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Wavelet Approximation Methods for 
Pseudodifferential Equations I: Stability and 

. Convergence 

W. Dahmen, S. Prossdorf and R. Schneider* 

Abstract 

This is the first part of two paper's which are concerned with generalized 
Petrov-Galerkin schemes for elliptic periodic pseudodifferential equations in IRn 
covering classical Galerkin methods, collocation, and quasiinterpolation. These 
methods are based on a general setting of multiresolution analysis, i.e., of se-
quences of nested spaces which are generated by refinable functions. In this part 
we develop a general stability and convergence theory for such a framework which 
recovers and extends many previously studied special cases. The key to the anal-
ysis is a local principle due to the second author. Its applicability relies here on a 
sufficiently general version of a so called discrete commutator property. These re-
sults establish important prerequisites for developing and analysing in the second 
part methods for the fast solution of the resulting linear systems. These methods 
are based on compressing the stiffness matrices relative to wavelet bases for the 
given multiresolution analysis. 

Key words: Refinable functions, wavelets, periodic pseudodifferential operators, gen-
eralized Galerkin-Petrov schemes, discrete commutator property, stability analysis, 
convergence estimates. 

AMS subject classification: 65R20, 65N35, 65N30, 45E05, 45El0, 41A25, 41A6:J, 
47G30. 

1 Introduction 
While initially typical applications of wavelets were concerned with signal and image 
analysis there have been recent attempts of applying wavelets tQ the solution of integral 
or differential equations (cf. [5, 3, 20, 22]). The objective of this paper is to analyse the 
potential of wavelet methods for the solution of pseudodifferential equations. At this 

*The third author has been supported by a grant of Deutsche Forschungsgemeinschaft under grant 
number Ko 634/32-1. 
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stage we focus on the model case of periodic pseudodifferential equations to exploit 
the full advantages of Fourier transform techniques in connection with appropriate 
representations for the class of operators under consideration. However, we do consider 
variable symbols and it should be mentioned that this class covers all the classical 
examples such as Hormander's class, in particular, those arising in connection with 
boundary element methods. 

The present investigation draws upon two major sources of motivation. On one 
hand, a significant number of earlier papers (see, for instance, [38, 39, 37] and the 
literature cited there) treat Galer kin or collocation methods separately for special cases 
of operators and for various special choices of trial and test functions. Here we attempt 
to propose a general framework that allows us to develop a unified approach to all these 
cases and also to extend previous results. It seems that ascending sequences of nested 
spaces which are generated by the translates and dilates of a single refinable function 
provide a suitable setting for that purpose. Of course, spline spaces form a typical 
example which fits into this context. We will see that the essential conditions that 
will entail optimal convergence rates and stability of the methods can be conveniently 
formulated in terms of the Fourier transform of the refinable function. 

On the other hand, such sequences of refinable spaces, often called multiresolution 
analysis (cf. [27, 30, 23]), offer convenient ways of constructing wavelet bases. Thus, 
one expects that the present setting should be able to take advantage of the recent 
interesting developments in this direction. In this regard, there are two issues which 
are of central importance for the present purposes, namely the preconditioning effect of 
wavelet bases [14], as well as the possibility of compressing stiffness matrices relative to 
wavelet bases. Such a compression technique has been proposed in [5] where, however, 
only operators of order zero where discussed. 

This latter issue will be addressed in detail in a forthcoming second paper, while we 
concentrate here on convergence and stability analysis for generalized Petrov-Galerkin 
methods in the general framework of multiresolution analysis. 

In Section 2 we collect some important facts on refinable functions that will be 
needed throughout the sequel. Specifically, we formulate appropriate periodized ver-
sions. Some prerequisits about the class of pseudodifferential operators which are to 
be investigated are presented in Section 3 where we also formulate the generalized 
Galerkin-Petrov schemes. In Section 4 we characterize stability of these methods first 
for the case of constant coefficient operators in terms of the so called numerical symbol 
which is a simple expression involving the symbol and the Fourier transform of the 
refinable function. 

One possible approach to stability analysis for variable symbols is a reduction to 
the case of constant symbols by means of a certain local principle which could be 
viewed as a numerical counterpart to the well-known principle of freezing coefficients. 
Of course, the basic idea of localizing techniques has a long history in the theory as 
well as in the numerical analysis of partial differen.tial equations. Here we focus only on 
those methods for pseudodifferential equations which can be formulated as projection 
methods. The first papers addressing this particular aspect seem to be [45, 46], where 
classical Galerkin schemes with trigonometric trial and test functions are analysed. 
In [36] collocation methods with piecewise linear trial functions for singular integral 
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equations are investigated. The analysis in [36] already involved implicitly a certain 
discrete commutator property which also played then a crucial role in various subsequent 
papers treating one-dimensional problems (see e.g. [2, 33, 34, 35, 43]). An explicit 
abstract formulation of this principle was first given in [32, 33]. For an overview of 
the various univariate results see also [40]. First multivariate applications for tensor 
product spline spaces were obtained in [37, 38, 12]. 

In Section 5 we will prepare the ground for the application of this local principle 
in the present general multivariate setting. The main, ingredient is a certain super-
approximation result which should be of some independent interest. With these prereq-
uisites at hand we characterize in Section 6 the stability of generalized Petrov-Galerkin 
schemes in terms of the ellipticity of the numerical symbol and establish corresponding 
optimal convergence rates for the approximate solutions. 

2 Refinable Functions 
Splines have been successfully employed for the numerical solution of operator equa-
tions. If an approximate solution in some fixed spline space, i.e., for a fixed set of knots, 
is to be updated subsequent knot insertion provides a powerful tool for increasing the 
flexibility and hence accuracy of the approximating spaces. The corresponding numer-
ical manipulations become particularly simple when dealing with equidistant knots in 
which case each spline space is spanned by integer shifts of dilates of a single B-spline. 
This is a canonical example of what is usually referred to as multiresolution approxi-
mation framework as it typically arises in connection with the construction of wavelets 
(see e.g. [8, 17, 23, 27, 30, 41]). 

In general, the main ingredient of such a multiresolution approximation is a so 
called refinable function c.p E L2 ( IRn). By this we mean that c.p satisfies -a refinement 
equation 

c.p(x) = L akc.p(2x - k) , x E !Rn , ( 2.1) 
kEtzn 

where the mask a= {ak}kEtzn is some fixed sequence in f1 (~n). To stress the depen-
dence on a, we will sometimes say c.p is a-refinable. We will be primarily interested in 
compactly supported refinable functions but in some cases it will be important to relax 
this assumption. It is shown in [23] that for many purposes it suffices to assume that 
c.p belongs to the space 

£2 := {f E L2(JRn) : L If(· - k)I E L2([0, lt)}. 
kEtzn 

It is clear that any function c.p E L2 (1Rn) which has compact support or for wl1ich 
J lc.p(x)l 2 dx decays exponentially, as !kl tends to infinity, belongs to £2. Here 

k+(o,1Jn 

lxl := (x, x) 1/ 2 is the Euclidean distance and (x, y) := 'Lj=1 x/fjj denotes the standard 
scalar product of x, y E (/Jn. 

We define the Fourier transform of f E L1 (!Rn) by 

}(y) = j f(x)e-2tri(x,y}dx. 
Rn 
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It is known that £ 2 ~ L1 (1Rn) (see [23]) so that tp is continuous and (2.1) implies 
that for any l E IN 

where 
a(y) := L ake-i2rr(y,k), 

kE;zn 

(2.2) 

Thus r.p and hence c.p would vanish identically if a(O) < 2n. It is also easy to see that, 
when 

(2.3) 

the products Il~=l 2-na(2-iy) converge uniformly on compact sets in crn so that any 
nontrivial solution to (2.1) must satisfy (ji(O) -/:- 0. Thus we may assume in the following 
without loss of generality that (2.3) as well as 

(fi(O) = 1 (2.4) 

hold. 
It is remarkable that refinability combined with additional smoothness properties, 

has a number of important far reaching consequences which we will record for later use. 
To this end, we will employ standard multiindex notation, i.e., aa = 8

80d1 • · • 88°'ann, iai = 
Xl Xn 

0'.1 + · · · + O'.n. 

Proposition 2.1 Suppose c.p is a-refinable where we assume (2.3) and (2.4). Then the 
following properties hold. 

(i) If c.p belongs to Cd(JRn) and xvc.p(x) is in Ll(IR11 ) for v E !No, lvl :::; d, then c.p 
satisfies Fix-Strang conditions of order d, i.e., 

( aa i:p) ( k) = 0 ' I a I :::; d ' k E ;zn \ { 0} (2.5) 

Thus, in particular, when c.p E Cd(JRn) has compact support, (2.5) is valid. 

(ii) If c.p E Cd( IRn) has compact support, then there exists a positive real number 
p = p( a) < 1 and a constant c depending only on the mask a such that 

x, y E IRn , !al = d. (2.6) 

(iii) If c.p has compact support and belongs to Cd( IRn), then for every P E IId( IRn )i the, 
space of polynomials of degree at most d on IRn, there exists a unique polynomial 
Q E Ild ( IRn) such that 

P(x) = L Q(k)c.p(x - k), x E IRn, (2.7) 
kE;zn 

and 
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(i) is proved in [7], Theorem 8.4. Property (ii) is also implicitly contained in Section 
7 of [7] and is proved explicitly in [14]. Theorem 9.1 in [7] covers (iii). 

For sufficient conditions on the mask a to ensure dth order differentiability of the 
corresponding a-refinable function <p the reader is referred again to [7]. 

The second important property which we will require is that the integer translates 
of <p are stable in the sense that 

(2.8) 

where Arv B means that there exist two positive constants ci, c2 such that c1 A ::; B :S 
c2 A holds uniformly with respect to all parameters the quantities A, B may depend 
on. Here ll>-lli2 (.IZ") = l:ke.IZ" i>.kl2, II· llL2 (R") denotes the usual Lrnorm on IRn, and 
the semi-discrete convolution >. *' <p is defined by 

>.* 1 cp= 2:: >.kcp(·-k). 
kE.iZ" 

Again cardinal B-splines or, more generally, certain cube-splines satisfy both (2.1) and 
(2.8) (cf. e.g. [7, 23]). 

In terms of the Fourier transform of cp the stability of <p is well-known to be equiv-
alent to 

[00](w) = L 10(w + k)l 2 > 0 for all w E [O, l]n, (2.9) 
kE.iZ" 

where for 
(J,g) := j f(x)g(x)dx, 

R,n 

we define in general 

[f§°](w) := I: ](w + k)g(w + k) = L (J,g(· - k))e2rri(w,k). (2.10) 

Note that the trigonometric series on the right hand side of (2.10) is known to converge 
absolutely whenever f, g E £ 2 (see Theorem 3.1 in [23]). 

It is known [23] that stability (2.8) is implied by the somewhat stronger notiou of 
algebraic linear independence of the shifts of cp, which means that the mapping 

(2.11) 

is injective on the space of all complex-valued sequences >. defined on zzn. Again 
cardinal B-splines or, more generally, certain cube splines have this property. 

In subsequent sections we will frequently have to work with a function cp which 
satisfies the following requirements: 

• cp is refinable, has compact support and belongs to Cd(JRn). 

• The integer shifts of cp are algebraically linearly independent. 
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In this case we will briefly say that c.p satisfies condition cg. 
It is also known [4] that linear independence of integer translates of a compactly 

supported function implies their local l~near independence, which means that 

(>, *1 c.p)(x) = 0 for x ED, 

for any open domain D ~ IRn implies >.k = 0 for which supp c.p(· - k) n D i= 0. It 
is shown in [18] that for a given compactly supported function c.p with locally linearly 
independent translates there exists a functional F such that 

F(c.p(· - k)) = 80,k, k E ~n, (2.12) 

and 

( ) 

1/2 

IF(g)I:::; c j lg(x)l 2 dx , 
o,1]n 

(2.13) 

holds for some constant c independent of g. 
vVe now turn to an appropriate periodic setting based on the above notions. Iden-

tifying one-periodic functions, i.e., functions f satisfying 

f(x + k) = f(x), for all k E ~n, 

with functions on the n-dimensional torus 

the periodization operator 
[f](x) := L f(x + k) (2.14) 

kE:ztn 

maps L2 ( IRn) into L2 ( yn). Likewise we will identify for notational convenience the 
cosets [x] := x + ~n, x E mn, with its representer x E [O, l]n. For any function¢> E £ 2 

we define now 
. jn . 

ef>i : = 2 2 [ ¢> ( 23 . - k)], (2.15) 

Specifically, for any refinable function c.p E £ 2 we defiJ1:e the finite dimensional spaces 

(2.16) 

where 

Since by (2.1) and (2.15) 

c.p{ = 2nj/2 L ai[c.p(2j+1 · -2k - £)] = 2-n/2 L a=-2kc.p1;;1 

lE:ztn TnE:ztn 

we conclude 
(2.17) 
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One easily confirms now from corresponding results on the non-periodic case [23] 
that, under the above assumptions, 

LJ Vi= L2(Tn). (2.18) 
iENo 

We will refer to the sequence {Vi}iELZ as the periodic multiresolution analysis generated 
by cp. 

Let for any two one-periodic functions u, v 

(u,v) 0 := j u(x)v(x)dx. 
[o,1]n 

Next, note that for any g E £2, u E L2(Tn) 

([g],u)o = (g,u) 

so that, for any /, g E £2 

( [!], [g]) 0 = (!' [g]) = ( [!], g) . 

One easily derives from these facts the following observation. 

Remark 2.1 Let f,g E £ 2 satisfy 

Then 
(Ji, gf )o = Dk,i, k, l E :zn.i, j E INo. 

More generally, if 77 is any functional of compact support satisfying 

then 

satisfies 
77i(gf) ~ Dk,I, k, l E ;zn,i, j E INo. 

(2.19) 

(2.20) 

(2.n) 

The following facts are now immediate consequences of (2.12), (2.13) and Remark 
2.1. 

Lemma 2.1 If <p satisfies cg then one has for Fj ( v) := 2-ni/2 F( v(2-j (. + k))) I where 
F satisfies (2.12} and (2.13} 1 

k f E :zn.i ' . ' (2.22) 

and 

IF1(ui)I :Sc ( . j lui(x)l 2dx) 
112

, 

-J(k+(O,l]n) 

(') ')'3) 
o.J • "'""'~ 

where c is independent of j, k and ui E Vi. 
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3 Periodic Pseudodifferential Operators and Nu-
merical Approximation Methods 

In this section we shall introduce a class of periodic pseudodifferential equations which 
will be studied throughout the remainder of this paper. Pseudodifferential operators on 
smooth manifolds are usually defined in terms of local representations and partitions 
of unity (see e.g [21, 48, 44]). 

However, for our purposes it is more convenient to represent them by means of 
Fourier transforms. It will be seen that the resulting class of operators covers all clas-
sical pseudodifferential operators so that confining our discussions to this class will not 
impose any essential restrictions. The approximation methods that will be used for 
the solution of corresponding pseudodifferential equations will be formulated as gener-
alized Galerkin-Petrov schemes. In particular, this framework covers also collocation 
methods. 

The Fourier transform on yn, often referred as discrete Fourier transform, of a 
function f E L1 (Tn) is defined by 

f(e) = :F7nf(O = J e-21ri(e,x) f(x )dx ' e E ;zn l (3.1) 
Tn 

and, conversely, due to Fourier's inversion formula, f can be recovered under suitable 
smoothness assumptions by the Fourier series 

J(x) = L }(fle27ri(e,x) ' x E yn . 
eE~n 

Let ei = ( Dj,t)e=l denote the jth coordinate vector and define 

6_ : = ( T1 - 1, ... , T n - 1) T 

where 
(rjf)(x) := f(x + ei). 

(3.2) 

vVe shall use the subscript e in 6-(e) to indicate that the multinomial 6."' acts on the 
variable e. 

vVe are now ready to introduce the notion of a global symbol. For r E JR, let Sr(Tn) 
denote the set of all functions a E C00 ( yn x ;zn) satisfying 

The function a E sr (Tn) is called a global symbol of order r on yn. 
For a given symbol a E Sr(Tn) we define the global pseudodifferential operator 

a(x, D) by 
(3.4) 

The symbol of a global pseudodifferential operator on yn is uniquely defined up to 
a smooth function t E s-00 (Tn) = nrER Sr(Tn) (see (1, 28]). 
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In what follows we restrict ourselves to the following subclass of sr(Tn). For any 
µ E (]} with Reµ = r we denote by Eµ ( yn) the class of all symbols O" E sr ( yn) 
which admit a decomposition O" = O"o + O"i, where 0"1 E sr1 (Tn) with some r1 <rand 
O"o E C00 (Tn x JRn\ {O} ). Here we will assume that 

O"o(x,O) = 1 

and that o-0 is positively homogeneous of degreeµ, i.e., 

(3.5) 

Since Reµ= r, a-0 is automatically contained in sr(Tn). 
The main result in [28], [29) (see also [1]) and a corresponding version for operators 

on the torus [38) asserts that all the classical pseudodifferential operators defined in 
[25], including those appearing in boundary element methods (see [51, 11, 13, 50]), 
can be described by a global symbol and vice versa. Accordingly, we will denote by 
wr (Tn) ( <Iiµ(Tn)) the class of pseudodifferential operators of the form A = a-( x, D) + K 
where a- E Sr(Tn) (Eµ(Tn)) and]{ given by Ku(x) = J k(x,y)u(y)dy with k E 

yn 
C 00 (Tn x Tn), is a smoothing operator. 

Finally, for O" E Sr(Tn) the pseudodifferential operator O"(x, D) is said to be elliptic 
if there exist C, R > 0 such that 

JO"(x, OJ 2: CJeJr for JeJ > R, x E yn . (3.6) 

A simple and useful instance of an elliptic operator is induced by the function 
e f-7 (e), e E ~n, where (e) = Jel if e =/=- 0. Further we set (e) = 1 if e = 0. It is 
well-known that for s E IR, one can define the Sobolev spaces H 8 (T 11 ) by 

(3.7) 

equipped with the norm 
llulls = ( L (e) 2slii(e)J 2 )~ (3.8) 

eE~n 

and the inner product 
( u, v )s = I: (e) 2su(e)v(0 . (3.9) 

eE~n 

Notice that H-s(Tn) can be identified with the dual space of H8 (Tn) with respect to 
the sesquilinear form (!, u )0 • 

Recall that a pseudodifferential operator A E wr ( yn) maps 

(3.10) 

boundedly. 
Our central objective is to solve the pseudodifferential equation 

Au= f (3.11) 
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on yn for u E H8 (Tn), where A E <f>1L(Tn), Reµ= r, and J E Hs-r(Tn). 
L~t the spaces Vi be defined by (2.16) with respect to some fixed refinable function 

c.p. vVe will study a rather general class of numerical schemes for the solution of (3.11) 
based on a fixed compactly supported distribution 

77 E H-s' (f), (3.12) 

wheres' 2 0 satisfies AVi C Hs'(Tn), and where r C !Rn is some fixed reference 
domain such as a hypercube. Thus, defining for g E Hs' (!Rn) 

(3.13) 

the space 
(3.14) 

is contained in (A Vi)', the dual of A Vi. The corresponding Galer kin-Petrov scheme is 
then given by 

1J~(Au1 ) = 17~(!), k E ~n,j. (3.15) 

Specifically, the choice 77 = 8(· - wo), i.e., 

ry(g) := g(wo), (3.16) 

gives rise to the type of collocation schemes studied in [42] for n = 1 and in [38, 12] 
for arbitrary spatial dimension and tensor product spline spaces, while 

77 (g) = (g' 'P) (3.17) 

corresponds to the standard Galerkin scheme. Of course, one has to assert that (3.15) 
admits a uniqu~ solution. Our approach to this qu~stion as well as to the corresp~nd--. 
ing convergence analysis is based on an appropriate notion of stability which will be 
formulated in the following section. 

4 Stability for Constant Coefficient Operators 
In this section we will confine the discussion to the case of constant eoefficient operators. 
The general case will be reduced later to this situation by means of principle of locally 
freezing coefficients established in [33]. 

Thus we consider here the equation 

u(D)u = J, ( 4.1) 

where 
u E C 00 (JRn \ {O} ), u(O) = 1, 

is positively homogeneous of degreeµ E CE, Reµ= r, i.e.,(]" IZi'nE ~IL(Tn). Throughout 
this section c.p will be a fixed refinable and stable function in H 8 (1Rn) whose additional 
properties will be specified when there is any need. Writing 

ui := ( u{ : k E ~n,i), ui *0 cpi := 2:: u{cp{ E Vi 
kE7£n,j 
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(3.15) gives rise to a linear sytem involving the circulant matrix 

A i ·- (ai ) · · - (ai ) · .- k,m k,mEtzn,J - [k-m] k,mEtzn,; l (4.2) 

where 
a{:= TJ~(O"(D)cpi), k E ~n,j, (4.3) 

and [k - m] := (k - m) mod 2i. It is well-known that the unitary matrix 

F := ( 2-jn/2e-27riri(k,m}) . 
k,mEtzn,J 

( 4.4) 

diagonalizes Ai, i.e., 

where 
(4.6) 

In the following let ry denote the Fourier transform of TJ in the distributional sense, i.e., 
ry( </>) = TJ( J) holds for any <P E S. 

Theorem 4.1 Suppose the series 

o:(w) := [mpry](w) = 2: D"(w + m )<f'(w + m )ry(w + m) (4.7) 
mEtzn 

converges absolutely for w E yn. Then the eigenvalues O:k (4.. 6) arising from the 
Galerkin-Petrov scheme (3.15) are given by 

O:o = 1, O:k = 2jµ.o:(2-jk), k E ~n,J, j E INo. 

Proof: By (2.19) and (2.15) we have 

<fb(e) = 2-nj/2ip(2-i e), e E ~n' 

so that, in view of (3.4), 

. ( Acpb) ( X) = 2-nj /2 L O"( e)cp(2-j e)e27ri(x,O. 
eEtzn 

Upon combining (4.3), (4.10), and (3.13), we obtain 

a{ 2-nj/2Tj (Acpb(2-j(· + k))) 
2-ni L O"(e)<P(2-i e)e21riri(k,OTJ( e21ri2-i(·,e}) 

eEtzn 

2-nj I.: 0"(00(2-j or,(2-j e)e27ri2-i(k,e}. 
eEtzn 

Using the homogeneity of O" E Eµ.(Tn), (4.11) and.(4.6) yield 

O:k = 2-nj L . ( L O"(e)cp(2-je)ry(2-ie)e21ri2-J(m,~)) e-21ri2-J(m,k). 
mEtzn,J ~Etzn 
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By our hypothesis, we may interchange the summation in the above double sum so 
that the orthogonality relation 

L e-2n-i2-i(m,k-(} = { 2nj if ~ = k + 2j( with ( E zzn, 

mELZn,1 Q otherwise, 

provides 

proving the assertion. 0 

As in [38] we will refer to the periodic function o: defined by ( 4. 7) as the numerical 
symbol of the approximation method (3.15). Our next step toward defining our notion of 
stability is to introduce discrete Sobolev norms and discrete Bessel potential operators. 
To this end, let B(w) denote the symbol of the forward difference operator .6, i.e., the 
f-th component of B(w) is given by 

Be(w) = e2n-iwt - 1, ( 4.12) 

(see e.g. [39)), and define 

if w = 0, 
( 4.13) 

if w E yn \ { 0}. 

Now let 
(4.14) 

J.C., 

and define the norm 

(4.15) 

The space (]} 21 n equipped with the norm II· lls,j is denoted by hs(zzn,j) and we refer to 
h8 ( zzn,j) as a discrete Sobolev space with discrete Sobolev norm II . lls,j· 

We are now in a position to formulate what we mean by stability. Writing briefly 

r/ (g) := { 1]~ (g)} kE;zn,j, 

we note that 
17j(A(uj *0 cpj)) = Ajuj. 

The scheme (3.15) is called (s, r)-stable if there exists some constant c > 0 such that 

( 4.16) 

holds for all uj E hs(::zn,i), uniformly in j E IN0 • 

So far we have hardly made any assumptions on 17 and <p relative to a. A convenient 
hypothesis for proving stability in the above sense may be stated as follows. The triple 
(CY, <p, T/) is called admissible if the following properties hold: 
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(i) The series (4.7) converges absolutely, and 

. (ii) if 
lrp(( + w)ll7J(( + w)I = o(lwn, w--+ 0, 

uniformly in ( E zzn \ { 0}, where r is the order of (]'. 

(4.17) 

Remark 4.1 If the convolution T/*<p belongs to Cd'(JRn)) is also refinable) and lxld'(r;* 
<p) ( x) E L 1 (!Rn)) then by Proposition 2.1. r; * <p satisfies Fix-Strang conditions of order 
d'. Therefore) { 4 .11) holds for r < d'. Moreover) if <p satisfies condition cg (cf. 
Section 2) so that <p E H 5 (1Rn) for s < d + p(aL one easily concludes from {2.5) and 
the fact that tp is entire) that the triple ( ( · )25 , <p, <p) is admissible. 

The following observation relates the discrete Sobolev norms to the continuous ones 
and justifies ( 4.16). 

Proposition 4.1 Suppose that for <p E H 5 (1Rn) the triple ((e) 25 ,<p,<p) is admissible 
and that <p is stable. Then 

(4.18) 

uniformly in j E !No. 

Proof: Choosing O'(D) = (D) 2s and r; = <p, i.e., Xj = Vj, we obtain, in view of (3.8), 

llujll; = ((D) 2suj,uj)o = ujGjuj, 

where Gj denotes the stiffness matrix for (D) 2s. By Theorem 4.1 (4.8) and (4.7), its 
eigenvalues are given by 

ar = 22js L 1e + 2-jkl 2sl<P(e + rjk)l 2 , k E 72n,j \ {O}.· 
eEZ7,n 

Admissibility ensures that this series converges absolutely. On the other hand, the 
eigenvalues >.~·j of the matrix (As,j)* As,j are 

Observe next that outside a fixed neighborhood of zero in Tn one has 

lw + (l 2s /IB(w)l 2s > C1 > 0, for all ( E Zln. 

Moreover, by the boundedness of the sum L(EZ7,n lw + (i 2sl<P(w + 01 2 on Tn and since 
IB(w)l 2s > c2 outside a neighborhood of zero, we conclude that there 

0 ~ c~IB(w)l 2 s ~ L lw + (l 2sl<P(w + ()12 ~ c~IB(w)l 28 . (4.19) 
(EZ7,n 

But since <.p(O) = 1 (see Proposition 2.1), condition (4.17) guarantees that IB(w)l 2s and 
L(EZ7,n lw + c1 2sl<P(w + 01 2 have a zero of the same order at w = 0. Hence (4.19) holds 
everywhere on Tn. Therefore there exist constants c, c' > 0 such that 

c>.~·j ~ ar ~ c' >.~,j, k E 72n,j \ {O}, j E !No. ( 4.20) 
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This finishes the proof. 0 
vVe mention in passing that the analogous equivalence 

( 4.21) 

where ct:= [C(2j · -k)] and C(x) is the fundamental cardinal spline function of some 
coordinate degrees d1 , ..• , dn, s < di+ 1/2, i = 1, ... , n, was established in [38]. 

Adhering to the terminology of (38], we call the numerical symbol a of a homo-
geneous pseudodifferential operator of order r elliptic if there exists a constant c > 0 
such that 

. f la(w)I m > c. 
wETn\{O} IB(w)lr -

( 4.22) 

These notions are related as follows. 

Theorem 4.2 If r.p E H 3 (Tn) and ( O", r.p, 77) is admissible, then the corresponding 
Galerkin-Petrov scheme {3.15) is ( s, r )-stable if and only if the corresponding numerical 
symbol is elliptic. 

Proof: By (4.15) we have 

llAjujlls-r,j = llAs-r,j Aj A-s,jvjll£2 (;zn,])i 

where we have set vj := As,juj. Note next that the eigenvalues of the matrix 

(As-r,j Aj A-s,j)*(As-r,j Aj A -s,j) 

are given by (30 = 1 and 

( 4.23) 

It is easy to see that the eigenvalues ( 4.23) are uniformly bounded away from below 
by a positive constant if and only if the numerical symbol a(w) is elliptic. Hence 

llAs-r,jAjA-s,j jll . > II jll . V £2(;zn,J} _ C V £2(:zn,J}i 

proving that the ellipticity of the numerical symbol implies ( s, r )-stability. 
Conversely, suppose a were not elliptic. Then there exists a sequence { kj} jENo, kj E 

~n,j such that 
' ( 4.25) 

Note that 
vj := 2-jn/2 (e21ri(kj,2-ik)) . 

kE;zn,; ' 

is the normalized eigenvector to the eigenvalue {if:; given by ( 4.23) and ( 4.25). Setting 

we obtain 

1 lluj llj,s = llvjll£2(;zn,i) ( 4.26) 

< cl!As-r,i Ai A -s,ivillt2 (;zn,i) = c{if:;. 
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But by (4.25) we know that f3k1 ---+ 0, j ---+ oo, contradicting ( 4.26). This completes 
the proof. · D 

Since admissibility ensures that the asymptotic behavior of (]' and of the numerical 
syrribol coincide near zero the same arguments as used in (38] allow to establish the 
following fact. 

Proposition 4.2 If ( (]', rp, T/) is admissible and if the numerical symbol of the homoge-
neous pseudodifferential operator (]'(D) is elliptic, then (]'(D) is elliptic. 

As pointed out in (38, 39] the ellipticity of the pseudodifferential operator does in 
general not imply ellipticity of the numerical symbol. 

To analyse stability and convergence properties of the schemes (3.15) for variable 
symbols it is convenient to rephrase these schemes as projection methods. To describe 
this, let, for some s' 2 0, T/ E H-s'(r) be a given functional as described in (3.12) 
above.-

We will then seek for an appropriate 'dual function'</> E H8 (1Rn) n_£2 satisfying 

(4.27) 

The mappings 
Qiu:= L T/Hu)</>1 ( 4.28) 

kE:zzn,j 

project H 8 (Tn) onto the spaces 

yi :=span { ¢£ : k E ,:;zn,j}. ( 4.29) 

It is then clear that solving (3.15) is equivalent to finding ui E Vi such that 

(4.:30) 

Let us briefly comment on the construction of ¢. One easily verifies that ( 4. 27) is 
equivalent to 

(4.31) 

usually </> can be found by first looking for a compactly supported function I E H 8 ( mn) 
satisfying 

( 4.32) 

In fact, since T/ and / have compact support 

[-)17]](w) = L T/(/(· + e})e27ri(~,w), 
<ELZn 

is a trigonometric polynomial which, on account of ( 4.32), does not va:nish on yn. 
Hence 

1 = L g e27ri(e,w) 
[11]] ( W) eE:zzn ~ 
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is a well-defined trigonometric series with exponentially decaying coefficients 9t,· By 
construction, the Fourier transform of the function 

¢ := g *'I . (4.33) 

is given by 
, ,-Y(w) 
¢(w) = [,-Yr]](w) (4.34) 

Thus ¢ satisfies ( 4.31) and therefore ( 4.27). 

Rernark 4.2 Suppose / satisfies cg and let p E (0, 1) denote the Holder coefficient of 
the dth order derivatives of I (see Proposition 2.1). Let <P be given by (4.34). Then 
( (-) 28 , ¢, ¢) is admissible for s < d + p. 

Proof: By ( 4.34) one has 

L (w+e) 2slJ(w+e)l 2 =1[177J(w)j- 2 L (w+e) 2sli(w+Ol2 , 
f,E~n f,E~n 

whence, in view of ( 4.32), the assertion follows. D 

'vVe immediately conclude now from Proposition 4.1 and Remark 4.1 

Remark 4.3 Let/ satisfy cg and let the projectors Qi be defined by (4.28) and (4.33). 
Then the scheme (3.15) is ( s, r )-stable if and only if there exists some constant c such 
that 

( 4.35) 

The above framework covers the following cases of particular interest. 

(I) Classical Galerkin scheme: 

ry(g)=(g,cp), /=<p, s=O, Xi=Vi=Yi. 

In fact, the stability of cp (2.8) assures, in view of (2.9), that (4.32) holds, so that 
in this case 

, cp(w) 
<P( w) = [ cpcp ]( w) . ( 4.36) 

is well-defined. 

(II) Biorthogonal Galerkin-Petrov scheme: 

/ = <p = ¢, s = O, Vi= Yi, Xi= span {TJt: k E ..2Z'n,j}, 

where TJ E L2 (1Rn) is a compactly supported refinable function which is biorthog-
onal to cp, i.e., 

( 4.37) 

(cf. [9, 16]) so that 

[cpry](w) = [')'ry](w) = 1, 9e = Do,t,, e E ..2Z'n. 
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(III) Collocation scheme: 

TJ(g) = g(wo) for some w0 E Tn. 

In this case 
TJ E H-s((O, lt) for any s > n/2. ( 4.38) 

Here one has to find a compactly supported continuous function I (which could 
differ from cp) such that the corresponding spaces yi have suitable approximation 
properties and such that 

L 1(wo + e)e21Ti(w,e} =f. 0, w E Tn, ( 4.39) 
~EEn 

to which ( 4.31) specializes in this case. In the context of cardinal spline inter-
polation ( 4.39) has been established for various choices of w0 and several types 
of multivariate B-splines and box splines (see e.g. (6]) which suggests classical 
spline spaces as typical candidates for yi. 

(IV) Quasiinterpolation: When I is a tensor product B-spline or box spline explicit 
dual functionals of the form 

TJ(g) := 

such that 
TJ(/(· - e)) = 80,~, e E zzn, 

are known (see e.g. [15]). Hence one can take 

</> =1, 
n 

s > d' + 2· 

5 Discrete Commutator Property and 
Super-Approximation 

(4.40) 

Throughout this section we will assume that the refinable function I satisfies cg for 
some d E JN0 and that the projectors Qi are defined by ( 4.28), ( 4.31) and (4.33), 
where T/ E H-s'(r) for some s' ~ 0 is some fixed functional as described in (3.12). We 
will continue denoting by p E (0, 1) the Holder coefficient of the dth order derivatives 
of I whose existence is asserted by Proposition 2.1 (ii). We will reserve the special 
notation Pi for the orthogonal projectors (relative to the inner product(., ·)o) onto the 
corresponding spaces Yi, defined by (4.29). If there is any reason to distinguish the 
range of Pi we will write Pyi. 

The objective of this section is to develop various approximation properties of the 
operators Qi or Pi which will form the corner stones for our subsequent analysis of the 
schemes (3.15) for the case of variable symbols. 

It will be convenient to employ certain equivalent norms on Hs (Tn) which allow us 
to describe local properties of the operators Qi. The analysis is complicated somewhat 
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by the fact that in many cases of interest the functions </>, defined by ( 4.34), do not have 
compact support. vVe will always assume this to be the case in the following and will 
not comment on possible simpler arguments for the special case of compact support. 

To this end, define for h E JR,n the £th order forward differences of u by 

e (£) . (6.~u)(x) = j; j (-ll-Ju(x + jh). 

The corresponding £th order Lrmodulus of continuity is then given as 

we(u, t, Dh :=sup 116.~ulla(Dh,I), (5.1) 
lhl::;t 

where II . llo(D) denotes the usual Lrnorm relative to some domain n c mn and 
Dh,t := { x E JR,n : x + j h E D, j = 0, ... , £}. In addition we will need the corresponding 
modified modulus 

It is known [19] that 
we( u, t, Dh ,...., we( u, t, 0) 2 , t --+ 0, 

'vVe are now ready to introduce the Besov-norm 

where for any fixed £ E JN, £ > t 
= 

lul(t)(D) := L 22itwe( u, 2-j' n)~. 
j=.O 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

Here, according to (5.3), we could replace we in (5.5) by we whenever this is convenient. 
It is known that for domains n with sufficiently regular boundary (for instance 

'minimally smooth' in the sense of Stein (4 7] will do for our purposes) and for 0 < t < £, 
the set of all functions in L2 (D) for which the above expression is finite, agrees with 
Ht(n) and that 

II . llt(D) ,...., II . IJBt (D), 0 < t < £, 
2,2 

(5.6) 

(see e.g. [19, 49]). 
vVe will omit any reference to the underlying domain when working on the torus 

Tn. 
Finally, the norm 

satisfies (14] 

llullL := llulJ& + L 22jtll(Pj - Pj-1)ull& 
jEN 

II · llY,t ,...., II · llB~ 2 for 0 < t < d + p, 

18 

(5.7) 

(5.8) 



which, in particular, implies that yi C Ht(Tn) fort< d + p. 
~e begin presenting direct and inverse estimates for an essentially symmetric scale 

of fractional order Sobolev spaces. The basic form of these estimates is, of course, 
quite familiar and their validity has been established for various special types of ap-
proximation spaces and Sobolev norms. Classical versions involve Sobolev norms of 
integer order while the general case follows usually by interpolation techniques. We 
will include here a proof without making explicit use of interpolation theorems since, 
on one hand, we are not aware of any reference which would be suitable for the present 
general setting and since, on the other -hand, the ingredients of the proof will be of 
immediate use for the subsequent developments. 

A key step is the following basic estimate. 

Lemma 5.1 For any 0 < t ::; d + 1 there exists a constant c such that for all u E 
Ht(Tn) and j E IN 

(5.9) 

Proof: The same arguments as in the proof of Theorem 6.1 in [14] confirm that, under 
the given assumptions on <p, one has 

(5.10) 

where c is independent of u and j E JN0 . Thus, when t = d + 1 the assertion follows 
from the well-known estimate 

(5.11) 

which holds uniformly in T > 0 and u E Hd+l(Tn) (see e.g. (24]). If t < d + 1 we have 

JIPju - ull~ < c 2-2jt (2 2jtWd+i(u, 2-j)n 

< c 2-2jt ( L 22mtWd+1 ( u, rm);) 
mENo 

< c 2-2jtJlull1~.2' 

so that the assertion follows from (5.6). 0 

It is now an easy matter to prove the following direct and inverse estimates. 

Theorem 5.1 Let -d - 1 ::; s < d + p1 -d - p < t ::; d + 1 ands < t. Then the 
Jackson estimate 

(5.12) 
holds for all u E Ht(Tn), where c is independent of j and u. 

J\1oreover1 whens ::; t < d+p there exists a constant c such that for all ui E Vj, j E 
IN0 the Bernstein estimate 

( 5. L3) 

is valid. 
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Proof: In fact, note first that 

(5.14) 

Thus, using again (5.6) and (5.7), we get for s < d + p 

00 

llPjU - ulJ; "' llPjU - ulJ~ + L 22msll(Pm - Pm-1)(PjU - u)IJ~ 
m=l 

00 

IJPju - ull~ + L 22msll(Pm - Pm-1)ull~ 
m=j+l 

00 

:S C L 22m{s-t)llull;, 
m=j+l 

where we have used Lemma 5.1 in the last step. This proves (5.12) for 0 :S s < t. The 
case s < t :S 0 follows by a simple duality argument: 

(u - Pju, v)Tn 
llvll-s sup 

vEH-•('Tn) 

( u, V - Pj*v )Tn 
IJvll-s 

(u,v - Plv)Tn llv - Plvll-t 
vE~~~Tn) !Iv - Pivll-t llvll-s 

< C llullt2j(s-t)' 

which confirms (5.12) in this case as well. In the cases < 0 < tone argues similarly 

(u - Pju, v)7n 
IJvll-s 

( u - Pju, v - Pj*v )Tn llv - Pivllo 
!Iv - Pj*vllo llvll-s 

< c !Ju - Pjullo2js 
< C 2j(s-t) !lu!!t, 

,, 

where we have used Lemma 5.1 in the last step. This completes the proof of (5.12) for 
the asserted range of s, t. 

Likewise (5.8) and Lemma 5.1 provide 

j 

llujll; < C llujJI~ + L 22mtll(Pm - Pm-1)ujll~ 
m=l 

j 
< C L 22m(t-s)IJujll;, 

m=O 
which proves (5.13) thereby finishing the proof of Theorem 5.1 0 

Remark 5.1 The direct estimate (5.12} implies that the orthogonal projectors Pj are 
uniformly bounded in H 3 (Tn) for Isl < d + p. 
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We will determine next to what extent the Jackson estimate (5.12) and Remark 5.1 
remain valid for the larger class of operators Q j. The analysis will, however, be much 
more involved and will make explicit use of the representation ( 4.28). We begin with 
collecting some auxiliary facts. 

Lemma 5.2 Under the above assumptions on T/ there exists for any s 2: s' a constant 
c such that for all u E Hs(Tn), j E IN and k E ;zn,j 

Proof: For any s 2: s' we have 

Noting that 6~u(2-i(x + k)) = 6~_1 hu(y) when y = 2-i(x + k), we obtain 

wd+1(2-nif2 u(2-i(· + k)),2-1,r)2 = WJ+i(u,2-j-1,r{)2. 

Thus we conclude from (5.6) and (5.15) that 

lrt{(u)l2 :S c (llull~(r{) + t,22s 1wd+1(u,2-i- 1 ,r{)~) 

c (11ull~(r{) + 2-2js f 22s(l+j)wd+l ( u, 2-(l+j)' r~g) 
l=O 

< c (llull~(r{) + r 2sj11u11;(r{))' 

as claimed. 

( 5.15) 

(5.16) 

(5.17) 

0 

Next, note that, by definition of <P ( 4.33), a straightforward calculation yields 

where 

<1>{ = I: g{_k ,t, 
kE:tzn,j 

g{ := L 92ie-ki k E _;zn,j, 
eE:tzn 

(5.18) 

(5.19) 

and 9e are the coefficients appearing in ( 4.33). It will be convenient to use the following 
notation. For any domain n ~ yn let 

n{ := 2-i(k + f!), n{,--r := {l E _;zn,j: n{ n (supp1()-/= 0}. 

Specifically, we will briefly write 0 := [O, l]n. One easily concludes now from the 
exponential decay of the coefficients 9e that there exists some ·constant c, independent 
of j E INo, k E _;zn,j, for which . 

(.5.20) 
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Lemma 5.3 Supposes'< d + p (cf. (3.12)). Then for any 0 ::S: t < d + p, s' ::S: s there 
exists a constant c such that for u E H 8 (Tn) 

where r is the domain from (3.12). 

Proof: vVe infer from (5.18) that 

ll<P{llt(o{) < L lgf-ml lb~llt 
mEDj k;y 

(5.21) 

where we have used the inverse estimate (5.13) and the fact that lb~ llo ::S: c in the last 
step. The assertion follows now from (5.20), (5.21), Lemma 5.2, and (4.28). D 

Let F1 be the dual functionals appearing in Lemma 2.1 relative to/ satisfying cg 
and consider the associated projectors 

Gju := L F1(u)J{ 
kE:.zn,j 

Lemma 5.4 Let n <;;; IRn be some fixed bounded domain satisfying the uniform cone 
property (cf. {24}}. Then there exists a constant c such that 

(5.22) 

where 
n{ := LJ{o{ : (supp 1() n n{ # 0}. 

Moreover, for 0 ::S: s ::S: t, s < d + p, t ::S: d + 1, one has 

(5.23) 

Proof: ·without loss of generality, we may assume that j is sufficiently large so that 
n{ cc Tn. Since I satisfies cg and since Gi is a projector, we infer from Proposition 
2.1 that Gi reproduces all polynomials of degree d on n{, so that 

(5.24) 

and therefore, on account of (2.23), whens = 0, 

(5.25) 

A Whitney type estimate (cf. [19]) ensures the existence of a polynomial Po E IId( IRn) 
such that 

(5.26) 
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which, in view of (5.25), proves (5.22). 
Now we can use again (5.6) for the standard interpolation argument, i.e., (5.26) 

yields 

which, by (5.26), confirms (5.23) for s = 0. 
As for 0 S s S t, note first that (2.23) yields 

llGi(u - Po)IJs(n{) < c L llu - Pollo(D{,)lhills 
k'EDj k(y 

< c 2isllu - Pollo)(n{) S c 2-i(t-s) llulJt(n{), (5.28) 

where we have used (5.13) and (5.27) in the last two steps, respectively. Furtherrnore, 
by (5.6), 

llu - Po II~( !1{) < c ( llu - Po 11~(!1{) + t, 2''1 Wd+2( u - Po, r', n{Ji 

+ f: 22s1 wd+2 (u-p0 ,2- 1 ,n{)~) 
l=j+l 

=: c (T1 + T2 + T3). 

Taking we( u, t, rl)2 S c llulJo(rl), (5.27) provides for t < d + 2, 

j 

T2 S c L 22s1 llu - Poll~(n{) S c 2-2i(t-s) lluliz(n{). 
l=O 

Observing that 6.~+2p0 = 0, we note next that for s St 
00 

T3 < c 2-2j(t-s) L 22t(t-s)22tsWd+2( u, 2-1, n{)~ 
l=j+l 

(5.29) 

(5.30) 

< c 2-2i<t-slllullz(n{). (5.31) 

The assertion follows now from (5.25), (5.28), (5.29), (5.30), and (5.31). D 

Lemma 5.5 For 0 S s S t, s < d + p and t S d + 1 there exists a constant c 
independent of j E JN0 , k E ~n,j such that for any u E Ht(Tn) 
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Proof: Since Qju - u = Qj(u - Gju) + (Gju - u) we obtain 

By Lemma 5.3 we get 

llQj(u - Gju)lls(D1) < C 2js L (llGju - ullo(I'{) 
/E:;zn,j , 

Invoking Lemma 5.4, the right hand side of (5.33) can be estimated by 

which proves the assertion of Lemma 5.5. 0 

vVe are now ready to prove the following extension of Theorem 5.1 and Remark 5.1. 

Theorem 5.2 Let s, s' < d + p, 0 s; s s; t and s' s; t s; d + 1. Then there exists a 
constant c < oo, independent of j, such that 

as well as 
(5.35) 

Proof: By (5.3), (5.6) and the fact that the modified moduli of smoothness permit 
summing over the respective domains we may invoke Lemma 5.5 and obtain 

By (5.20), the right hand side of (5.36) can be bounded by 
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where we have used the fact that diamf'f ""'2-i. This proves (5.34). The bound (5.35) 
follows now from (5.34) withs = t. D 

The subsequent considerations are motivated by the following observation. If ry(g) = 
g(w0 ), for some w0 E Tn, i.e., if Qi is a Lagrange interpolation projector, one trivially 
has 

(5.:37) 

for every fixed cut-off function f and any u E C(Tn). 
In general, the projectors Qi will not satisfy (5.37) but we ·will show that un-

der certain circumstances (5.37) will hold at least asymptotically for the whole class 
of projectors considered above. As a first step in this direction we will establish a 
super-approximation result which, due to its close connection with (5.37), is some-
times referred to as discrete commutator property. 

Theorem 5.3 Let -d - 1 S s < d + p, s S t < d + p. There e:r;ists a constant 
0 < 8 < 1 and a constant c = c(s, t, 8) such that one has for any f E C00 (T 11 ) and any 
ui E Vi 

II(! - Pj)(Jui)lls Sc 2-iSrj(t-s)llflld+i,oollujll1, (5.38) 

where llfll1,00(!1) := maxlvl9 supxEfl 1av f(x)I and II· 111,= :=II· ll1,=(T11 ). Specifically, 
one can take 

8 := 1 - p. 

Proof: As before let 
(5.39) 

define the projectors onto the spaces Yi which appear in Leml'.1-a 5.4. For a given 
f E c=(Tn), ui E Yi, and any constant b let gi :=Jui and gt:= (J-b)ui. One 
readily verifies that 

G ·gi - gi - G ·gi - gi J - J b bl 

so that we conclude from (5.22) in Lemma 5.4 that 

(5.40) 

Next note that 

d+l 

+ L ll6iJll6,=ll6~+i-qujll6(nq,h)) 
q=l 

where !lq,h := Ut-s.q(lh + !1). Thus, since the constant bis arbitrary, we get 

llGigi -gill6(o{) < c (2-2illfll~,oowd+i(ui,2-i,o{)~ 
d+l 

+ L 2-zljllfllf,=wd+i-i(ui, 2-j, Df )D. (5.41) 
l=l 
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Since uj E Cd(Tn) we may use (5.11) again to conclude that 

( j 2-j Oj)2 < ( j 2-j Oj)2 < 2-2j(d+l-l)JJ jJJ Wd+l-1 ll , , k 2 _ Wd+l-1 U , , k 2 _ C U d+l-/, l:Sl:Sd+l. 

Thus, upon summing over k E ~n,i, we infer from (5.41) that 

Now fix some s" with d < s" < d + p. Since obviously 

we derive from (5.42) the estimate 

II Gjgj - gj 116 < C JI f 11~+1,oo ( 2-2j(s" +1) (22js" Wd+l ( Uj, 2-j )~) + 2-2j(d+l) lluj 11~) 

< c llfll~+i,oo2-2j(d+1) (L 22Ls"wd+i(ui, 2-I)~ + IJujJI~) . 
/EN 

Hence, by (5.6), we obtain 

(5.43) 

Note that 8 := 1 - p < d + 1 - s" so that, in view of the inverse estimate (5.13), the 
estimate (5.43) implies, in particular, 

(5.44) 

for t :S s". 
Since one trivially has 

and since s" < d + p may be chosen arbitrarily close to d + p, the assertion of Theorem 
5.3 for s = 0 follows now from (5.44). 

Since uj E vm for all m 2 j, (5.43) implies 

(5.45) 

where c is independent of m 2 j,j and uj. Recalling (5.14) and using (5.6) and (5.7) 
again, provides for s 2 0 

00 

llPjgj - 9j11; < C L 22msll(Pm - Pm-1)(Pjgj - gj)ll~ 
m=O 

00 

< C L 22msllPmgj - 9jlJ6 (5.46) 
m=j 
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where we have used (5.45) in the last step. Hence 

Thus (5.13) provides for any s ::; t::; s" 

llPigi - gills < C 2-i(d+l-s)2i(s"-t)l1Jlld+i,oolluillt 
< C 2-i.52-i(t-s)llflld+i,oolluillt, 

where we have set again 8 = 1 - p > 0. This proves the assertion for s ;:::: 0. 

(5.47) 

( 5.48) 

Now suppose -d-1 ::; s < 0. Since I - Pi= (I - Pi) 2 the Jackson estimate (5.12) 
yields 

IJPigi - gills ::; C 2islJ(Pj - I)gillo· 
Thus applying (5.45) to the right hand side of the above estimate and employing again 
the inverse estimate (5.13), confirms (5.48) also for the negative range of s ::; t. This 
completes the proof. D 

Observing that for every projector Qj onto Vi 

Q ·u-u - Q·(u-P.u) + P.u-u J - J J J ' (5.49) 

and recalling Theorem 5.2 yields 

Corollary 5.1 Let s' ::; s ::; t < d + p. Then there exists a constant 0 < 5 < 1 and a 
constant c = c(s, t, 5) such that for any J E C 00 (Tn) and any ui E Vi 

The following duality argument shows that (5.38) is closely related to another super-
approximation result for the orthogonal projectors Pi. Using selfadjointness gives 

JIPjf(I - Pi)ulls sup (u,(I -Pi)]Pjw)o 
llwll-s=l 

< sup IJu - Pjulls ll(I - Pj)]Piwll-s· 
llwll-s=l 

(5.50) 

(5.51) 

Thus applying the direct estimate (5.12) to the first factor and (5.38) to the second 
factor on the right hand side of (5.50) provides 

Corollary 5.2 Let Isl < d + p and s ::; t < d + p. Then there exists 5 E (0, l) and 
some constant c = c( s, t, 5) such that 

(5.52) 

Corollary 5.2 shows the full Sobolev scale for which (5.37) holds in an asymptotic 
sense for orthogonal projectors. The remainder of this section is devoted to establishing 
a similar result also for the projectors Qj, which will be the second important ingredient 
for the subsequent stability analysis. 
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Theorem 5.4 Lets' St S d+l, 0 S s < d+p ands St. Then there exists a sequence 
{ 81 LEIN with limj-+oo bj = 0 and a constant c such that for any f E C 00 (Tn), u E 
Ht(Tn) 

Proof: Let 

and let { Nj} jEN be an increasing sequence of integers such that 

lim N· = co _lim N3·2-3 = 0. . J ) 
J-+00 J-+00 

It follows from the exponential decay of the coefficients ge, Ill --+ co that 

where 

Ej := L T'/,k --+ 0, J --+ co, 
tetzn,i\Kk,i 

Kk,j := {l E ;zn,j: Nj2jlB(2-j(l - k))I < 2j}. 
Now note that for any b E JR, 

Thus Lemma 5.3 yields 

(5.53) 

(5.54) 

llQ1f(I - Qj)ulls(D{) = llQ1(f - bk)(! - Qj)ulls(D{) (5.55) 
< C 2js L T'/,k (II(! - bk)(I - Qj)ullo(I'{) + 2-js' II(! - bk)(! - Qj)ulls1 (I'{)) 

/Etzn,i 

c 2;' L~.i + IE>r~K,J "'" (llU - b,)(I - Q;)ullo(I'{) 

+ 2-js'll(f - bk)(J - Q1)ulJs1 (I'{)) 
-. C 2js (I::1 + I::2). 

Next note that 

{ L T'/,k (IJ(f - bk)(I - Qi)ullo(I'{) + 2-js' II(! - bk)(I - Qj)ullsi(I'f)) }
2 

IEtzn,1\Kk,j 

S 2 Ej L r1,k (II(! - bk)(I - Qi)ull~(r{) (5.56) 
IEtzn,i\Kk,j 

Choosing some fixed point Xk E o{ and setting bk:= J(xk), we obtain 

II(! - bk)(! - Q1)ull~(r{) S II! - bkllo,oo(f{)llu - Q1ull~(rf) 
S 2llfll~,oollu - Q1ull~(r{), (5.57) 
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while by (5.6), 

' II(! - bk)(I - Qj)ull;,(rf) < c (llU - bk)(I - Qj)ull6(I'f) (5.58) 
00 

+ L.::22qs'wd+i(U- bk)(!- Qi)u,rq,I'f)~). 
q=l 

For the sake of brevity let fk := f - bk, Vj :=(I - Qj)u and note that as in the proof 
of Theorem 5.3 

ll6.~+i(fkvi)ll6(n) < c (llfkll6,oo(n)ll6.~+1 vill6(n) 
d+I 

+ L ll6.~fll6,oo(n)ll6.~+i-pvill6(n)), (5.59) 
p=l 

so that by (5.58) and (5.57) 

II(! - bk)(I - Qi)ull;,(rf) :; c (lifki16,oo(rf )llu - Qiull6(I'f) 
00 

+ llfk 116,oo(rf) L 22qs' Wd+I ( Vj, 2-q' rf )~ 
q=l 

00 d+l 

+ llJll~+l,oo LL 22q(s'-p)Wd+i-p( Vj, 2-q' r{)~ 
q=lp=l 

< c llfkll6,oo(r{) (11(! - Qi)ull;,(r{) + llu - Qiull6(r{)) 
+ c llfll~+l,oo (llu - Qiull(s'-1)+ (I'{)) · 

Of course, when s' = 0, one simply gets 

(5.60) 

llU - bk)(! - Qi)ull6(r{):; c llfkll6,oo(r{)ll(I - Qi)ull6(I'f). (5.61) 

At any rate, substituting (5.57) and (5.60) into (5.56) provides 

~.2 :; c llflld+1,oo (Ej L rt,k (llu - Qiull6(I'{) + 2-2is' llu - Qiull;,(r{) )) 112 

lE~n.i\Kk,j 

(5.62) 
As for E1 we employ a similar argument but distinguish two cases. If s' = 0 we get 

( 
. 1/2 

< c Ni2-i 11!111,00 ~ r1,kllQiu - ull6(r{)) , 
lEK1<,j· 

(5.63) 

where we have used in the last step Schwartz's ineq~ality and the fact that the slim over 
rt,k remains boul!-ded. Ifs'> 0, the term llfkllo,00 (I'f) can be estimated by Nj2-jllflh.oo 
since diam (U{rf : l E Kk,j}) ,..._, Nj2-i. Hence, as in (5.60), we obtain for l E Kk,j. 

llU - bk)(! - Qi)ull;,(rf) :; c llflli,oo(Nir1) 2 (ll1t - Qi1tll6(r{) 
+ llu - Qjull;,(rf)) + c llJll~+i,oollu - Qjull(s'-1)+ (I'{). (5.64) 
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Hence, by Schwartz's inequality, 

Ei '.O c Ct., r1,kll(f - f(x,))(I - Q;)ulli(rl) (5.65) 

+ r'i" let., r1,kll(f-:- f(x,))(I - Q;)ull~,(ri)) . 

Thus, using (5.63) and (5.64) yields 

2:i < c (Nj2-j) 2 llflli,= L r1,k (llu - Qjull~(f{) + 2-2js'llu - Qjull;,(rf)) 
iEKk,j 

+ c r 2js' 11111~+1.= I: r1,kllu - Qjull(s'-1)+ (rf ). (5.66) 
iEKk,j 

Thus, setting 

£. ·- y~J, ' J { 
max { € 2-(s'-(s'-l)+)j N·2-j} ifs' > 0, 

UJ .- . 
max { ..fEj, Nj2-3 } ifs'= 0, 

we obtain from (5.20), (5.55), (5.62), and (5.66) 

llQjf(I - Qj)ull;(o{)::::.; c 22sj8Jllfll~+1,cc L r1,k (llu - Qjul!~(r{) 
/E;zn,j 

+ 2-2j(s'-l)+llu - Qjull(s'-I)+(rf) + 2-2js'l!u - Qjull;,(rf)) · (5.67) 

Now the same argument as in the proof of Theorem 5.2 yields, upon summing over 
k E ~n,j 

llQjf(I - Qj)ull; < C 8j22sjllfll~+i.= (llu - Qjull5 + 2-2j(s'-I)+ llu - Qjull(s1-1)+ 

+ 2-2js'llu - Qjull;,(rf)), 

so that the assertion follows from Theorem 5.2 (5.34). This completes the proof. 0 

6 Stability Analysis for Variable Symbols 
This section is concerned with a stability and convergence analysis for the class (3.15) 
of generaliied Galerkin-Petrov schemes applied to the pseudodifferential equation 

Au=f (6.1) 

on Tn, where A E wµ(Tn), Reµ= r. Our strategy is to reduce the problem to the 
case of a homogeneous constant coefficient operator studied in the previous section. 

Throughout this section we will assume that the function c.p, which generates the 
trial spaces Vj, satisfies cg for some d E JN0 (see Section 2). We will continue denoting 
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by Qj the projectors from Sections 4 and 5, defined relative to some function/ satisfying 
now Cg' for some d' E JN0 which may differ from d. Accordingly, _we denote by 
p, p' E (0, 1) the Holder coefficients of the d, d'th order derivatives of <p, /, respectively. 
Since we will be concerned with the spaces Vi generated by cp as well as with the 
spaces yi generated by I we will distinguish the corresponding orthogonal projectors 
by writing Pvi, Pyi, respectively. 

In Section 5 we have collected some prerequisites to prove a series of approximation 
properties involving the pseudodifferential operator A E wr (Tn ). These facts, in turn, 
will allow us to characterize stability and convergence properties for the above class of 
Petrov-Galerkin schemes. As before we will always assume in the following that (3.12) 
holds. 

For a linear operator A from a normed linear space X into a normed linear space 
Y we denote its norm by llAll(X:Y) := sup llAullY· 

llullx9 

Proposition 6.1 Suppose s' < d + p - r, s' ::; d' + 1 and -d - 1 ::; s < d + p. The 
sequence { Aj LE No of finite dimensional operators 

converges strongly to the operator 

whenever 0 ::; s - r < d' + p'. Moreover, when Qj agrees with the orthogonal projector 
Pvj, the assertion remains valid for -d - 1 ::; s - r < d' + p'. 

Proof: By (3.10), Theorem 5.2 (5.34) we obtain ford'+ 1 ~ t-r ~ s' ands ::; t < d+ p 

llAjulls-r < llAPvjulls-r +II(! - Qj)APviUlls-r 
< c(llulls + 2-j(t-s)llAPv;ullt-r) 
< (llulls + 2-j(t-s) llPviUllt) ::; ciiulls 

where we have used the inverse estimate (5.13) and Remark 5.1 in the last step. There-
fore it suffices to establish the convergence on a dense subset of Hs(Tn). Thus for 
u E C00 ( yn) we obtain as before for s ::; t < d + p 

ll(Aj - A)ulls-r < II(! - Qj)APviulls-r + llA(Pvi - I)ulls-r 
< c (2-j(t-s) llullt + llPviU - ulls) (6.2) 
< C 2-j(t-s) llullt 

where we have used again Theorem 5.2, or (5.12) when Qj = · Pv;, (3.10), and in the 
last step again the Jackson estimate (5.12). Since 'the right hand side tends to zero for 
fixed u the assertion follows. D 
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Corollary 6.1 Let 0::; s -r < d' + p', or -d- I::; s -r < d' + p' when Qi= Pv1. 
For any cut-off function f E C00 (T',,) with compact support one has 

and 
llPyifvills :'S cJlvjlls 

for all vj E Yj, j E IN and -d - 1 :'S s < d' + p'. 

(6.3) 

(6.4) 

Proof: Since J E \fl0 (Tn) (6.3) is covered by Proposition 6.1, while (6.4) follows from 
(5.12) and (3.10) since f E w0 (Tn). D 

Proposition 6.2 Let f E C00 (Tn) be a fixed cut-off Junction. Then for -d-1 :S s < 
d + p, s' < d + p - r, 0 :S s - r < d' + p' and -d - I :S s - r < d' + p', respectively, 
when Qj = Pvi, one has 

llQjA(I - Pvi)f Pvill(H•(Tn):H•-r(Tn))-+ 0 as J-+ 00. (6.5) 

Proof: The triangle inequality and (3.10) yield 

JIQjA(I - Pvi )J PviUJls-r < llA(I - Pv1 )J Pv1ulls-r (6.6) 
+II (I - Qj )A(I - Pvi )J Pviulls-r < c (ll(I - Pvi )J Pviulls 

+ II(! - Qj)A(I - Pvi)f PvJulls-r)· 

Applying Theorem 5.3 to the first summand and Theorem 5.2 ford+ p > t 2: s, t-r 2: 
s', to the second summand above, (6.6) can be estimated by 

c (rj"llulls + 2-j(t-s)llA(I - Pvi)f Pv1ullt-r) (6.7) 
:S c (rj"llulls + 2-j(t-s)ll(I - Pv1)f Pv1ullt) :Sc (2-j"llulls + 2-jo2-j(t-s)llPv1ullt), 

where we have used Theorem 5.3 in the last step again. Applying the inverse estimate 
(5.13) to the second summand on the right hand side of (6.7) yields, in view of Remark 
5.1, finally, 

llQiA(I - Pvi )J Pv1ulls-r ::; c2-j5 Jlulls 
where c is independent of j. This completes the proof. D 

Let us denote by L2 ,0 (Tn) the set of those functions g in L2 (Tn) for which there 
exists some y E yn such that g restricted to the unit n-cube with center y has support 
strictly contained in the interior of that cube. Following [38] we denote for y E yn by 
My the localizing classes of functions in C00 (Tn) n L2 ,0 (Tn) which are equal to one in 
some neighborhood of y. It is clear that for every fy E My there exists a gy E lvty 
such that fy(x)gy(x) = gy(x), x E Tn. Moreover, for every set {fy}yET" there exists a 
finite subcollection {fy.}iEI and a periodic function g E C 00 (Tn) such that 

(2: fy;)9 = 1 on yn . 
iEJ 

Finally, we will need the following version of Seeley's lemma [21, 44]. 
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Theorem 6.1 Letµ E(/}, s Em, Reµ= rand <Y = a0 E L:µ(Tn). Then 

holds for every r' < r. 

We are now in a position to prove the following local equivalence of approximation 
operators. 

Proposition 6.3 Suppose s, s', r satisfy the hypotheses of Proposition 6.2. Let A E 
wµ(Tn), Reµ = r and y E Tn. Then there exists a homogeneous function ay(e) of 
degreeµ such that for each e; > 0, there are Ty E wr'(Tn), r' < r, and fy E J\/ty 

satisfying 
(6.9) 

for all j > Jo(e:). 

(6.10) 

which, by assumption is a positively homogeneous function.of degreeµ. More precisely, 
a y is determined by 

(6.11) 

Thus, Seeley's lemma Theorem 6.1 ensures that for each e; > 0 there exists a Ty E 
wr'(Tn), r' ~ r - 1, and fy E L2,0 (Tn) n C00 (Tn) such that 

(6.12) 

Now we proceed as in previous proofs estimating for any u E H 8 (Tn) 

llQi((A - ay(D))fy + Ty)Pviulls-r ~ ll(aA(., D) - ay(D))fy + Ty)Pvi1llls-1' 
+ II(! - Qj)((aA(·,D) - ay(D))fy + Ty)Pvjulls-r (6.13) 
< e:llPvjulls + c2-j(t-s)ll((aA(·, D) - ay(D))fy + Ty)Pv1llt-r1 

where we have used (6.12) and Theorem 5.2 for s' ~ t - r < d + p - r. The second 
term on the right hand side of (6.13) can be bounded by 

c 2-j(t-s) (ll((D)t-s(A- ay(D))fy - (A - ay(D))fy(D)t-s (6.14) 

+( (D)t-sTy - Ty(D)t-s))Pv1ulls-r + ll((A - ay(D))fy + Ty)(D)t-s Pviulls-,.) 

Note that (D)t-syy -Ty(D)t-s = (D)t-sT' where T' =Ty - (D)s-tTy(D)t-s E \l/"1 (Tn) 
for r' ~ r - 1. The operator 
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in turn, is of order r + t - s - 1 (see e.g. [21, 48, 26]). Thus, on account of the inverse 
estimate (5.13), the first summand on the right hand side of (6.14) can be bounded in 
term·s of 

c rj(t-s) llAPv1ulls-r + II (D)t-srl Pv1ulls-r '.S c rj(t-s) llPv1ullt-l (6.15) 
< c 2-j(t-s)2j(t-l-s)l!Pv1ulls = C 2-jl!ul!s · 

The second summand on the right hand side of (6.14) can be estimated again with 
the aid of (6.12) and the inverse estimate (5.13) giving 

(6.16) 

Combining (6.15) and (6.16) and choosing j 0 = flog 2 c/c:l where c is the constant in 
(6.15) completes the proof. D 

According to (4.7), let 
(6.17) 

denote the numerical symbol relative to the constant coefficient operator a-y(D) defined 
above in (6.10). 

The numerical symbol a7J is called elliptic if there exists a constant c > 0 such that 

(6.18) 

'vVe will now begin to formulate stability properties of the scheme (3.15). Adhering 
to the terminology of [32, 33]), we call the scheme (3.15) or the sequence { QjAPv1 LEN 
locally (s, r)-stable if for each y E yn there exist gy E My and operators Ty, T'y E 
wr'(Tn), r' < r, and bounded linear operators Cy,j,Dy,j mapping Vj into itself such 
that 

and 

Qjgy(a-y(D) + Ty)Cy,j 
Dy,jQj(a-y(D) + T'y)gyPvi 

"' -s-r 
"' -s 

QjgyPvi, 
PvigyPvi, 

(6.19) 
(6.20) 

(6.21) 

where for any two sequences of operators Bj, Cj the notation Bj '::::'. 8 Cj stands for 

Proposition 6.4 Let s', s, r satisfy the assumptions of Proposition 6.2. Suppose_ A E 
IJ!µ(Tn), Reµ = r is invertible as an operator from Hs(Tn) to Hs-r(Tn). Then the 
scheme (3.15) is (s,r)-stable if and only if it is locally (s,r)- stable. 
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Proof: First suppose (3.15) is (s, r)-stable and write briefly Bj := QjBPvi whenever 
B is some operator with appropriate domain and range. Thus, by Remark 4.3, the 
operators Aj satisfy 

for some constant c0 independent of j 2: j0 . Let us also abbreviate for any f E c=(Tn) 

In view of Proposition 6.2 and Proposition 6.3, for each q E (0, 1) and any y E yn 
there exist fy E My and Ty E wr'(Tn),r' < r such that 

for j 2: jo. Choose gy E My so that gy = gyfy· We infer from Theorem 5.3 that 

Aj1(a-y(D))i(gy)f (gy)f + Aj1{(a-y(D))i - Ai}(gy)f 
~s (I+ By,j)(gy)f + Aj1(Ty)j(gy)f, (6.2:3) 

where 

Since by (6.22) 
llBy,jll(H•(Tn):H•(Tn)):::; q < 1, 

the linear operators I + By,j are invertible and 

JI(!+ By,j)- 1 IJ(H•('P):H•(Tn)):::; (1 - q)-1 

whenever j 2: j0 • Hence (6.23) implies (6.20) with Dy,j := (I+ By,j )-1 Aj 1 . [n ;ui 

analogous way one derives relation (6.19) In order to prove the converse, suppose now 
that (6.19) and (6.20) hold for ally E yn and j 2: j 0 . Then we conclude from Theorem 
5.4 that 

(6.24) 

and 
(gy)J (a-y(D) + Ty)i Cy,j ~s-r (gy)J. (6.25) 

Recall that for ay E My one has 

Aay - ayA E wr' (Tn) for r' < r. 

Thus we infer from Proposition 6.3 and Theorem 5.4 that for each y E yn there exist 
ay E lvfy, Ty E wr'(Tn), r' <rand a continuous operator By,j on Vj satisfying 

and 
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Now choose fy E My such that fyay = fygy = fy, we see from (6.26) that 
. Q . Q }2..1;; ll(fy)j {Aj ~ (a-y(D))J} - (fy)j {ByJ - (Ty)jHlcH•(T"):w-r(Tn)) = 0. 

Combining (6.25) and (6.27), we find that 

(fy)J AjCy,j C:::s-r (fy)J ((I+ By,jCy,j) - (Ty)JCy,j). 

Thus 

where 

Obviously, one has 
sup llGy,jll(w-r(7"):H•(7")) < oo. 
jEN 

(6.27) 

(6.28) 

'vVe select now a finite number of functions fy; E My;, i 

function J := l:f:1 fy; E c=(Tn) is invertible. Setting 
1 ... , N such that the 

N 

Cj := 'L,Pvify;Gy;,j, 
i=l 

and employing Proposition 6.2, we obtain that 
N N 

AjCj C:::s-r L,(fyJ? AjGy;,j + L, QjTiGy;,ji 
i=l i=l 

where 
Ti := Afy; - fy;A E wr' (Tn). 

Setting Tf :=Ti - fy;Ty; E wr'(Tn), we apply (6.28) and get 

N 
AjCj C:::s-r !? + L, QjTf Gy;,j· 

i=l 

Finally, let 
N 

Cj := C1 - L, PviA-1T/Gy;,j· 
i=l 

It follows from (6.29) that 

where 
N 

W1 := 'L,(Qi - AiA-1 )TfGy;,j· 
i=l 

(6.29) 

On account of Theorem 5.2, Corollary 5.1 and Proposition 6.1, the operators Qj-AjA-1 

converge strongly to zero in Hs-r(Tn). Thus, because the operators Tf : H 8 (Tn) -+ 

Hs-r(Tn) are compact, 
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Hence.AiCi ~s-r fr Since, in view of Theorem 5.4 and Corollary 6.1, UJ)-1 ~s-r 
(f-1)J and supi ll(f-1 )Jll < oo, there exist operators Di such that 

and 

~im II Di - Ci(f-1 )J ll(H•-r(T»):H•(Tn)) = 0 
J->00 

AiDiui = ui, ui E Vi, sup llDill(H•-r(T»):H•(Tn)) < 00. 
jEN 

Hence, because Vi has finite dimension, Ai is invertible and (Ai)- 1 =Di. This proves 
the (s, r)-stability of the sequence {Ai}iENo· D 

Proposition 6.5 Suppose the hypotheses of Proposition 6.4 are satisfied. Then the 
Galerkin-Petrov scheme (3.15) for the operator A is ( s, r )-stable if and only if the 
scheme is ( s, r )-stable for the operator a-y(D) for ally E yn. 

Proof: If the scheme (3.15) is (s,r)-stable for the operator a-y(D) for ally E Tn, 
the relations (6.19), (6.20) are fulfilled with gy = 1, Ty = T~ = 0 and Cy,i = Dy,j = 
((a-y(D))jr 1 • Thus, by Proposition 6.4, the scheme (3.15) is (s,r)-stable for the oper-
ator A. 

Conversely, assume the scheme (3.15) is (s, r)-stable relative to A. Then by Propo-
sition 6.4, the relations (6.19), (6.20) hold for each y E yn. Since yn is a compact 
manifold, there exists N 0 E IN such that for ally, y' E yn and j ~ j 0 , there is a vector 
k E zzn,i such that gy' := gy(· - 2-ik) E My'· Note that the spaces Vi, yi as well as 
the projections Pvi, Qi are invariant under translation by 2-i k. Let ru := u(- + 2-j k ). 
Taking also the translation invariance of the operators a-y(D) into account, we deduce 
from (6.19) and (6.20) that for fixed y E yn and ally' E Tn, j > io 

and 
Dy',iQi(a-y(D) + T~, )gy'Pvi ~s Pvi9y'Pvi, 

where Dy',j := r-1 Dy,iT, Cy',j := r-1Cy,jT and Ty':= r-1Tyr, T~, := r- 1 T~r. Therefore 
the sequence {(a-y(D))j}JEN is locally (s,r)-stable for ally E Tn. Thus, by Proposition 
6.4, {(a-y(D))j}jEN is (s, r)-stable for ally E Tn. D 

Combining now Remark 4.1, Remark 4.2, Theorem 4.2 and Proposition 6.5 estab-
lishes the main result of this section. 

Theorem 6.2 Let s', s, r satisfy the hypotheses of Proposition 6.2. Suppose A E 
wµ(Tn), Reµ= r is invertible as an operator from Hs(Tn) to Hs-r(Tn). Then the 
scheme (3.15) is (s,r)-stable if and only if the numerical symbol a 77 is elliptic. 

We are now in a position to estimate the convergence of the schemes (3.15). 
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Theorem 6.3 Let A : H 8 (Tn) -t Hs-r(Tn) be an invertible pseudodifferential oper-
ator in IJ!ll(Tn), Reµ= r where -d - 1 S s < min{d + p,d' + p'}, 0 S s - r < 
d' + p', -d - 1 S s - r < d' + p' when Qj = Pvi 1 respectively1 ands'< d + p - r. 
Suppose that for some t 2: s such that d' + 1 2: t- r 2: s' the right hand side f in (6.1) 
belongs to Ht-r(Tn). Finally1 assume that the scheme (3.15) is (s,r)-stable. Let u* 
denote the exact.solution of (6.1) and let uj denote the unique solution of (3.15) whose 
existence is asserted by Theorem 6.2. Then 

(6.30) 

IJ; in addition s' ::=;· s - r 1 one even has 

llu* - ujllt 1 S c2-j(t-t') llu*llt, max {-d - 1, r} St' S s . (6.31) 

Finally1 in case of the classical Galerkin scheme1 i.e. 1 Qj = Pvi 1 (6.31) holds for 
max {-d - 1, -d - 1 - r} ::=; t' St. 

Proof: For d' + 1 2: t - r 2: s' Theorem 5.2 yields 

llQjf - flls-r < c2-j(t-s) llfllt-r = c2-j(t-s) llAu*llt-r 
< c2-j(t-s) llu* lit , (6.32) 

where we have used, (3.10) in the last step. 
Next, recall from (6.2) that 

(6.33) 

.whenever 0 ::=; s - r < d' + p' or whenever -d - 1 S s - r < d' + p' for Qj = Pvi. Now 
note that 

llu* - ujlls S ll(Pv1 - I)u*lls + llPviu* - ujlls · 
On account of the stability (4.35) of our scheme (3.15), we have 

llPv1u* - ujlls < c llQjA(Pviu* - uj)lls-r 
< C llQjAPviu* - Au*lls-r + llAu* - QjAujlls'-r · 

But QjAuj = Qjf since Au* = f. Thus 

so that (6.34) yields 

llu*-'- ujlls < llPviu* - u*lls + C ll(QjAPvi - A)u*lls-r 

(6.34) 

+ C llQjf - Jlls-r · (6.35) 

Substituting the estimates (5.12), (6.33), and (6.32} in the right hand side of (6.35) 
yields (6.30). 
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Now suppose thats' S s-r and recall that the invertibility of A as an operator from 
H 8 (Tn) to Hs-r (Tn) implies its invertibility as an operator from Ht' (Tn) to Ht'-r(Tn) 
for a~y t' E JR,, i.e., there exists a constant Ct' > 0 such that 

This regularity result yields for t' S t 

llu* - u3llt 1 < llu* - Pviu*llt1 + llPviu* - u3llt1 

< c 2-j(t-t')llu*llt + llAPviu* - Au3llt1-r , 

where we have used also (5.12). Moreover, using (3.10), we obtain 

llAPviu* - Au31it1-r S llA(Pviu* - u*)llt1-r +!If - Au31k-r 
:S c JIPviu* - u*llt1 + llf - Q3fllt'-r + JIQ3Auj - Aujllt1-r· 

(5.12) and Theorem 5.2 provide now for s - r ~ s', t' - r ~ 0 

llAPviu* Aujllt1-r S c2-j(s-t'l(jju*lls + llJlls-r + llAujlls-r) 
< c2-j(s-t')(llu*lls + llujlls) , 

(6.36) 

(6.37) 

(6.38) 

since llflls-r = l!Au*lls-r S cl!u*lls by (3.10). Again, when Q3 = Py), the restriction 
t' - r ~ 0 may be relaxed to -d - 1 St' - r. 

Since by assumptions - r ~ s' we conclude from (6.30) fort= s that 

which, in view of (6.38) proves (6.31). The remaining part of the assertion follows from 
using Theorem 5.1 (5.12) instead of Theorem 5.2 in (6.38). 0 
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