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Abstract

In this paper we investigate relaxation properties of a 1D steady state �ow

in a porous medium which is linearly perturbed in �ow direction. We consider

two cases of relaxation: without adsorption and with adsorption. The �elds

are assumed to be a superposition of a stationary (nonuniform) solution and

of in�nitesimal disturbances in the form of a linear wave ansatz. We show that

such �ows are absolutely stable with respect to longitudinal disturbances. It

means that a smaller real part of the exponent in this ansatz yields a faster

relaxation of the perturbation and the �ow recovers faster the equilibrium.

We solve numerically the eigenvalue problem for the �rst step �eld equations

using a �nite di�erence scheme and compare the results for the perturbation

without mass exchange with the analytical solution. Calculations demonstrate

the range of permeability coe�cients with the fastest relaxation and the fastest

convergence of numerical solutions.

1 Introduction

The main aim of this research is to investigate the stability of �ows within the

adsorption/di�usion model for porous materials as shown in Section 5.2.1 and in-

troduced in [1] (see: [2] for a short english presentation). In the present work we

limit our attention to the analysis of a 1D �ow with a longitudinal disturbance.

In general �ow instabilities arise due to at least two competing mechanisms � desta-

bilizing, and stabilizing the �ow. Conceivable are problems like a kinematic nonlin-

earity working against viscosity or gravity competing with a temperature gradient.

In the case of our model for multicomponent systems, where a �uid �ows through

channels of a skeleton, a kinematic nonlinearity acts against the permeability (dif-

fusion) of the medium. Adsorption processes contribute in a nonlinear way to �eld

equations, and in�uence stability properties.

Two permeabilities of completely di�erent nature enter the model: the permeability

coe�cient �; and the surface permeability �: The �rst one enters �eld equations

and re�ects a bulk property of the material. It describes the e�ective resistance of

the skeleton to the �ow of the �uid (due to a microgeometry of channels, due to

the true viscosity of the �uid, etc.). The other permeability coe�cient, the surface

resistance �; enters the model through the boundary conditions of the third type,

and it accounts for properties of the surface. This is one of the material parameters

which determine the �uid velocity. Consequently these two important parameters
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of the model control two competing mechanisms responsible for the stability of the

�ow. The general aim of the analysis is to �nd regions of stability in the space

spanned by these two parameters.

For this analysis the �ow was split in a base �ow and a superposed small perturbation

in �ow direction.

Numerical results show that the base �ow for this type of perturbation is stable for

any choice of the two model parameters. To observe instability regions it is neces-

sary to superpose on the one dimensional base �ow a perturbation perpendicular to

the base �ow. This analysis will be shown in a forthcoming paper. However longi-

tudinal disturbances have an important practical bearing from the point of view of

a sensitivity of the model on changes of the permeability coe�cients. Namely they

determine the rate of relaxation of dynamical disturbances.

In order to con�rm numerical results for the case without mass exchange we compare

them with the analytical solution. It is worth mentioning that this is the only

analytical solution which we were able to construct for this model.

2 The problem

We consider a simple 1D �ow process in a two component porous medium. In

the following sections we examine the same 1D �ow with two di�erent longitudinal

disturbances: without adsorption and with adsorption. Seperately we investigate

the special case of the ideal surface permeability �!1 because we can construct

an analytical solution for this case. The �ow common for all considerations satis�es

the following set of equations

@�
F

@t
+

@�
F
v
F

@x
= 0; (1)

�
F

�
@v

F

@t
+ v

F @v
F

@x

�
= �@p

F

@x
� �v

F
;

which are the mass balance of the �uid and the momentum balance of the �uid,

respectively. Here, �F is the mass density of the �uid component, vF is the �uid ve-

locity in x-direction, and � is the bulk permeability coe�cient. The partial pressure

in the �uid p
F is given by the following constitutive relation

p
F =

0
p+ �

1
�; (2)

where
0
p is the �uid pressure in the base �ow which depends on the chosen boundary

conditions,
1
� is a small perturbation of the mass density of the �uid phase, and �
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denotes the compressibility coe�cient. It is assumed that a deformed skeleton does

not contribute to a dynamical disturbance. In addition the coupling to a changing

porosity has been neglected because this contribution is of the higher order.

We consider the following boundary conditions

� �
F
v
F
��
x=0

= �

�
p
F
��
x=0

� nEpl

�
;

�
F
v
F
��
x=l

= �

�
p
F
��
x=l
� nEpr

�
; (3)

which are of third type and express the fact that the �ow through the boundary of

the body depends on the pressure di�erence of the partial pressure in the �uid
�
p
F
�

and the external pressure which works on the �uid (on the left hand side pl and on

the right hand side pr) as well as on the permeability of the surface which is denoted

by �: nE denotes a constant porosity.

3 Base �ow

In the analysis we use a regular perturbation method restricted to zeroth and �rst

order contributions. This means that we expect the �elds to be a superposition

of the base solution (indicated by 0) and a small perturbation in �ow direction

(indicated by 1)

�
F (x; t) =

0
� (x) +

1
� (x; t) ; v

F (x; t) =
0
v (x) +

1
v (x; t) ; 0 � x � l: (4)

In order to be able to compare a numerical result with an analytical one for simplicity

we assume the base �ow to be isochoric. This means that in the zeroth step of

perturbation the mass density is constant

0
� = const = �

F
0 : (5)

This simpli�cation is supported by all calculations which we performed in earlier

papers on porous media. Bearing (1)1 for the zeroth step in mind we obtain that

also the �uid velocity is constant

0
v = const: (6)

Equation (1)2 allows us to calculate a formal solution for the partial pressure in the

�uid in the zeroth step

@
0
p

@x
= �� 0

v =) 0
p = �� 0

vx+ C; (7)

where C is an integration constant which can be determined with the boundary

condition on the left hand side of the system (x = 0)

��F0
0
v = �

�
p
F
��
x=0

� nEpl

�
; (8)
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so that we obtain

0
p = �� 0

vx+ nEpl �
�
F
0

0
v

�
: (9)

From the second boundary condition for x = l we have

�
F
0

0
v = �

�
p
F
��
x=l
� nEpr

�
; (10)

and the constant velocity of the zeroth step follows in the form

0
v =

�pd

2�F0 + ��l
; pd := nE (pl � pr) : (11)

In a more convenient form for further investigations (11) and (9) read

0
v = f

pd

�l
;

0
p = nEpl � fpd

x

l
� pd

2 + ��l

�F
0

; f :=

��l

�F
0

2 + ��l

�F
0

; f 2 [0; 1] : (12)

4 Analytical approach

4.1 General solution for the �rst step

Let us remind that
0
� =const. so that also

0
v =const. We proceed to the �rst step of

perturbation.

The perturbations in the �rst step are expressed in terms of the following simple

wave ansatz
1
� = �� (x) e!t;

1
v = �v (x) e!t; (13)

where �� (x) and �v (x) are the amplitudes of the disturbances and ! is the frequency,

possibly complex.

Using this ansatz and keeping in mind the constitutive relation
1
p = �

1
� we get the

following �rst order equations

!��+ �
F
0

@�v

@x
+

0
v
@��

@x
= 0;

!�v +
0
v
@�v

@x
+

�

�
F
0

@��

@x
+

�

�
F
0

�v = 0: (14)

The �rst step boundary conditions read

x = 0 : ��F0 �vjx=0 =
�
��+

0
v

�
��jx=0 ;

x = l : �
F
0 �vjx=l =

�
��� 0

v

�
��jx=l ;

0
v = f

pd

�l
: (15)
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From the governing set of equations (14) we can eliminate one �eld, say �v, so that

we are left with an equation of the following form

a

@
2��

@x2
+ b

@��

@x
+ c�� = 0; (16)

with

a = �0
v

2

+ �; b = �0
v

�
2! +

�

�
F
0

�
; c = �!

�
! +

�

�
F
0

�
; (17)

whose solution is

�� = Aer1x + Ber2x; r1;2 = �
1

2

b�
p
b
2 � 4ac

a

: (18)

The boundary conditions (15) connect �rst step mass density and �rst step velocity.

Namely

x = 0 : ��jx=0 = �
�
F
0

��+
0
v

�vjx=0 ; x = l : ��jx=l =
�
F
0

��� 0
v

�vjx=l : (19)

Hence, in order to exploit them we also need the solution for the velocity which we

get by integrating (14)1 and inserting the solution (18)

�v + C|{z}
�0

= � 1

�
F
0

�
!

�
A

r1

er1x +
B

r2

er2x
�
+

0
v (Aer1x + Ber2x)

�
: (20)

The additional integration constant can be easily proven to be identically zero. By

insertion of the solutions in the boundary condition for x = 0 we obtain

B =
��� !

r1
!
r2
� ��

A: (21)

Doing the same with the second condition for x = l and using (21) we get for A 6= 0

e(r1�r2)l =
��� !

r1

��+ !

r1

��+ !

r2

��� !

r2

, exp

�
l

p
b
2 � 4ac

a

�
=

(��b)
2 �

�
��

p
b
2 � 4ac� 2!a

�2
(��b)

2 �
�
��

p
b
2 � 4ac+ 2!a

�2 : (22)

This equation for ! cannot be solved analytically in a general case. We demonstrate

the solution for a particular case in the next section.
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4.2 Surface permeability �!1

In the case of simple Darcy models of porous materials it is assumed that permeable

boundaries are ideal. This means that the surface permeability coe�cient � tends

to in�nity and the boundary conditions (3) reduce to the following ones

p
F
��
x=0

= nEpl; p
F
��
x=l

= nEpr: (23)

This assumption simpli�es considerably the equation (22), and simultaneously demon-

strates important features of relaxation processes in the model. We proceed to in-

vestigate this case. From the second equation (1) together with the above boundary

conditons we obtain

0
v =

pd

�l
(f = 1 in (12)) ;

0

p
F = �� 0

vx + nEpl: (24)

The �rst step boundary conditions are

1
p

���
x=0

= 0 ) 1
�

���
x=0

= 0; ) ��jx=0 = 0;

1
p

���
x=l

= 0 ) 1
�

���
x=l

= 0; ) ��jx=l = 0: (25)

The �rst of them yields for the constants A, B of the solution (18)

A = �B ) �� = A (er1x � er2x) : (26)

The second condition leads to the dispersion relation for !: Namely

er1l � er2l = 0 , exp

�
� bl

2a

�
sinh

l

p
b
2 � 4ac

2a
= 0: (27)

Certainly this is the limit � !1 of relation (22). Let us mention that the formal

limit � ! 0 is identical with this for � ! 1. However this limit yields also a

singularity in the base solution. Namely the velocity
0
v is not only constant but it

is equal to zero, and the pressure must be constant. In fact it becomes equal to the

algebraic average of external pressures. It means that we have jumps on both ends:

x = 0; x = l: We shall see further that this creates certain artefacts in numerical

calculations for small values of �.

The exponential part of the last equation cannot be equal to zero. Hence

sin i
l

p
b
2 � 4ac

2a
= 0; (28)

and this yields

l

p
b
2 � 4ac

2a
= �in�; n 2 Z0

; � = 3:14::: (29)

6



For n = 0 we obtain the following solutions for !

!
+;�
0 =

1

2

�� � �

q
1�

0
v
2

�

�
F
0

�
�

0

� �

�F
0

: (30)

The approximation follows from the fact that
p
� is the speed of the P2 wave. This

means that the fraction
0
v
2

�
� O (10�6) for typical geotechnical applications (see: [3]

for the details of parameter analysis). Both these solutions are obviously real. The

�rst one yields the trivial solution A = B = 0 because otherwise the base solution

(time independent!) would not be unique. Consequently solely the second solution

for ! can be chosen, and this corresponds to the relaxation by damping which follows

the resistance to the di�usion.

For n � 1 we obtain the solution

!
+;�
n =

8>>>>>><
>>>>>>:

1
2

"
� �

�F
0

�
r�

�

�F
0

�2
� 4��

2n2

l2

#
for � > 2

n��F
0

l

p
�;

1
2

"
� �

�F
0

� i

r
4��

2n2

l2
�
�

�

�F
0

�2#
for � < 2

n��F
0

l

p
�:

(31)

We have used here again the approximation
0
v
2

�
� 1:

This yields the following relation for the bigger of two real parts of !n :

Re!+
n =

8><
>:
� �

2�F
0

for � < 2
n��F

0

l

p
�;

� �

2�F
0

+ 1
2

r�
�

�F
0

�2
� 4��

2n2

l2
for � > 2

n��F
0

l

p
�:

(32)

Clearly we have for any n � 1

Re!
+
n � Re!

+
n+1: (33)

Hence the biggest real part of the exponent appears for n = 1: We obtain

max
n

�
Re!+;�

n

	
=

8><
>:
� �

2�F
0

for � < 2
��F

0

l

p
�;

� �

2�F
0

+ 1
2

r�
�

�F
0

�2
� 4��

2

l2
for � > 2

��F
0

l

p
�:

(34)

The above results are illustrated by the following example:
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Length of the body l 1m Equilibrium porosity nE 0:23

Compressibility � 2:25 � 106 m2

s2
Initial mass density �

L
0 2:3 � 102 kg

m3

Pressure left h.s. pl 110kPa Pressure right h.s. pr 100kPa

Pressure di�erence working on the �uid pd = nE (pl � pr) 2:3kPa

Table 1: Typical model parameters for �ow processes in soils

The data in the table are typical for geotechnical applications.

a) b)

Fig. 1: Analytical solution for the �ow without mass exchange

In Figure 1 we demonstrate the above results in two scales. In the left part a)

we show the relations (30) and (32) in a linear scale for di�erent n. As we see all

relations for Re (!) ; n � 1; contain the turning point �0 = 2
n��F

0

l

p
� (indicated by

small circles in Fig. 1a)) which divides the range of � into the part, where the

solution of the dispersion relation (28) is complex (small �), and the part, where it

is real (large �). The former means that the disturbance consists of the exponential

relaxation, and vibrations.

It is clear that the biggest real part of ! appears for n = 1: This is shown in the right

part b) of Figure 1 in the log-log scale. Such a scale is used in all �gures for processes

without mass exchange which appear further in this paper. The logarithmic scales

lead to distortion of the curves for very small, and very large values of �: These

distortions do not have any physical meaning. As we see further such a distortion

appears also in numerical calculations.
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4.3 Comments

We have learned from the above analytical solution that the relaxation properties do

not change monotonously with the permeability �. They possess rather two di�erent

ranges. In the range of smaller values of � the relaxation is determined by a real

part of the complex root, while for larger � this root does not possess an imaginary

part. It means that the perturbation causes vibrations in the range of smaller �,

whose frequencies cover the whole discrete spectrum (di�erent values of n in (31)).

As we see further such a turning point appears for all �nite values of � even though

it is not so well de�ned as in the above case.

Simultaneously the position of the turning point is determinated by the compress-

ibility coe�cient of the �uid. We return to this property after the numerical analysis.

5 Numerical investigation

The relaxation properties of the 1D �ow are numerically investigated for two cases:

the �rst one: a perturbation without mass exchange where we distinguish between

� =1 and variable �; and the second one: with mass exchange for variable �.

5.1 Disturbance without mass exchange

5.1.1 Results

We solve the eigenvalue problem for ! numerically, using a second order �nite dif-

ference scheme in a equidistant mesh (length of the body l divided into n parts

of length h). The derivatives of disturbances are written as central di�erences�
@u

@x
=

u(x+h)�u(x�h)

2h

�
for inner mesh points, or as asymmetric ones for the �rst�

@u

@x
=

u(x+h)�u(x)

h

�
, and the last point

�
@u

@x
=

u(x)�u(x�h)

h

�
. For this linear eigen-

value problem we obtain for both cases without mass exchange 2n eigenvalues !i
(number of linear equations: 2 (n + 1)� 2) : The exponential form of the ansatz (13)

yields that the base �ow is stable if all real parts of !i are negative and unstable

if at least one of the 2n real parts is positive. Consequently in the case of stable

processes we prove numerically that the biggest real part of eigenvalues is negative.

In the case of this value being positive the perturbance would increase and the ex-

ponential term would explode in time. The smaller this negative value the faster

the �ow tends to the steady state situation.

The results of the numerical investigation are given in Figs. 2 and 3 in log-log scale.

However, in order to show the pecularity of the turning point, we also show the curve

for �!1 in the log-linear scale (the small picture in Fig. 2 for 103 � � � 109).
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Let us begin with the special case �!1. We have checked that for � > 10�2 s

m
our

numerical procedure becomes unstable. However the numerical results for smaller

values of � converge regularly to the result for � = 10�2 s

m
and, on the other hand,

this result is identical with our analytical result of the previous section. This indi-

cates that the behaviour for large � can be well approximated by this for � = 10�2 s

m
:

For completeness we have checked this using a di�erent numerical scheme for �!1,

and the result is shown in Fig. 2. As seen in Fig. 3 where all numerical results

for di�erent � are presented, in the range � > 10�2 s
m
the solution does not change

considerably.

5.1.2 Discussion

From the above �gures it is obvious that for any pair (�; �) the maximum real part

of the eigenvalues remains negative which means that the steady state base �ow is

stable with respect to a longitudinal disturbance without mass exchange. However

relaxation properties of such disturbances are quite di�erent for di�erent values of

permeabilites �, and �.

Fig. 2: Numerical result without mass exchange, � =1
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Fig. 3: Numerical result without mass exchange, variable �

First of all, for any choice of �, there exists a region of � in which eigenvalues are

complex, i.e. disturbances lead to vibrations. This region of relatively small bulk

permeability � becomes smaller for smaller �. For values of � bigger than this of

the turning point the disturbance is only damped but the damping is smaller than

this predicted by the resistance to the di�usion
�
i.e: < �

�F
0

�
:

In general the damping is smallest (i.e. the relaxation is slowest) for large and small

values of �. In fact it is almost constant in large ranges which are distorted in

the �gures by the logarithmic scale. Solely in the vicinity of the turning point the

relaxation becomes considerably fast.

As we have already mentioned in Sec. 4.3. the position of the turning point is

determined by the compressibility coe�cient of the �uid. We demonstrate this

property in Fig. 4 for � = 10�2 s
m
:

As we see the range in which the disturbance yields not only relaxation but also

vibrations (small �) becomes smaller for smaller compressibility coe�cient �. Also

the relaxation of the disturbances is slower for smaller compressibility coe�cients.
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Fig. 4: In�uence of the compressibility coe�cient

5.2 Disturbance with mass exchange

5.2.1 Adsorption/di�usion model

We consider a process of physical adsorption in a porous medium. A �uid-adsorbate

mixture �ows through the channels of the skeleton. In principle the model (see: B.

Albers [1] and [2]) takes into account three components: the skeleton, the �uid

and an adsorbate which �ows with the same velocity as the �uid through channels

of the skeleton until it settles down on the inner surface of the porous body. As

before we neglect the dynamics of the skeleton.

Mass balances

Then the mass balance equation for the liquid and the concentration balance have

the following form

@�
L

@t
+

@�
L
v
F

@x
= �̂

A
; (35)

�
L

�
@c

@t
+ v

F @c

@x

�
= (1� c) �̂A;

where �L is the mass density of the liquid phases, i.e. the sum of the mass densities

of the �uid and the adsorbate, and c denotes the concentration of the adsorbate in

the �uid component. The common velocity of �uid and adsorbate is denoted by v
F
:
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The concentration balance (35)2 follows from the mass balance for the adsorbate.

Finally, the intensity of the mass source is denoted by �̂
A
:

Mass source

The latter is given by the relation

�̂
A = �m

A

V

d (� fint)

dt
= �m

A

V

�
fint

d�

dt
+ �

d fint

dt

�
; (36)

whose derivation is based on the classical Langmuir adsorption theory utilizing the

notions of occupied (�) and bare (1� �) sites (e.g. see [4]) on the internal surface

fint of the solid. V is the representative elementary volume REV and mA denotes

the mass of adsorbate per unit area of the internal surface .

The �rst contribution on the right-hand side of (36) describes changes in time of the

fraction of occupied sites. It is speci�ed by the Langmuir evolution equation which

can be written in the form

@�

@t
=

�
cp

L

p0

(1� �)� �

�
1

�ad

; (37)

where p
L denotes the partial pressure in the liquid (�uid and adsorbate together),

p0 is a Langmuir reference pressure and �ad is the characteristic time of adsorption.

In the static case the well-known Langmuir isotherm of occupied sites follows from

this relation

�L =

cpL

p0

1 +
cpL

p0

; (38)

where according to Dalton�s law for small concentrations of the adsorbate it is

assumed that the partial pressure of the adsorbate pA �= cp
L
:

The other part of (36) describes the change of the internal surface. We assume this

change to be coupled with the relaxation of porosity. But due to the assumption of

constant porosity it disappears from the equations in this work. This is justi�ed by

results of our earlier works that the Langmuir part of the mass source is much more

important than the part connected with changes of the porosity.

Finally we obtain the following form of the mass source

�̂
A
= ��Aad

��
cp

L

p0

(1� �)� �

�
1

�ad

�
; (39)

where and �
A
ad :=

mAfint
V

:
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Momentum balance

Due to the same velocity of �uid and adsorbate we need only one momentum balance

common for these both components. We have

�
L

�
@v

F

@t
+ v

F @v
F

@x

�
= �@p

L

@x
� �v

F
:

Also here, a linear constitutive relation for the pressure in the liquid phase pL

p
L
=

0
p+ �

1
�; (40)

is used and the permeability coe�cient � and the compressibility coe�cient � are

assumed to be constant.

5.2.2 Governing equations

Bearing the above considerations in mind we have in 1D to examine the behaviour

of the �ow described by the following set of equations

@�
L

@t
+ �

L@v
F

@x
+ v

F @�
L

@x
= ��

A
ad

�ad

�
cp

L

p0

(1� �)� �

�
;

�
L

�
@c

@t
+ v

F @c

@x

�
= � (1� c)

�
A
ad

�ad

�
cp

L

p0

(1� �)� �

�
;

@�

@t
=

1

�ad

�
cp

L

p0

(1� �)� �

�
; (41)

�
L

�
@v

F

@t
+ v

F @v
F

@x

�
= �@p

L

@x
� �v

F
;

rather than the set (1) for �ows without adsorption.

5.2.3 Perturbation

In comparison to the case without mass exchange we have two additional �elds

which are subject to the regular perturbation, again restricted to zeroth and �rst

order contributions

�
L (x; t) =

0
� (x) +

1
� (x; t) ; c (x; t) =

0
c (x) +

1
c (x; t) ;

� (x; t) =
0

� (x) +
1

� (x; t) ; v
F (x; t) =

0
v (x) +

1
v (x; t) ; 0 � x � l: (42)
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Zeroth step of perturbation

Also for this case we assume the base solution for the mass density
0
� to be constant.

Again it follows that the velocity
0
v is constant (compare (12)): For the missing base

solutions
0
c and

0

� we obtain the following equations (the zeroth step of perturbation)

concentration balance

0
�
0
v
@
0
c

@x
= �

�
1� 0

c

�
�
A
ad

�ad

"
0
c
0
p

p0

�
1�

0

�

�
�

0

�

#
; (43)

evolution equation for fraction of occupied sites

0 =

0
c
0
p

p0

�
1�

0

�

�
�

0

�: (44)

where
0
p is given by the relation (12). From (44) we obtain the relation for the

Langmuir adsorption isotherm

0

� =

0
c
0
p
L

p0

1 +
0
c
0
p
L

p0

; (45)

which, of course, varies with x due to the varying pressure
0
p: Simultaneously from

(43) we have
0
c = const: = c0; (46)

where c0 denotes the initial concentration of the adsorbate in the �uid.

First step of perturbation

For the �rst step of perturbation we obtain the following set of equations

@
1
�

@t
+

0
�
@
1
v

@x
+

0
v
@
1
�

@x
=

1

�̂
A
;

0
�

 
@
1
c

@t
+

0
v
@
1
c

@x

!
= (1� c0)

1

�̂
A � 1

c
�
A
ad

�ad

"
c0

0
p

p0

�
1�

0

�

�
�

0

�

#
;

@

1

�

@t
=

"�
1�

0

�

�
c0�

1
� +

1
c
0
p

p0

� c0

1

�

0
p

p0

�
1

�

#
1

�ad

; (47)

0
�

 
@
1
v

@t
+

0
v
@
1
v

@x

!
= ��@

1
�

@x
� �

1
v;

with
1

�̂
A
= ��

A
ad

�ad

"
c0�

1
�+

1
c
0
p

p0

�
1�

0

�

�
�

1

�

 
1 +

c0
0
p

p0

!#
: (48)
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The boundary conditions for this step have again the form

x = 0 : ��F0 �vjx=0 =
�
��+

0
v

�
��jx=0 ;

x = l : �
F
0 �vjx=l =

�
��� 0

v

�
��jx=l :

(49)

5.2.4 Wave ansatz

Again we assume for the perturbations the wave ansatz

1
� = �� (x) e!t;

1
c = �c (x) e!t;

1

� = �� (x) e!t;
1
v = �v (x) e!t; (50)

by means of which we obtain the set of ordinary equations for the �rst step

!��+
0
�
@�vx

@x
+

0
v
@��

@x
= ��

A
ad

�ad

"
c0��� + �c

0
p

p0

�
1�

0

�

�
� ��

 
1 +

c0
0
p

p0

!#
;

0
�

�
!�c+

0
vx

@�c

@x

�
= � (1� c0)

�
A
ad

�ad

"
c0��� + �c

0
p

p0

�
1�

0

�

�
�

���

 
1 +

c0
0
p

p0

!#
� �c

�
A
ad

�ad

"
c0

0
p

p0

�
1�

0

�

�
�

0

�

#
; (51)

!�� =

"
c0���+ �c

0
p

p0

�
1�

0

�

�
� ��

 
1 +

c0
0
p

p0

!#
1

�ad

;

0
�

�
!�v +

0
v
@�v

@x

�
= ��@��

@x
� ��v:

This means that we have to analyse the following relation

(!I+ A)u +Bu0 = 0; (52)

with

u :=
�
��; �c; ��; �v

�T
; u

0 : =

�
@��

@x
;
@�c

@x
;
@ ��

@x
;
@�v

@x

�T

;

I :=

0
BB@

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA ; B :=

0
BBBBB@

0
v 0 0

0
�

0
0
v 0 0

0 0 0 0
�

0
�

0 0
0
v

1
CCCCCA ; (53)
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A :=

0
BBBBBBBBBBBB@

�A
ad

�ad

c0�

p0

�
1�

0

�

�
�A
ad

�ad

0
p

p0

�
1�

0

�

�
��A

ad

�ad

�
1 +

c0
0
p

p0

�
0

1�c0
0
�

�A
ad

�ad

c0�

p0

�
1�

0

�

� 1�c0
0
�

�A
ad

�ad

0
p

p0

�
1�

0

�

�
+

+1
0
�

�A
ad

�ad

�
c0

0
p

p0

�
1�

0

�

�
�

0

�

� �1�c0
0
�

�A
ad

�ad

�
1 +

c0
0
p

p0

�
0

� c0�

p0

�
1�

0

�

�
1
�ad

�
0
p

p0

�
1�

0

�

�
1
�ad

�
1 +

c0
0
p

p0

�
1
�ad

0

0 0 0 �
0
�

1
CCCCCCCCCCCCA

In the calculations we use in addition to the data of Table 1 the following quantities

which enter the model due to the adsorption process:

Initial concentration c0 10�3

Langmuir pressure p0 10 kPa

Charact. time of adsorp. �ad 1s

mass density of adsorbate

on internal surface �Aad 40
kg

m3

Table 2: Additional model parameters for adsorption processes in soils

Again we use a second order �nite di�erence scheme as described in 5.1.1. in order

to solve numerically the above eigenvalue problem. This leads to 4n+2 eigenvalues

!i (number of linear equations: 4 (n+ 1)� 2).

Results are shown in the following Figure 5.

Fig. 5: Numerical result with mass exchange
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5.2.5 Discussion

Similarly to the case without mass exchange the base steady state �ow is stable

with respect to a longitudinal disturbance with mass exchange for any choice of

parameters (�; �) :

However the relaxation of disturbances di�ers considerably from the previous case.

Comparison of Fig. 3 and Fig. 5 shows that the mass exchange slows down the

relaxation even a few orders of magnitude. This e�ect is related to the characteristic

time of adsorption �ad. Little can be said about its experimental values for porous

materials because most experiments are conducted in quasistatic conditions. In Fig.

6 we show the in�uence of �ad on the relaxation properties for � = 10�4 s
m
.

As expected disturbances relax faster for smaller characteristic times �ad but even

for a very short time of adsorption �ad = 10�5s this relaxation is considerably longer

than entirely without mass exchange.

In addition the range of vibrations (small values of �) is separated from a pure

damping (large values of �) by more plateaus rather than a turning point, and a

small single plateau appearing in perturbations without mass exchange.

Moreover due to the higher number of �elds the di�erent behaviour of relaxation ap-

pears in at least three di�erent domains of � rather than two � characteristic for the

previous case. This is caused by the activation of di�erent eigenvalues corresponding

to di�erent mechanisms of the process.

Fig. 6: In�uence of the characteristic time of adsorption
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6 Conclusions

We have shown that the 1D steady state �ow through the porous material is stable

with respect to a linear longitudinal disturbance without and with mass exchange

in the whole range of control permeability parameters �, and �.

However the relaxation of such disturbancs is not determined solely by the di�usion.

In all cases it is slower than the exponent �

�F
0

characteristic for the di�usion. This

results primarily from the compressibility of the �uid as we have indicated in the

paper.

In addition in the range of small values of the permeability � there appear vibrations.

This may indicate the existence of instabilities in the case of transversal disturbances.

The latter problem shall be presented in a seperate paper.

Let us mention �nally that the range of very large permeabilities � corresponds

to relaxation considerably in�uenced by the compressibility and this is again much

slower than expected from di�usion processes. As seen from the relation (34) the

dependence on the compressibility is coupled to the length l. In the limit of the

in�nite medium l ! 1 the in�uence of the compressibility vanishes entirely and

the system possesses only a damped solution corresponding to the dashed line in

Fig. 1a). Otherwise there exists always a region with vibrations. This property

appears not only in the case solved analytically but also for all other cases, and

follows from the hyperbolicity of the system. Namely if the damping �

�F
0

is small

enough the relaxation of the system is in�uenced by waves propagating between

both ends of the system.
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