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Abstract

The �eld distribution at the ports of the transmission line structure is

computed by applying Maxwell's equations to the structure and solving an

eigenvalue problem. The high dimensional sparse system matrix is complex

in the presence of losses and Perfectly Matched Layer. A method is presented

which preserves sparseness and delivers only the small number of interesting

modes out with the smallest attenuation. The modes are found solving a

sequence of eigenvalue problems of modi�ed matrices with the aid of the invert

mode of the Arnoldi iteration using shifts. A new strategy is described which

allows the application of the method, �rst developed for microwave structures,

to optoelectronic devices.
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1 Introduction

The design of microwave and optoelectronic devices requires e�cient CAD tools in

order to avoid costly and time-consuming redesign cycles. The �elds of applications

are mobile communications, radio links, automobile radar systems, optical communi-

cations and material processing. The commercial applications of microwave circuits

cover the frequency range between 1 GHz and about 100 GHz, special applications

in radioastronomy use even higher frequencies up to 1 THz. For optoelectronic de-

vices frequencies about several hundred THz are common.

The structures under investigation can be described as an interconnection of in-

�nitely long transmission lines, which have to be longitudinally homogeneous. Ports

are de�ned on the transmission lines. The junction, the so-called discontinuity, may

have an arbitrary structure. The whole structure must be surrounded with an en-

closure.

For numerical treatment, the computational domain has to be truncated by electric

or magnetic walls or by a so-called Absorbing Boundary Condition (ABC) simulating

open space. Among the ABC's, the Perfectly Matched Layer (PML) [1] technique

represents the most powerful formulation.

The �eld distribution at the ports can be calculated by applying Maxwell's equations

to the transmission line structure and solving an eigenvalue problem [2]. The high

dimensional sparse system matrix is complex in the presence of losses and PML.

First the method to �nd all eigen modes within in certain region of the complex plane

was developed for microwave structures [3],[4]. The algorithm can also be applied

to optoelectronic devices. The dimension and the number of eigenvalue problems

to be solved increases essentially in this case caused by the high frequency. New

strategies to handle these problems in a feasible time are described.

2 Boundary Value Problem

A three-dimensional boundary value problem can be formulated using the integral

form of the Maxwellian equations in the frequency domain in order to compute the

electromagnetic �eld:
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~D = [�] ~E; ~B = [�] ~H: (2)
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At the ports p the transverse electric �eld ~Et(zp) is given by superposing transmission

line modes ~Et;l(zp):

~Et(zp) =

m
(p)X

l=1

wl(zp) ~Et;l(zp): (3)

The transverse electric mode �elds have to be computed solving an eigenvalue prob-

lem for the transmission lines. All other parts of the surface of the computation

domain are assumed to be an electric or a magnetic wall:

~E � ~n = 0 or ~H � ~n = 0: (4)

In order to simulate open structures we use Perfectly Matched Layers as an Absorb-

ing Boundary Condition. The PML provide absorbing properties for any frequency,

polarization and angle of incidence. These layers are �lled with an arti�cial material

with complex anisotropic material properties. Therefore, the complex permittivity

[�] and the complex permeability [�] are diagonal tensors:

[�(x; y; z)] = �0 diag
�
~�x +

~�x
e

|!
; ~�y +

~�
y

e

|!
; ~�z +

~�z
e

|!

�
;

[�(x; y; z)] = �0 diag
�
~�x +

~�xm
|!
; ~�y +

~�
y

m

|!
; ~�z +

~�zm
|!

�
:

(5)

The quantities �0 and �0 denote the permittivity and the permeability for a vac-

uum, [~�] = diag (~�x; ~�y; ~�z) and [~�] = diag (~�x; ~�y; ~�z) the relative permittivity and

permeability, [�e] = �0 diag (~�x
e
; ~�y

e
; ~�z

e
) and [�m] = �0 diag (~�x

m
; ~�y

m
; ~�z

m
) the electric

and magnetic (introduced for PML) conductivity, respectively. There is always an

electric or magnetic wall (see (4)) behind the PML.

3 Maxwellian Grid Equations

The problem is solved numerically by the so-called Finite Di�erence Method in

Frequency Domain (FDFD) (see [5]). Staggered nonequidistant rectangular grids

are used. The electric �eld intensity components form a primary grid, and the

magnetic �ux density components a dual grid. Using a �nite volume approach with

lowest-order integration formulaeI
@


~f � d~s �
X

(�fisi);
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~f � d~
 � f
 (6)

Maxwell's equations are transformed into a set of Maxwellian grid equations:

ATDs=~�
~b = |!�0�0DA~�

~e; BDA~�
~e = 0;

ADs~e = �|!DA~�
~b; ~BDA~�

~b = 0:
(7)

The vectors ~e and~b contain the components of the electric �eld intensity ~E and of the

magnetic �ux density ~H of the elementary cells, respectively. The diagonal matrices
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Ds=~�, DA~�
, Ds, and DA~�

contain the information on cell dimension and material.

A, B and ~B are sparse and contain the values 1, -1 and 0 only. Substituting the

components of the magnetic �ux density from the two equations of the left-hand

sides of (7) the number of unknowns can be reduced by a factor of two and we get

the system of linear algebraic equations

(ATDs=~�D
�1
A~�
ADs � k20DA~�

)~e = 0; k0 = !
p
�0�0; (8)

which has to be solved using the boundary conditions. k0 is the wavenumber in

vacuum.

4 Eigen Mode Problem

Because the transmission lines are longitudinally homogeneous any �eld can be

expanded into a sum of modal �elds which vary exponentially in the longitudinal

direction:
~E(x; y; z � 2h) = ~E(x; y; kz)e

�|kz2h: (9)

A substitution of this ansatz into the system of linear equations (8) and the elimina-

tion of the longitudinal electric �eld intensity components by means of the electric-

�eld divergence equation (see equations (7)) gives an eigenvalue problem:

C~e = ~e;  = �4 sin2(hkz): (10)

~e consists of components of the discretized eigenfunctions ~E. 2h is the length of

an elementary cell in z-direction. The relation between the eigenvalues  and the

propagation constants kz is nonlinear:

kz =
|

2h
ln

�


2
+ 1 +

r


2

�
2
+ 2
��

= � � |�: (11)

We are interested only in a few modes with the smallest attenuation. These are the

modes with the smallest magnitude of imaginary part, but possibly with large real

part of their propagation constant. The computation of all eigenvalues in order to

�nd a few propagation constants must be avoided for the high-dimensional problem.

For numerical treatment we have to limit the search for propagation constants by

a maximum value kf of their real part. For the propagation constant kz of a wave-

guide homogeneously �lled with isotropic material with the permittivity � and the

permeability � we have

<(kz) � <(k); with k = !
p
��: (12)

k is the wavenumber of a plane wave in the same material. From this, we assume

that for inhomogeneously �lled waveguides the relation

<(kz) � kf = !<(
p
�l�l) (13)
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holds, where �l and �l are properties of the material that yields the largest value of

the right-hand side of Equation (13) (see also [6]). Modes with �elds concentrated

in metals would be strongly attenuated. As we are interested in propagating modes,

we can exclude all metals from the search for �l and �l. The PML's can also be

excluded from the search for �l and �l, since propagating modes are concentrated in

the area of the waveguide.

Using kf from (13) and a preset maximum value �m of the imaginary part of the

propagation constants the region containing the interesting constants is de�ned as

a rectangle F̂ (see Figure 2) bounded by the lines

� = �kf and � = �m: (14)

We can use the approximation sin(x) � x in (10) if we choose h to be small enough,

which is necessary anyway to get small discretization errors:

 = �4 sin2(hkz) � �4(hkz)2 = u+ |v: (15)

With aid of the approximation (15) we get a conformal mapping between the plane

of eigenvalues (-plane) and the plane of propagation constants (kz-plane, see (11)):

u = �4h2(�2 � �2); v = 8h2��: (16)

Using this mapping the rectangle F̂ of the kz-plane is transformed into a region F

of the -plane bounded by the two parabolas

v = �4hkf
q
u+ 4h2kf

2 and v = �4h�m

p
�u+ 4h2�m

2: (17)

That means, we have to �nd all eigenvalues of the region bounded by the parabolas

(see Figure 1).

5 Computation of Eigen Modes

The dimension n of the eigenvalue problem (10) is too large to use a direct method.

We need an algorithm that computes just a few selected eigenvalues and eigenvectors

of a complex sparse matrix. A state-of-the-art algorithm for such problems is the

Arnoldi method [7], [8]. In general the Arnoldi method converges for our problem

only using the invert mode and looking for eigenvalues of largest magnitude. Thus,

a simple way to �nd the eigenvalues located in the region F would be to look for

all eigenvalues of smallest magnitude, which are located in a circle centered on the

origin and covering the region F . Caused by the high wavenumber kf , the number

of eigenvalues located in this circle is too much in general for a feasible computation

using an iterative method. We can solve this problem covering the region F with

s � 1 circles Ci; i = 1(1)s, centered on the u-axis and calculating the eigenvalues

located in these circles. That is done in the following way. s points P̂i(�i; �m) with

�i = i
kf

s
; if

kf

s
� ��; s given; �� =

p
3�m; i = 1(1)s; (18)
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are calculated on the interval [0; kf ] of the line � = �m. The meaning of the minimum

distance �� is discussed below. The number s and the location of the points Pi can

be changed by the method described below. In this case we could have �s > kf in

order to ful�ll condition
kf

s
� ��s. The points P̂i are transformed into the points

Pi(ui; vi) of the -plane using (16). They are located on the parabola ((17), right

formula). s circles Ci centered on the u-axis are built with the points Pi:

(u+mi)
2 + v2 = ri

2; ri =
p

(=(Pi))2 + (mi �<(Pi))2; i = 1(1)s; (19)

with

m1 = 0; mi =
(<(Pi+1))

2 � (<(Pi))
2 + (=(Pi+1))

2 � (=(Pi))
2

<(Pi+1)�<(Pi)
: (20)

The circles Ci cover the region bounded by the parabolas (17) (see Figure 1).

In order to �nd all eigenvalues, located in the circle Ci, l points Qj are de�ned on

the periphery of Ci. The matrix C is extended by the diagonal matrix Q. The

diagonal elements of Q are the l complex elements Qj:

�C =

�
Q

C

�
; Q = diag(Q1; :::; Ql): (21)

The s eigenvalue problems

( �C �miI)~e = ( �mi)~e; i = 1(1)s; (22)

are solved with the aid of the implicitly restarted Arnoldi method using the invert

mode. The eigenvalue problems can be solved separably. We consider one circle Ci.

The number m of eigenvalues to be computed for this circle must be l on the �rst

call to the Arnoldi procedure. The main idea is to raise m by l for so long until at

least one value Qj was found. But, since m� n (n order of matrix �C) for a feasible

computation, one has to restrict the number m of required eigenvalues by mmax.

If m exceeds mmax we look for the eigenvalue max of largest magnitude located in

circle Ci. If

j=(Pi)j <
p
jmaxj (23)

we de�ne a new circle ~Ci of radius
p
jmaxj centered on the u-axis and containing Pi

on the periphery. May be ~Pi+1 the intersection point of ~Ci with the parabola ((17),

right formula). The distance between the corresponding points in the kz-plane is

� ~̂P = <( ~̂P )
i+1 �<(P̂i): (24)

If � ~̂P � �� (see (18)) we accept the new circle and proceed with the distance � ~̂P .

We insert a point P̂
i+ 1

2
between P̂i and P̂i+1, if condition (23) or � ~̂P � �� is not

ful�lled. That means, two eigenvalue problems have to be solved for the interval

[P̂i; P̂i+1] rather than one. This procedure can be repeated taking into account that

the minimum distance �P̂ between two neighboring points should not be fall below
��. The same procedure is used if a given number �max of iterations in the Arnoldi
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method is exceeded.

Separating the new values on each eigenvalue problem i, we are sure to have found

all eigenvalues which are located in the corresponding circles Ci. The number m of

eigenvalues to be computed for the circle Ci+1 is adapted to the number of eigenval-

ues found in Ci.

Applying the mapping (16) the circles Ci (see (19)) are transformed into Cassinian

curves Ĉi

(�2 + �2)2 �
mi

2h2
(�2 � �2) =

ri
2

16h4
�

mi
2

16h4
; (25)

which cover the rectangle F̂ containing all desired propagation constants. Propa-

gation constants outside of F̂ and PML-Modes (see Section 6) are eliminated. The

Cassinian curves Ĉi; i = 2(1)s, consist of two separated ovals (see Figure 2, right

and left curve), if ri < mi. Using �� as minimum distance between two points P̂i

and P̂i+1 (see (18)) other shapes of Cassinian curves (e.g. waisted oval in Figure 2),

which would lead to higher execution times, are avoided.

If the condition �P̂ � �� cannot be ful�lled, we have to restart with new parameters

mmax, �max and possibly �m.

Because in general the Arnoldi method does not converge using the regular mode

for our eigenvalue problem the invert mode with shifting (see (22)) is applied. A

system of linear algebraic equations has to be solved on each iteration step in this

case. We use the combined unifrontal/multifrontal method [9] for the solution of

the partly ill-conditioned nonsymmetric complex linear algebraic equations.

6 Detection of PML Modes

The PML is applied in order to compute the eigen modes of open waveguide struc-

tures. Introducing the PML permits the calculation of radiation e�ects. Additionally

the absorbing boundary suppresses the interaction between the waveguide modes

and higher order modes, caused by the �nite simulation domain. Anyway, these

undesired modes are generated, due to the electric or magnetic walls behind these

absorbing boundary layers. The PML shifts these box modes inside the F̂ area. As

a criterion to distinguish between waveguide modes and undesired modes we use the

power concentration of all modes by way of comparison. Undesired modes are char-

acterized by a high power concentration inside the PML region, while propagating

modes are concentrated in the waveguide area. Thus, to eliminate the PML-modes

we calculate the magnitude of the power �ow of each computed mode in the PML

(P (P )), in the waveguide region (P (W )), and in the total computational domain (P ):

P = P (P ) + P (W ) =

Z


(P )

�
~Et � ~H�

t;m

�
� d~
 +

Z


(W )

�
~Et � ~H�

t;m

�
� d~
 : (26)

A mode is speci�ed as PML-mode if the ratio

r(P ) =
P (P )

P
> � ; (27)
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with values � = 0:2; : : : ; 0:6, found empirically, is satis�ed.

7 Application

As an example we have calculated the guided mode of an optoelectronic device.

A so called self aligned stripe (SAS) laser is investigated, see Figure 3. This laser

structure contains an additional, so called antiguided layer (marked with yellow

color in Figure 3) outside the emitting stripe (marked with red color in Figure 3).

This high power laser diode excites only the fundamental mode, the active region

is useful for wavelengths shorter than 800 nm. In our eigen mode computation

of the laser structure a graded mesh of 211 times 322 elementary cells, including

10-cell PML regions, is used. The frequency is �xed to 299:7925 � 1012Hz. The

maximum cell size amounts �

12
= 25nm, where � denotes the wavelength in the

material with the highest <(�). The minimum cell size is 3nm. Maximum cell size is

scaled down exponentially in the vertical direction near the 100nm zones and in the

horizontal direction near the material cut 107 and 108 (see Figure 3). The dimension

of the eigenvalue problem is approximately 135 000. 74 Cassinian curves have been

used to cover the long small region of the complex plane (�m = 2500m�1, kf =

21765592:37m�1, see (14) and Figure 4) containing potential guided modes. The

long small region is caused by the high wavenumber. One guided mode according

to the lasers fundamental mode, was found. The computed complex propagation

constant is given by

�e� =

�
kz

k0

�2

= 10:978012 + |0:001545; k0 = 2
�

�0
; (28)

�0 denotes the wavelength in vacuum. k0 is designed with ak0 in Figure 4.
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Figure 1: -plane, coplanar waveguide

            

Figure 2: kz-plane, coplanar waveguide
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Figure 3: Laser (ampli�er)

            

Figure 4: kz-plane, Laser
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