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Abstract

A system of reaction�di�usion equations modelling the di�usion of iodine

and its reaction with radicals in a thin layer of radiation�activated polyethylene

is considered. A reduced model, the pseudo�steady�state case, is investigated.

1. Introduction

By the in�uence of radiation of ultraviolet light of appropriate wavelength free rad-

icals of high reactivity are induced within a thin polyethylene layer. To determine

the concentration of the radicals their reaction with iodine di�using through the

layer is considered. The resulting iodide within the layer can be determined �up to

a certain depth� by XPS (X�ray Photoelectron Spectroscopy). For a quantitative

study we consider a mathematical model proposed by R. Wilken from the Fraunhofer

Institute for Applied Polymer Research at Teltow�Seehof (Germany). The model

is based on the assumption that one reactant � iodine � is transported by di�usion

and reacts according to the laws of classical reaction kinetics with the immobile

radicals forming immobile iodide. So the model consists of a coupled system of a

reaction�di�usion equation and an ordinary di�erential equation. The model allows

to study the in�uence of di�erent parameters like di�usion constant, reaction rate

constants, initial and boundary values of the concentrations involved.

For high reactivity of the free radicals scaling arguments show that it is useful to

deal with the so�called pseudo�steady�state case. In this paper we consider this

reduced problem.

2. The model equations

The species involved in the model are I � iodine, R � radicals, S � iodide. The

experimental situation allows to consider the problem as spatially one�dimensional.

So we are interested in the concentrations

I = I(t; x); R = R(t; x); S = S(t; x)

on

G = f(t; x) : 0 < t < T; 0 < x < ag
for some T > 0 which satisfy there the model equations
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@I

@t
= D

@2I

@x2
� c1IR; (2.1)

dR

dt
= �c1IR� c2R; (2.2)

dS

dt
= c1IR: (2.3)

with a given di�usion constant D and given constant reaction rates c1; c2 . For

the concentration I of iodine we prescribe boundary conditions

I(t; 0) = I0;
@I

@x
(t; a) = 0; 0 < t � T; (2.4)

with a given constant I0 > 0 . For all concentrations I; R; S initial conditions are

prescribed by

I(0; x) = 0; R(0; x) = R0(x); S(0; x) = 0; 0 � x � a; (2.5)

with a given initial concentration of free radicals R0(x) > 0 . In the actual models

only constant initial values or decaying initial values

R0(x) = R0 or R0(x) = R0 exp(�x=�)
were considered. Here R0 > 0 is a given constant and the extinction coe�cient

� > 0 characterizes the decay of the radiation e�ects with increasing depth.

Remark 2.1. It makes sense to consider the equations (2.1) (2.2) on the half strip

G = f(t; x) : 0 < t < T; 0 < x < 1g , modifying the initial and boundary

conditions appropriately. Especially, the Neumann boundary condition at x = a is

dropped.

Remark 2.2. Initial and boundary conditions for the iodine concentration I are

discontinuous at the point (t = 0; x = 0) � a situation quite common for evolution

equations. A smoother situation can be obtained with a boundary condition for I

at x = 0 of the form

I(t; 0) = I0(1� exp(��t))
with a given constant � > 0 . Here we assume that the dosage of the iodine at

x = 0 takes some time to reach its peak level I0 � a plausible assumption.

The boundary condition at x = a is the usual boundary condition at an impene-

trable wall.

The iodide concentration S doesn't appear in the �rst two equations (2.1) (2.2), so

the system decouples and S could be eliminated. Nevertheless, we keep it because

the essential quantity to be compared with measurements is the weighted spatial

mean

h(t) =
1

�

Z b

0

S(t; x) exp(�x=�)dx; 0 � t � T:
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Here 0 < b < a is a given depth and � > 0 , both quantities characterize the

measurement by XPS.

The model equations can be solved numerically using standard methods (�nite di�er-

ences) for given constants D; c1; c2; I0; R0; �; �; � . Of greater interest as this direct

problem are inverse problems linked with the model: How can we get information

about the constants involved from the comparison measurement � calculation ?

Remark 2.3. A similar problem is considered in [F]. A somewhat di�erent system

of model equations has been treated in [GZ], see also [GS1], [GS2].

Remark 2.4. The special case of system (2.1) (2.2) for c2 = 0 with the initial�

boundary conditions

I(t; 0) = I0; I(0; x) = 0; R(0; x) = R0

on the half strip G = f(t; x) : 0 < t < T; 0 < x < 1g has been considered in

[HHP1], generalizations to more general reaction kinetics (not covering our case) in

[HHP2], [HHP3]. Similar problems arise in combustion theory, see [LS], [B], [LMS],

[DS], [L] .

3. Scaling of the model equations

The dimension of a physical quantity q in the sense of dimensional analysis is

denoted by [q] . Using the fundamental dimensions T; L;M for time, length, mass

we then have for the dimensions of the quantities appearing in the model equations

[t] = T; [x] = L; [D] = L2T�1; [I] = [I0] = [R] = [R0] = ML�3;

[c1] = L3M�1T�1; [c2] = T�1:

Natural dimensionless independent variables can be introduced by

� =
x

b
; � =

Dt

b2

where we took the depth b as length unit. (Another natural choice for the �nite

strip of thickness a would be taking a as length unit.) With new dependent

variables J; P de�ned by

I(t; x) = I

�
b2�

D
; b�

�
= J(�; �) R(t; x) = R

�
b2�

D
; b�

�
= P (�; �);

the model equations (2.1) (2.2) are transformed into

@J

@�
=
@2J

@�2
� b1JP;

dP

d�
= �b1JP � b2P; b1 =

b2c1

D
; b2 =

b2c2

D
:
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Introducing dimensionless concentrations by

u =
J

I0
; v =

P

R1

with the boundary value I0 and an appropriate R1 as reference concentrations

the �nal dimensionless form of the model equations becomes

@u

@�
=

@2u

@�2
� A1uv;

dv

d�
= �A2uv � b2v; A1 = b1R1; A2 = b1I0: (3.1)

The coe�cients A1; A2; b2 are dimensionless. Introducing the new unknown w by

v = exp(�b2�)w

transforms the model equations to

@u

@�
=

@2u

@�2
� A1e

�b2t uw;
dw

d�
= �A2 uw: (3.2)

The new length scale � =
p
A1� and the new unknown functions

U(�; �) = u

�
�;

�p
A1

�
= u(�; �); V (�; �) = v

�
�;

�p
A1

�
= v(�; �)

transform (3.1) into

1

A1

@U

@�
=
@2U

@�2
� UV;

dV

d�
= �A2UV � b2V: (3.3)

Correspondingly, with the new unknown function

W (�; �) = w

�
�;

�p
A1

�
= w(�; �)

the equations (3.2) get the form

1

A1

@U

@�
=
@2U

@�2
� e�b2t UW;

dW

d�
= �A2 UW: (3.4)

In the case of fast reacting radicals one has A1 � 1 . This motivates to suppress the

time derivative in the �rst equation of (3.1) and to consider the so�called pseudo�

steady�state case

@2U

@�2
� UV = 0;

dV

d�
= �A2UV � b2V: (3.5)

Similar considerations for system (3.3) give

@2U

@�2
� e�b2t UW = 0;

dW

d�
= �A2 UW: (3.6)
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Remark 3.1. Dropping the time derivative is a common procedure in chemical

engineering literature. It changes the parabolic equation of system (3.2) to an elliptic

equation for which an initial condition cannot be imposed. We are in the situation

of singular perturbation. The justi�cation for this procedure has been studied � for

a somewhat di�erent situation � in [DS].

4. The pseudo�steady�state system

We write A = A2 > 0; B = b2 > 0; G = [0; T ]� [0;1) and consider the system

@2U

@�2
� UV = 0;

dV

d�
= �AUV � BV (4.1)

on the half strip G = f(�; �) : 0 < � < T; 0 < � <1g for some T > 0 with the

boundary conditions

U(�; 0) = 1; lim
�!1

U(�; �) = 0; 0 � � � T (4.2)

and the initial condition

V (0; �) = V0(�) > 0; 0 � � <1: (4.3)

In the �rst equation of (4.2) the time � appears as a parameter, whereas in the

second equation the spatial variable � appears as a parameter. Formal integration

of the second equation of (4.1) gives

V (�; �) = V0(�)e
�B�

exp

�
�A

Z �

0

U(s; �)ds

�
:

By inserting this in the �rst equation of (4.1) we obtain a non�local parameter

dependent (parameter � ) two�point boundary value problem for U :

@2U

@�2
= V0(�)e

�B�U(�; �) exp

�
�A

Z �

0

U(s; �)ds

�
(4.4)

with the boundary conditions (4.2). At the initial time � = 0 we obtain for

U0 = U(0; �) the linear boundary value problem

@2U0

@�2
= V0(�)U0(�); U0(0) = 1; lim

�!1
U0(�) = 0:

For the special case V0(�) = V0 = const: > 0 the solution is U0(�) = exp(�pV0�) .
Our main result is the following theorem. (For the notation see the Appendix.)

Theorem 4.1. The system (4.1), (4.2), (4.3) with V (0; �) = V0 = const: > 0 has

for any T > 0 a unique classical solution (U; V ) with

U > 0; V > 0 on G; U 2 C([0; T ]; C2
(IR+)); V 2 C1

([0; T ]; C(IR+)):

5



Proof. Existence. We de�ne a sequence fU (n); V (n)g; n = 1; 2; : : : as follows. For

n = 1 we take for (U (1); V (1)
) the solution of

U (1)
�� = V0U

(1) in G; U (1)
(�; 0) = 1; lim

�!1
U (1)

(�; �) = 0; 0 � � � T;

V (1)
� = �(AU (1)

+B)V (1) in G; V (1)
(0; �) = V0 > 0 for � � 0:

The solution is

U (1)
(�; �) = exp(�

p
V0�); V (1)

(�; �) = V0 exp
h
�
�
B + A exp

�
�
p
V0�

��
�
i
:

Obviously, we have U (1) 2 C([0; T ]; C2
(IR+)); V

(1) 2 C1
([0; T ]; C(IR+)): For n � 2

we de�ne (U (n); V (n)
) as the solution of

U (n)
�� = V (n�1)U (n) in G; U (n)

(�; 0) = 1; lim
�!1

U (n)
(�; �) = 0; 0 � � � T;

V (n)
� = �(AU (n)

+B)V (n) in G; V (n)
(0; �) = V0 > 0 for � � 0:

We show by induction that (U (n); V (n)
) are well de�ned and have all necessary

properties. The case n = 1 is already done. From Lemma 5.4, Lemma 5.6 of the

Appendix follows that for �xed � with 0 � � � T there exists

U (n)
(�; �) 2 C2

(IR+); U (n)
(�; �) > 0;

because of

V (n�1) 2 C1
([0; T ]; C(IR+)); V (n�1) > 0 in G;

by induction assumption. By well�known theorems on the parameter dependence of

solutions of ordinary di�erential equations (see e.g. [A], [H]) we get

U (n) 2 C([0; T ]; C2
(IR+)) . By the same arguments we obtain from the integral

representation

V (n)
(�; �) = V0 exp

�
�B� � A

Z �

0

U (n)
(s; �) ds

�
(4.5)

of the solution V (n) of the linear equation

V (n)
� = �(AU (n)

+B)V (n); V (n)
(0; �) = V0

that

V (n) 2 C1
([0; T ]; C(IR+)); V (n) > 0 in G:

Next we show by induction that for n � 1

1 � U (n+1) � U (n) > 0 and 0 < V (n+1) � V (n) � V0 in G: (4.6)

From V (1) � V0 we obtain with the comparison assertion of Lemma 5.7

1 � U (2) � U (1) > 0 in G:
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From formula (4.5) follows 0 < V (2) � V (1) . Repeating these arguments gives

(4.6).

From these monotonicity properties of the sequences fU (n)g; fV (n)g; n = 1; 2; : : :

follows that there are functions U; V de�ned on G such that

U (n)
(�; �) �! U(�; �); V (n)

(�; �) �! V (�; �) for n �!1 pointwise in G:

From Lebesgue's Theorem on dominated convergence (we have 0 < U (n) � 1 for

all n ) we get from the integral representation (4.5) by taking n �!1

V (�; �) = V0 exp

�
�B� � A

Z �

0

U(s; �) ds

�
: (4.7)

To conclude similarly for U , we use the representation (5.5)

U (n)
(�; �) = 1�

Z �

0

�Z
1

�

V (n�1)
(�; r)U (n)

(�; r) dr

�
d�:

From the integral representation (4.5) we get

V (n�1)
(�; r) � V0 exp(�(A +B)�) � V0 exp(�(A +B)T ) = C(T )

and with the comparison assertion of Lemma 5.7 for the equation U
(n)
�� = V (n�1)U (n)

we get

U (n)
(�; r) � exp

�
�r
p
C(T )

�
:

So we �nd

V (n�1)
(�; r)U (n)

(�; r) � V0 exp
�
�r
p
C(T )

�
;

where the right�hand side is obviously integrable on f(r; �)j0 � � � �; � � r <1g .
Again by Lebesgue's Theorem on dominated convergence we can interchange the

limit n �!1 and the integration and we obtain

U(�; �) = 1�
Z �

0

�Z
1

�

V (�; r)U(�; r) dr

�
d�: (4.8)

Di�erentiation of (4.7), (4.8) shows that (U; V ) is the solution.

Uniqueness. Assume that there are two solutions (U (i); V (i)
); i = 1; 2; with the

properties found in the existence part. Subtracting the corresponding equations we

get for the di�erences

u = U (1) � U (2); v = V (1) � V (2)

the equations

v� = �(B + AU (1)
) v � AV (2)u; v(0; �) = 0 for � � 0

u�� = U (1)v + V (2)u; u(�; 0) = 0; lim
�!1

u(�; �) = 0; 0 � � � T:
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We apply an L1 technique (see e.g. [DS]). We multiply the �rst equation by

sgn(v) , the second equation by sgn(u) and integrate over the strip

[0; � ]� [0;1); 0 � � � T ,where

sgn(a) =

8<
:

�1 : a < 0

0 : a = 0

+1 : a > 0

As the result of these manipulations we obtainZ �

0

Z
1

0

v� sgn(v) d�d� = �
Z �

0

Z
1

0

(B + AU (1)
)jvj d�d�

� A

Z �

0

Z
1

0

V (2)u sgn(v) d�d�

andZ �

0

Z
1

0

u�� sgn(u) d�d� =

Z �

0

Z
1

0

U (1)v sgn(u) d�d� +

Z �

0

Z
1

0

V (2)juj d�d�:

Taking into account the initial and boundary conditions one can show thatZ �

0

Z
1

0

v� sgn(v) d�d� =

Z
1

0

jv(�; �)j d�

and Z �

0

Z
1

0

u�� sgn(u) d�d� � 0:

Using this in the equalities above we have because of V (2) � 0; U (1) � 0 the

estimate

0 �
Z �

0

Z
1

0

V (2)juj d�d� �
Z �

0

Z
1

0

U (1)jvj d�d�
from which we obtainZ

1

0

jv(�; �)j d� � A

Z �

0

Z
1

0

U (1)jvj d�d� � A

Z �

0

Z
1

0

jv(�; �)j d�d�:

Gronwall's lemma gives v = 0 in [0; � ] � [0;1); 0 � � � T , the maximum

principle gives u = 0 there.

Remark 4.1. The Theorem can also be proved for a nonconstant initial value

V0 2 C(IR+) with V0(�) > 0 for � � 0 .

5. Appendix

Here we prove some auxiliary results for the linear two�point boundary value prob-

lem on a �nite interval and on the half line. The dependence on the (time) parameter

� is omitted. Our notation and reasoning follow closely [Br].
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As usual we denote for the interval I (I = (0; L); L > 0; or I = (0;1)) by

C(I) (Ck
(I) , respectively) the set of continuous functions on I (the set of k times

continuously di�erentiable functions on I , respectively). Correspondingly, Cc(I)

are the continuous functions with compact support in I , Ck
c (I) = Cc(I) \ Ck

(I) .

We denote by C(I) the Banach space of continuous functions on I = [0; L] and

by Ck
(I) the Banach space of functions from Ck

(I) which can be extended

continuously to I .

By L2(I) we denote the usual Hilbert space of square integrable functions with the

scalar product

(f; g) =

Z
I

f(�)g(�)d� and the norm kfk2 =

Z
I

jf(�)j2d�:

The Sobolev space H1
(I) = W 1;2

(I) is the space of square integrable functions on

I with square integrable �rst (generalized) derivative. Scalar product and norm are

de�ned by

(f; g)H1 = (f; g) + (f�; g�); kfk2H1 = kfk2 + kf�k2:
For m � 2 we de�ne Hm

(I) = Wm;2
(I) recursively by

Hm
(I) = ff 2 Hm�1

(I); f� 2 Hm�1
(I)g

and denote by H1
0 (I) the closure of Cc(I) in H1

(I) . For I bounded holds

Friedrichs inequality

kfk � Ckf�k 8f 2 H1
0 (I)

with an appropriate constant C depending in jIj . This fact allows to use on

H1
0 (I)

kfkH1

0
= kf�k

as an equivalent norm to the H1�norm. As usual, we denote by H�1
= (H1

0 )
� the

dual space of H1
0 (I) and the dual pairing between F 2 H�1 and g 2 H1

0 (I) by

hF; gi .
Consider on I = (0; L); L > 0 the boundary�value problem

U�� = p(�)U; U(0) = 1; U(L) = 0 (5.1)

where p 2 C(I) , p(�) > 0 8 � 2 I . So we have bounds

0 < c0 � p(�) � C0 for 0 � � � L:

We homogenize the boundary conditions by introducing U = W + h where

h 2 C2
(I) with

0 � h(�) � 1; h(�) = 1 for 0 � � � L=3; h(�) = 0 for � > 2L=3:

This transforms (5.1) into

W�� � p(�)W = f(�) on I; W (0) = W (L) = 0; (5.2)

9



where f : � 7�! f(�) = p(�)h(�)� h��(�): By construction f 2 C(I) . We show

existence and uniqueness of classical solutions to (5.2) (and, consequently, to (5.1))

via the well�known Lax�Milgram Lemma (see e.g. [Br] ) and regularity assertions.

De�nition 5.1. A weak solution of (5.2) is a function W 2 H1
0 (I) which satis�esZ

I

fW�g� + p(�)Wg + fggd� = 0 8g 2 H1
0 (I):

Lemma 5.2. The problem (5.2) has a unique solution W 2 C2
(I) .

Proof. Consider on H1
0 (I) the bilinear form

a(W; g) =

Z
I

fW�g� + p(�)Wggd�:

By Friedrichs inequality this form is continuous because of

ja(W; g)j � (1 + C0C)kWkH1

0
kgkH1

0
8W; g 2 H1

0 (I)

and coercive

a(W;W ) � kWk2H1

0

8W 2 H1
0 (I)

because of p > 0 on I . The linear form

F : g 7�! �
Z
I

fgd�

is continuous on H1
0 (I) because of f 2 C(I) , i.e., F 2 H�1 (again by

Friedrichs inequality). We apply the Lax�Milgram Lemma to �nd a unique function

W 2 H1
0 (I) satisfying

a(W; g) = hF; gi for all g 2 H1
0 (I):

Obviously, W is the unique weak solution of (5.2). To show the regularity of this

solution we remark that pW + f 2 L2(I) and that the estimate����
Z
I

W�g�d�

���� =
����
Z
I

(pW + f)gd�

���� � kpW + fk kgk 8 g 2 C1
c (I)

holds. This is equivalent to W� 2 H1
(I) , i.e., W 2 H2

(I) . Since, moreover,

we have f; p 2 C(I) it follows (W�)�
2 C(I) and consequently W� 2 C1

(I)

or W 2 C2
(I) . A weak solution W with this properties is obviously classical

solution.

Lemma 5.3. The problem (5.1) has a unique classical solution U 2 C2
(I) . The

solution satis�es

0 � U(�) � 1 8 � 2 I:

10



Proof. Playing back the homogenization, the existence and uniqueness assertion

follows from Lemma 5.2. To prove the maximum and minimum property, we argue

as usual.

If we had U(�1) < 0 in �1 2 I then there would exist �0 2 I such that

U(�0) = inf
0���L

U(�) < 0; U�(�0) = 0; U��(�0) � 0:

Because of p(�) > 0 in I we have a contradiction with the equation (5.1). Thus

U(�) � 0 in I .

If we had U(�1) > 1 in �1 2 I then there would exist �0 2 I such that

U(�0) = sup

0���L

U(�) > 1; U�(�0) = 0; U��(�0) � 0:

Again we have (using the positivity of p in I ) a contradiction with (5.1), and

consequently U(�) � 1 in I .

Remark 5.1. The bounds for the solution U are nothing but maximum principle

for the boundary�value problem (5.1).

In the following we prove results analogous to Lemma 5.3 for the half line IR+

of positive reals, we denote IR+ = f� : 0 � � < 1g . The proof uses results for

�nite intervals and a diagonalization procedure as in [GLO]. As usual, we denote

by BC(IR+) ( BC2
(IR+) , respectively) the space of continuous and bounded

functions on IR+ (with �rst and second derivatives continuous and bounded there,

respectively).

Lemma 5.4. The boundary value problem

u�� = p(�)u on IR+; u(0) = 1; lim
�!1

u(�) = 0 (5.3)

with p 2 BC(IR+) , p(�) > 0 on IR+ , has a unique classical solution

u 2 BC2
(IR+) satisfying

0 � u(�) � 1 8 � 2 IR+:

Proof. Consider the sequence of functions fU (k)g; k = 1; 2; :::; de�ned as follows:

U (k) is solution of (5.1) on Ik = [0; kL] , i.e.,

U (k)
�� = p(�)U (k); U (k)

(0) = 1; U (k)
(kL) = 0:

Denote

P = sup

0��<1

p(�):

By Lemma 5.3 we have

M
(k)
0 = sup

0���kL

jU (k)
(�)j = 1; M

(k)
2 = sup

0���kL

jU (k)
�� (�)j � P; k = 1; 2::: ;

11



and, as the following Lemma 5.5 shows, there is a uniform bound for the �rst

derivative

M
(k)
1 = sup

0���kL

jU (k)
� (�)j

which does not depend on k .

De�ne the sequence fW (k)g; k = 1; 2; :::; of functions on IR+ by

W (k)
(�) =

�
U (k)

(�) for 0 � � � kL

0 for � � kL:

Obviously, each W (k) is continuous on IR+ and twice continuously di�erentiable

there, with the possible exception at � = kL . The sequence fW (k)g; k = 1; 2; :::;

is equibounded and equicontinuous on [0; L] . By the Arzelà�Ascoli theorem there

is a subsequence fIN1 of the sequence IN of natural numbers and a function

z1 2 C1
(I1) such that

W (n) �! z1; W (n)
� �! z1� uniformly on I1 = [0; L] for n �!1; n 2 fIN1:

Take IN1 = fIN1 n f1g . Again by the Arzelà�Ascoli theorem there is a subsequencefIN2 � IN1 and a function z2 2 C1
(I2) such that

W (n) �! z2; W (n)
� �! z2� uniformly on I2 = [0; 2L] for n �!1; n 2 fIN2:

Because of fIN2 � IN1 we have z2 = z1 on [0; L] . Take IN2 = fIN2 n f2g and go on

by induction. One obtains for k = 1; 2; ::: a subsequence INk of the naturals with

INk � INk�1 and a function zk 2 C1
(Ik) such that

W (n) �! zk; W (n)
� �! zk� uniformly on Ik = [0; kL] for n �!1; n 2 INk

with the property zk = zk�1 on [0; (k � 1)L] .

Now we construct the solution u as follows. Fix � 2 IR+ and let k be a positive

integer satisfying � � k . De�ne u(�) = zk(�) . By construction, u is well de�ned

and u 2 C1
(IR+) . It holds, by Lemma 5.3 and the construction above

W (n)
� (�)�W (n)

� (0) =

Z �

0

p(s)W (n)
(s)ds for n 2 INk:

Since W (n) �! zk and W
(n)
� �! zk� uniformly on Ik = [0; kL] for n �! 1,

n 2 INk; we get

zk�(�)� zk�(0) =

Z �

0

p(s)zk(s)ds or u�(�)� u�(0) =

Z �

0

p(s)u(s)ds:

So we have u� 2 C1
(IR+) and the di�erential equation u�� = p(�)u holds. Obvi-

ously, the boundary condition u(0) = 1 is satis�ed and u; u�; u�� are continuous

and bounded, i.e., u 2 BC2
(IR+) . The maximum principle and the resulting esti-

mate of the solution are shown as in Lemma 5.3. Uniqueness of the solution follows

from the maximum principle.

12



Lemma 5.5. There is a uniform bound for the �rst derivative

M
(k)
1 = sup

0���kL

jU (k)
� (�)j

which does not depend on k .

Proof. Because of p(�) > 0; U (k)
(�) � 0 on [0; kL] we have U

(k)
�� (�) �

0 on [0; kL] , i.e., the function � 7! U (k)
(�) is convex on [0; kL] . Consequently,

the graph

G = f(�; U (k)
(�)); � 2 [0; kL]g

lies above the tangent passing through the point (kL; 0) . From this geometrical

condition follows

�U (k)
� � 1

kL
� 1

L
:

Moreover, we have U
(k)
� (kL) � 0 . Otherwise we had U

(k)
� (kL) > 0 and by

continuity there were a �1 2 (0; kL) for which

U (k)
(�1) = �

Z kL

�1

U (k)
� (�)d� < 0

� a contradiction with Lemma 5.3. So we can conclude jU (k)
(kL)j � 1=L . From

U (k)
� (�) = U (k)

� (kL)�
Z kL

�

U (k)
�� (�)d�; � 2 [0; kL]

with U
(k)
�� (�) � 0 on [0; kL] follows

U (k)
� (�) � 0 on [0; kL]: (5.4)

Now we have for arbitrary � > 0 the estimate (omitting arguments)

0 � U (k)
�� = p(�)Uk � �(U (k)

� )
2
+ P

or

0 � U
(k)
��

�(U (k)
� )

2
+ P

� 1:

With (5.4) we get

0 � 2�U
(k)
�� U

(k)
�

�(U (k)
� )

2
+ P

� 2�U (k)
� or

d

d�
log

�
�(U (k)

� )
2
+ P

	 � 2�U (k)
� :

Integrating this inequality gives for any �0 with 0 � �0 � kL

kLZ
�0

d

d�
log

�
�(U (k)

� )
2
+ P

	
d� � 2�

kLZ
�0

U (k)
� d�

13



from which, taking into account U (k)
(kL) = 0; U (k)

(�0) � 1 and U
(k)
� (kL)2 �

1=L2 , follows

log

�
�(U (k)

� (�0))
2
+ P

	 � 2� + log

n �

L2
+ P

o
:

So we obtain

�(U (k)
� (�0))

2
+ P �

n �

L2
+ P

o
exp(2�)

and, �nally,

jU (k)
� (�0)j �

�
exp(2�)

L2
+
P

�
(exp(2�)� 1)

�1=2
:

This is a bound for the �rst derivatives

M
(k)
1 = sup

0���kL

jU (k)
� (�)j � C(P; �)

which does not depend on k .

We note some further properties of the solution of the boundary value problem (5.3).

Lemma 5.6. For the solution u of (5.3) holds

u�(�) � 0; lim
�!1

u�(�) = 0; u�(0) = �
Z
1

0

p(y)u(y)dy; u(�) > 0 for � � 0:

We have the representation

u(�) = 1�
Z �

0

�Z
1

�

p(r)u(r) dr

�
d� (5.5)

Proof. Assume that there exists �0 2 IR+ with u�(�0) > 0 . Because of the

continuity of u� there is an �1 > �0 with u(�1) > u(�0): From u(�) �! 0

for � �! 0 and the continuity of u follows the existence of an �2 > �1 with

u(�2) = u(�0) . By Rolle's theorem there exists a � with �0 < � < �2 and

u�(�) = 0 . Now we have

u�(�) = u�(�0) +

Z �

�0

u��d� = u�(�0) +

Z �

�0

p(�)u(�)d� > 0

since p; u are nonnegative. This contradiction proves the �rst assertion.

To prove the second assertion we remark that from u� � 0; u�� � 0 on IR+

follows that u�(�) is nondecreasing and bounded as � " 1 . Hence there exists

lim�!1 u�(�) . If we had

lim
�!1

u�(�) = �Æ; (Æ > 0);

there would exist an �0 > 0 with

u�(�) � �Æ=2 for � � �0:

14



Then we have for y > �0

u(y) = u(�0) +

Z y

�0

u�d� � u(�0)� Æ

2
(y � �0):

For su�ciently large y we could get u(y) < 0 which contradicts 0 � u(y) � 1 .

So we obtain the assertion lim�!1 u�(�) = 0:

Integrating the di�erential equation gives

u�(�)� u�(0) =

Z �

0

u��dy =

Z �

0

p(y)u(y)dy:

Using the just proved result the third assertion follows.

To show the positivity of u for � � 0 we conclude as follows. We have u(0) = 1 ,

and if there were an �0 > 0 with u(�0) = 0 , we could assume (because of the

continuity of u ) that u(�) > 0 for 0 � � < �0 . We must have u�(�0) = 0 ,

because (�rst assertion) u�(�) � 0 and the assumption u�(�0) < 0 leads to a

contradiction with u(�) � 0 for � � 0 . Applying the classical uniqueness theorem

to the initial value problem

u�� = p(�)u; u(�0) = 0; u�(�0) = 0;

we have u(�) = 0 in an neighbourhood �1 < �0 < �2 . This contradicts the

construction of �0 .

To prove (5.5) we note that

u�(�)� u�(N) = �
Z N

�

u��(r) dr = �
Z N

�

p(r)u(r) dr:

Using the second assertion we obtain by taking N �!1

u�(�) = �
Z
1

�

p(r)u(r) dr:

Integrating once more gives (5.5).

Lemma 5.7. Let be u; w solutions of the boundary value problems

u�� = p(�)u on IR+; u(0) = 1; lim
�!1

u(�) = 0;

w�� = q(�)w on IR+; w(0) = 1; lim
�!1

w(�) = 0;

with p; q 2 BC(IR+) . Assume

p(�) � q(�) > 0 for 0 � � <1:

Then holds

u(�) � w(�); 0 � � <1:
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Proof. For u; w we have all the properties formulated in Lemma 5.4, Lemma 5.6.

From the di�erential equations we get

wu�� � uw�� = (p(�)� q(�))uw

or
@

@�
(wu� � uw�) =

@

@�

�
w2 @

@�

� u
w

��
= (p� q)uw:

Integration gives

w2 @

@�

� u
w

�
= �

Z
1

�

(p� q)uw dy � 0

because of p � q; u � 0; w � 0: This shows that u=w is nonincreasing, hence

u(�)

w(�)
� u(0)

w(0)
= 1

and the result follows.
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