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Abstract

Random Walk on Spheres method for solving some 2D and 3D boundary value

problems of elasticity theory are developed. The boundary value problems studied

include the elastic thin plate problems with simply supported boundary, rigid �xing

of the boundary, and general 2D and 3D problems for the Lamé equation. Unbiased

estimators for some special classes of domains based on the generalized Mean Value

Theorem which relates the solution at an arbitrary point inside the sphere with the

integral of the solution over the sphere. We study a variance reduction technique

based on the explicit simulation of the �rst passage of a sphere for the Wiener process

starting at an arbitary point inside this sphere. Along with the conventional random

walk methods we apply another type of iteration method, the Schwarz iterative

procedure whose convergence for the Lamé equation was proved in 1936 by S.L.

Sobolev. We construct also di�erent types of iterative procedures which combine

the probabilistic and conventional deterministic methods of solutions.

1 Introduction

It is well known that probabilistic representations of solutions to classical boundary value

problems of parabolic and elliptic types in the form of expectations over di�usion stochas-

tic processes can be used for a numerical solution by the Monte Carlo simulation. For the

numerical solution of the relevant stochastic di�erential equation governing the di�usion

process, one needs usually a simple �nite-di�erence scheme, e.g., the Euler scheme, inside

the domain, but considerable di�culties arise when approximating the random process

near the boundary: one should take care that in each step, the process is inside the

domain. This implies a rapid diminishing of the integration step when approaching the

boundary, which in turn rapidly increases the computational cost.

There exists however another approach which appeared in 1956, the random Walk on

Spheres Process (WSP), see [7]. The idea is quite simple. The probabilistic representation

of the solution to the Laplace equation

�u(x) = 0; x 2 G; u(y) = '; y 2 � = @G;

has the form

u(x) = Ex '(y�);

where Ex denotes the expectation over all Wiener processes started at the point x and

having the �rst passage on the boundary � at the exit point y� 2 �. Since only the random

point y� 2 � is involved in the probabilistic representation, it is natural to construct a

process whose distribution of the exit point is close to that of the point y�.
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This Random Walk on Spheres process is constructed as follows.

First construct a sphere S(x; d(x)) centered at the point x whose radius d(x) is equal to

the distance from x to the boundary �, hence S(x; d(x)) is a maximal sphere which can

be inscribed into the domain G provided it is centered at the point x. Then x1 is chosen

at random on the surface S(x; d(x)) with the uniform surface distribution (isotropic di-

rection). Next take x1 as the center of the second sphere S(x1; d(x1)) which is constructed

analogously, and choose x2 uniformly on S(x1; d(x1)), etc. Thus we come to a Markov

chain fx; x1; x2; : : : ; g started at x, and the state xk+1 has a uniform distribution on the

sphere S(xk; d(xk)). Muller [7] has shown that this Markov chain converges to the bound-

ary, and the distribution of the limit point x1 coincides with the distribution of the �rst

passage point of the Wiener process on �.

With probability one, the WSP fx; x1; x2; : : : ; g will not reach the boundary in �nite

number of steps, so in this form the process is of no use for numerical purposes. However

there is an elegant cut-o� approach: if instead of � we consider an "-boundary

�" = fx 2 G : d(x) < "g;

then the walk on spheres process fx; x1; x2; : : : ; xN"
g hits the "-boundary with probability

one after N" steps. It is quite evident that, assuming the solution is at least continuous

in "-boundary, we can take in the probabilistic representation, as an approximation to

'(y�), the value of ' at a boundary point closest to the point xN"
.

Of course, two questions are here of primary interest: what a bias is caused by this cut-o�

procedure, and how large is N". The answer encourages the further development of the

method: the bias is at least of order O("), and �N", the mean number of steps, behaves

like const � j ln(")j. So the cost is surprisingly low, moreover, the constant const is very

slowly (approximately linear) dependent on the dimension of the problem. First proof of

the logarithmic estimation was given in [6], and further extensions to general domains are

given in [1], [2], [9].

The rigorous formulations and justi�cations of the walk on spheres method with applica-

tions to di�erent kinds of equations can be found in [9], [2], [10]. It should be noted that

the approach used in [9], and in subsequent publications is di�erent: as a starting point

not the probabilistic representation is used, but a reformulation of the original boundary

value problem in an equivalent integral equation form. The integral formulation is written

in the form of spherical mean value relation. If then the standard Monte Carlo Markov

chain procedure is applied to solve this integral equation, we come exactly to the random

walk on spheres method.

This approach is very convenient for the numerical purposes, and what is essential, it

provides a technique for the construction of the random walk methods for broad classes

of equations for which there are no probabilistic representations. As an example, we

mention the random walk on boundary algorithms suggested �rst by K. Sabelfeld in [8]

and described in the book [11]. In this method, the random walks leave on the boundary;

the boundary integral equations of the potential theory are used to derive and justify the

convergence of the method, to estimate the bias, the variance and the cost of the method.

The random walk on boundary method works for all classical boundary value problems

of the potential theory, including the exterior Dirichlet and Neumann problems.
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Another example where the integral formulation works while there are no probabilistic

representations is a class of systems of elliptic equations, see [10].

In this paper we consider some examples of domains where it is possible to avoid the "-bias

of the walk on spheres algorithm. For such domains we construct random walk on spheres

algorithm for the bending of thin elastic plate governed by the biharmonic equation -

in section 2. Section 3 deals with the classical Lamé equation. Here we work with two

di�erent approaches: one is the standard random walk on spheres based on the spherical

mean value relation written for the center of the sphere. Second approach is based on the

general mean value relation derived for an arbitrary point, not coincident with the center.

We call the relevant random walk as Decentred Random Walk on Spheres (DRWS). Both

2D and 3D cases are considered. We study also some modi�cations of the standard walk

on spheres process. For two overlapping circles we carried out a randomized evaluation

of the Schwarz iterative procedure for the Lamé equation.

2 RandomWalk on Spheres method for the biharmonic

equation. Simply supported boundary.

2.1 Standard vector random walk on spheres estimator

Let us consider the following classical boundary value problem for the biharmonic equation

governing the bending of a thin elastic plate G with a simply supported boundary �:

��u(x) = 0; x 2 G � R
2
; u(y) = g0(y); �u(y) = g1(y); y 2 �: (2.1 )

The following integral relation for the solution to this boundary value problem can be

found in [9] and [10].

Let S(x; d(x)) be an arbitrary circle inG centered at the point x, whose radius is R = d(x).

Then the solution u(x) satis�es the spherical mean value relation:

u(x) =
1

2�R

Z
S(x;R)

u(y)dS(y)� R
2

4
� 1

2�R

Z
S(x;R)

�u(y)dS(y) ; (2.2 )

�u(x) =
1

2�R

Z
S(x;R)

�u(y)dS(y) ; (2.3 )

where dS(y) is the surface element of S(x;R) at the point y. The spherical mean value

of a function v(y) can be written also as

NR v =
1

2�R

Z
S(x;R)

v(y)dS(y) =
1

2�

Z



v(x+ sR) d
(s); (2.4 )

where 
 is the unit sphere S(0; 1), and d
 is its suface element.
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The relations (2.2), (2.2) can be rewritten as a system of integral equations for the vector

(u;�u) with a generalized kernel, see [9].

The random estimator for evaluation of the solution u(x) has the following simple form:

�(x) = g0(y
�

�)�
g1(y

�

�)

4

N"X
k=1

d
2(xk):

Here fx1 = x; x2; : : : ; xN"
g is the walk on spheres process, y�� is a point at the boundary

closest to the last state of the process absorbed in �" at the point y�"; d(xk) are the radii

of the spheres of the random walk on spheres process.

This estimator has a bias Æ("), because of the " cut-o� procedure, hence

u(x) = Ex�(x) + Æ(")

where the form of Æ(") depends on the continuity modulus of the functions u(x) and�u(x)

in �" (e.g., see [9], [2]).

What is important, the variance of the estimator �(x) is uniformly bounded, as " ! 0:

This ensures that the accuracy can be increased by taking smaller values of ", and the

cost of the method behaves like � j ln(")j="2.

2.2 Two overlapping discs

In the walk on spheres method described the points xk are the centers of the spheres,

because we have used the spherical mean value relation which relates u(x);�u(x) with

the integrals of these functions over the sphere S(x; d(x)).

Let us now take an arbitrary point x inside a disk K(x0; R) with the boundary S(x0; R).

Then the following generalized mean value relation holds (see [10]; note that there was a

mistake in this formula):

Theorem 1. The regular solution to the biharmonic equation satis�es the following

spherical mean value relation

u(x) =
R
2 � r

2

2�R

Z
S(x0;R)

u(y)dSy

jx� yj2

+
R
2 � r

2

4�R

Z
S(x0;R)

n R sin�

jx� x0j
arctg

n jx� x0j sin�
R� jx� x0j cos�

o
(2.5 )

� 1

2
� R cos�

2jx� x0j
ln
jx� yj2
R2

o
�u(y)dSy ;

�u(x) =
R
2 � r

2

2�R

Z
S(x0;R)

�u(y)dSy

jx� yj2 : (2.6 )
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Here r = jx � x0j is the distance from x to the circle's center x0, and � is the angle

between the vectors x� x0 and y � x0.

This relation can be used to construct a random estimator which is de�ned on a Markov

chain fx = x1; x2; : : :g whose states are not the centers of the spheres, but are some

random points inside these spheres.

Let us consider the simplest case when the domain G consists of two overlapping discs:

G = K(x
(1)
0 ; R1) [K(x

(2)
0 ; R2); K(x

(1)
0 ; R1) \K(x

(2)
0 ; R2) 6= ; ; (2.7 )

and denote by 1 the part of the circle S(x
(1)
0 ; R1) which belongs to the second disc while

�1 is the part of the circle S(x
(1)
0 ; R1) not belonging to the second disc; analogously 2

and �2 are de�ned. So the boundary of the domain G consists of �1 and �2.

Iteration with uniform directions.

Assume we are going to evaluate the solution to (2.1) in this domain, say, at a point x 2
K(x

(1)
0 ; R1) centered at the point x

(1)
0 = (x01; x02). The randomized iterative procedure

suggests the following: sample a point x1 uniformly on the circle S(x
(1)
0 ; R1). If x1 is on �1,

the process stops, and the relevant score is calculated. If x1 is inside the disc K(x
(2)
0 ; R2),

then we are doing the same: sample a random point x2 uniformly on the circle S(x
(2)
0 ; R2);

again, if x2 2 �2, the process stops, and we calculate some score, if not, we are in the �rst

disc, and the procedure goes further.

Two main features of such a random walk are: (1) there is no bias in the method since

the scores are calculated exactly on the boundaries; (2) the process rapidly stops, since

the stop probability is always very large, and in the worst case the probability to stop

after 2 steps is not less than 0:25.

Two issues should be studied: �rst, the convergence of the method, and second, its cost.

But before doing that, let us modify the random walk procedure described.

Distribution of the �rst passage on S(x
(1)
0 ; R) for a Wiener process starting at

an arbitrary point x 2 K(x
(1)
0 ; R):

Note that the �rst integral in (2.5) is exactly the Poisson formula for the Laplace equation.

It is not di�cult to �nd out that the function

p(y; x) =
R
2 � jx� x

(1)
0 j2

2�R
� 1

jx� yj2 (2.8 )

is a probability density function of the variable y 2 S(x
(1)
0 ; R), for all x 2 K(x

(1)
0 ; R).

This immediately follows from the representation of the solution u = 1 to the Dirichlet

problem for the Laplace equation �u(x) = 0; u(y) = 1 through the Poisson integral.

From the probabilistic representation of the Dirichlet boundary value problem considered

the density p(y; x) coincides with the pdf of the �rst passage on S(x
(1)
0 ; R) of a Wiener

process starting at x 2 K(x
(1)
0 ; R).

To sample the point y on the circle S(x
(1)
0 ; R) according to the density p(y; x), it is

convenient to choose new coordinates with the origin at x. Using simple transformations,

in [4] the following simulation algorithm was suggested.
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Simulation algorithm.

1. Sample a random direction in the �upper semisphere� ! = (!1; !2) = (cos( ); sin( )),

where  is uniformly distributed between 0 and �.

2. Find y = y1 on the circle S(x
(1)
0 ; R) as the intersection point of S(x

(1)
0 ; R) and the ray

x + ! jx � yj, and �nd also y = y2 as the intersection point of S(x
(1)
0 ; R) with the ray

x� ! jx� yj.
3. Let a1 = jx� y1j, and a2 = jx� y2j. Then with probability a1=(a1 + a2) take y = y2,

and with probability a2=(a1 + a2) take y = y1.

The algorithm has two remarkable properties: (1) the simulation algorithm is the same

in arbitrary dimensions, and (2) the closer the point x to the boundary S(x
(1)
0 ; R), the

larger is the probability that the sampled point y is the point closest to x. Note that in

[2], a slightly di�erent simulation algorithm is presented.

Decentred Random Walk on Spheres (DRWS).

Let us denote by fY1 = x; Y2; : : : ; Ymg the Markov chain constructed for our overlapping

discs as described above in the Iteration with uniform directions but with the di�erence

that at each step, the point Yk on the consequent circle is sampled not uniformly, but

according to p(y;Yk�1), starting from Y1 = x; m is the number of steps until the process

stops on �1 or �2. Not that Yk, for k > 1 is on the �rst circle for k even, and it is on the

second circle, if k is odd.

Then the random estimators for u(x) and �u(x), according to the spherical mean value

relation, can be written in the form:

�1(x) = g0(Ym)� g1(Ym)
mX
k=2

Q(Yk�1; Yk)

and

�2(x) = g0(Ym) :

Here

Q(Yk�1; Yk) =
jYk�1 � Ykj2

2

2
4Rk�1 sin(�k)

jYk�1 � x
(�)
0 j

arctg

8<
: jYk�1 � x

(�)
0 j sin(�k)

Rk�1 � jYk�1 � x
(�)
0 j cos(�k)

9=
;� 1

2

� Rk�1 cos(�k)

2jYk�1 � x
(�)
0 j

ln
jYk�1 � Ykj2

R
2
k�1

#
;

�k is the angle between the vectors Yk�1 � x
(�)
0 and Yk � x

(�)
0 . We use here the notation

x
(�)
0 for the centers of the both circles: it is the center of the �rst disc if k is odd, and for

k even it is the center of the second disc.

Theorem 2. For any overlapping discs, the estimators �1 and �2 are unbiased,

u(x) = Ex�1(x); �u(x) = Ex �2(x);

and have �nite variance.

Proof. Two di�erent approaches can be used to prove this statement. One is just a

direct estimation of the expectation and second moments of �1 and �2. Another approach

6



is to estimate the spectral radius of the system of integral equations generated by the

spherical mean value relation. Since g0 and g1 are bounded functions, the statement for

�2 is evident. As to the estimate �1, the �niteness of the expectation and the variance

follows from the convergence of the Neumann series for the integral operator. Indeed,

since the integrands in (2.5) are all bounded, we �nd that the Nemann series is estimated

by

const �D2
1X
k=1

k q
k
;

where D = maxfR1; R2g, q = maxfq1; q2g, and q1; q2 are de�ned by

q1 = sup
x2�1

Z
�2

p(y; x)dS(y); q2 = sup
x2�2

Z
�1

p(y; x)dS(y) :

Since p(y; x) is the probability density function for each x, we conclude that q1 < 1 and

q2 < 1 which ensures the convergence. Note that the same series is to be estimated if we

evaluate directly the expectation or the variance of the estimator �1(x).

Remark 1.

For simplicity, we presented here the random walk method for two overlapping discs. It

is not di�cult to �nd out that this method converges and has a �nite variance for any

bounded domain which is a uni�cation of, say, m discs each of them having an overlapping

at least with one disc. For brevity, we call this type of domains by Km-domins.

This suggests a new biased method which is di�erent from the conventional walk on spheres

method with the "-bias. Indeed, approximate the given domain by a Km-domain, and make

an extrapolation of the boundary conditions to the boundary of the domain Km. Of course,

this extrapolation will cause a bias, but for a broad classes of domains this bias can be

made very small. Our calculations have shown that the modi�ed walk on spheres method

presented is very e�ective.

2.3 Rigid �xing of the boundary

In this section we aim at generalising the method to the case when the plate has a rigid

�xing of the boundary, which means that we have to �nd a solution to the biharmonic

equation with the following boundary:

u

���
�
= g0;

@u

@n

�����
�

= g1: (2.9 )

Here n is the exterior normal vector to the boundary �.

It should be mentioned that this problem is quite di�cult for the numerical solution,

including the Monte Carlo methods. The authors know some attempts to construct a

stochastic solution to this problem but all the attempts fail.

In this section we suggest a stochastic method which works at least for some particular

cases.

The biharmonic function satis�es at an arbitrary point x 2 K(x0; R) the following spher-

ical mean value relation, [10]:
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u(x) = �(R2 � jx� x0j2)2
2R22�

Z
S(x0;R)

g1(y)dSy

jx� yj2

+
(R2 � jx� x0j2)2

2R32�

Z
S(x0;R)

(2R2 � 2Rjx� x0j cos�)g0(y)dSy
jx� yj4 ; (2.10 )

where � is the angle between the vectors x� x0 and y � x0; x0 = (x01; x02).

To derive a system of integral equations relating the function u(x) and its normal deriva-

tive at the point x = (x1; x2) we could di�erentiate the relation (2.10) with respect to x1
and x2, and then use the relation at the point y = (y1; y2)

@u

@n
=

@u

@x1
� y1 � x01

R
+

@u

@x2
� y2 � x02

R
(2.11 )

where R equals R1, if the derivative is taken at x 2 1, or R2 at 2. However it is more

convenient to derive the system of integral equations for the vector which includes the

solution and its derivatives, i.e., the vector v = (v1; v2; v3) � (u; ux1; ux2). We di�erentiate

(2.10 ) and use the Poisson kernel p(y; x) de�ned in (2.8 ) (here we use the notation

r1 = jx� x
(1)
0 j :

u(x) =
Z

S(x0;R1)

p(y; x)

(
R
2
1 � r

2
1

jx� yj2 (1�
r1

R1

cos(�1)) u(y) �
R
2
1 � r

2
1

2R1

y1 � x01

R1

@u

@x1
(y)

� R
2
1 � r

2
1

2R1

y2 � x02

R1

@u

@x2
(y)

)
dS(y)

@u

@x1
=

Z
S(x0;R1)

p(y; x)

("�4(x1 � x01)(1� r1

R1
cos(�1))

jx� yj2 � (R2
1 � r

2
1)(y1 � x01)

R
2
1 jx� yj2

� 4(R2
1 � r

2
1)(x1 � y1)

jx� yj4 (1� r1

R1

cos(�1))

#
u(y) +

"
2(x1 � x01

R1

+
R
2
1 � r

2
1

jx� yj2
x1 � y1

R1

#
y1 � x01

R1

@u

@x1
(y)

+

"
2(x1 � x01

R1

+
R
2
1 � r

2
1

jx� yj2
x1 � y1

R1

#
y2 � x02

R1

@u

@x2
(y)

)
dS(y)

@u

@x2
=

Z
S(x0;R1)

p(y; x)

("�4(x2 � x02)(1� r1

R1
cos(�1)

jx� yj2 � (R2
1 � r

2
1)(y2 � x02)

R2
1 jx� yj2

� 4(R2
1 � r

2
1)(x2 � y2)

jx� yj4 (1� r1

R1

cos(�1))

#
u(y)

+

"
2(x2 � x02

R1

+
R
2
1 � r

2
1

jx� yj2
x2 � y2

R1

#
y1 � x01

R1

@u

@x1
(y)

+

"
2(x2 � x02

R1

+
R
2
1 � r

2
1

jx� yj2
x2 � y2

R1

#
y2 � x02

R1

@u

@x2
(y)

)
dS(y)
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which can be conveniently rewritten in a matrix form as follows:

v(x) =
Z

S(x0;R1)

p(y; x)Q(x; y)v(y) dS(y); (2.12 )

where Q(x; y) is a 3� 3-matrix with the entries

q11(x; y) =
R
2
1 � r

2
1

jx� yj2 (1�
r1

R1

cos(�1)); q12 =
R
2
1 � r

2
1

2R1

y1 � x01

R1

; q13 =
R
2
1 � r

2
1

2R1

y2 � x02

R1

;

q21 =
�4(x1 � x01)(1� r1

R1
cos(�1))

jx� yj2 � (R2
1 � r

2
1)(y1 � x01)

R2
1 jx� yj2

�4(R2
1 � r

2
1)(x1 � y1)

jx� yj4 (1� r1

R1

cos(�1)) ;

q22 =

"
2(x1 � x01

R1

+
R
2
1 � r

2
1

jx� yj2
x1 � y1

R1

#
y1 � x01

R1

;

q23 =

"
2(x1 � x01

R1

+
R
2
1 � r

2
1

jx� yj2
x1 � y1

R1

#
y2 � x02

R1

;

q31 =
�4(x2 � x02)(1� r1

R1
cos(�1))

jx� yj2 � (R2
1 � r

2
1)(y2 � x02)

R2
1 jx� yj2

�4(R2
1 � r

2
1)(x2 � y2)

jx� yj4 (1� r1

R1

cos(�1)) ;

q32 =

"
2(x2 � x02)

R1

+
R
2
1 � r

2
1

jx� yj2
x2 � y2

R1

#
y1 � x01

R1

;

q33 =

"
2(x2 � x02)

R1

+
R
2
1 � r

2
1

jx� yj2
x2 � y2

R1

#
y2 � x02

R1

:

The same relation is of course true for any point x 2 K(x
(2)
0 ; R2):

v(x) =
Z

S(x
(2)

0 ;R2)

p(y; x)Q(x; y)v(y) dS(y) : (2.13 )

Thus the random estimator �(x) = (�1; �2; �3) for the solution v(x) = (v1(x); v2(x); v3(x))

is obtained by iterating the relevant integral relations

v(x) = E �(x); �(x) =

(
mY
k=2

Q(Yk�1; Yk)

)
g(Ym) (2.14 )

wherem is the random number of steps, and g(y) = (u(y); ux1(y); ux2(y)) are the boundary

values. Here Y1 = x; Y2; : : : ; Ym is the DRWS process.

Numerical calculations show however that the variance of the estimator is very large. The

reason is that after the �rst iteration, the point Y1 may be sampled very close to the

9
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Figure 1: To the choice of the cut-o� procedure

boundary of the second disc which leads in turn to the evaluation of the spherical mean

at a point which is too close to the boundary. We have made a cut-o� of the integral at

the point of intersections of the two circles. The calculations show that this drastically

in�uences the estimator: the variance is getting small, while the bias caused by the cut-o�

can be estimated and controlled. To �nd a reasonable strategy of the cut-o� procedure, let

us show schematically the bias and the statistical error as functions of the dimensionless

cut-o� size.

From the Figure 1 we see that it is reasonable to take the value of the cut-o� at the

point of intersection of the two curves. This strategy has given very good results for two

arbitrary overlapping discs.

Calculations for three overlapping discs show that the variance is increasing too fast to

provide a stable numerical solution. So the convergence of the method in this case is open.

3 Lamé equation

It was found in [10] that the straightforward extension of the walk on spheres method to

the �rst boundary value problem for the Lamé equation fails. It is interesting to note that

for any �xed number of steps the method gives an estimator with a �nite variance. The

problem is that the variance is exponentially increasing with the number of steps which

implies that the cost would tend to in�nity as the ", the size of the "-boundary �" tends

to zero.

Several attempts to �nd a reasonable modi�cation of the walk on spheres method were

made in [10], let us mention some of them. The issues listed are simultaneously the

problems we are dealing with in this section.

1. First, the following property was used in [9]: if the number of steps of the "-process

is not large, the variance remains relatively small. This suggests (see [10]) a modi�cation

where a combined strategy is used: for relatively large ", the rigorous walk on spheres

iteration is carried out in the domain G" = G n �", while closer to the boundary, a

10



special approximative iterative procedure is used. In this section we will give a further

improvement of this approach.

2. Second, the special structure of the kernel of the k-iteration of the matrix integral

operator was used: it turns out that the k-iteration is essentially a product of cosines-

functions which can be included into the probability density function for the distribution

of the random walker on the sphere. This leads to a non-isotropic random walk on spheres

process with a variance which increases considerably slower.

3. Third, we have studied in [10] the method which exploits the general spherical mean

value property written for an arbitrary point inside the sphere. This is especially well

suited for domains we have de�ned above as Km-domains. The relevant estimator has no

bias, and the number of steps is very small. However we have not given there a practical

numerical example.

4. The Schwarz iterative procedure. The general analysis of this classical procedure for

the Lamé equation was given by S.L. Sobolev in [15]. Randomized evaluation of the

iterations involve some features which we will present in this section.

3.1 Spherical mean value relation

Suppose a homogeneous isotropic medium G � IRn with a boundary � is given, whose

state in the absence of body forces is governed by the classical static equation, the Lamé

equation, see, e.g., [5], [10]:

�u(x) + � grad divu(x) = 0; x 2 G; (3.1 )

where u(x) = (u1(x1; : : : ; xn); : : : ; un(x1; : : : ; xn)) is a vector of displacements, whose com-

ponents are real-valued regular functions. The elastic constant �

� =
�+ �

�

is expressed through the Lamé constants of elasticity � and �. Here we will employ the

summation convention, for example,

ui;jj =
nX

j=1

@
2
ui

@x2
j

:

Hence, the equation (3.1) can be written in the form

ui;jj + �uj;ji = 0; i; j = 1; : : : ; n : (3.2 )

The �rst boundary value problem for the Lamé equation consists in �nding a vector

function u 2 C2(G) \ C( �G) satisfying the boundary condition

u(y) = g(y); y 2 � ; (3.3 )

where g 2 C(�) is a given vector-function.

11



Spherical Mean Value Relation

Let us �rst present the spherical mean value relation for the general n-dimensional case.

The regular solutions to the system (3.2) satisfy the following spherical mean value relation

in S(x; r)

ui(x) =
n

2(n+ �)!n

Z



�
(2� �)Æij + � (n + 2)sisj

�
uj(x+ rs) d
(s); (3.4 )

i = 1; : : : ; n, Æij is the Kronecker symbol, si are the cosine directions of the unit vector

s, and !n = 2�n=2�(n=2) is the area of the surface of 
, the unit sphere in IRn.

We rewrite this mean value relation in the vector form

u = pNru+ qSru ; (3.5 )

where

p =
n(2� �)

2(n+ �)
� 0 ; q =

�(n+ 2)

2(n+ �)
� 0 ;

hence p+ q = 1, and Nr is the matrix-integral operator

Nru =

0
BBBB@
Nru1 0 � � � 0

0 Nru2 � � � 0
...

. . .
...

0 � � � Nrun

1
CCCCA

where the diagonal operators Nr are the spherical means de�ned in (2.4), and

(Sru)l(x) =
n

!n

Z


slsjuj(x +Rs)d
(s) ; l; j = 1; 2; : : : ; n : (3.6 )

A naive vector Monte Carlo estimator can be constructed as a generalization of the stan-

dard isotropic Random Walk on Spheres method. Indeed, introduce the unbiased vector

estimator

�" =
N"Y
i=1

(pI + qSi)u(XN"
) ; (3.7 )

and the "-biased random estimator

�� =
N"Y
i=1

(pI + qSi)g( �XN"
) ; (3.8 )

where I is the n� n identity matrix, and Si is the matrix-kernel of the operator (3.6) in

i-th sphere:

Si = n

0
BBBB@

s
2
1 s1s2 � � � s1sn

s2s1 s
2
2 � � � s2sn

...
. . .

...

sns1 � � � s
2
n

1
CCCCA : (3.9 )

Thus s1; s2; : : : ; sn are the components of the unit isotropic vector in i-th sphere of the

Random Walk on Spheres process.
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From the integral formulation of the Lamé equation given in Chap. 5 of [10] it follows that

u(x) = IEx�" : (3.10 )

However, the estimators (3.7 ),(3.8 ) cannot be used if " is small enough. Indeed, the

variance of ��(x) is exponentially increasing: IE(�")
2 �= n

N" , where N" is the number of

steps of the "-spherical process.

3.2 A modi�cation of the algorithm

In [12], [10] the following modi�cation was described.

It is known that if " is small, then after a certain number of steps the trajectory is

concentrated near the boundary, ri, the radii of the spheres being of order of " (see, e.g.,

[9] and [7]). This gives the motivation to construct the following modi�cation of the

algorithm.

Let us consider the sum of the non-diagonal terms of the operator (3.5)

mi =
1

!n

Z


si sj uj(s) d
(s) ; (j 6= i) :

Let us keep the details for the 2D case, and rewrite (3.5) in the form :

ui(x) = p (Nru)i(x) +
2q

2�

Z


s
2
i
ui(x+ rs) d
(s) +mi ; i = 1; 2 :

Thus, in �" we can approximate the local integral equation (3.5) by

ûi(x) = p (Nrû)i(x) +
2q

2�

Z


s
2
i
ûi(x+ rs)d
(s) ; i = 1; 2 : (3.11 )

De�ne a diagonal matrix-operator C by

(Cv)i(x) =
2

2�

Z


s
2
i
vi(x + rs) d
(s) ;

(no summation over i).

Since p + q = 1, we obtain that the Neumann series for (3.11) absolutely converges for

an arbitrary small " because the norm of the second iteration of the integral operator in

(3.11) has the following estimate (see [10]) :

k(pNr + qC)2kL1(G) < 1� �(") < 1 ;

where �(") is a small positive number.

Thus, the modi�ed algorithm reads as follows.

First, choose Æ = t" where t > 1 is a constant. Evaluate (3.7) over the standard Walk on

spheres process Xk until Xm 2 �Æ. After that use the operator (3.11). The estimator is

then

~�" =

8<
:

NÆY
i=0

(pI + qSi)

9=
;
(

N"Y
k=0

(pI + qCk)

)
g( �XN"

) :

13



Here Ck are diagonal matrices whose entries cii are 2s
2
i
, i = 1; 2.

Of course, this procedure is reasonable only if the diagonal system approximates well the

solution in the Æ-boundary.

In the general case, it is not possible to improve the algorithm by this approach. However

there is one possibility to make an essential improvement by using another approximation

near the boundary.

3.3 A modi�cation near the boundary

Let us approximate the solution near the boundary as follows: take the �rst equation as

it is, while omit the last integral in the second equation:

u1(x) =
1

2�

Z



h
(p+ q 2 s21) u1(x +Rs) + q 2s1s2 u2(x +Rs)

i
d
(s);

u2(x) =
1

2�

Z



(p+ q s
2
2)u2(x +Rs) d
(s) :

The main advantage of this approximation is that the walk on spheres estimator generated

by this equation converges. This follows from the structure of this integral equation: it is

triangular, having probabilistic kernels on the diagonals. This immediately leads to the

behaviour of the Neumann series analogous to that of Theorem 1, since all the entries of

the matrix kernel are bounded.

3.4 Decentred walk on Spheres Process for the Lame equation

The Decentered Walk on Spheres process introduced in section 2.2 has remarkable proper-

ties which drastically changes the behaviour of the random process near the boundary: it

turns out that for this process not only the mean number of steps is considerably smaller,

but also, it's tale of distribution of the number of steps is essentially shorter than that for

the standard "-spherical process. This gives us a motivation to construct the algorithm

for the Lamé equation based on the decentred walk on spheres process. To do this, we

need to derive the spherical mean value relation for the Lamé equation at an arbitrary

point inside the sphere. In 3D and 2D, the derivations are given in [13], [14] and in the

book [10], however, in the 2D case, the formulae are presented there with a technical

mistake. So we give here the derivation of the correct mean value relation in 2D. The 3D

case is also presented: we have derived the mean value relation in a simpler form which

includes only two functions to be additionally numerically calculated in advance.

3.4.1 The Decentred Mean Value Relation for the Lamé equation: 2D case

Consider an arbitrary point x with polar coordinates (�; '0) inside a disk K(x0; R). The

point y situated on the circle S(x0; R) has the coordinates (R; �), where � = '
0+�, and z

is de�ned by z = y� x, with the absolute value Z = jzj; note that � is the angle between

14



the vectors x and y;  is the angle between x and z.

Let us introduce the notation

ŝ1 = cos'; ŝ2 = sin'; ' =  + '
0
;

where ŝi are the direction cosines of the vector z,

k = �=R; Jk =
q
1� k2 sin2  :

The next relations run out from the above de�nitions immediately

Z
2 = R

2 + �
2 � 2R� cos�;

Z = �� cos +
q
R2 � �2 sin2  ;

Zk = Z=R = �ks1 + Jk;

cos� = Z=R cos + �=R = Zks1 + k ;

sin� = Z=R sin = Zks2;

where s1 = cos  , s2 = sin  , and

ŝ1 = (R cos � � � cos'0)=Z = (cos � � k cos'0)=Zk ;

ŝ2 = (R sin � � � sin'0)=Z = (sin � � k sin'0)=Zk : (3.12 )

Theorem 2.

The solution to the equation (3.1) satis�es the following mean value relation, x being an

arbitrary point in K(x0; R):

ui(x) =
R
2 � jx� x0j2

2�R

2X
j=1

Z
S(x0;R)

bijuj(y)

jx� yj2 dSy ; i = 1; 2; (3.13 )

where bij are functions of x; y, conveniently represented as the entries of the following

matrix

B =
1

�0

0
B@ (�0 � 1) + 2 cos2 '+ jx�yj

R
cos (� + ') 2 cos' sin'+ jx�yj

R
sin (� + ')

2 cos' sin'+ jx�yj

R
sin (� + ') (�0 � 1) + 2 sin2 '� jx�yj

R
cos (� + ')

1
CA ;

�
0 = 1 +

2�

�+ �
:

In the notation of p(y; x) introduced in (2.8), the relation (3.13) reads in the matrix form:

u(x) =
Z

S(x0;R)

p(y; x)Bu(y) dS(y) : (3.14 )
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Proof. Let i = 1, (the case i = 2 is deduced in a similar manner). We introduce the

notation

ui(y) = gi(y); �ui(y) = g
1
i
(y); i = 1; 2; y 2 S(x0; R):

It is known [16] that any biharmonic function can be represented through two arbitrary

harmonic functions as

ui(x) = (R2 � �
2)vi(x) + wi(x); i = 1; 2 : (3.15 )

It is convenient to choose the Dirichlet conditions for the functions wi,(
�wi(x) = 0; x 2 K(x0; R)

wi(y) = gi(y); y 2 S(x0; R) ; (3.16 )

then the functions vi should solve the problem8<
:

�vi(x) = 0; x 2 K(x0; R)n
@vi

@r
+ 1

r
vi

o���
r=R

= �g
1
i
(y)

4R
; y 2 S(x0; R)

: (3.17 )

The Poisson formula yields the solution to the problem (3.16):

wi =
(1� k

2)R

2�

Z
S(x0;R)

gi(y)

Z2
dS: (3.18 )

As to the problem (3.17), by separation of variables we come to [10]

v1(�; '
0) =

2

�k�0R2

kZ
0

(1� t
2)

2�Z
0

�(ŝ21 � 0:5)

Z4
t

u1 +
ŝ1ŝ2

Z4
t

u2

�
d� dt

� 1

�k�0R2

kZ
0

t

2�Z
0

1

Z
4
t

�
cos (� + '

0)u1 + sin (� + '
0) u2

�
d� dt

+
1

�k�0R2

kZ
0

t
2

2�Z
0

1

Z4
t

�
cos 2'0 u1 + sin 2'0 u2

�
d� dt:

Here

Z
2
t
= 1� 2t cos� + t

2
;

and the functions ŝi are given by the formulae (3.12) where k should be replaced with t.

Changing the order of integration we rewrite the last equation to

v1(�; '
0) =

2

�k�0R2

2�Z
0

kZ
0

1� t
2

Z
6
t

�
(cos � � t cos'0)2 � 0:5Z2

t

�
u1

+
(1� t

2)

Z6
t

(cos � � t cos'0)(sin � � t sin'0) u2 d� dt

� 1

�k�0R2

2�Z
0

kZ
0

t

Z4
t

�
cos (� + '

0)u1 + sin (� + '
0) u2

�
d� dt

+
1

�k�0R2

2�Z
0

kZ
0

t
2

Z
4
t

�
cos 2'0 u1 + sin 2'0 u2

�
d� dt:
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Now, using [3], we evaluate all the integrals over t, which results in

v1(�; '
0)�k�0 = �

2�Z
0

f0(k)u1 d� +

2�Z
0

2f1(k) [cos
2
�u1 + cos � sin �u2] d�

�
2�Z
0

2f2(k)[2 cos � cos'
0
u1 + sin(� + '

0)u2] d�

+

2�Z
0

2f3(k)[cos
2
'
0
u1 + sin'0 cos'0u2] d�

�
2�Z
0

f4(k)[cos(� + '
0)u1 + sin(� + '

0)u2] d�

+

2�Z
0

f5(k)[cos 2'
0
u1 + sin 2'0u2] d� ;

where

f0(k) =

kZ
0

1� t
2

Z4
t

dt =
t

Z2
t

�����
t=k

t=0

=
k

Z2
k

;

f1(k) =

kZ
0

1� t
2

Z6
t

dt =

(
� cos�� t

4 sin2 �Z2
t

+
t

2Z4
t

)�����
t=k

t=0

+
A(k)

4 sin2 �
;

f2(k) =

kZ
0

(1� t
2)t

Z6
t

dt =
t
2

2Z4
t

�����
t=k

t=0

;

f3(k) =

kZ
0

(1� t
2)t2

Z
6
t

dt =

(
t(Z2

t
+ t

2)

2Z4
t

+
cos�� t

4 sin2 �Z2
t

)�����
t=k

t=0

� A(k)

4 sin2 �
;

f4(k) =

kZ
0

t

Z
4
t

dt =
t cos�� 1

2 sin2 �Z2
t

�����
t=k

t=0

+
A(k) cos�

2 sin2 �
;

f5(k) =

kZ
0

t
2

Z4
t

dt =
2 cos2 � t� t� cos�

2 sin2 �Z2
t

�����
t=k

t=0

+
A(k)

2 sin2 �
;

and

A(k) =

kZ
0

1

Z2
t

dt :

Since

A(k) u1

2 sin2 (� � '0)

�
cos2 � � cos2 '0 � cos (� � '

0) cos (� + '
0) + cos 2'0

�
= 0;

and

A(k) u2

4 sin2 (� � '0)

�
sin 2� � sin2 2'0 + 2 sin 2'0 � 2 sin (� � '

0) sin (� + '
0)
�
= 0 :
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Therefore,

v1(�; '
0)�k�0 = �

2�Z
0

k

Z
2
k

u1 d�

+

2�Z
0

� k
Z4

� cos�� k

2 sin2 �Z2
k

+
cos�

2 sin2 �

��
cos2 � u1 + cos � sin � u2

�
d�

�
2�Z
0

t
2

Z4
k

�
2 cos � cos'0u1 + sin(� + '

0)u2
�
d�

+

2�Z
0

�(Z2
k
+ k

2)k

Z4
+

cos�� k

2 sin2 �Z2
k

� cos�

2 sin2 �

��
cos'0

2
u1 + sin'0 cos'0u2

�
d�

+

2�Z
0

�1� k cos�

2 sin2 �Z2
k

� 1

2 sin2 �

�
(cos(� + '

0)u1 + sin(� + '
0)u2) d�

+

2�Z
0

(
2 cos2 � k � k � cos�

2 sin2 �Z2
k

+
cos�

2 sin2 �
)(cos 2'0u1 + sin 2'0u2) d� :

We conclude by substituting (3.18) and the expression just derived into (3.15). By a full

analogy, the mean value relation for the second component u2 is obtained. Theorem is

proved.

3.4.2 The decentred Mean Value Relation: 3D case

We turn now to the 3D case. The general scheme of derivation follows [5] and [14],

however here we represent the kernel matrix in a simpler form.

Let B(0; R) be a ball of radius R centered at the origin of coordinates, and let x be an

arbitrary point inside this ball whose spherical coordinates are (�; �; '). We denote by y

a point on the sphere S = @B(0; R).

Let W be the distance jx�yj, and let ŝ = (ŝ1; ŝ2; ŝ3) be the direction cosines of the vector

y � x. We need also a triple of coordinate axes (n1;n2;n3) centered at the point x and

oriented with respect to the axes (x1;x2;x3) so that n1 coincides with the vector x.

In these new coordinates, the direction cosines of the vector y�x are s = (s1; s2; s3), and

those of the vector x are p = (p1; p2; p3).

Simple geometrical considerations lead to

W
2 = R

2 + �
2 � 2R�p1 :

Analogous to the 2D case, we introduce the notations:

k = �=R; W
2
t
= 1 + t

2 � 2tp1; 0 � t � k; W
2
k
= 1 + k

2 � 2kp1 ;

then

W
2
t
= 1 + t

2 � kt + (W 2
k
� 1)t=k :
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The vectors s and ŝ are related by

s = A
T
ŝ;

where

A = faijg =

0
BBBBBB@

sin � cos' cos � cos' � sin'

sin � sin' cos � sin' cos'

cos � � sin � 0

1
CCCCCCA
;

and

s1 =W
�1(Rp1 � �); s2 = W

�1
Rp2; s3 = W

�1
Rp3:

For 0 � t � k we de�ne ŝt
i
and st1 as

ŝ
t

i
=
Wkŝi + ai1(k � t)

Wt

; s
t

1 = s1
Wk

Wt

+
k � t

Wt

:

Theorem 3.

The components of the displacement vector u, the solution to the Lamé equation satisfy

the following Mean Value Relation:

uj(x) =
1

4�R2

Z
S

kji(x; y)ui(y) dS(y) ; (3.19 )

kji(x; y) =
ÆijR(R

2 � �
2)

W 3
+
R(R2 � �

2)�(1�3�
0)=(2�0)

�0

�Z
0

�1(t) + �2(t) + �3(t)

t(1��
0)=(2�0)

dt ;

where

�1(t) =
Æij

2W 3
t

;

�2(t) = �3tai1ŝ
t

j
+ aj1ŝ

t

i
� Æijs

t

1

W
4
t

;

and

�3(t) =
3(5ŝt

i
ŝ
t

j
� 2Æij)(1� t

2)

2W 5
t

:

The integral over t can be represented through the following two integrals:

I1(k) =

kZ
0

t
(�0�1)=(2�0)

W
3
t

dt ; I2(k) =

kZ
0

t
(�0�1)=(2�0)

W
5
t

dt :

Proof. The general expression (3.19) can be found in [10]. The integral of the function
�1(t)

t(1��0)=(2�0) is, by de�nition, given by I1(k), so let us evaluate the integrals

kZ
0

�2(t)

t(1��
0)=(2�0)

dt = �3Wk(ai1ŝj + aj1ŝi � Æijs
t

1)F1(k)� 3(2aj1ai1Wk � Æij)F2(k) ;
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and

kZ
0

�3(t)

t(1��
0)=(2�0)

dt =
15

2

�
(ŝiŝj � aj1ai1)W

2
k
F3(k) + (aj1ai1 � 0:4Æij)F4(k)

+ (ai1ŝj + aj1ŝi � 2aj1ai1s
t

1)WkF5(k)
�
:

The functions Fi(k), i = 1; : : : ; 5 can be evaluated:

F1(k) =

kZ
0

t
(3�0�1)=(2�0)

W
5
t

dt = �3�0 + 1

6�0p1
I1(k) +

1

p1
I2(k)�

k
(3�0�1)=(2�0)

3p1W
3
k

;

F2(k) =

kZ
0

(k � t)t(3�
0
�1)=(2�0)

W 5
t

dt

=
� 1

3�0
� (3�0 + 1)k

6�0p1

�
I1(k) + (

k

p1
� 1)I2(k) + (2� k

p1
)
k
(3�0�1)=(2�0)

3W 3
k

= kF1(k) + F4(k)� I2(k) ;

F3(k) =

kZ
0

(1� t
2)t(�

0�1)=(2�0)

W 7
t

dt =
2�0 + 1

5�0
I2(k) +

2k(3�
0�1)=(2�0)

5W 5
k

;

F4(k) =

kZ
0

(1� t
2)t(�

0
�1)=(2�0)

W
5
t

dt =
1

3�0
I1(k) +

2k(3�
0
�1)=(2�0)

3W 3
k

;

F5(k) =

kZ
0

(k � t)(1� t
2)t(�

0�1)=(2�0)

W 5
t

dt =
3�0 + 1

30�02p1
I1(k)

+
�
� 1

5p1�0
+
k(1 + 1�0)

5�0

�
I2(k) +

k
(3�0�1)=(2�0)

15p1�0W
3
k

:

3.5 Some properties of the matrix kernel

We proceed by analysing the 2D case. Note that the matrix B in the representation

(3.14) can be rewritten in a di�erent form, which is more convenient for evaluation of the

iterations of the integral operator. Let us give two such convenient forms.

Simple trigonometry transformations yield

B = B
(1) =

1

�0

(
(�0 � 1� jx� yj

R
)I + 2Ŝ + 2

jx� yj
R

Q

)
;
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where I is the identity matrix, and

Ŝ =

 
ŝ
2
1 ŝ1ŝ2

ŝ2ŝ1 ŝ
2
2

!
; Q =

 
�
2
1 �1�2

�2�1 �
2
2

!
:

By de�nition, ŝ is the unit vector at the point x, and

�1 = cos(('+ �)=2); �2 = sin(('+ �)=2):

The following property of matrices Ŝ and Q is useful:

mY
i=1

Ŝi = 2m(ŝ(1); ŝ(2)) : : : (ŝ(m�1); ŝ(m)) [ŝ(1) 
 ŝ
(m)];

where

[ŝ(1) 
 ŝ
(m)] =

 
ŝ
(1)
1 ŝ

(m)
1 ŝ

(1)
1 ŝ

(m)
2

ŝ
(1)
2 ŝ

(m)
1 ŝ

(1)
2 ŝ

(m)
2

!
;

and (ŝ(i); ŝ(i+1)) is the scalar product of two unit vectors ŝ(i) and ŝ
(i+1), i.e., the cosine

between the vectors yi+1 and yi, cos( i+1 �  i) .

Second representation of the matrix B is also easily derived:

B = B
(2) =

1

�0

(
(�0I + P2'i +

jx� yj
R

P'i+�i

)
;

where I is the identity matrix, P'+� is:

P2' =

 
cos(2') sin(2')

sin(2') �cos(2')

!

and

P'+� =

 
cos('+ �) sin('+ �)

sin('+ �) �cos('+ �)

!
:

The matrices P2' and P'+� are orthogonal, and their product is also an orthogonal matrix:

P'1
P'2

= P̂'2�'1
;

where

P̂'2�'1
=

 
cos('2 � '1) sin('2 � '1)

�sin('2 � '1) cos('2 � '1)

!
:

For a randomized calculation of the iterations of the matrix-integral operator in (3.14)

we need the evaluation of the products of the matrices B. Using the derived properties,

this can be done successively:

NY
i=1

(�0I + P2'i + ZiP'i+�i) = �
0N
I + �

0N�1
Z1P'1+�1 + �

0N�1
Z2P'2+�2 + : : :

+ �
0N�1

P2'1
+ �

0N�1
P2'2

+ : : :

+ �
0N�2

Z1P2'2�'1��1
+ �

0N�2
Z1P2'3�'1��1

+ : : : :
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3.5.1 Properties of the decentred walk on spheres process

Let us �rst consider some properties of the decentred walk on spheres process (DWSP).

For simplicity, we consider a special case when the domain is a layer G = f(x1; x2) 2
G : �L � x2 � L; �1 < x1 < 1g (which however re�ects the main properties of

DWSP), and the "-boundary consists of the upper "-boundary fL � " � x2 � Lg, and
the lower "-boundary f�L � x2 � �L + "g. In general, we could taken the depth of the

upper "-boundary not equal to that of the lower ones. Since we are interested in small

"-boundaries, this is not important.

The Decentred Walk on Spheres process fY1 = x; Y2; : : : ; YN"
g starting in a point x =

(x01; x02) is de�ned in this case as follows. On the circle of radius R = L, centered at

the point (x01; 0) sample a random point Y2 = (y11; y
1
2) according to the distribution (2.8).

The simulation algorithm is given in section 2.2. If y12 is in the upper or lower "-boundary,

then the process is stopped, otherwise sample a point Y3 = (y21; y
2
2) on the circle of radius

R = L centered at the point (y11; 0), etc., the random point Yk+1 = (yk1 ; y
k

2) is sampled on

the surface of radius R = L centered at the point (yk�11 ; 0).

Let us consider the main features of this random walk process.

Mean number of steps, as a function of the distance from the boundary to the

starting point.

The mean number of steps of the standard walk on spheres process is well studied, and

behaves like ln(d(x)="), where d(x) is the distance from the starting point x to the bound-

ary. This implies that the process �feels� the boundary only in a narrow strip along the

boundary.

Let us estimate the mean number of steps of the DWSP. To do this, we �rst estimate

the probability that the process makes one step, i.e., the probability of absorption in the

"-boundary after the �rst step. By the de�nition, this probability equals the integral:

Prob(k = 1) = IS" =
Z
S"

p(y; x) dS(y):

Here S" is the part of the circle lying in �".

Let us denote by � the angle at which the part of the circle belonging to, say, upper

boundary, is seen from the center of the circle. We evaluate this integral over the part of

circle lying in the upper boundary. From the equality

IS" =
2

2�
arctg

�
R + r

R� r
tg(�=2)

�����
�2

�1

;

where �1 and �2 are the limiting directions of the angle �, and r is the distance from the

point x to the center of the circle. We choose �1 = 0, and due to symmetry, we get

Prob(k = 1) =
2

�
arctg

(
R + x

R� x

s
"

2R� "

)
:

where �R � x � R � ". Since x may be positive and negative, it is more convenient to

rewrite this formula, using the introduced notation for the distance d(x):

22



0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

Standard WSP 

Decentred WSP 

Figure 2: The mean number of steps, as a function of the distance from the starting point

to the boundary of the layer. Here " = 10�4, and x2 = 0, the origin of coordinates is taken

in the center of the layer, while x2 = 4 is the upper, and x2 = �4 is the lower boundary

of the layer.
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Figure 3: The same as in Figure 1, but for " = 0:01

Prob(k = 1) =
2

�
arctg

(
2R� d(x)

d(x)

s
"

2R� "

)
:

This function monotonically increases from

2

�
arctg

�
"

2R� "

�3=2
to

2

�
arctg

s
2R� "

"

as x increases from �R + " to R � ". This is the probability that the walker starting

at the point x hits after the �rst step the upper �"-boundary. The probability to hit

the lower �"-boundary at the �rst step behaves conversely: it monotonically decreases

in this region, and is obtained from Prob by a symmetry re�ection relative to the axes

x2 = 0. Consequently, the probability to reach the lower or upper �"-boundary is the
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Figure 4: The distribution of the number os steps, for Decentred WSP and Standard

WSP, for " = 0:01. The processes started at the center of the layer.

sum of these functions, which reaches its minimum at the point x2 = 0, and is equal to

g = 4
�
arctg

q
"

2R�"
.

We can estimate the mean number of steps in the Bernoulli scheme (at each step, we have

a positive probability, not less than g, that the process stops) as 1=g. From this we can

approximately write for small (compared to R) values of ":

�N" <
�

2
p
2
�
s
R

"
:

However this estimation is crude. In fact, the asymptotic behaviour of the mean number

of steps is also logarithmic in d(x)=", i.e., it behaves like c � ln(d(x)="), as in the Standard

WSP (e.g., see [2]), however the factor c in this behaviour is many times less.

Let us compare the mean number of steps for the Decentred and Standard WSP for our

layer G. In Figs. 1 - 2. we present the results for " = 10�4, and " = 10�2, respectively.

More pronounced are the di�erences in the distribution of the number of steps. In Figures

4-7, we show the distributions of the number of steps, for di�erent starting points, and

for di�erent values of ".

From these results we conclude that for all cases, both for starting points in the center of

the layer and close to the boundary, and for all considered values of ", the distributions

for the DRWS are much narrower than that for the standard WSP.

The pictures 8-9 show that the Decentred WSP leaves closer to the boundary, even if it

starts far from the boundary, while the Standard WSP is distributed much more uniformly

over the layer depth.

The distributions of the number of steps of the two processes being for small values of "

both exponentially decaying, are di�erent: for the the Decentred WSP it is quite compact,

while for the Standard WSP, the right tale is very long. This property is a crucial point

for the algorithm we develop for the Lamé equation: the main contribution to the variance

increase comes from the tale. It implies, that the cut-o� procedure in the Decentred WSP

is much less a�ecting the bias than in the case of the Standard WSP.
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Figure 5: The same as in Figure 4, but the trajectories started at a point situated at the

distance 0:5 from the upper boundary.
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Figure 6: The same as Figure 4, but for " = 0:1.
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Figure 7: The same as in the Figure 5, but for " = 0:001.
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Figure 8: The x2-position distribution over the layer's depth, for the Decentred WSP,

" = 0:1, the process started at 0:5 distance from the upper boundary.
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Figure 9: The same as in the previous Figure, but the process started at the center of the

layer.
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3.6 Numerical simulations

In the layer described in the previous section, we solved the following model problem:

�u(x) + � grad divu(x) = 0; x 2 G; (3.20 )

with the Dirichlet boundary conditions u(y) = g(y), for y 2 @G. We have chosen the

case with the exact solution ui(x1; x2) = 1+ x
2
i
� 3:5x1x2, i = 1; 2 which solves the Lamé

equation for � = 3�.

We solved this problem by the Decentred WSP. The Standard WSP was unable to solve

this problem: the variance was rapidly increasing with ". The Decentred WSP gave sat-

isfactory results, moreover, we have improved the results by a quite natural modi�cation

by introducing a cut-o� procedure: in the averaging we have taken into account only the

trajectories whose length was not larger than the mean number of steps multiplied by

some integer mcut, in our case, we have taken mcut = 3. This considerably improves

the results: the curve obtained by this method is almost coincident (see Figure 10) with

the exact solution. The upper curve was obtained by the Decentred WSP where all the

trajectories were taken into account. It is clearly seen that the original method (without

the cut-o�) works well near the boundary, already beginning from the distance which are

about 25% the diameter of the domain.

This suggests a new modi�cation, which we call "-boundary propagation method: �rst

calculate the solution in a Æ1-boundary where Æ1 = m1", m1 being a parameter, e.g., equal

to 2�4 depending on the behaviour of solution's gradient, after that calculate the solution

in a Æ2-boundary, with Æ2 = m2Æ1, and using the solution calculated in Æ1-boundary as

the known boundary conditions. So in few steps (4-5 steps, actually, was su�cient in our

case) we obtain the solution by the Decentred WSP whose average number of steps is

very small in each step, with small variance. It is easy to estimate the number of steps

required: since Sn � 12 + 22 + 32 + � � � + n
2 = n(n + 1)(2n + 1)=6, and assuming that

L=" = K, we get, e.g., for K � 100, that the number of steps is about 6 even if we take

in each step mi = 2.

One problem here is to be treated carefully: we have to use a clever interpolation procedure

when taking the boundary conditions in the last step, after stopping in a point where the

solution is not known. It is not di�cult to provide a simple procedure which guarantees

the accuracy of order ".

3.7 Two overlapping circles

In this section we solve the boundary value problem (3.20) for the domain consisting of

two overlapping discs:

G = K1(x
(1)
; R1) [K2(x

(2)
; R2) :

Let us choose R1 = 2, R2 = 2, take the distance between the centers equal to shift = 3,

and place x(1) in the origin of coordinates. Then x
(2) is the point (shift; 0). As a test

problem, we take

u1(x) = x
2
1 � 3:5x1x2 + x2 + 1; u2(x) = x

2
2 � 3:5x1x2 + x1 + 1
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Figure 10: The second component of the solution, as a function of x2, the layer depth:

" = 10�3, the number of trajectories N = 106. The two lower (almost coincident) curves

are the exact solution and the numerical results obtained by the cut-o� procedure where

all the trajectories whose length is larger than 3�mean number of steps do not give a

contribution to the score. The upper curve was obtained by averaging over all trajectories.

which solves the Lamé problem for � = �=3, � = 0:5.

Let us calculate the solution at the point (1; 0) by the Schwarz iterative procedure and

DRWS method.

1. The Schwarz iterative procedure.

Let us consider the two overlapping discs introduced in (2.7). In the generalized Schwarz

method whose convergence was proved in [15] a sequence of functions u(i), i = 1; 2; : : : ;

is constructed as follows. The functions u(2k�1) are regular in K2 and K1 nK2, satisfy in

these domains the Lamé equation, they are continuous in G and

u
(2k�1)j�1 = g

(1)
; u

(2k�1)j1 =
(
g
(0) if k = 1 ;

u
(2k) if k > 1 :

Here g(0) is an arbitrary su�ciently smooth vector function.

All the functions u(2k) are continuous in G, regular in K1 and K2 nK1, satisfy the Lamé

equation, and

u
(2k)j�2 = g

(2)
; u

(2k)j2 = u
(2k�1)j2 ; k � 0:

The proof of convergence of u(k) is based (see [15]) on the estimations

E(u2k) � E(u2k�1)

and

E(u2k+1) � E(u2k) :

Here E(v) is the energy of deformation for any displacement vector v as

E(v) =
Z
G

h
�(divv)2 +

�

2
(r�

v� +r�v
�)2
i
dV : (3.21 )
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The boundary value problem (3.20) is equivalent to the problem of �nding a function v

such that vj� = g and which minimizes the energy integral (3.21). Then, representing

u
(k) through the Green function and taking the limit in the Green formula one �nds that

limk!1 u
(k) solves the original problem.

The sequence of functions u(i) from the Generalized Poisson formula (see Theorem 2 in

2D and Theorem 3 in 3D) for an arbitrary point x 2 K1 can be written in the matrix

form as

u
(1)(x) =

Z
�1

C(x; y)g(1)(y)dS(y) +
Z
1

C(x; y)g(0)(y)dS(y);

or

u
(1)(x) = K1g

(1) + F1g
(0)
;

where

K1g
(1)(x) =

Z
�1

C(x; y)g(1)(y)dS(y);

F1g
(0)(x) =

Z
1

C(x; y)g(0)(y)dS(y);

and the matrix C(x; y) is de�ned in the above mentioned theorems. For u(2)(x):

u
(2)(x) =

Z
�2

C(x; y)g(2)(y)dS(y) +
Z
2

C(x; y)u(1)(y)dS(y);

u
(2)(x) = K2g

(2)(x) + F2u
(1)(x);

where

K2u(y) =
Z
�2

C(y; y0)g(2)(y0)dS(y0);

F2u
(1)(y) =

Z
2

C(y; y0)u(1)(y0)dS(y0):

Hence,

u
(2)(x) =

Z
�2

C(x; y)g(2)(y)dS(y) +
Z
2

Z
�1

C(x; y1)C(y1; y2)g
(1)(y2)dS(y1)dS(y2)

+
Z
2

Z
1

C(x; y1)C(y1; y2)g
(0)(y2)dS(y1)dS(y2)

= K2g
(2) + F2K1g

(1) + F2F1g
(0)
:

For u(2n+1):

u
(2n+1)(x) = K1g

(1)+F1u
(2n) = K1g

(1)+F1K2g
(2)+F1F2K1g

(1)+ : : :+F1F2F1 : : : F1g
(0)
;

which can formally be represented as

u
(2n+1)(x) =

nX
j=0

G
j
Klg

(l) +G
2n+1

g
(0)
; (3.22 )

29



where

G
0 = I; G

j = F1F2F1F2 : : : F1F2 : : : Fp| {z }
j times

;

l =

�
2; if j is even,

1 if j is odd or 0,

while

p =

�
2; if j is odd,

1 if j is even.

Now we consider the iterations of our decentred mean value relation. For an arbitrary

point x 2 K1 we can write

u(x) = (K1 + F1)u;

where K1 and F1 are de�ned above. The same relation is true at y 2 K2:

u(y) = (K2 + F2)u:

Then, formally,

u(x) = K1g
(1) + F1K2g

(2) + F1F2K1g
(1) + F1F2F1K2g

(2) + F1F2F1F2K1g
(1) + : : : :

Let

Sk =
kX

j=0

G
j
Klg

(l)
: (3.23 )

From (3.22) and (3.23) we conclude

Sm = u
(2m+1)(x)� F1F2F1F2 : : : F1| {z }

2m+1 times

g
(0) = u

(2m+1)(x)�G
2m+1

g
(0)
:

We choose the arbitrary initial function as g(0) = 0; in this case the partial sums Sm of

the Neumann series coincide with the iteraions u(2m+1) for all m which implies that the

Neumann series converges.

It should be noted however that this leaves the problem of the variance �niteness of the

Monte Carlo procedure open. However the numerical simulations show that the variance

behaves very stable, and the DWS method works very fast, with high accuracy.

In Figure 11 we present the numerical results obtained by this algorithm. The exact value

of the �rst component of the solution is 2: The upper curve was obtained by the Schwarz

iterative procedure (�rst twenty iteartions are shown), where at each iteration, N = 104

random points uniformly distributed over the surfaces of the spheres (sampled once, and

used for all iterations) were used to calculate the relevant integrals over the circles by the

Monte Carlo method. The lower curve was obtained by averaging over N = 105 samples.

It should be stressed once more: �rst store the points sampled on the both circles, and

then use these points in each iteration. This not only saves the computer time, but also

provides higher accuracy, as the dependent sampling usually does.

In Figure 12, the relevant statistical error (rms=
p
N) is shown as a function of iterations.

In this picture, the error in the �rst iterations was large, but then it stabilizes. The
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Figure 11: The �rst component of the solution to the Lamé equation obtained by the

Schwarz iterative procedure. The exact solution is (2:0; 2:0), Computing time: if for

N = 104 it takes about 1 unit, then for N = 105 it was about t = 60 units.
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Figure 12: Statistical error for N = 104 (upper curve), and N = 105 (lower curve).
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Figure 13: The upper curve - the solution obtained by DRWS method with the number

of trajectories N = 107, the lower curve - the exact solution, versus the parameter �0.

dependence of the initial iteration is not so simple: if the initial error was too large, we

observed a numerical divergence.

1. Random Walk Algorithm

Here we use the Decentred Walk on Spheres process fx; y1; y2; : : :g. We start from the

point x, x 2 K(x(1); R1). Then according to the density p(y1; x) we simulate the point y1
as described in Section 2.2. If the sampled point y1 is on �1, the trajectory is stopped;

if y1 2 1 the process continues. Now, if y1 2 K(x(2); R2) we simulate the next point y2
according to the density p(y2; y1), and so on.

The results of calculations are shown in Table 1.

Table 1: Monte Carlo results: N is the number of trajectories, the exact solution is

(2:0; 2:0).

N u1 3 rms=
p
N u2 3 rms=

p
N

106 2.0525 0.0718 1.9892 0.0397

107 2.0089 0.0230 2.0019 0.0284

Note that the error of the algorithm can be sensitive to the factor 1
�0

in the matrix B.

In Figure 13 we show the solution as a function of �0, in Figure 14 - its statistical error.

Note that in the region of practically important case �0 � 2 the error is very small.
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Figure 14: Statistical error, as a function of �0, for N = 105.
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