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Abstract

A detailed analysis of statistical characteristics of the vertical mixing process in

a horizontally homogeneous and stationary river �ow is given. Stochastic models of

Langevin type and random displacement models are developed to calculate the statis-

tical characteristics of the vertical mixing. For validation, Langevin type models and

random displacement models conventionally applied in this �eld are compared. All the

methods show a good qualitative agreement. However the random diplacement model

with constant coe�cients is shown to perform with considerable deviations.

1 Introduction

The transport of species and impurities in turbulent �ows is a problem which is treated via

Lagrangian description. However in many problems, the mean concentration is often approx-

imately evaluated through convection-di�usion equation under the Boussinesq hypothesis.

This approximation is applicable if the time and space scales of the concentration �eld are

su�ciently large compared to the relevant correlation scale of the velocity �eld ( Monin and

Yaglom, 1971). If, for instance, the concentrataion is calculated at the distances close to the

source, or at small times, this method fails, and the Lagrangian stochastic models should

be used. It should be noted that in many practically interesting cases the characteristic

correlation scales are quite large, which implies that the limitations on applicability of the

conventional convection-di�usion equation approach are not well de�ned. To study these

limitations, the Lagrangian stochastic methods are well suited. These methods are used

here to explore peculiarities of transport processes in rivers.

We will deal in this paper with transport processes in a river �ow with depth much smaller

than its width, representing the characteristic spatial scale of the Eulerian velocity. There-

fore, when studying the vertical distribution of the concentration, the applicability of the

convection-di�usion approximation is justi�ed only after the period when the concentrtaion

is slightly varying with distance from the river bed. However the time period when this kind

of mixing over the depth happens is an interesting and complicated problem which cannot

be solved in the framework of the convection-di�usion approximation. We will show that un-

der some simpli�cations this problem can be e�ectively solved by the stochastic Lagrangian

approach.

We develop here two di�erent types of stochastic models: (1) Langevin type stochastic

models, based on the statistics of the Eulerian velocity �eld, conventionally measured in
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practice (e.g., the mean velocity, the mean rate of the kinetic energy dissipation, and the

Reynolds stress tensor), and (2) the random displacement models constructed for the solution

of the convection-di�usion equation whose coe�cients however are obtained in experiments

quite approximately.

2 Formulation of the problem

Let us consider a river as an in�nite domain G = f(x; y; z) : �1 � x � 1; 0 � y < b; 0 �
z � hg, where b is the width, and h is the depth of the river. We are interested in the

case when h << b, therefore, along the centerline of the river the �ow can be treated as

horizontally homogeneous velocity �eld. We assume also that this �eld is stationary in time.

The particle is released at the point (0; 0; zs). The functions of interest are the following:

(1) The probability density function (pdf) of the ejection time tej, the time the particle �rst

hits the layer h � � � z � h. The height of the release point for this function is usually

taken near the roughness height z0 (from z0 to 0:1 h while the layer depth � varies from

0:05 h to 0:2 h). In parallel, one usually evaluates the pdf of the ejection distance xej, the

distance from the release point down the river stream the particle reaches, during the time

tej.

(2) The pdf of the sweep time tsw, the time the particle �rst hits the layer z0 � z � �,

where z0 is the roughness height. Evaluate also the pdf of the sweep length, xsw. The layer

depth � is the same as in p. (1), but zs varies between 0:9 h and h, in this case.

(3) The mean residence time, the mean of the random variable rest(z1; z2), the time the

particle spends in the layer z1 � z � z2 during the time interval (0; t).

(4) The distance from the source down the river stream at which the particles from a sta-

tionary line source are well mixed over the river depth.

3 Stochastic simulation models

We are interested in the case when h << b, therefore, along the centerline of the river the

�ow can be treated as horizontally homogeneous random velocity �eld. We assume also that

this �eld is stationary in time. The characteristic Reynolds number in rivers is about 106,

so the turbulence is pressumed to be fully developed, and the statistical Kolmogorov theory

of the local isotropic turbulence is applcable at high wave numbers (e.g., see Sukhodolov et

al., 1998).

3.1 Langevin type models

Let us suppose that a particle is conservative and follows the Lagrangian trajectories of the

�ow.

A Langevin type stochastic di�erential equation governing the motion of such a particle is

given by (Thomson, 1987)

dXi = (V 0
i
+ huii)dt; dV 0

i
= ai dt+

q
C0�" dBi(t); i = 1; 2; 3 : (1)
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Here V 0
i
+ huii; i = 1; 2; 3 are the components of the Lagrangian velocity vector, huii are

the components of the Eulerian mean velocity vector, Bi(t) are three standard independent

Wiener processes; ai are functions of (X3; V
0
1
; V 0

2
; V 0

3
), C0 is the universal Kolmogorov's con-

stant (C0 ' 5, see Rodean, 1996), �" is the mean rate of the dissipation of the kinetic energy

of turbulence which depends in our case on X3,the distance from the river bed.

Simulating the Lagrangian trajectory (X1(t); X2(t); X3(t)) = (X(t); Y (t); Z(t)) as the solu-

tion to the equation 1, one calculates the Lagrangian statistical characteristics of interest,

like the mean ejection and sweep times and distances, as well as their probability densities.

It is worth to note that in this approach, the mean concentration is de�ned rigorously

(without the Boussinesq assumption) by the formula (e.g., see Monin and Yaglom, 1971;

Sawford, 1985)

c(x; y; z; t) =
Z

t

�1

dt0

Z Z Z
dx0dy0dz0Q(x0; y0; z0; t0) p(x; y; z; t; x0; y0; z0; t0) (2)

where Q(x0; y0; z0; t0) is the source distribution, and p(x; y; z; t; x0; y0; z0; t0) is the transition

pdf of the Lagrangian trajectory starting at t0 in the point (x0; y0; z0).

Pro�les of the statistical characteristics of the Eulerian velocity �eld.

To specify the Lagrangian stochastic models of Langevin type, one needs the following statis-

tics: the mean velocity �eld, the Reynolds stress tensor, the mean rate of the dissipation

of the kinetic energy of turbulence. Generally, such a detailed description for the whole

cross-section of the river is very di�cult. However in the central part of the river the �ow

can be considered as a horizontally homogeneous �ow, hence all the statistics depend only

on the distance from the river bed. Such measurement data was used in our calculations.

The mean velocity hui(z) is directed along the x-axis, and it depends only on the distance

from the river bed:

hui(z) = u�

�
ln (z=z0)

where u� is the shear velocity, � = 0:4, and z0 is the roughness height.

Let u0; v0; w0 be the longitudinal, transversal, and vertical components of the velocity �uctu-

ations, and let �2
u
= hu02i, �2

v
= hv02i, �2

w
= hw02i be the relevant variances.

The variance pro�les of the velocities are given by (Sukhadolov et al., 1998):

�2
u
(z) = (Au u�)

2 exp(�2z=h);
�2
v
(z) = (Av u�)

2 exp(�2z=h); (3)

�2
w
(z) = (Aw u�)

2 exp(�2z=h);
where Au = 2:54; Av = 1:85; Aw = 1:58. The covariance uw = hu0w0i is taken as

uw = �u2�(1� z=h);

and the pro�le of the mean rate of the dissipation of the kinetic energy is

�"(z) = 13:4
u3�
h

s
h

z
exp(�3z=h) :
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Thomson's model.

Thomson's model is given in the form (1) with the coe�cients speci�ed by (Thomson, 1987;

see also Rodean, 1996):

ai(z; u1; u2; u3) = �C0�"

2
�ik uk +

1

2

@�ij

@xj
+

�im

2
huki@�jm

@xk
uj +

�im

2

@�km

@xj
ujuk; i = 1; 2; 3: (4)

Here

�11 = �2
u
; �22 = �2

v
; �33 = �2

w
; �12 = �21 = �23 = �32 = 0; �13 = �31 = uw ;

and

�11 = �2
w
=�; �22 = 1=�2

v
; �33 = �2

u
=�; �12 = �21 = �23 = �32 = 0; �13 = �31 = �uw=�;

where � = �2
u
�2
w
� (uw)2 :

In (4) and below in (5), (6) and (7) we used the summation convention under repeated

indeces.

The model of Kurbanmuradov and Sabelfeld (KS model).

In the stationary case the KS model is speci�ed by (see Kurbanmuradov and Sabelfeld, 2000)

a1(t; z; u; w) = �C0�"(1 + �2)

2�2
u=w

(u� �w) +
�C0�"

2�2
w

w +
�

2

@�2
w

@z

 
w2

�2
w

+ 1

!

+
@�

@z
w2 +

1

�u=w

@�u=w

@z
(u� �w)w ;

a2(t; z; u; v; w) = �C0�"

2�2
v

v +
1

2

@�2
v

@z

vw

�2
v

;

a3(t; z; w) = �C0�"

2�2
w

w +
1

2

@�2
w

@z

 
w2

�2
w

+ 1

!
:

where

�u=w =
�1=2

�w
; � =

uw

�2
w

; � = �2
u
�2
w
� (uw)2;

3.2 Random displacement models

Among the stochastic models described in section 3.1, there are di�erent stochastic di�er-

ential equations for the process of particles dispersion. The most often used is the random dis-

placement model (e.g., see Rodean, 1996). In this model, the trajectory (X1(t); X2(t); X3(t)) =

(X(t); Y (t); Z(t)) is assumed to be a Markov process, governing by a stochastic di�erntial

equation of the form

dXi = ai(X1; X2; X3; t)dt+ bi;j(X1; X2; X3; t)dBj(t); i = 1; 2; 3 (5)
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where we turned to the notation (X(t); Y (t); Z(t)) = (X1(t); X2(t); X3(t)).

The coe�cients of this equation are related to the convection-di�usion equation for the mean

concentration (e.g., see Rutherford, 1994):

@c

@t
+ ui(x1; x2; x3; t)

@c

@xi
=

@

@xi
ki;j

@c

@xj
+Q(x; t) ; (6)

through (see Monin and Yaglom, 1971)

ki;j =
1

2
bi;lbl;j; ai = ui +

@ki;j

@xj
: (7)

Here (u1; u2; u3), the mean velocity vector, is assumed to be incompressible ( @ui

@xi

= 0).

Model with parabolic pro�le of the di�usivity:

hui @c

@x
=

@

@z
�(z)

@c

@z
; hui(z) = u�

�
ln (z=z0); �(z) = �u�z(1� z=h) ;

dX = hui(Z) dt; dZ =
d�

dz
(Z) dt+

q
2�(Z) dB(t) :

The model with constant coe�cients:

�u
@c

@x
=

@

@z
��
@c

@z
; �u =

u�

�
[ln (h=z0)� 1]; �� = 0:067 u�h ;

dX = �u dt; dZ =
p
2�� dB(t) :

With the random displacement model, it is also possible to evaluate di�erent statistical

characteristics, in particular, the mean concentrtaion is calculated by (2).

4 Simulation results

In this section we present the results of simulation for the following statistical characteristics:

the pdf's of the ejection and sweep lengths and times, the vertical mixing distance, and the

vertical distribution of the mean residence time obtained by Thomson's model.

4.1 Detales of numerical schemes

We have chosen a simple semi-explicit numerical scheme for the equation (1):

Xi(t+�t) = Xi(t) + (huii(X(t)) + V 0
i
)�t; i = 1; 2; 3;

V 0
i
(t+�t) = V 0

i
(t) + ai(X(t+�t); V 0

(t))�t+
q
2C0�"(X(t+�t))�t �t;

where �t = 0:02�L, �L = 2�2
w
=(C0�"), �t is a standard Gaussian random variable.
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In the RDM with parabolic pro�le we used the scheme:

X(t+�t) = X(t) + hui(Z(t))�t;

Z(t+�t) = Z(t) +
q
2�(Z(t))�t �t :

To ensure that in one time step, the value of �(z) is changing slowly (less than 10%), we

have taken �t = (� + 0:01u�h)=(32u
2

�). The calculations with this choice of the integration

step were numerically stable.

The RDM with constant coe�cients was solved by the same scheme, where the mean velocity

changed with the depth averaged mean velocity �u, and � - with ��, the depth averaged value

of �. A numerically stable process was reached at �t = 0:00025h2=��.

At the upper and lower boundaries (z = h and z = z0, respectively) the perfect re�ection

condition was used (Thomson and Montgomery, 1994).

Recall that our concentration �eld is two-dimensional since the line source is chosen trans-

verse to the mean �ow direction. The mean concentration c� = c(x�; z�) from stationary line

source was approximately evaluated by the formula:

c� = lim
jV �j!0

1

jV �jh
Z 1

0

#V �(X(t); Z(t)) dti; (8)

where V � is a surface element which inludes the point (x�; z�), jV �j is its area, and #V � is

the indicator function of V �.

This formula follows from (2) (for more details, see, Kurbanmuradov et al., 2001).

In our numerical simulations we take h and u� as the characteristic scales of length and

velocity. Therefore all the statistical characteristics under interest depend on z0=h and zs=h,

where zs is the source height.

4.2 Evaluation of the ejection and sweep statistics

Ejection statistics

Let us present the function pt;ej(t), the pdf of the ejection time. By the de�nition, this

function depends also on zs=h, �=h, and z0=h. Calculations have shown that the dependence

on zs=h is very weak so we can ignore it. For the ejections calculations we have taken

zs=h = 0:1. The mean values and the root-mean-square (rms) value of tej are given in

Table 1.

The curves presented in the Figure 1 (left picture) suggest that the dependence of the pdf

pt;ej(t) on the parameter z0=h is weak. This follows from the fact that the vertical component

of the model is governed by an equation whose coe�cients do not depend on z0=h. However

when the value of z0=h approaches 5 � 10�2, this dependence cannot be ignored, as seen from

the Table 1. This e�ect comes from the re�ection at the lower roughness boundary z = z0.

The dependence on the parameter �=h is seen in Figure 1, right picture. The curves, as

well as the results presented in the Table 1 show that this dependence is quite strong. Thus,

pt;ej(t) depends mainly on two parameters, the time t and �=h.
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Figure 1: Left picture: the dimensionless probability density function p�;ej(�) =
h

u�
pt;ej(h�=u�) versus the dimensionless time � = u� t=h for di�erent values of z0=h (= 10�5,

10�3, 10�2, and 5 � 10�2) for �=h = 0:1. Right picture: the same as on the right picture, but

for di�erent values of �=h (= 0:05 - low curve, 0:1 - the mid curve, and 0:2 - upper curve),

for z0=h = 10�3.

Table 1. The normalized mean value m = u�hteji=h and �, the rms of u�tej=h, for di�erent

values of z0=h and �=h.

�=h = 0:05 �=h = 0:1 �=h = 0:2

z0=h m � m � m �

10�5 7.52 6.34 6.64 5.60 5.14 4.27

10�4 7.52 6.35 6.66 5.64 5.13 4.29

10�3 7.47 6.28 6.61 5.55 5.12 4.29

5 � 10�3 7.42 6.26 6.57 5.54 5.12 4.27

10�2 7.37 6.24 6.50 5.47 5.06 4.24

5 � 10�2 6.92 5.80 6.08 5.09 4.65 3.87

Let us turn to the pdf of the ejection length xej, px;ej(x). As calculations show, this function

also slightly depends on zs=h, but strongly depends on the distance x, the parameter z0=h

and on �=h. The dependence on z0=h is clear: this parameter a�ects the mean velocity

which in turn a�ects the length xej.

>From calculations we have found a simple approximation:

px;ej(x) ' 1

�v
pt;ej(x=�v) : (9)

Here �v has a velocity dimension, and is given by

�v = kej�u;

where

�u =
1

h

hZ
z0

hu(z)i dz =
u�

�

 
ln

h

z0
� 1

!
;
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Figure 2: Illustration to the approximation (9): Left picture: the dimensionless probability

density function pl;ej(l) = h px;ej(lh) versus the dimensionless distance l = x=h, for �=h =

0:05 (the lower curve) and�=h = 0:2 (the upper curve) for z0=h = 10�3. The approximations

to these pdf's given by (9) which practically coincide with the relevant functions are also

plotted. The right picture presents the same curves for z0=h = 10�2.

is the depth averaged mean velocity, and kej is an ajusting parameter depending on z0=h;�=h.

This parameter is weakly varying in z0=h and �=h , and we give the values at some points

in Table 3.

The relation (9) can be used to evaluate statistical characteristics of the ejection length via

the statistics of the ejection time, for instance, hxeji ' �vhteji, or hx2eji ' �v2ht2
ej
i.

To illustrate the approximation (9), we show in Figure 2 the two functions which stand in

the left and right hand side of (9), for di�erent values of z0=h and �=h.

Sweep statistics

Here we present the function pt;sw(t), the pdf of the sweep time. By the de�nition, this func-

tion depends on zs=h;�=h, but not on z0=h. Calculations have shown that the dependence

on zs=h is also very weak, so we ignore it. In calculations, we have taken zs=h = 0:9. In

Table 2, the dependence on �=h is presented.

Table 2. The mean value m = u�htswi=h and �, the rms of u�tsw=h, for di�erent values of

�=h.

�=h = 0:05 �=h = 0:1 �=h = 0:2

m 6.34 5.52 4.38

� 5.2 4.46 3.52

Calculations show that the pdf of the sweep length xsw, px;sw(x), also slightly depends

on zs=h, so we ignore it, as usually. The dependence on the parameter z0=h and �=h is
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considerable. Agian, the dependence on z0=h is explained by the fact that this parameter

a�ects the mean velocity which in turn a�ects the length xsw.

As in the case of ejections, we have found a simple approximation:

px;sw(x) ' 1

�v
pt;sw(x=�v) : (10)

Here �v has a velocity dimension, and is given by �v = ksw�u;, and ksw is an ajusting parameter

depending on z0=h;�=h. This parameter is slightly varying with z0=h;�=h , and we give

the values at some points in Table 3.

Table 3. The values of kej and ksw, for di�erent values of z0=h and �=h.

�=h = 0:05 �=h = 0:1 �=h = 0:2

z0=h kej ksw kej ksw kej ksw
10�5 0.96 1.05 0.95 1.05 0.94 1.06

10�4 0.95 1.06 0.94 1.07 0.92 1.08

10�3 0.93 1.09 0.92 1.10 0.90 1.11

5 � 10�3 0.91 1.12 0.89 1.14 0.87 1.16

10�2 0.90 1.15 0.88 1.16 0.85 1.19

5 � 10�2 0.90 1.27 0.88 1.30 0.83 1.34

Table 4. The value of dimensionless times � �ej and � �
sw
, for di�erent values of �=h and �.

�=h = 0:05 �=h = 0:1 �=h = 0:2

� � �ej � �
sw

� �ej � �
sw

� �ej � �
sw

0.1 1.7 1.5 1.5 1.4 1.1 1.

0.25 2.9 2.6 2.6 2.2 2. 1.7

0.5 5.4 4.7 4.8 4.1 3.7 3.3

0.75 9.8 8.4 8.6 7.3 6.7 5.6

0.9 15.6 13. 13.6 11.4 10.6 9.1

It should be noted that the random variables tej and tsw are only roughly characterized by

their means and variances. For more detailed qualitative characterisation, the distributions

can be used. We show these in Table 4, for di�erent values of �=h. Here �
�

ej is the dimension-

less time such that the probability that the particle reaches the upper layer h�� < z < h

to within the time interval (0; h � �ej=u�) is equal to the value �: Prob(tej < h � �ej=u�) = �:

The dimensionless time � �
sw

is de�ned analogously.

To construct similar distributions for the ejection and sweep distances, the following relations

can be used:

Prob(xej < h �v � �ej=u�) = �; Prob(xsw < h �v � �
sw
=u�) = � :
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4.3 The vertical mixing distance

The vertical mixing distance Lz is de�ned as the distance from a linear stationary source

situated transverse to the mean �ow, at the given height zs, down the river �ow at which

the vertical distribution of the concentration is su�ciently uniform.

In the literature (e.g., see Rutherford, 1994) one can �nd that �su�ciently uniform� may

imply that the ratio of the minimal value of the mean concentration to the maximal one lies

in the interval 0:8� 0:98. In our calculations, we take this value equal to 0:9.

We recall that in our considerations, the river width is assumed to be much larger than

the depth. In this case, the vertical mixing happens much faster than the particles released

at the central part of the river reach the river banks. Therefore, we may consider the

concentration c(x; z) in the central part of the river as a function not depending on the

transverse coordinate y.

In Table 5 we present the values of the vertical mixing distance Lz normalized by h�u=u�.

With this scaling, it is natural to expect that the dependence on the parameter z0=h will

be weak. Indeed, considering the time twm at which the vertical distribution of a particle is

getting uniform, it is plausible that Lz ' �u twm. This implies that the ratio Lz=�u is weakly

dependent on z0=h, since twm is slightly dependent on z0=h. The last fact is related with

the governing equation in which the coe�cients responsible for the vertical motion do not

depend on z0=h. Weak dependence may appear only due to the re�ection at the roughness

boundary z = z0. This is con�rmed by the results given in Table 5.

Table 5. The ratio Lzu�=(h�u) for di�erent value of z0=h and zs=h.

z0=h zs=h = 0:1 zs=h = 0:25 zs=h = 0:5 zs=h = 0:75 zs=h = 0:9

10�5 4.37 4.18 2.28 3.35 3.82

10�4 4.38 4.29 2.26 3.41 3.8

10�3 4.33 4.13 2.4 3.35 3.8

5 � 10�3 4.23 3.95 2.5 3.4 3.82

10�2 3.8 3.94 2.74 3.35 3.7

5 � 10�2 3.7 3.9 3.05 3.03 3.45

In Figure 3, q(x) = cmin=cmax, the ratio of the minimum to maximum concentrtaion values

at a �xed distance x is shown as a function of the dimensionless distance l = xu�=(h�u). The

curves are shown for di�erent values of z0=h (left picture), and for di�erent values of zs=h

(right picture). It is seen from the left picture, that for the values of q around 0:9 all the

curves converge which con�rms our observation that Lz=�u slowly depends on z0=h. Note

that for smaller values of q the curves are considerably di�erent. For instance, for q = 0:8,

the value of Lz=�u at z0=h = 5 � 10�2 is almost 2 times larger than that at z0=h = 10�5.
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Figure 3: The ratio cmin=cmax versus the dimensionless distance l0 = xu�=(h�u), for di�erent

values of z0=h at zs=h = 0:5 (left picture), and for di�erent values of zs=h at z0=h = 0:01

(right picture).

4.4 Mean residence time

The mean time the particle spends in a certain layer of the river is important in di�erent

applied problems. For instance, the growth of organic organisms like plankton and nekton

is much in�uenced by the solar radiation absorbed by the layer where these organisms live.

Let us indroduce the vertical distribution density function of the mean residence time:

pres(z; t) =
1

t
lim
�z!0

1

�z
hrest(z; z +�z)i :

This function is useful when evaluating the mean time a �uid particle spends in a layer

during the time interval (0; t):

hrest(z1; z2)i = t
Z

z2

z1

pres(z; t)dz:

The calculations have shown that pres slowly depends on z0=h, and in the interval z0=h < 10�2

the dependence is neglegible, see Table 6, where we use the notation pres;min=pres;max for the

ratio of the minimal value of pres to the maximal value over the height.

Obviously, the dependence on zs=h is strong only for short times, while with the time increase,

the particles �forget� their starting position, and we come to the uniform distribution over

the depth, see Table 7. Of course, the time needed to reach the uniformity depends on

the starting position zs, see the curves in Figure 4. For instance, the particles started at

the centerline, zs=h = 0:5, were mixed almost 2 times faster than the particles released at

zs=h = 0:1.

11



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

tau=1 

tau=2 tau=4 

tau=8 

tau=16 

z / h 

h p
res

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

tau=2 

tau=4 

tau=8 

tau=16 tau=32 

z / h 

h p
res

 

Figure 4: The dimensionless pdf hpres versus the dimensionless height z=h for di�erent values

of the dimensionless time � = tu�=h at zs=h = 0:5 (left picture) and at zs=h = 0:1 (right

picture). Both pictures are obtained at z0=h = 5 � 10�3.

Table 6. The value of the ratio pres;min=pres;max, for di�erent roughness heights and times,

at zs=h = 0:5.

z0=h t = 4h=u� t = 8h=u� t = 16h=u� t = 32h=u� t = 64h=u�
10�5 0.58 0.75 0.85 0.91 0.94

5 � 10�3 0.55 0.74 0.85 0.91 0.94

10�2 0.54 0.73 0.83 0.9 0.94

5 � 10�2 0.52 0.68 0.81 0.9 0.94

Table 7. The value of the ratio pres;min=pres;max, for di�erent initial heights and times, at

z0=h = 5 � 10�3.

zs=h t = 4h=u� t = 8h=u� t = 16h=u� t = 32h=u� t = 64h=u�
0.1 0.28 0.52 0.69 0.82 0.89

0.25 0.4 0.6 0.76 0.86 0.91

0.5 0.55 0.74 0.85 0.91 0.94

0.75 0.38 0.61 0.79 0.9 0.95

0.9 0.29 0.53 0.72 0.85 0.92

4.5 Comparison against other stochastic models

In this section we present numerical results obtained by the following methods: (1) Thom-

son's model; (2) KS model; (3) random displacement model with parabolic pro�le of the

di�usivity coe�cient; (4) random displacement model with constant coe�cients.

In Figure 5, the dimensionless pdf's for ejection time, p�;ej(�) =
h

u�
pt;ej(h�=u�) (left picture)

and ejection distance, pl;ej(l) = hpx;ej(hl) (right picture) calculated by the methods (1-4) are

presented. In Figure 6 the same pdf's for the sweep time and sweep distance are shown.
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Figure 5: The dimensionless pdf's of the ejection time (left picture) and the ejection distance

(right picture) obtained by di�erent models for z0=h = 10�2, �=h = 0:1. The two upper

curves which are not labelled are obtained by the random displacement models.

Table 8. Comparison of statistical characteristics of ejection and sweep for di�erent stochas-

tical models ( �=h = 0:1; z0=h = 0:01).

Characte- Thomson's KS RDM with RDM with

ristic model model parab. prof. dif. const. coe�.

h�eji 6.5 7.4 5.8 6.

h�swi 5.5 6.4 5.6 6.1

hleji 51.7 57.6 45.8 47.

hlswi 58. 68.4 58. 63.6

��;ej 5.5 6.2 4.8 4.9

��;sw 4.5 5.3 4.6 5.

�l;ej 44. 48. 37.2 38.

�l;sw 47. 56. 48.6 53.

Table 9. Comparison of the value u�Lz=(h�u) for di�erent stochastic models at z0=h = 0:005.

zs=h Thomson's KS RDM with RDM with

model model parab. prof. dif. const. coe�.

0.1 4.2 4.8 4.8 5.6

0.25 4. 5.2 4. 5.2

0.5 2.5 3.6 2.9 1.56

0.75 3.4 3.8 3.9 5.2

0.9 3.8 4.6 4.8 5.6
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Figure 6: The same as in Figure 5, but for the sweep statistics

Generally, the results obtained by all the methods show a good agreement. The values are

slightly di�erent only around the maximum value. The detailed comparison can be made

from the Table 8 where the mean values and the rms' of the following quantities are given:

�ej = u�tej=h; lej = xej=h; �sw = u�tsw=h; lsw = xsw=h:

Finally, the models were compared by the calculation of the vertical mixing distance (see

Table 9). Here Thomson's model, KS model and the RDM with parabolic pro�le of the dif-

fusivity agree good enough while the RDM with the constant coe�cients shows considerable

deviations.

5 Conclusions

A detailed numerical analysis of statistical characteristics of the vertical mixing process in

a horizontally homogeneous and stationary river �ow is given on the basis of stochastic

simulation models. For validation, we compared Langevin type models with the random

dicplacement models conventionally applied in this �eld. All the methods show a qualita-

tively agreement. Quantitatively, the random diplacement model with constant coe�cients

produced some bias.

The results will be used for the development of predictive methods of vertical mixing in

river �ows. Further detailed �eld experiments are necessary for direct veri�cation of models.

The experimental design should provide possibilities for measurements of �uctuating �ows of

mass sinchronously with �uctuations of velocity �eld. Furthemore, the results form a basis

for the development of an optimal �eld measurements strategy.
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