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Abstract

We consider a strongly coupled system of partial differential equations as
a model for the dynamics of a thermo-visco-elasto-plastic solid under phase
transitions. It consists of the momentum balance equation for the displace-
ment, the energy balance equation for the absolute temperature, and an order
parameter equation describing the dynamics of the phase transition. Both
the phase transition and the strain-stress law involve hysteresis dependence
represented by hysteresis operators. We show the thermodynamic consistency
of the model, and prove its well-posedness.

1 Introduction

The paper is devoted to the problem of well-posedness of the system of equations

PUt + Y Uszow — Pllaot — Op = [, (1.1)
(Cy 0+ Filug,w]), — k0 = pul,+oux+g(zt,0), (1.2)
Hi[ug, w] + 0Hsluy, w] = o, (1.3)
vwy + Hslug, w| + 0Hy[u,, w] = 0, (1.4)

as a continuation of the analysis started in [6], where the case v = 0 was con-
sidered under different boundary conditions. It constitutes a model for the one-
dimensional thermomechanical motion of a thin thermo-visco-elasto-plastic wire
in which a solid-solid phase transition takes place. In this connection, the un-
knowns u, 0, o, w denote displacement, absolute (Kelvin) temperature, thermo-
elasto-plastic stress component, and phase variable (usually called generalized freez-
ing indezx, cf. [5]), respectively. The positive physical constants p,v, u, Cy, k,v
denote mass density, couple stress coefficient, viscosity, specific heat, heat conduc-
tivity, and a relaxation coefficient, in that order. The analysis in independent of the
actual value of the constants. For the sake of notational convenience, we therefore
set p=v=pu=Cy =k=vr =1, and the length of the wire is normalized to .

The expressions H;, 1 < i < 4, and F}, are mappings that account for the mate-
rial memory. The assumptions stated below in Hypothesis 2.1 below are typically
satisfied in the case of hysteresis operators, see [6].

Egs. (1.1) — (1.2), (1.4), represent the equation of motion, the balance of internal
energy, and the phase evolution equation, in that order; Eq. (1.3) is the constitutive
law relating temperature, strain and phase variable to the thermo-elasto-plastic
stress component.



The motivation to study systems of the above type is twofold. On the one hand,
it is well-known that for many materials the macroscopic strain-stress (e-o, where
£ = u, is the linearized strain and wu is the displacement) relations measured in
uniaxial load-deformation experiments strongly depend on the absolute (Kelvin)
temperature 6 and, at the same time, exhibit a strong elastoplasticity witnessed
by the occurrence of hysteresis loops that are rate-independent, i.e. independent
of the speed with which there are traversed. Due to the hysteresis, which reflects
the presence of a rate-independent memory in the material, the stress-strain relation
can no longer be expressed in terms of a simple single-valued function. Among the
materials showing very strong temperature-dependent hysteretic effects are the so-
called shape memory alloys (see Chapter 5 in [1]); but even quite ordinary steels are
well-known to exhibit this kind of behaviour, although to a smaller extent.

For a more detailed discussion about the model and a more complete list of related
publications, we refer the reader to [6]. The situation here is simpler due to the
presence of the fourth order term in Eq. (1.1), analogously as in the case without
phase transitions and with temperature-dependent hysteresis in [4]. The solution is
constructed by an easy two-step approximation method. First, a cut-off system is
solved via Galerkin-type approximations and the compactness argument, and then
additional estimates are used for removing the cut-off constraint.

The paper is organized as follows: In Section 2, we give a detailed statement of the
mathematical problem and of Theorem 2.2 as the main result. We also show that the
model is compatible with the Second Principle of Thermodynamics in the form of
the Clausius-Duhem inequality. In Section 3, we define the approximation scheme.
Section 4 is devoted to estimates independent of the Galerkin approximations. Sec-
tion 5 brings the proof of existence for the cut-off system and additional estimates,
and in the concluding Section 6 we finish the proof of existence, uniqueness and
continuous dependence for the original problem.

2 Statement of the problem

In the rectangle Q =10, 7[ x |0,T[, where T" > 0 is a given final time, we consider

Problem (P). Find u,0,w : @ — R satisfying the equations

Uyt + Uggex — Uget — Oz = f ’ (21)
0+ Filug,w)), — O = u2, + oug +g(z,t,0), (2.2)
Hi[ug, w] + 0Hs[uz, w|] = o, (2.3)
wy + Hs[ug, w] + 0Hylu,, w] = 0, (2.4)
coupled with initial and boundary conditions
u(0,t) = u(m,t) = upz(0,t) = Uge(m,t) = 0, (2.5
0.(0,t) = 0,(m,t) = 0, (2.6
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u(z,0) = u’(z), (2.7)
u(z,0) = u'(z), (2.8)
0(z,0) = 0°(z), (2.9)
w(z,0) = w’(z). (2.10)

Before giving the list of hypotheses, let us fix the notation. We consider the spaces

C[0,T] of continuous functions u : [0,7] — R, endowed with the family of semi-
norms
|ulfo, = max{|u(s)]; 0 < s <t} for ¢ € [0,7T7],

LP(0,7) endowed with the norms |- |, for 1 < p < o0,

W*2(0,7) of functions u € L?(0,7) such that the j-th derivative ul9) belongs to
L*(0,7) for 1 <j <k, k€N,

LP(Q) endowed with the norms || - ||, for 1 < p < oo,
L>=(0,T; L*(0,7)) endowed with the norm || - [|oo2,

C(Q) of continuous functions @ — R endowed with the norm ||+ ||o.

In Egs. (2.2) — (2.4), H; and Fy, i = 1,2,3,4, are given causal operators C(Q) X
C(Q) — C(Q). Recall that an operator G : C([0,7]; X) — C([0,T];Y), where
X,Y are Banach spaces, is said to be causal, if for arbitrary functions vi,vs €

C([0,T]; X), the implication
v1(s) = va(s) Vs €[0,t] = Glv](t) = Glva(2) (2.11)

holds for every ¢ € [0, T]. If moreover G is (Lipschitz) continuous, then we obtain
in particular as a consequence of (2.11) that there exists a (Lipschitz) continuous
function 9g : X — Y such that for every v € C([0,T]; X) we have

G[](0) = ¢e(v(0)). (2.12)

Another operator F» will be introduced in the sequel in order to make the model
compatible with the Second Principle of Thermodynamics. Details will be given at
the end of this section.

Hypothesis 2.1
(i) H;, i=1,2,3,4, and F;, j = 1,2, are causal operators C(Q)xC(Q) — C(Q)
generated by operators H, F; : C[0,T] x C[0,T] — C[0,T] according to the
formula

Hi[a,w](x,t) = H;[&‘(.’L‘, -),U)(.’L‘, )](t)7 Fj[gaw](x’t) = F']-*[E(.’E, -),U)(.’E, ) ](t) )

)
(2.13)



under the assumption that there exists a constant Ky > 0 such that for every
£, €1, €9, w, wy, wy € C[0,T] and every t € [0,T| we have
|Hler, wil(t) — Hi[e2, wo](t)] < Ko (|51 — €aljo,g + w1 — w2|[0,t}) ,
i=1,2,3,4, (2.14)

|FY [e1, wa](t) — Fle2, we] ()| < Kollewljo,g + [wilioy + le2lion + [welion)
X (|81 — 82|[0’t} + |U)1 — U)2|[0’t}) , (215)
|Hi[e,w]|pr < Ko for i =24, (2.16)
|Hle,w](t)] < Ko(1+ [eljo), (2.17)
File,wl(t) = 0, (2.18)
and if moreover e,w are absolutely continuous, then
[(Hi[e,w])e(8)] < Kollee(t)] + |we(t)])

a.e. for 1=1,2,3,4, (2.19)

[(FYle, w]):(0)] < Kollelog + |wlp)([ee(t)] + [wi(2)])
a.e., (2.20)
(Fyle,w])s(t) < Hile,w]e;+ Hile,w]w; a.e. , (2.21)
(Fyle,w])(t) < Hjle,w]es+ Hile,w]w; a.e. (2.22)

(ii) £, fi € L*(Q).

(iii) The function g(-,-,0) is measurable in @ for every 6 € R, and there ezist a
function ¢ € L*(Q) and a constant K, > 0 such that g(z,t,0) = ¢°(z,t) > 0
a.e., and

lg(z,t,01) — g(z,t,02)] < K,|01 —0s a.e. Vb,6, €R. (2.23)
(iv) w® e Wh2(0, 7).
(v) 0° e Wh2(0,m), 6°(z) > 6* >0 for all z €[0,7].
(vi) v’ € W*2(0,7), u! € W2%(0,7), u’(0) = v’(w) = w2, (0) = «®, (m) = 0,
u'(0) = u!(w) =0.
According to the discussion preceding Eq. (2.12), it follows from the above hypothe-
ses that there exist functions ;, ¥; : R? 5 R, i =1, 2,3, 4, such that
Hile,w](0) = i(e(0),w(0)), i=1,234, (2.24)
File, w](0) = W1(e(0), w(0)), (2.25)
for all e,w € C[0,T], and we have
i

rnax{ e (e,w)], %(s,w)‘} < Ko, (2.26)
ov, o,
max{‘g(s,w) , %(e,w)‘} < 2Ky(le| + |w]) (2.27)
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fora.e. g,w € R.

We are now ready to state our main result. The rest of the paper is devoted to its
proof.

Theorem 2.2 Let Hypothesis 2.1 hold. Then Problem (P ) admits a unique solution
such that u, 0, w, 0, Us, Uy, Ugt, Uge, Wy € C(Q), Uss, Ugat, Usses, 0x € L°(0,T; L*(0,)),
0,0, € L*(Q), Egs. (2.1) — (2.2), (2.6) hold almost everywhere, and Egs. (2.3) —
(2.5), (2.7) — (2.10) hold for all (z,t) € Q. Moreover, there ezists a constant
C* > 0 such that 0(z,t) > 0*e~C"* for every (z,t) € Q.

Let us note that (2.21) — (2.22) are the hysteresis energy inequalities corresponding
to clockwise admissible hysteresis potentials, cf. [1, 3]. They will turn out to be
substantial for the positivity of temperature which in turn yields the crucial en-
ergy estimates. Moreover, they ensure that the model itself is thermodynamically
consistent.

Indeed, we define the free energy ¥ in the form

1
U = 0(1—log0) + Fi[uz, w] + 0 Falu,, w] + §ui$ (2.28)
The entropy S is given by the relation
o
S = 30 = log§ — Fs[u,,w], (2.29)
and the internal energy has the form
1
U=V+0S = 9+F1[um,w]+§uix. (2.30)
The energy conservation law
Ut + qz = Uyt (uzt + U) + Uz Uzt + g; (231)
where ¢ is the heat flux which we consider in the Fourier form ¢ = —0,, and g is

the heat source density, is nothing but Eq. (2.2). As a criterion of thermodynamical
consistency, we require that

6(z,t) >0 (2.32)
for every (z,t) € Q, and that the Clausius-Duhem inequality
q g
S, -] > = 2.33
+(5), 2 4 (2.33)

holds almost everywhere in @ for every solution of our system. Condition (2.32)

is ensured by Theorem 2.2. To check that (2.33) holds, we first notice that it is

equivalent to

90,
0

U < 08+ gt (Ugt + 0) + UpgpUggt — (2.34)
as a consequence of (2.31). We have by (2.21) — (2.22) that
Ui —08; = Filug, w); + 0 Fylty, W] + Uppliper < O Ups — WE + Upglgar, (2.35)

hence (2.34) is satisfied due to the choice of g.
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3 Approximation

The solution to Problem (P) will be approximated in two steps. We first fix a
cut-off parameter r > 0 and consider the following truncated problem.

Problem (P(r)). Find u,0,w : @ — R satisfying the equations

Uty + Ugooe — Ugat — Oz = [, (3.1)

(0 + Filug,w)]), — Oz = ul, + oug + g(z,t, 0,(0)), (3.2)

Hi[ug, w] + 0-(0) Ha[u,,w] = o, (3.3)

wy + Hi[ug, w| + 0.(0) Hyluz,w] = 0, (3.4)

coupled with initial and boundary conditions (2.5) — (2.10), where g,.(6) is given by
0-(0) = max{0, min{r,6}}. (3.5)

We approximate Problem (P(r)) by a finite-dimensional Galerkin system with basis
functions

2

ag(z) = 1/;sinkx for k€N, (3.6)
\/Ecoskx for ke N,

bu(@) = { \/I for £k=0. (3.7

For a fixed n € N, the problem reads as follows.

Problem (P™(r)). Find w™ : Q — R, uy,...,un,0,...,0, : [0,T] = R,
satisfying for £k =0,1,2,...,n the system

i + k20, + kruy + _/7r o™ kb,dr = /1r f apdz, (3.8)
0 0
ék + " (F1 [’U,gn), ’U)(n)]) bk dz + k29k = /7r ((’u,gg)f + 0(”)u(£)
0 t 0
+g™) by da, (3.9)
Hy[ul, w™] + 0,(0™) Hy[ulW, w™] = o™ (3.10)
w; ) 4 Hg[uz"), w! )] + QT(G(")) H4[u;”), w(")] = 0, 3.11)
where
g(")(x, t) = g(z,t, QT(G(") (z,t)), (3.12)
u™(z,t) = 3 ui(t) a(z), (3.13)
k=1
0 (z,t) = > 0k(t) by(z), (3.14)
k=0



coupled with the initial conditions

up(0) = /0 u(z) ay(z) dz | (3.15)
x(0) = /Owul(a:)ak(m)dx, (3.16)
0,0) = [ 0°@)bu(a)da, (3.17)
w™(z,0) = w'(z). (3.18)

We consider (3.8) — (3.18) as a first order system for the unknowns U = (uy, ..., u,),
V=(t1,. . %), Z="20,---,2), w™, where 2, = 0 + [ Fy[ul w™] by dz for
k =0,...,n, and with a right-hand given by causal locally Lipschitz continuous
operators. In a neighbourhood of the initial condition we construct a local solution
(U,V, Z,w™) € C([0,7];R™) x C([0,7];R™) x C([0, 7]; R™*") x C([0,7] x [0, 7]) for
7 > 0 sufficiently small in a standard way by the Banach Contraction Principle. In
the next section, we derive estimates which, on the one hand, imply that this local
solution can be extended to a global one and, on the other hand, will enable us to
pass to the limit as n — oo and r — oo.

4 Estimates

Throughout the section, we denote by C;(r),Cy(r),... any positive constant inde-
pendent of n, and possibly dependent on 7, and by K;, K5, ... any positive constant
depending only on the quantity

R = [[fllz+1()ellz+llg"lla+ 1w’ 2 +[(w")al2+10°12+(0%)s ]2+ (4")asos 2+ (') aal2

(4.1)
and, in particular, independent of both n and r. The dependence on T is not taken
into account here, as T is assumed to be fixed.

We first recall an easy embedding and interpolation result.

Lemma 4.1 Let V be the space of functions v € L*(Q) such that v, € L=(0,T;
L*(0,m)), v; € L*(Q), endowed with the norm ||v||2 + ||ve|l2 + ||ve]lco2. Then there
ezists a constant K, such that for every v € V we have

1/2 1/2
Iz < Ky (103 + [olla(velle + [[valloo.2) + 0]l [[0ell2 [0allo0z2) 5 (4:2)
and the inequality
[o(z,1) = o(y,8)| < Ki([oella+ vallooz) ([t = sI"/* + |z — y|*/?) (4.3)

holds for every t,s € [0,T], z,y € [0,7]|. In particular, V is compactly embedded

into C(Q).



Proof. For every s,t € [0,T] we have

T T T r
/ v¥(z,t)de < / UZ(.’I?,S)diL‘—l-Q/ / |v||ve| dz dt .
0 0 o Jo

Integrating the above inequality with respect to s and passing to the maximum
with respect to ¢ we obtain

[vlleee < %||v||§ + 2[vlaf[ell2 - (4.4)
Similarly, for z,y € [0, 7] and ¢ € [0,T] we have
va,t) < vy +2 [ (e vl o)lde, (4.5)
and integrating with respect to y we obtain
lvll3% < %Hv”gog+2||U||oo,2||vw||oo,2a (4.6)

and inequality (4.2) follows easily from (4.4), (4.6). The Holder-type estimate (4.3)
is a special case of Theorem V.2.4 of [3|, and the compact embedding follows from
the Arzela-Ascoli Theorem. [ |

4.1 Estimate I

Consider a maximal solution of (3.8) — (3.18) defined in a time interval ]0,7,].
Testing Eq. (3.8) by 4, we obtain

5 ([0 +

ia (n) (|2

2
u(0);) +

< o™ )], [ul )], + £ @), [ui ),
< S (L + RO + 170k + [ @) (4.7)

for every ¢ €]0,T,[. We have by Hypothesis 2.1 that

wi(z,1)] < K (1 + [ul (2, )0 + Qr(e(n)(x’t)))

t
< Ko (14 1,0+ |
0

ul (2, 5)| ds + 0. (0 (z, t))) . (4.8)
Taking into account the fact that

[uf”(z,0)| < Vrlug, |2, (4.9)

we obtain that
w™ (z,1)]

t t
< [’ + Ko (t (1+\/7_r|u2$|2—|—/ ug’?(x,s)\ds) + [ QT(G(")(x,s))ds>. (4.10)
0 0
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This enables us to estimate

o™ (@, 8)| < |H[0,0](z, t)| + [Hi[ul”, w™](z, t) — Hi[0,0](z,t)|
+ 0, (0™ (z, 1)) | Ho[ul, w(z, 1)

u;”)(x,- ‘ + ‘w(n)(x")‘[o,t}>

)|+ e (67w, 5))) ds) (4.11)

< K, (1 + 0,(0™ (z, 1)) +

< Ks(l-l-gr :L't —|—/

for all (z,t) € Q. Hence,

‘a(n)(t)‘z < Ky (l—l— o(6 s)‘st—I—/;

n), <2
uit)(s) ‘2 ds) :

r —I—
! / (4.12)

Using the inequalities |u§")(0)|2 < |utly, |ul®(0)|s < |ul,|2, and applying the Gron-
wall argument to (4.7), we finally obtain for every ¢ €]0,T,[ the estimate

u;;t —i—/

4.2 Estimate 11

‘ 2

o)

u(s) ds < K; (1—|—/0t QT(Q(”))(S)E ds) . (4.13)

We now test Eq. (3.9) by ). From Hypothesis 2.1 it follows that

6P|, + ;%ewnmjs\¢Mmg(kmmywmeum
+ W@+ | ul) @), +[o0®)], + K, [or 0" >)(t)\2), (4.14)

where we have by (2.20) that

(A[ul”, w™])i(z, t)|

T

< Ko ([u8(2, )Py + (@, )Py + [l (@, O + [l (@, 0)P) . (4.15)

The estimates (4.8) — (4.11), (4.12) — (4.15) yield an upper bound for the maximal
solution of Problem (P (7)) which may possibly depend on n and r, but does not
depend on T,,. The solution is therefore defined in the whole interval [0, 7], that is,
T, = T. Inequality (4.13) can then be written in the form

112 (2 (12 2
W b2 B < K (o)
Using (4.8), (4.10), and (4.15), we obtain
2 4
[, w < Ko (14 [+ o)) (4.17)

9



and combining (4.12) with (4.14) and (4.16) — (4.17), we end up with the inequality

[0, + [0, < 8O, + (R, w),
[ ([ + e @]2) + o°[; + &2 ento™)]
< K (14 o]+ o) (1+ Jete)]) - (a18)

4.3 Estimate 111

Differentiating Eq. (3.8) and testing by i yields
1d N T n) |2
. (\uw)\z 0L + o]

2dt
< ‘Ut ‘ ztt )‘2+|ft(t)|2 ‘uﬁ?)(t)‘Q
< 3 (oW + PR +or 10E + 5 POL) . @)
hence
%Hugt —l—‘ ) —l—‘ m| Hat(n) Z ||§+‘u§f)(0)‘z—|— ui’;)t(o)‘z, (4.20)
where ,
wl(0)]) < lul,f3, (4.21)
i (0)], < 1F(0)l2 + [ulugale + ol + |08 (0)]2. (4.22)

By (2.24), (2.26) we have
(

08(2,0)] < Ko(1+ 0:(6"(z,0))([ulZ) (z,0))| + [wg(z)])
+ 1087, 0)](1%2(0, 0)] + Ko(Juf(z,0)| + [w’(z)]) . (4.23)

Similarly as in (4.5), with 8" (z,0) instead of v(z,t), we have
1
0 (0)5, < —16°]3 +2/6°]16; ], (4.24)
m

and using (4.9), we obtain

o (0)2 < Ko(1+10"(0)oo)(Jugsl2 + lwgls) + Ks [02]2 (1 + Jug,le + +|w’le) , (4.25)

hence
uf(0)], < K. (4.26)

2
It remains to estimate the term Hat(n)HZ in (4.20). We have

o (2,1)] < Ko ((1+ 0,07 (2, 1) ([l (2, )] + [wi™ (z,1)]) + (6" (2,1)]) ,
(4.27)

10



and from (4.18) it follows that

112 (n)[|2 2
O < s (1o 0E) (1 B2 Jo0 ) e
hence also
)12 o) 112 )12 2 112 2
WP o < s (1 o)) (14 )Y
(4.29)
Using Lemma 4.1, we can find for every § > 0 some Kj; > 0 such that
2 2 2
a2 < Ko [l + 6 (Jull, + [u2]}) (4.30)
2
Since HQT(H(”) 0|~ < wr?, we obtain for § = §(r) sufficiently small
that (m) |2 (m) || ()12
Ugy 002+ Ugat 002+ Ugit 2 < CI(T)7 (431)
as a consequence of (4.16) and (4.29), hence
o + o], < Galr), (4.32)
o)+ ] < o), (1.3
o, < ), (434)

as a consequence of (4.18), (4.28), and (4.31). Furthermore, differentiating Eq. (3.11)
with respect to ¢, we obtain from Hypothesis 2.1 and from (4.8), (4.32) — (4.33) that

||, < Csr). (4.35)

4.4 FEstimate IV

By Hypothesis 2.1 we have for z,y € [0,7] and t € [0,T] the inequalities

0 (z,0) — w,0) < Ko( ) (a,1) — 60)(y,1)]

+ (14 0.(6™(,1))) (

uf(e, ) — w9, + o @) — 0y, ) )

< K0(1+r)<

0" (2,) — 07 (y, )] + [ul (2, 0) — u (y,0)| + [w°(z) — w'(y)|

— o (y, s ‘—I— ‘wt T,s) — (n)(y, s)D ds) : (4.36)

11



Using Gronwall’s lemma, and letting y tend to x, we see that the following two
inequalities hold a.e. in @:

wiP (@, 1)
< Co(r) (|08

z\
+ ) (s

()(xO )+ |wd(z |—|—/

ul?(z,0)| + [w)(@)]

T o @, 5)) ds) , (4.37)

:c:l:tx S

+ 6™ (z, s)D ds) :
(4.38)

’U)gn)(.’ﬂ,t)‘ < 07(T)< :l::ct
The argument of (4.36) — (4.38) yields analogously that

()(xO )+ [wl(z |—|—/

o(@,0] < G (

mmt .
(4.39)
We have, in particular, the following estimates.
ol + || + Loz + [t s S Oolr), (4.40)
‘ a(c g ‘0072 < Cyp(r). (4.41)

Directly from Eq. (3.8), and from estimates (4.17), (4.31), (4.34), (4.41), we obtain
that
|t

Trrrxr

Cu(r), (4.42)

IN

00,2

pr)

rxr

< Cha(r). (4.43)

2

5 Solution of Problem (P(r))

The estimates established in the previous section and the compact embedding in
Lemma 4.1 enable us to pass to the limit as n — oo, keeping r fixed for the
moment. Selecting a subsequence, if necessary, we find functions u, 6, w,o € C(Q)
such that

Uty Ugy Uty Uge, Wt € C(Q) )
utt;uzztyuzzzzywzt;wzyezao-z € LOO(O)Tv L2(0)7T)) )
Ugtt, 0t7 ezz; Ot, Wit S LQ(Q) )

and

(n)

o ul® U, U * —> U, U;(cn) — Ug, Ugcrtl) 7 Ugt, U
wi") — wy, 0™ — ¢, all uniformly in C(Q),

u) = gy, 0 — 0, w™ — w,

T
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(n) (n)
® Uy  —> U, Upyy —7 Ugat, ugcz)zz

o™ — o, all weakly* in L>(0,T; L*(0,)),
[ J u;(crtlt) — uztt; g)gn) — 9t; e(n) — 91:1:) a-t(n) — a-t)wt(ll) — wtt’ all Weakly ln

12(Q). -

— uzz‘zz, :E;t) — th, (n) — wx, 9(”) — ex,

T T

The above convergences imply immediately that «,#, w, o satisfy Problem (P(r))
in the sense of Theorem 2.2. Moreover, passing to the limit in (4.16), (4.18), (4.29),
we obtain the estimates

IN

2 2 2
[utl[so,2 + 1Uas]loo 2 + 1t Ks (1+|01l3) (5.4)
5.5

1005+ 10a120, < Ko (14 16113) (1 + luatl2 + 1012) (5.

st + NttaatlZep + uanlly < Ko (14 11613) (14 lual2, + 110]2,) - (5.6)

Note that the above estimates are independent of r. Additional estimates will be
needed for removing the cut-off. We first show that 6(z,t) remains bounded away
from zero in Q.

5.1 Positivity of temperature
We rewrite Egs. (3.2) — (3.3) in the form

0r—0pp = —Fi[ug, wli+ul,+(Hi[ug, w] + 0,(0) Ha[ug, w]) um+g(z, t, 0-(0)), (5.7)
and using the relations (2.21), (3.5), we obtain a.e. in @ the inequality

9t _gzz —H3[UZ,U)] wt+9r(9) HQ[uz;w] uzt_Kg Qr(g)

0r(0) (Ha[ug, w] g + H3[ug, w] Hylug, w] — Ky)
= h(z,t)0, (5.8)

>
>

where h := QTTW)(HZ[uz, W] Uyt + Hs Uy, w] Hyu,, w]— K,) is a function from L*(Q),
Il < KoCs(r) + K2(1+ Cs(r)) + K, =: C*(r). (5.9)
Let us consider an auxiliary function
z(z,t) = e Y(z,t) — 6", (5.10)
with 6* from Hypothesis 2.1. Then (5.8) reads
2t — Zgg > (C*(r) + h(z,t)) (2 +0%) > (C*(r) + h(z,t)) 2 (5.11)

a.e. in @. Let us test Eq. (5.11) by the negative part 2z~ of z. Then

B [ @Bds < Sl OB+200) [l ()Bds.  (5.12)
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We have, by hypothesis, z7(z,0) = 0 for every z € [0, 7], hence

t
2 (0 < 4C*() [ 12 (s)3ds, (5.13)
0
and Gronwall’s argument yields that z=(z,t) = 0, that is,

O(z,t) > e Mg > 0 (5.14)

for every (z,t) € Q.

5.2 Estimate V

Test Eq. (3.1) by u;, (3.2) by 1, and sum up. The positivity of # and F; then yield

d /1 1
ph <§|Ut(t)|§ + §|uzz(t)|§ +10(0) ]2 + [F1[ue, w]|1>

< 1F@Ollw®)]z + 19" @) + K, 001 (5.15)

hence, by Gronwall’s lemma,

[ue(t)|3 + [uaa(t)3 + 01 + | Fafus, w](t) < Kip VYt € [0,T7. (5.16)

5.3 Estimate VI

Testing Eq. (3.2) by 1/0 yields

/[)t/(f(%it—l—g—%)dxds

< " — " 0
< /OlogQ(x,t)dx /Olog9 (z)dz

t WFl[uz;w]t_a-uzt_g(x; S, Qr(g))
+ /0 /0 2 dzds, (5.17)
where
WlogQ(x,t)dx < /WH(:L',t)d:L' < Kis, (5.18)
0 0
—/ logf’(z)dr < —m logh*, (5.19)
0
1 1
§(F1[um Wt — 0 Ug) < E(Hs[um w| wy — 0r(0) Ha[tg, W] Ugt)
(0
< )y, ] i 0] + Hafu, w] )
< Ko(1+ fualog + uad), (5.:20)
— —oY —
g(z, 89, e(0)) _ —g'(z,9) +g(:v,8:90) 9(z,5,6:(0)) _ K, (5.21)
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Hence,

/t/W<u—it+Z—§>dxds

< (1 / |uzt|dxds)
< (1 / / ”|f 0 dx ds)
< o 1+ [ [oeiea)”)

™ 2 1/2
< K (1+<// —“dmds) ) , (5.22)
oJo 0

and this yields the estimate

/Ot/ofr (“%JFZ—%) drds < Kis. (5.23)
Vole.t) < oly.0)+ / e, 0)| 5’ (5.24)

holds for every z,y € [0, 7] and ¢ € [0,T], hence, by integration over y, and by the
Cauchy-Schwarz inequality,

e < = ([owom) L ([ Ee o) (A"e(s,t)df)lzz.%)

Furthermore,

Combining (5.16) with (5.23) and (5.25), we obtain
T
/ 0(t)|wdt < Kig, (5.26)
0
T rm T g
||9||§:/ / 0%(z,t) dedt < / |0(t)|oo/ B(z,t) dedt < Kis Kig.  (5.27)
0 0 0 0

Coming back to Egs. (5.4) — (5.6), we see that Eq. (5.27) entails

el o2 + Uealloo + lluatll, < Kiz, (5.28)

10015+ 16152 < Kus (1+ lwarllZ +11611%,) » (5.29)

el 2 + ttaatl e + laull; < Ko (14 fluaelZ + 10]2) - (5:30)

We now apply Lemma 4.1 consecutively with v =0 and v = u,;. From Egs. (5.27)
— (5.30), we obtain in particular that

162l 4 [[0a]l oo 2 + [10lloc < K20 (5.31)
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6 Solution of Problem (P)

Choosing now r := Ky, we have o,(0(z,t)) = 0(x,t) for every (z,t) € Q, hence
u, 0, w, o satisfies the existence part of the assertion of Theorem 2.2. The lower
bound for 0(z,t) follows from (5.14) with C* = C*(r).

The uniqueness is a consequence of the following stronger result on locally Lipschitz
continuous dependence. All constants K; introduced in the previous sections will
be now considered as functions K; = K;(R) of the quantity R defined by (4.1),
according to the discussion at the beginning of Section 4.

Theorem 6.1 Let Hypothesis 2.1(i) hold, and let R > 0 be given. Then there exists
a constant Ly such that for every data fi, g;, w?, 07, u), u}, i = 1,2, satisfying
Hypothesis 2.1 (i1) — (vi) and such that

Fella 41 (Fe)ell2 41197 N2+ [w] |2 41 (w7 a2 4167 |2+ 1(6)l2 + (45 asasl2 + () asl2 < B

for i = 1,2, the differences @ = u; — us, W = w; — we, 0 = 0; — 05 of the
corresponding solutions u;, 0;, w; satisfy the inequality

1%l ooz + Nisall oz + |1Tatlly + 10llcc2 + 10l < LA, (6.1)
where we set
A = [ fllz +lglla + [@°]2 + |ag,|o + |a']z + 6°]2,
with f = fi — fa, §(z,t) = max{|gi(z,t,0) — g2(z,1,0)|; 0 < 0 < Ky(R)}, @’ =

0 0 70 _ .0 .0 =1 _ .1 .1 70 _ 00 _ po
W) — Wy, @ =U] — Uy, U =U — Uy, 00 =0]—05.

Proof. By Hypothesis 2.1 and using (5.31), we obtain from (2.4) that

B < Kan(R) (100R + 10 + "B+ [ (als)B + mu()) ds) , (62)

and from Gronwall’s lemma it follows that

_ t _
0O < Kn(R) (82 +100B+ [ (tals)B+106)3) ds) . (63)
We analogously have for ¢ = 07 — 05 that
t _
0B < Ka(R) (87 + [ (Ioals) B+ 10(:)E) ds) (64)
Testing the equation )
Ust + Upgge — Ugat = Og + f (65)
by u;, we therefore obtain
d g i _
(@O + e (O1F) + |80 (6.6)

< Ku(R) (N + | F)12 + a2 +/; (Izwe()13 + 10(s) 3) dS) )
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and Gronwall’s lemma yields again for ¢ € [0, 7] that

t t

@O+ i O + [ Jaa()3 ds < Kos(R) (87 + [ 10(s)Bds) . (67)
We now integrate the difference of Egs. (2.2) for 6; and 6, with respect to ¢t and
test with @. This and the above estimates yield that

2

0@ + 2| [ 8.(s) ds
dt |Jo

< Ku(R) (|é°|§ R+ [0

2

b ()t [0l + o) + a0 + K, 6)) )

t
< Ky(R) (A2 + [0 ds) , (6.8)
and the assertion follows from a repeated use of Gronwall’s lemma. [ |
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