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Abstract

In this paper a nonlocal phase-field model for non-isothermal phase transi-
tions with a non-conserved order parameter is studied. The paper extends
recent investigations to the non-isothermal situation, complementing results
obtained by H. Gajewski for the non-isothermal case for conserved order pa-
rameters in phase separation phenomena. The resulting field equations studied
in this paper form a system of integro-partial differential equations which are
highly nonlinearly coupled. For this system, results concerning global exis-
tence, uniqueness and large-time asymptotic behaviour are derived. The main
results are proved using techniques that have been recently developed by P.
Krejc¢i and the authors for phase-field systems involving hysteresis operators.

1 Introduction

In a number of recent papers (see, for instance, [1], [5] and the references given
therein), integrodifferential (non-local) models for isothermal phase transitions with
either conserved or non-conserved order parameters have been studied, leading to
a number of results concerning existence, uniqueness, and asymptotic behaviour
of solutions. In the recent paper [4], the more difficult non-isothermal case for a
conserved order parameter in phase separation has been treated. In this paper,
we aim to complement the results of [4] by investigating the non-isothermal case
with a non-conserved order parameter. To give a complete description of the cor-
responding mathematical problem, consider non-isothermal phase transitions with
a non-conserved order parameter x € [0, 1] occurring in a thermally insulated con-
tainer © C IR*® that forms an open and bounded domain with smooth boundary
o). If we denote Qr :=Q x (0,7), where T" > 0 is some final time, and if n is
the outward unit normal to 0f2, then the resulting model equations have the form

w0 =-Fo0 - (5 + &) r0 - B -0 e )
wia,t) = [ K(z—y) (1-2x(y.0)dy, in O, (12

Cv O, + (b1 Fy(x) + F3(x) + w)x: — kA0 =0, in Qr, (1.3)

% =0, on 80 x (0,7T), (1.4)

x(,0)=x0, 6(-,0)=06,, in Q. (1.5)



System (1.1)—(1.5) forms an initial-boundary value problem for a system in which
an ordinary integrodifferential equation is coupled to a parabolic differential equa-
tion. It is the aim of this work to prove results concerning its well-posedness and
large-time asymptotic behaviour (see Theorems 2.1 and 3.1 below).

Before going into mathematical details, we give a brief derivation of system (1.1)-
(1.5). To this end, let # denote the (positive) absolute temperature, and suppose
that the order parameter x represents the local volume fraction (concentration) of
one of the phases, say, of the high temperature phase. For instance, if a solid-liquid
transition is considered, the sets {x = 0}, {x =1}, and {0 < x < 1}, correspond
to solid, liquid, and mushy region, in that order. We start from the non-local free
energy density

F(x,0) = Cv0(1—In(0)) + 0F1(x) + (B + B20) Fa(x) + F3(x)
+x [ K(ly = al) (1 = x(w)) dy. (16)

Here, Cy (specific heat) and (;,0, are positive constants, and K : (0,00) —
(0,00) is a nonnegative kernel function. The functions Fj, F3 are smooth where
F3 is usually concave (often a linear function or a quadratic function having a
negative leading term); moreover, F, is a convex function that acts as a barrier,
i.e. forces the concentration x to attain values in the physically meaningful range
[0,1]. Typical choices are Fi(x) = —Lx/0., F3(x) = Lx, where L > 0 and
0. > 0 represent latent heat of phase transition and phase transition temperature,
respectively, while F5 is given by either F»(x) = xIn(x) + (1 — x)In(1 — x) or

0 if 0,1
B0 = Toy(x) = { ~+o00 ot>}<1eerv[/iée]
logarithmic case; the case of the merely subdifferentiable indicator function, in which
the system corresponding to (1.1)—(1.5) can be viewed as a non-local version of a
relaxed Stefan problem of Penrose-Fife type (cf. [3], [9]), will be the subject of a
forthcoming paper.

. In this paper, we study the differentiable

Following the rules of thermodynamics, we introduce the densities of entropy S
and internal energy F by

S(x,0) = =0 F(x,0) = Cv In(0) — Fi(x) — B2 Fa(x),
E(x,0) = F(x,0) +05(x,0) = Cy 0 + B, F2(x) + Fs(x)

+x [ Kz = yl) (1= x(v) dy. (1.7)

To find equilibrium values for xy and €, we maximize the total entropy functional

S[x, 0] = L S(x,0) de = /§ (Cvn() — Fi(x) — B Fo(x)) de (18)

under the constraint that total internal energy be conserved, i.e. that
Elx, 0] = /QE(X, 0)de = /Q(CVG + B Fa(x) + F3(x)

+ xLK(|x —y)) (1 —x(y)) dy) dxr = const. (1.9)
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Applying Lagrange’s method, we maximize the augmented entropy

S\[x, 0] = S[x,0) + AE[x, 0], (1.10)
which leads to the Euler-Lagrange equations
Sy = —Fi(X) + (ABi—B2) F3(x) + AF3(x) + Aw =0,
%S, = L yacy = 0, (1.11)

0
with w given by (1.2). From the second identity in (1.11) the Lagrange multiplier
is easily identified as A = —1/6.

We now postulate that the evolution of x runs in the direction of 0, Sy at a rate
which is proportional to it. That is, the evolution of x is governed by the evolution
equation p(6)x: = 0,Sa[x, 0] which is identical to (1.1).

The evolution of 6 is described by the balance of internal energy which in the
absence of distributed sources becomes

E,+V-q=0. (1.12)
Under the assumption q = —k V6, where x > 0 denotes the constant heat con-
ductivity, we obtain (1.3) as energy balance.

Next, we study the thermodynamic consistency of the model. Assuming that
¢ > 0 (which will have to be verified below), we obtain from a straightforward
calculation, using (1.1), (1.12), and the boundary condition (1.4), that

as q B as 1dE K 9
/Q[E(Xﬁ) + V- (E)l dr = L[E(X’e) - gg(xﬁ) + @|V9| dz

- / Eigep + X | gy s o (1.13)
o 02 1(0) - '
Therefore, the Clausius-Duhem inequality is satisfied in integrated form which means
that our model complies with the Second Principle of Thermodynamics.

The main mathematical novelties of the results stated below in comparison to
other non-isothermal phase-field models for non-conserved order parameters lie in
the occurrence of the integral expression w in the equations and in the fact that in
(1.1) the singular term Fj(x) occurs while no diffusive term is present. This entails
a loss of spatial smoothness of the unknown x so that the line of argumentation
based on Moser-type iteration techniques which has been developed in [6] for the
local case in a similar context cannot be employed. On the other hand, (1.1) is
an ordinary integrodifferential equation, so that ODE-techniques can be used, and
the integral expression (1.2) has a smoothing effect. It will turn out that these two
advantages counterbalance the loss in spatial smoothness of x .

The remainder of the paper is organized as follows: In Section 2, we give a de-
tailed statement of the mathematical problem, and we prove global existence and
uniqueness. In the final Section 3, the asymptotic behaviour as ¢ — +oo is studied.

In what follows, the norms of the standard Lebesgue spaces LP(Q), for 1 < p <

oo, will be denoted by || - ||, . Finally, we shall use the usual denotations W™P((2)
and H™(Q), me€ IN, 1 <p < oo, for the standard Sobolev spaces.
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2 Global existence and uniqueness

Consider the problem (1.1)—(1.5). For the sake of a simpler notation, we normalize
Cy = k = 1 which has no bearing on the mathematical analysis. We make the
following general assumptions on the data of our system.

(H1) xo € L®(Q), 6, € H'(Q) N L>*(2), and there are positive constants
ag, bp, & such that 0 < ay < xo(z) < by < 1 and 6y(z) > § > 0 for
a.e. ¢ €.

(H2) F, € C?*0,1], i = 1,3, and F», € C?(0,1) is such that Fj is strictly
increasing on (0,1) and that

lim £5(x) = o0, lim F5(x) = +oo. (2.1)

We denote by G : IR — (0,1), G € C*(IR), the inverse of Fj.

(H3) ue CY0,+00), and there is some > 0 such that

(@) > pmin{6',1} VO >0. (2.2)

(H4) The kernel function K is non-negative on its domain of definition and so
smooth that the linear integral operator x — P[x],

Pil(@) = [ K(lz —y)x(y)dy, €@, (2.3

is defined on L?(2), maps bounded subsets of L>(Q) into bounded subsets
of L>*(Q), and has the following continuity property:

If {xp}rew C H'(0,T;L*(Q)) issuch that xz; — x; strongly in
L*(Qr) and x, — x weakly-* in L®(Qr), then  P[xi] — P|x]
weakly in L?(Qr) . (2.4)

(H5) ﬁ1>0,/62>0.

Remark 1. The assumptions on F5 are obviously satisfied for the case that
Fy(x) = xIn(x) + (1—=x)In(1—1x) . Under the assumpption (H5), and for suitable
choices of Fi, Fj, the free energy then becomes the Flory-Huggins free energy
arising in the theory of polymers.

Remark 2. We stress the fact that for our analysis below to work it is crucial
that (; and (3, are positive. However, this assumption seems to be natural from
physical reasons.



Remark 3. Hypothesis (H3) is satisfied if u(f) = 20> for some « € [0,1].
Note that for & = 1 a nonlocal analogue to a phase-field system of Penrose-Fife type
with zero interfacial energy results, while for o = 0 we obtain a nonlocal analogue
of the Caginalp model with zero interfacial energy.

We aim to prove the following general existence result:

Theorem 2.1 Suppose that the general hypotheses (H1)—(H5) hold. Then
system (1.1)—(1.5) admits a unique solution (x,0) € (L=(Q7))? such that

(i)  x € H*0,T;L(Q)) N Whe(0,T; L>(Q)),
0 € H'(0,T; L3(Q)) N L2(0, T; H2(Q)) N C([0,T]; HY(R)),

(i) 0<x<1and 6 >0 a.e. in Q7.
Moreover, (x,0) has the following additional properties:

(iii))  There are constants 0 < a; < by < 1, independent of T, such that a; <
x(z,t) <b a.e in Qp.

(iv)  There is a constant ¢ > 0, independent of T, such that 0(z,t) > de~¢! a.e.
m QT .

Proof: ~ The idea of the proof is as follows: we construct a suitable “cut-oft” ver-
sion of the system (1.1)—(1.5) which can be shown to have a unique solution having
the required smoothness properties by using the same technique as in the proof of
Theorem 3.1 in [7]; after that, we apply ODE barrier techniques and parabolic esti-
mates to show that the solution to the cut-off system is in fact the unique solution
to the original system (1.1)—(1.5). We divide our proof into a sequence of steps.

Step 1: Construction of a “cut-off” system.

Let 0 <e <1 and 0 < a < 1/2 be constants which will be specified later. We
put p(a) :=min{a, a0}, (o) := max{l—a, by}, and define the auxiliary functions
T.,pe : R — R*Y and Z,,F;,: R — R by putting

T.(s) := max{e,|s|}, pe(s) := pu(T(s)), fors € R,

Fi(p(a)) + F/(p(a))(s —p(a)) , s<p(a)
F;o(s) = ¢ Fi(s) , pla)<s<gqla) , i=1,23 ,
Fi(q(a)) + Fi(g(a@))(s — q(a)) , s>q(a)

<gq(a) . (2.5)

We note the following facts:



(i) T. € WHhe(R); Z, € WHe(IR).
(ii) Fo € W2°(R), i = 1,2,3.

(iii) we is Lipschitz continuous on compact subsets of IR, and from (2.2) we have
the estimates

4e(0) > amin{l, UT.(0)} V0 € R,
1 1 1
S — ImaXx 1,T59 ST ]_+9 VGE]R,
RO p {1,7.(0)} u( 161)
_ 1 o lapynen <X voenr (2.6)
~ X 9 € ~ ~ . .
Tc(0) ne(0) — & €1

With the above functions, we consider the following “cut-off” version of system
(1.1)—(1.5):

wOx = = FLal) ~ (g + 5) a0 = T
— TZU((;) . in Qp, (2.7)
wa(z,1) = / K (e~ o)) (127 (x(v.1)) ) dy, in 9, (2.8)
00 + (B F{a(x) + FialX) + wa) Xe — A9 =0, inQp, (2.9)
% =0, ondQ x (0,T), (2.10)
x(+,0) = xo, 0(-,0) =0, inQ. (2.11)

We claim that the system (2.7)—(2.11) admits a unique solution (x=*, %) €
(L=(Qr))?, with x7* € L*(Q7) and 05> € H'(0,T; L*(Q)) n L?(0,T; H*(Y)),
such that (2.7)—(2.9) hold a.e. in Qr, (2.10) a.e. on 9Q x (0,T), and (2.11) a.e.
in . To prove this assertion, we employ the same technique as in the proof of
Theorem 3.1 in [7]. In fact, we have tailored the cut-off system (2.7)—(2.11) in such
a way that this technique works. Since the line of argumentation is very similar
and can be carried over in a straightforward manner with only minor and obvious
modifications which are caused by the nonlocal term w,, we can afford to only
sketch the details, here.

The idea is to use successive approximation. To this end, put 6°(z,t) := 0°(x)
for (z,t) € Qr, and define for £ € IN the iterate (x*, 0¥) as the unique solution



to the initial boundary problem

1 B
k - - FI k P Fl k
Xt ,Us(ekil) [ l,a(X ) + <T5(9k1) + 52) 2,a(X )
Fia(x*) we .
’ = Q 2.12
(o) T Teen) 0 21
wk (z,t) = /K (lz —yl|) (1 -22Z, (Xk(y,t))) dy, in Qr, (2.13)
Q
x*(z,0) = 2°(z), =€ Q, (2.14)
oF — AOF 4+ 0% = 0F ! — [51 Fy o (X*) + F3 (") + wg] X¥,in Qp,  (2.15)
k
% =0 onoQ x (0,7), (2.16)
0%(z,0) = 0°(z), = € Q. (2.17)

Note that if 71 € L>°(Qy) is known then (2.12)—(2.14) is an initial value problem
for an ordinary integrodifferential equation containing only bounded nonlinearities
in x which are globally Lipschitz continuous (in particular, the integral operator
defined in (2.13) is globally bounded and Lipschitz continuous on L>(Qr) ). Hence,
(2.12)—(2.14) has a unique global solution x* € W1°°(0,7;L>(2)). But then
(2.15)—(2.17) constitutes a linear heat conduction problem, where the right-hand
side of (2.15) belongs to L>(Q2r) . Using standard parabolic theory (cf., for instance,
Lemma 3.3 in [7]), we can infer that (2.15)—(2.17) admits a unique solution §* €
L= (Qr)NHY(0,T; L*(Q)) N L2(0,T; H*(2)), so that the iterative procedure (2.12)-
(2.17) is well-defined and produces a sequence (x*, 0%) € (L>®(927))?, where x* €
L>®(Q7) and 0% € H'(0,T; L?(Q)) N L3(0,T; H*(2)) .

Next, observe that (2.6) and the boundedness of the nonlinear terms on the right-
hand side of (2.12) imply the existence of some C; > 0 (which is independent of
k € IN ) such that

Xf(z, 1) < C1 (1 + 0¥ (2, 8)]) a.e inQp. (2.18)

Therefore, using the global boundedness of the terms in the bracket on the right-
hand side of (2.15) which multiplies x¥ , we obtain from standard parabolic estimates
(cf. Lemma 3.3 in [7], again) that

10|z (0r) < Co, (2.19)

with some Cs > |[|p]|c Which is independent of k& € IN. Taking C, larger, if
necessary, we then conclude that also

105|222y + |A6*(| 2@y < C2 ¥ k € N, (2.20)

which means that {6*} is bounded in L>®(Q7)NH(0,T; L*(Q))NL2(0,T; H3()).
Now that this is shown, we can employ the general properties (i)—(iii) and (2.6) of the
cut-off functions Tz, p., Z,, F; o to show by exactly the same line of argumentation
as in the proof of Theorem 3.1 in [7] that the following holds:
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(iv) {0*} is a Cauchy sequence in L*(Qr),
(v) {x*} and {x¥} are Cauchy sequences in L?(f7).

Therefore we can claim that there exist functions x*%, 8% such that the following
convergences hold:

xF = x5* , strongly in L?(Qr) and weakly-* in L>(Qy),
x* — x&* , strongly in C([0,T]; L?(Q2)) and weakly-* in L>(Qr),
0¥ — 05> | strongly in L*(Qy), weakly-* in L>®(Qy),
and weakly in H'(0,T; L*(Q)) N L*(0,T; H*(Q)).  (2.21)
By (H4), we then have P[x*] — P[x*?], weakly in L?(Q2r), and letting k oo in
(2.12)—(2.17), we easily obtain that (x=*, 6>*) is a solution to the cut-off system
(2.7)—(2.11) having the asserted properties. Arguing exactly as in the proof of

Theorem 3.1 in [7], we can easily infer that (x=*, ) is the unique solution to
(2.7)—(2.11) with these properties.

Step 2: FEzistence of a solution having the properties (i)-(iv) in Theorem 2.1.

We now aim to show that for sufficiently small o > 0, ¢ > 0 the cut-off solution
(x&*, %) is in fact a solution to (1.1)—(1.5) having the properties (i)-(iv) asserted
in the statement of Theorem 2.1. To this end, we at first consider (2.7) which holds
for all (z,t) € Qr \ M where M has measure zero. In what follows, we only
consider the set Qr \ M. Since p.(60°*) > 0 on Q7 \ M, we conclude that for
(z,t) € Qr \ M we have x;*(z,t) > 0 if and only if

—T.(0°%(z,1)) ,
By + By To(02(z, 1))~

- B1 + B2 Tal(es,a(x, t)) (Fé,a (Xe’a(x, t)) + U)a(x, t)) . (2.22)

Likewise, x;“(z,t) < 0 if and only if (2.22) holds with < replaced by >. Now it
holds, by construction,

sup |[F] o (s)| < [[F{llcpa,  sup[Fso(s)] < [|F5llcp, (2.23)
seR seR

Fy o (X% (2,1)) < (x**(z,1))

—[[P[llee < wa(z,t) < [[P[][loo, where P1](z) = /K(|x—y|) dy, (2.24)

as well as
T.(6°(z,t)) 1 1 1
S B ABTE(w0) B | Bt BHLOE@) - B

Therefore, the absolute value of the right-hand side of (2.22) is bounded from above
by the finite constant

(2.25)

A

1 1
V= E”FIIHC[O,U g (Il + 11P11] 1) (2.26)
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which is independent of «,e and ¢. Consequently, we have x;“(z,t) > 0 if
Fy o (x>%(z,t)) < -4, and x{%(z,t) <0 if Fy ,(x>%(z,t)) > 7. We now fix some
& > 0 which is so small that p(&) < G(—%) and ¢(&) > G(¥), where G is the
(strictly increasing) inverse of Fj (recall (H2)).

If then x*%(z,t) < p(@), it follows that Fj ,(x“*(z,t)) = F3(p(&)) < —4 so that
xi’d(x,t) > 0. Likewise, if x*%(z,t) > q(&) then xi’d(x,t) < 0. In conclusion, we
have for a.e. (z,t) € Qr the inequality

a1 = p(&) = min{&, a0} < x*%(z,t) < by = q(&) = max{l — &,b}. (2.27)

Note that 0 < a; < by < 1, and the constants a;, b; are independent of € and T'.
Besides, denoting (x°, 6°) := (x*%, 05%), we have the identities

F; 4(x%) Fi(x?), i=1,2,3, Zix°) X a.e. in Qp,
t

wa(z,t) = w(z,t) = /K(|x —y) (1 —2x%(y,t)) dy, a.e.in Qp. (2.28)

Therefore, the pair (x¢, 6°) satisfies the equations (1.2)—(1.5), and we have

pe(0°) x; = — Fi(x°) — (szgs) + ﬁQ) F(x) — T Ty e

(2.29)

We now aim to show that there is some € > 0 such that 6°(z,t) > ¢ a.e. in Q.
It then follows that T:(6%) = 6° and thus wps(6°) = u(6°) which then implies that
(x¢, 0°) also satisfies (1.1), i.e. is a solution to (1.1)—(1.5).

To this end, we test the equation (1.3) by an arbitrary function p € H(Qr)
satisfying p < 0 a.e. in Qp. Putting 2 := 8 Fy(x) + F3(x) + w, we obtain

/(peg 4 Vp - V) (z,t) de = /(|p|zxg)(x,t) dz . (2.30)

We have, by (2.29),

1

e » I(€ (€ 1 Py
Xt = /1,5(95) (Fl(X) + ﬁ2 FQ(X ) + TE(GE) ) ' (231)

We consider two cases:

Case 1: Suppose that T.(6°) < 1. Then it follows from (2.31) and (2.6), using
Young’s inequality, that

€ TE(QE) 1(.E 1(+E))2
ZX; < 4,“!5(96) (Fl(x ) + B2 FZ(X ))
< 15 (FOO) + B R0 T0). (2.32)



Case 2: Let T.(6°) > 1. Then, using the second estimate in (2.6), we can infer
that

1 ! € ! £
zx; < m|z| |F1(X°) + B2 F5(x°)|

<

20 (F() + B F3(x%))* + 22] Tu(6F). (2.33)

In conclusion, we always have

1
2p

2x; < — [(FI(x) + B F(x))” + 22| To(6°). (2.34)
By (2.27), we therefore find the estimate z x5 < é-T.(6°), where the finite positive
constant

1

¢ = 20 alrg?%(bl [(F{(X) + B2 le(X))2 + (B FQI(X) + F:;(X) + ||’P[1]||00)2} (2.35)

is independent of ¢ and ¢. Hence, by (2.30),

/(peg + Vp- V) (z,t)dz < é/(|p|TE(95))(x,t) dz, ae inQ.  (2.36)

Now put é :=de T, and

p(z,t) == — (§e® — 0(2,1) ", (a,t) € Q. (2.37)

Then we can infer from (2.36) that

[e@+oe™)) @nde < ¢ [lpl(p|+6e) (@ t)dz,  (239)

Q

whence, in particular,

N | —

d
%/pQ(x,t) dz < é/pz(x,t) dzx . (2.39)
Q Q

Therefore, by Gronwall’s inequality, and since p(z,0) =0, p=0. Thus, 6°(z,t) >
de ® > ¢ a.e., which concludes the proof that (x,0) := (x°, ¢°) is a solution
to (1.1)-(1.5) which satisfies the conditions (iii),(iv) of Theorem 2.1. By construc-
tion, we also have x € W°°(0,T; L*(2)) and 0 € L*(Qr) N HY(0,T; L*(2)) N
L?(0,T; H*(Q)) n C([0,T); H'(Q)). But then it follows that the right-hand side of
(1.1) belongs to H*(0,T; L?(£2)) so that x € H?(0,T; L*()) . In conclusion, (x,6)
has the asserted properties (i)-(iv) of Theorem 2.1.

Step 3: Conclusion of the proof.

It remains to show that any solution of (1.1)-(1.5) satisfying (i), (ii) automatically
satisfies (iii) and (iv), as well, and the uniqueness of the solution. To this end,
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suppose that an arbitrary solution (y,#) is given such that (i) and (ii) hold. Then
we have 6 > 0 and thus p(f) > 0 a.e. in Q7. Moreover, 0 < x < 1 a.e. in
Q. Therefore, we can argue similarly as in the derivation of estimate (2.27) in
Step 2 above to conclude that y satisfies a; < x < b; a.e. in Q7. But then the
argumentation in Step 2 leading to the lower bound for the temperature may be
repeated as well, showing that 0(z,t) > de~% almost everywhere. Thus, we can
infer that (x, ) coincides in fact with the “cut-off” solution (x*%,6%%) constructed
in Step 2. Since this solution is unique by virtue of the results established in [7], the
uniqueness result follows. The assertion of Theorem 2.1 is thus completely proved.

O

Remark 4. The result of Theorem 2.1 remains valid if (1.3) is replaced by
Cv by + (B Fy(X) + F3(x) + w) xe — kA0 = 9(z,t,0), (1.3)

provided the source term 9 satisfies the following conditions: ¢ : Q x (0,7) x R —
IR is measurable, and there exist some ¥, € L>(Qr) and some ¥ > 0 such that

(1) 0 <0= ¢($;t, 9) = %(x:t);

(11) ¢0($;t) > 0, a.e. in QT,

s,
(iii) ‘%(x,t,e) < VU ae inQx(0,7T)xR.

Indeed, the line of argumentation used above easily generalizes to include this case;
for details we refer to the proof of Theorem 3.1 in [7]. We note that then the constant
¢ constructed above must be replaced by ¢+ W.

3 Asymptotic behaviour as t — +oo

Suppose that the general hypotheses (H1)—-(H5) hold. Then there is a unique pair
(x, 0)€ (L, (0, 00; L=(Q)))? such that
x € H*(0,T;L*(Q)) Nn Wh®(0,T;L>(Q)) V T >0,
0 € H'(0,T;L*()) N L*(0,T; H*(Q)) nC([0,T); H(R)) V T >0, (3.1
a; < x(z,t) <by, O(z,t)>6e™™ a.e in Qx(0,00). (3.2)

Besides, there is some constant K; > 0 such that

sup  |max |F(x(z,t))| + [w(z,t)|| < Ki. (3.3)
(,)€Qx (0,00) LISIS3

Our aim is to study the asymptotic behaviour of (x, #) as ¢t — +oo. The main
difficulty in doing this lies in the fact that the lower bound de % for @ tends to
zero as t — +o0o. We have the following result:
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Theorem 3.1 Suppose that (H1), (H2), (H4), (H5) hold and that
w(f) > % V8 >0 wihsome i > 0. (3.4)

Then there exists some constant Cy > 0 such that the solution (x, 6) to (1.1)~(1.5)
satisfies

A

0 < 0(z,t) < Cr, |xlzt) <C, ae inQ x (0,00, (3.5)

t
// )\ de dr + //( 2) VO] dzdr < G, Y t>0. (3.6)
0

Moreover, we have

Jim 900, 1)z = 0. 57
Finally, if (3.4) holds with equality then

lim [xe(-, D)l = 0. (3.8)

Proof: In what follows, we denote by C}, k € IN, positive constants that may
depend on the data of the system but not on 7" > 0. We proceed in a series of
steps, deriving a priori estimates for (x, 6).

Estimate 1: Consider for ¢ > 0 the energy functional

B) = [[0@1) + 6 Fx(@1) + F(x(z,1)

#x(e,t) [ K (la =) (1 = x(0,1)) dy] do. (39)

Integration of (1.3) over Q x (0,t), where t > 0, gives F(t) < F(0), whence, using
(3.3),
sup [|0(-, )]s < Cy. (3.10)
£>0

But then (3.4) implies, in view of (1.1) and (3.3), that
Ixt(z, )] < Cy(1 + [0(z,t)]) a.e. inQ x (0,00). (3.11)
Applying Theorem 3.1 in [8] yields
0(z,t) < C3 a.e. in Q x (0,00), (3.12)

and (3.5) is proved.

12



Estimate 2: We multiply (1.1) by x; and (1.3) by —60~' and add. Integration
over Q x (0,t), where ¢ > 0, yields that

¢

V0|2
//(u(@)xf + | 92| ) dz dr
00

In(0(a,1)) ~ (Bu(@))] do ~ [ [ (FI(0) + F(x)) xedadr < Cy. (3.13)

I
SO

Using (3.4) and (3.12), we conclude from (3.13) that
t
// (x¢ + [VOP) dedr < C5 VY t >0, (3.14)
0 O

and (3.6) is proved.

Estimate 3:  Next, we multiply (1.3) by 6; and integrate over Q. Then, for
a.e. t>0,

1d

1
6., 8115 + 5 - IVO(-. 8)llz < Co (1 + 1160+, D)) < 18-, 215+ s (3.15)

whence

d
6.+, 8)llz + - IVO(-, D)ll; < Cs. (3.16)

Thus, combining (3.14) with (3.16), and applying Lemma 3.1 in [10], we can conclude
that (3.7) holds.

Estimate 4:  Now assume that p(6) = 10~'. Then (1.1) becomes

fx: = —0F(x) — (B1 + B20) Fy(x) — F3(x) — w, (3.17)

whence, differentiating with respect to ¢, multiplying by x;, and using the fact that
|wg| is bounded, we find that

d
axf < Cy(1 + 16¢]) a.e.inQ x (0,00). (3.18)

Hence, in view of (3.16),
d 2 d 2
2 (05 + 2 VO 0l; < Cio forace. t > 0. (3.19)

Therefore, invoking (3.14), we can infer from Lemma 3.1 in [10] that (3.8) holds.
This concludes the proof of the assertion. 0
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