation and understanding of the

TW model only locally. When changing the parameters, all modes are changing,

some modes can loose their importance and another modes can become dominant.

Therefore, when doing bifurcation analysis of the MA system based on once selected

q modes in a large parameter domain, one should frequently check the validity of

approximation at di�erent parameter values.

3 Three section DFB laser

We shall illustrate the power of our new approach considering a 3 section DFB

laser as discussed in [5, 7]. Such a laser contains two DFB sections and a passive

phase tuning section (S2) in between. One DFB section (S3) is low pumped just to

keep carriers at transparency, is passive and plays role of dispersive re�ector. Since

g3(n3 � ntr) � 0 and g2 � 0, carriers do not couple to the optical �eld in these

sections and need not to be resolved (see also [9, 7]). The multipliers _n2 and _n3,
entering the coupling terms in MA system (5) can be set to zero. Another DFB

section (S1) is pumped well above threshold (I1 = 90 mA) and is active. It is the

only section where carrier rate equations in (1) or (5) should be solved.

We use the same laser parameters as in [7]. In addition, the parameters

vgrÆ1 = 524GHz � 2�; vgrÆ3 = �340GHz � 2�

give detuning of the DFB gratings indicated by the the re�ectivity spectra of DFB

sections shown on the top of the left part of Fig. 1. The polarization curve is centered
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at zero reference frequency and is given by

gP;1 = 40 cm�1
; 2
P;1 = 7:3THz � 2�; !P;1 = 0; and gP;2 = gP;3 = 0:

Both detuning and polarization allow to suppress su�ciently the left resonance mode

(�k;
k) indicated in the left upper diagram of Fig. 1 for all considered values of

bifurcation parameter ' = 2Æ2L2=2� 2 [0; 1] (see also [5]).

3.1 Laser operation regimes at di�erent phases

Let us discuss now a bifurcation diagram shown in the right part of Fig. 1, where

stable solutions of TW model (1) are shown. Computations were made in similar

manner as described in [7]:

� for �xed ' we solve TW model for some transient time;

� from last part of this time interval we determine one or more local minima

and maxima of oscillating intensity of optical �eld within active section;

� adjust a new slightly di�erent value of ' and initial conditions  (0; z), p(0; z),
n(0) which are the �nal values of �eld, polarization and density in previous

computation.

One can see, that TW model shows a constant �eld intensity outside the phase

interval [B;C]. Within the phase interval [A;D] the SP are observed. The SP

solutions at the di�erent sides of the pulsation interval [A;D] have di�erent pro�les:
the pulses at the left border of this interval are almost harmonic, while the pulses

at the right border have secondary peaks, what is indicated by additional lines.

A hysteresis occurs in the intervals [A;B] and [C;D], where appearance of stable

self pulsating or stationary (rotational wave) solution depends on the direction of

variation of parameter '. Both these intervals are of similar size, but, as it will be

shown in the following chapters, have a di�erent origin.

Note also, that here as well as in the sequel the right direction of abscissas show

decreasing ', what correspond to the increased phase section current in the experi-

ments.

3.2 Stationary states

It is easy to �nd, that any stationary (rotational wave) solution of the TW model

(1) in our three-section laser can be written as

h
 ; p; n

i
=

h
�fj�j(�n; z)e

i
j (�n)t; i �fj�(
j(�n))�j(�n; z)e
i
j(�n)t; �n

i
;

=m(
j(�n)) = 0; j �fjj
2 =

� I1
eV1

� (A1�n+B1�n
2 + C1�n

3)
�.
K

1
j;j(�n): (7)
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The stable stationary states indicated in the right part of Fig. 1 are due to the

minimal threshold mode (�j;
j), de�ned by the relation

=m(
j(�n)) = 0; 8k; 8n < �n =m(
k(n)) > 0: (8)

It is clear, that any stationary (rotational wave) solution (7) of TW model corre-

sponds to the stationary solution

[f1; : : : ; fq; n] = [ �f1; : : : ; �fq; �n]; �fk 6=j = 0 (9)

of any reduced MA system (5), if only the corresponding mode (�j;
j) is present
among the selected q modes.

In general, stability properties of these solutions for the TW and the MA systems

based on di�erent set of modes are di�erent. The properties of the stationary sin-

gle mode solutions (7) or (9) depend on all other considered modes. Therefore, a

proper selection of the approximating modes is very important when looking for a

good agreement between stability properties of the MA system and the TW model

solutions.

4 Bifurcation analysis

From now we shall analyze the performance of the TW model (1) using the MA

systems (5) and following the algorithm suggested in the section 2.3. We shall show,

how a single mode (q = 1) and two mode (q = 2) approximations of the TW model

allow to understand completely bifurcations of the TW model indicated in the right

part of Fig. 1. When analyzing stability of solutions, we use the MA equations with

eliminated rotational invariance, as it was supposed in the section 2.2. Therefore,

our single and two mode approximations now are two or four dimensional systems

respectively.

4.1 Hysteresis interval [A;B]

Let us consider the phase interval ' 2 [A;B] where the TW model shows both

stationary and SP solutions. Following the algorithm suggested in the section 2.3,

we choose the parameter ' close to the bifurcation value B and decompose computed

optical �eld  (z; t) at the di�erent time moments within one period of SP into the

number of modes as in (4).

The left lower part of Fig. 1, shows the dominant contribution of the minimal thresh-

old mode (�1;
1). Therefore, we suggest �rst, that a single mode approximation of

the TW model can be used. The bifurcation analysis of the single mode approxima-

tion was made with path-following tool AUTO [10] and is represented by a medium

thickness lines in the left part of Fig. 2. Thin lines in the same �gure show corre-

sponding results of the TW model. The stationary states of TW and single mode
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Figure 2: Field intensity inside active section at stationary states or its local maxima and

minima during periodic oscillations. Thin solid and dashed lines represent TW model as

in the right part of Fig. 1. Thick lines represent two mode approximation, while medium

thickness lines in the left diagram show results of single mode approximation. Solid and

dotted lines in mode approximation cases indicate stable and unstable limit cycles and

stationary states.

approaches coincide, a qualitative agreement between amplitudes of the SP nearby

the interval ' 2 [A;B] is also seen. At the same time, a quantitative agreement of

the full bifurcation diagrams is still weak. The parameter intervals, where stable

stationary state and stable SP coexist are overestimated in the single mode case.

Following an algorithm of the section 2.3, we take into account an additional mode

which has the second biggest amplitude jf2(t)j (see left lower diagram of Fig. 1).

Bifurcation diagram of the resulting two mode approximation is indicated by thick

lines in the left part of Fig. 2. One can see a perfect agreement between two mode

and TW cases not only comparing the amplitudes of SP, but also comparing full

bifurcation diagrams. We conclude, that at these conditions the TW model can be

successfully approximated by two mode system.

The analysis of the stationary state in single or two mode approximation system have

shown that stationary state loses its stability in a supercritical Hopf bifurcation at

' = B1 or ' = B2 � B respectively. An unstable limit cycle is born at a Hopf

bifurcation point and disappears in a fold bifurcation at ' = A1 or ' = A2 � A.

Here it collides with a corresponding stable limit cycle, which approximates a self

pulsating solution observed in basic TW model.

In such a manner we have identi�ed the hysteresis observed in the basic TW model

(1) at the phase interval [A;B]. Single and two mode approximations have shown

a stable stationary state and a stable limit cycle separated by unstable limit cycle

within corresponding phase interval [Ai; Bi]; i = 1; 2. (For two mode approximation,

such a separation actually happens on the attracting two-dimensional manifold in

the four dimensional phase space). The ends of the hysteresis interval [Ai; Bi] are
determined by the fold bifurcation of limit cycles and by the Hopf bifurcation of

stationary state respectively. Depending on the direction in which parameter '
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is tuned, we are staying with a stable self-pulsating solution or stable stationary

(rotational wave) solution within the phase interval [Ai; Bi] (or [A;B] for TW model)

until corresponding bifurcation point is not reached. At such borders an abrupt

transition from the stationary state to self pulsating state (phase B, Bi) or vice

versus (phase A, Ai) could be observed.

4.2 Hysteresis interval [C;D]

The situation at the other side of the phase interval where SP were observed is

somehow more complicated. It can not be explained by simple single mode approx-

imation. A decomposition of the self pulsating optical �eld  (z; t) into the modal

components clearly shows a large in�uence of two modes interchanging during dif-

ferent parts of pulsation period (see, e.g., thin lines in the left lower part of Fig. 3).

After �nding a good agreement between solutions of TW model and two mode

approximation system (thin and thick lines in the left upper part of Fig. 3), we make

a bifurcation analysis of the two mode approximation system changing parameter '

in the neighbourhood of the interval [C;D]. The resulting bifurcation diagram (thick

lines in the right part of Fig. 2) is in a very good agreement with a corresponding

TW model diagram represented by the thin lines in the same �gure. Therefore,

bifurcations of the two mode approximation indicate also the type of the bifurcations

in the full TW model.

Let us discuss the bifurcation diagram given in the right part of Fig. 2 in more

details. Two mode approximation has three stationary states indicated as s1, s2 and

s3 within the parameter interval ' 2 [C;D]. These states are stationary (rotational
wave) states (7) of the basic TW model as well. �n(1), �n(2) and �n(3) denote the

corresponding carrier densities of these states. Now s1 and s2 are due to the relations

=m(
2(�n
(1))) = 0 and =m(
2(�n

(2))) = 0, while s3 is de�ned by =m(
1(�n
(3))) = 0.

The stability analysis of the stationary states in two mode approximation has shown

that s1 (thick solid line) is a stable minimal threshold state satisfying (8) with index

j = 2. It is of a stable focus type on the main attracting two dimensional manifold

in the four dimensional phase space, except of only a small neighbourhood of ' = D,

where it was born together with s2 in a fold (saddle-node) bifurcation and is of a

stable node type. s2 (thick dashed line) is unstable state of a saddle type and possess

only one unstable direction in the four dimensional phase space. The main attracting

manifold of this saddle in the phase space is also one dimensional. The unstable

state s3 (thick dotted line) has two dimensional repelling and attracting manifolds

in the phase space, where it behaves as a stable and unstable focus respectively.

Finally, c1 represents a stable limit cycle (or self pulsations), observed in TW model

and two mode approximation system, and is indicated in the right part of the Fig. 2

by thin and thick solid lines respectively. The bifurcation analysis of two mode

system have shown a homoclinic bifurcation of this limit cycle at the phase ' = D.

When approaching this phase, the limit cycle c2 tends to the saddle s2 and the
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period of c2 blows up (the frequency of SP goes to zero). The TW model as well

as its two mode approximation have shown a strong decay of SP frequency when

approaching phase D. In general, such a frequency decay before switching o� SP

can be observed in experiments as well.

In such a manner we have identi�ed the bifurcations which causes the switch on and

switch o� of the SP at the phases C and D in the two mode approximation and full

TW model. Namely, we have fold (saddle-node) bifurcation of stationary states at

' = C and homoclinic bifurcation of a limit cycle at ' = D. A hysteresis within

interval [C;D] is observed due to the two stable solutions s1 and c1 coexisting in this

interval. At the borders of this interval an abrupt transition from the stationary

state to self pulsating state (phase C) or vice versus (phase D) could be observed.

We have observed quite frequently a similar scenario how a new pair of stationary

states appears and the SP solution vanishes in a two-mode homoclinic bifurcation,

when studying a broad class of multi-section DFB lasers [6].

4.3 Pulse pro�les close to homoclinic bifurcation

Let us discuss now in more details the behaviour of periodic solution c2 close to

the homoclinic bifurcation at the phase ' = D. A trajectory of the limit cycle c1
comes close to the saddle s2, what causes an appearance of the third local pulse

maxima (see right parts of the Fig. 1 and Fig. 2) at the phases ' 2 [C;D]. A

temporal trace of such SP at ' � D is drawn in the left part of Fig. 3. A long

plateau of pulse indicates a long time which is needed for a trajectory to pass the

neighbourhood of a saddle. The pulses computed by the TW approach (thin line)

or two mode approximation (thick line) are in perfect agreement, only the periods

are slightly di�erent due to the di�erent length of pulse plateau. This e�ect is due

to the slightly di�erent distance between pulse trajectory and the saddle s2. Finally,

the right part of Fig. 3 is a projection of the two mode approximation phase space

onto three dimensional subspace (jf1j
2
; jf2j

2
; n1) just before homoclinic bifurcation

at ' � D. Here we can see again how cycle c1 approaches saddle s2. Another

thick points s1, s3 and lines in this diagram indicate other two stable and unstable

states and some trajectories. Thin arrows drawn on the projection planes show the

direction of the vector �eld of two mode approximation and are in correspondence

with the sign of modal gain/damping functions given in the insert of the same �gure.

Now we can easily explain the two-spiked pro�le of the computed pulse shown in the

left upper diagram of Fig. 3. The trajectory of the cycle c1 makes a large excursion

in the phase space bypassing the saddle stationary state s2 from the left and entering

the region with n1 > n
(3), where the second mode is damped, the �rst mode increases

and the main spike of pulse is observed. The trajectory returns to the plane where

the �rst mode is damped and the second mode is growing (n1 2 [n(1); n(2)]) and here

exhibits the second peak of the pulse. Finally, it slowly bypasses the saddle again,

showing the third local maxima of the pulse.
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Figure 3: Left: SP in time domain just before homoclinic bifurcation. Field intensity

inside active section (above) and the modal amplitudes (below) in two mode approximation

(thick lines) or TW model (thin lines). Right: homoclinic saddle - limit cycle bifurcation

in the 3D projection of the phase space. An insert shows the functions =m(
1(n)) (solid)

and =m(
2(n)) (dashed) indicating also an actual variation of n1(t) during SP (thick part

of the lines).

All such double-spiked SP are clearly governed by two modes. These pulses can be

observed for quite large phase parameter interval, as is indicated in the right parts

of the Fig. 1 and Fig. 2. They appear already at the phases, where a stationary

solution pair s1 and s2 are still absent. Here we have the only stationary state s3
with =m(
1(�n

(3))) = 0 and =m(
2(n1)) > 0 for all actual n1. Nevertheless, as it

was discussed in the section 2.3, the coupling term M
1
2;1(n) _n1f1 in the (5) can be

su�cient to force signi�cant growing of jf2j. The temporal pro�le of pulse in this

case is similar to those indicated in the left part of Fig. 3, only plateau close to the

saddle is shorter or absent at all, since the saddle s2 has not appeared yet.

5 Conclusions

Simple ordinary di�erential equation models which take into account only a few

temporarily varying longitudinal modes of optical �eld are able to approximate the

TWmodel. Being in good qualitative and quantitative agreement with the basic TW

model, the MA system of the ordinary di�erential equations can be analyzed with

well known tools for bifurcation analysis [10]. In a such manner we have identi�ed

bifurcation mechanisms which course switch on and switch o� of the self pulsations

in three-section DFB laser. We believe, that these MA systems and their analysis

can be very helpful when designing and optimizing semiconductor lasers for future

communication systems.
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Appendix. Numerics

To solve and to analyse the problems discussed above we have used our own software

package LDSL (stands for �Longitudinal Dynamic in Semiconductor Lasers�).

As it was already discussed in [7], to solve TW model we have used either transfer

matrix method (see [14]), or �nite di�erence schemes of predictor-corrector type.

Our software allows us to solve mode equation (2) and �nd some tenths of modes

(�k(n; z);
k(n)) at �xed values of n and parameters:

� In the case, when we already have computed modes for a laser with slightly

di�erent n or parameter values, these 
k serve as initial approximations in the

applied Newton iteration scheme.

� When such approximations are not good enough, we solve a series of interme-

diate eigenvalue problems (2) approaching monotonously required values of n

and parameters and using the values of 
k computed at intermediate steps as

initial Newton scheme approximations for the next step.

� When we have no information about initial approximations of 
k at all, we

make similar series of computations approaching necessary n and laser param-

eters starting computations from the analogous multi-section laser with no

coupling between counter propagating �elds (� = 0) and nonzero facet re�ec-

tivities (r0rL 6= 0). The eigenvalues 
k for a such laser are given by known

analytical formula and can serve as initial approximations for the �rst of our

intermediate eigenvalue problem.

To determine the leading modes for the mode approximations of TW model, we

solve TW equations (1) once at some typical non-stationary state and decompose

numerically obtained �eld/polarization  (z; t); p(z; t) into series of modes (4) at

some di�erent values of n = n(t). In a such manner obtained time dependent

amplitudes jfk(t)j give us the information about the most important modes (see

section 2.3 and left part of Fig. 1). In the examples discussed above, we selected

only single or two of them. Once selecting necessary modes, we can trace them when

varying n and parameters as was discussed before.

Having the values of 
k(n) at the �xed parameters and n we can �nd analytically the

values of the functions M r
k;l(n) and K

r
k;l(n) (6) which enter the MA equations (5).

Before solving MA equations we select a grid covering typical range of varying carrier

densities n and compute the values of necessary functions (6) in all grid points. When

solving the equations (5) we interpolate these functions at the intermediate values

of n by local cubic splines.

To make a bifurcation analysis (i. e. to follow the solutions when changing some

parameter p) we need to have not only n but also p dependent functions 
k(n; p),
M

r
k;l(n; p) and K

r
k;l(n; p). In this case we select the grid in the more dimensional

density/parameter space and proceed in the same manner as before.
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To solve the ordinary di�erential mode approximation equations we have used stan-

dard adaptive mesh fourth-order Runge-Kutta methods. The bifurcation analysis of

mode approximations partially was made with the help of software package AUTO

(see [10]).
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