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Abstract

In this paper a nonlocal phase-�eld model for non-isothermal phase transi-

tions with a non-conserved order parameter is studied. The paper extends

recent investigations to the non-isothermal situation, complementing results

obtained by H. Gajewski for the non-isothermal case for conserved order pa-

rameters in phase separation phenomena. The resulting �eld equations studied

in this paper form a system of integro-partial di�erential equations which are

highly nonlinearly coupled. For this system, results concerning global exis-

tence, uniqueness and large-time asymptotic behaviour are derived. The main

results are proved using techniques that have been recently developed by P.

Krej£í and the authors for phase-�eld systems involving hysteresis operators.

1 Introduction

In a number of recent papers (see, for instance, [1], [5] and the references given

therein), integrodi�erential (non-local) models for isothermal phase transitions with

either conserved or non-conserved order parameters have been studied, leading to

a number of results concerning existence, uniqueness, and asymptotic behaviour

of solutions. In the recent paper [4], the more di�cult non-isothermal case for a

conserved order parameter in phase separation has been treated. In this paper,

we aim to complement the results of [4] by investigating the non-isothermal case

with a non-conserved order parameter. To give a complete description of the cor-

responding mathematical problem, consider non-isothermal phase transitions with

a non-conserved order parameter � 2 [0; 1] occurring in a thermally insulated con-

tainer 
 � IR3 that forms an open and bounded domain with smooth boundary

@
 . If we denote 
T := 
 � (0; T ) , where T > 0 is some �nal time, and if n is

the outward unit normal to @
 , then the resulting model equations have the form

�(�)�t = �F
0
1(�) �

 
�1

�
+ �2

!
F
0
2(�) �

F
0
3(�)

�
�
w

�
; in 
T ; (1.1)

w(x; t) =
Z


K(jx� yj) (1� 2�(y; t)) dy ; in 
T ; (1.2)

CV �t + (�1 F
0
2(�) + F

0
3(�) + w)�t � ��� = 0 ; in 
T ; (1.3)

@�

@n
= 0 ; on @
� (0; T ) ; (1.4)

�(�; 0) = �0 ; �(�; 0) = �0 ; in 
 : (1.5)
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System (1.1)�(1.5) forms an initial-boundary value problem for a system in which

an ordinary integrodi�erential equation is coupled to a parabolic di�erential equa-

tion. It is the aim of this work to prove results concerning its well-posedness and

large-time asymptotic behaviour (see Theorems 2.1 and 3.1 below).

Before going into mathematical details, we give a brief derivation of system (1.1)�

(1.5). To this end, let � denote the (positive) absolute temperature, and suppose

that the order parameter � represents the local volume fraction (concentration) of

one of the phases, say, of the high temperature phase. For instance, if a solid-liquid

transition is considered, the sets f� = 0g , f� = 1g , and f0 < � < 1g , correspond
to solid, liquid, and mushy region, in that order. We start from the non-local free

energy density

F (�; �) = CV � (1� ln(�)) + � F1(�) + (�1 + �2 �)F2(�) + F3(�)

+�

Z


K(jy � xj) (1� �(y)) dy : (1.6)

Here, CV (speci�c heat) and �1 ; �2 are positive constants, and K : (0;1) !
(0;1) is a nonnegative kernel function. The functions F1 ; F3 are smooth where

F3 is usually concave (often a linear function or a quadratic function having a

negative leading term); moreover, F2 is a convex function that acts as a barrier,

i. e. forces the concentration � to attain values in the physically meaningful range

[0; 1] . Typical choices are F1(�) = �L�=�c , F3(�) = L� , where L > 0 and

�c > 0 represent latent heat of phase transition and phase transition temperature,

respectively, while F2 is given by either F2(�) = � ln(�) + (1 � �) ln(1 � �) or

F2(�) = I[0;1](�) =

(
0 if � 2 [0; 1]

+1 otherwise

)
: In this paper, we study the di�erentiable

logarithmic case; the case of the merely subdi�erentiable indicator function, in which

the system corresponding to (1.1)�(1.5) can be viewed as a non-local version of a

relaxed Stefan problem of Penrose-Fife type (cf. [3], [9]), will be the subject of a

forthcoming paper.

Following the rules of thermodynamics, we introduce the densities of entropy S

and internal energy E by

S(�; �) = � @�F (�; �) = CV ln(�) � F1(�) � �2 F2(�) ;

E(�; �) = F (�; �) + � S(�; �) = CV � + �1 F2(�) + F3(�)

+�

Z


K(jx� yj) (1� �(y)) dy : (1.7)

To �nd equilibrium values for � and � , we maximize the total entropy functional

S[�; �] :=
Z


S(�; �) dx =

Z



�
CV ln(�) � F1(�) � �2 F2(�)

�
dx (1.8)

under the constraint that total internal energy be conserved, i. e. that

E [�; �] :=
Z


E(�; �) dx =

Z



�
CV � + �1 F2(�) + F3(�)

+ �

Z


K(jx� yj) (1� �(y)) dy

�
dx = const: (1.9)
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Applying Lagrange's method, we maximize the augmented entropy

S�[�; �] := S[�; �] + � E [�; �] ; (1.10)

which leads to the Euler-Lagrange equations

@�S� = �F
0
1(�) + (� �1 � �2)F

0
2(�) + �F

0
3(�) + �w = 0 ;

@�S� =
CV

�
+ �CV = 0 ; (1.11)

with w given by (1.2). From the second identity in (1.11) the Lagrange multiplier

is easily identi�ed as � = �1=� .

We now postulate that the evolution of � runs in the direction of @�S� at a rate

which is proportional to it. That is, the evolution of � is governed by the evolution

equation �(�)�t = @�S�[�; �] which is identical to (1.1).

The evolution of � is described by the balance of internal energy which in the

absence of distributed sources becomes

Et + r � q = 0 : (1.12)

Under the assumption q = � �r� , where � > 0 denotes the constant heat con-

ductivity, we obtain (1.3) as energy balance.

Next, we study the thermodynamic consistency of the model. Assuming that

� > 0 (which will have to be veri�ed below), we obtain from a straightforward

calculation, using (1.1), (1.12), and the boundary condition (1.4), thatZ



"
dS

dt
(�; �) + r �

�q
�

�#
dx =

Z



"
dS

dt
(�; �) �

1

�

dE

dt
(�; �) +

�

�2
jr�j

2

#
dx

=
Z



"
�

�2
jr�j

2 +
�
2
t

�(�)

#
dx � 0 : (1.13)

Therefore, the Clausius-Duhem inequality is satis�ed in integrated form which means

that our model complies with the Second Principle of Thermodynamics.

The main mathematical novelties of the results stated below in comparison to

other non-isothermal phase-�eld models for non-conserved order parameters lie in

the occurrence of the integral expression w in the equations and in the fact that in

(1.1) the singular term F
0
2(�) occurs while no di�usive term is present. This entails

a loss of spatial smoothness of the unknown � so that the line of argumentation

based on Moser-type iteration techniques which has been developed in [6] for the

local case in a similar context cannot be employed. On the other hand, (1.1) is

an ordinary integrodi�erential equation, so that ODE-techniques can be used, and

the integral expression (1.2) has a smoothing e�ect. It will turn out that these two

advantages counterbalance the loss in spatial smoothness of � .

The remainder of the paper is organized as follows: In Section 2, we give a de-

tailed statement of the mathematical problem, and we prove global existence and

uniqueness. In the �nal Section 3, the asymptotic behaviour as t! +1 is studied.

In what follows, the norms of the standard Lebesgue spaces Lp(
) , for 1 � p �

1 , will be denoted by k � kp . Finally, we shall use the usual denotations W
m;p(
)

and H
m(
) , m 2 IN ; 1 � p � 1 , for the standard Sobolev spaces.
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2 Global existence and uniqueness

Consider the problem (1.1)�(1.5). For the sake of a simpler notation, we normalize

CV = � = 1 which has no bearing on the mathematical analysis. We make the

following general assumptions on the data of our system.

(H1) �0 2 L
1(
) , �0 2 H

1(
) \ L
1(
) , and there are positive constants

a0 ; b0 ; Æ such that 0 < a0 � �0(x) � b0 < 1 and �0(x) � Æ > 0 for

a. e. x 2 
 .

(H2) Fi 2 C
2[0; 1] , i = 1; 3 , and F2 2 C

2(0; 1) is such that F
0
2 is strictly

increasing on (0,1) and that

lim
�&0

F
0
2(�) = �1 ; lim

�%1
F
0
2(�) = +1 : (2.1)

We denote by G : IR! (0; 1) , G 2 C1(IR) , the inverse of F 02 .

(H3) � 2 C1(0;+1) , and there is some �̂ > 0 such that

�(�) � �̂minf��1; 1g 8 � > 0 : (2.2)

(H4) The kernel function K is non-negative on its domain of de�nition and so

smooth that the linear integral operator � 7! P[�] ,

P[�](x) :=
Z


K(jx� yj)�(y) dy ; x 2 
 ; (2.3)

is de�ned on L
2(
) , maps bounded subsets of L1(
) into bounded subsets

of L1(
) , and has the following continuity property:

If f�kgk2IN � H
1(0; T ;L2(
)) is such that �k;t ! �t strongly in

L
2(
T ) and �k ! � weakly-* in L

1(
T ) ; then P[�k]! P[�]

weakly in L
2(
T ) : (2.4)

(H5) �1 > 0 , �2 > 0 .

Remark 1. The assumptions on F2 are obviously satis�ed for the case that

F2(�) = � ln(�) + (1��) ln(1��) . Under the assumpption (H5), and for suitable

choices of F1 ; F3 , the free energy then becomes the Flory-Huggins free energy

arising in the theory of polymers.

Remark 2. We stress the fact that for our analysis below to work it is crucial

that �1 and �2 are positive. However, this assumption seems to be natural from

physical reasons.
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Remark 3. Hypothesis (H3) is satis�ed if �(�) = �̂ �
��1 for some � 2 [0; 1] .

Note that for � = 1 a nonlocal analogue to a phase-�eld system of Penrose-Fife type

with zero interfacial energy results, while for � = 0 we obtain a nonlocal analogue

of the Caginalp model with zero interfacial energy.

We aim to prove the following general existence result:

Theorem 2.1 Suppose that the general hypotheses (H1)�(H5) hold. Then

system (1.1)�(1.5) admits a unique solution (�; �) 2 (L1(
T ))
2
such that

(i) � 2 H2(0; T ;L2(
)) \ W
1;1(0; T ;L1(
)) ,

� 2 H1(0; T ;L2(
)) \ L
2(0; T ;H2(
)) \ C([0; T ];H1(
)) ,

(ii) 0 < � < 1 and � > 0 a. e. in 
T .

Moreover, (�; �) has the following additional properties:

(iii) There are constants 0 < a1 < b1 < 1 , independent of T , such that a1 �

�(x; t) � b1 a. e. in 
T .

(iv) There is a constant ĉ > 0 , independent of T , such that �(x; t) � Æ e
�ĉ t

a. e.

in 
T .

Proof: The idea of the proof is as follows: we construct a suitable �cut-o�� ver-

sion of the system (1.1)�(1.5) which can be shown to have a unique solution having

the required smoothness properties by using the same technique as in the proof of

Theorem 3.1 in [7]; after that, we apply ODE barrier techniques and parabolic esti-

mates to show that the solution to the cut-o� system is in fact the unique solution

to the original system (1.1)�(1.5). We divide our proof into a sequence of steps.

Step 1: Construction of a �cut-o�� system.

Let 0 < " < 1 and 0 < � < 1=2 be constants which will be speci�ed later. We

put p(�) := minf�; a0g , q(�) := max f1��; b0g , and de�ne the auxiliary functions
T"; �" : IR! IR+ and Z�; Fi;� : IR! IR by putting

T"(s) := maxf"; jsjg ; �"(s) := � (T"(s)) ; for s 2 IR ;

Fi;�(s) =:

8>><
>>:
Fi(p(�)) + F

0
i (p(�))(s� p(�)) ; s � p(�)

Fi(s) ; p(�) � s � q(�) ; i = 1; 2; 3

Fi(q(�)) + F
0
i (q(�))(s� q(�)) ; s � q(�)

;

Z�(s) :=

8>><
>>:
p(�) ; s � p(�)

s ; p(�) � s � q(�)

q(�) ; s � q(�)

: (2.5)

We note the following facts:
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(i) T" 2 W
1;1(IR) ; Z� 2 W

1;1(IR) :

(ii) Fi;� 2 W
2;1(IR) ; i = 1; 2; 3 :

(iii) �" is Lipschitz continuous on compact subsets of IR , and from (2.2) we have

the estimates

�"(�) � �̂ minf1; 1=T"(�)g 8 � 2 IR ;

1

�"(�)
�

1

�̂
maxf1; T"(�)g �

1

�̂
(1 + j�j) 8 � 2 IR ;

1

T"(�)�"(�)
�

1

�̂
maxf1; 1=T"(�)g �

1

" �̂
8 � 2 IR : (2.6)

With the above functions, we consider the following �cut-o�� version of system

(1.1)�(1.5):

�"(�)�t = �F
0
1;�(�) �

 
�1

T"(�)
+ �2

!
F
0
2;�(�) �

F
0
3;�(�)

T"(�)

�
w�

T"(�)
; in 
T ; (2.7)

w�(x; t) =
Z



K (jx� yj)
�
1� 2Z� (�(y; t))

�
dy ; in 
T ; (2.8)

�t +
�
�1 F

0
1;�(�) + F

0
3;�(�) + w�

�
�t � �� = 0 ; in 
T ; (2.9)

@�

@n
= 0 ; on @
 � (0; T ) ; (2.10)

�( � ; 0) = �0 ; �( � ; 0) = �0 ; in 
 : (2.11)

We claim that the system (2.7)�(2.11) admits a unique solution (�";� ; �";�) 2
(L1(
T ))

2 , with �
";�
t 2 L

1(
T ) and �
";� 2 H

1(0; T ;L2(
)) \ L
2(0; T ;H2(
)) ,

such that (2.7)�(2.9) hold a. e. in 
T , (2.10) a. e. on @
 � (0; T ) , and (2.11) a. e.

in 
 . To prove this assertion, we employ the same technique as in the proof of

Theorem 3.1 in [7]. In fact, we have tailored the cut-o� system (2.7)�(2.11) in such

a way that this technique works. Since the line of argumentation is very similar

and can be carried over in a straightforward manner with only minor and obvious

modi�cations which are caused by the nonlocal term w� , we can a�ord to only

sketch the details, here.

The idea is to use successive approximation. To this end, put �0(x; t) := �
0(x)

for (x; t) 2 
T , and de�ne for k 2 IN the iterate (�k ; �k) as the unique solution

6



to the initial boundary problem

�
k
t = �

1

�"(�k�1)

"
F
0
1;�(�

k) +

 
�1

T"(�k�1)
+ �2

!
F
0
2;�(�

k)

+
F
0
3;�(�

k)

T"(�k�1)
+

w
k
�

T"(�k�1)

#
; in 
T ; (2.12)

w
k
�(x; t) =

Z



K (jx� yj)
�
1� 2Z�

�
�
k(y; t)

��
dy ; in 
T ; (2.13)

�
k(x; 0) = x

0(x) ; x 2 
 ; (2.14)

�
k
t � ��k + �

k = �
k�1

�
h
�1 F

0
2;�(�

k) + F
0
3;�(�

k) + w
k
�

i
�
k
t ; in 
T ; (2.15)

@�
k

@n
= 0 on @
 � (0; T ) ; (2.16)

�
k(x; 0) = �

0(x) ; x 2 
 : (2.17)

Note that if �k�1 2 L1(
T ) is known then (2.12)�(2.14) is an initial value problem

for an ordinary integrodi�erential equation containing only bounded nonlinearities

in � which are globally Lipschitz continuous (in particular, the integral operator

de�ned in (2.13) is globally bounded and Lipschitz continuous on L
1(
T ) ). Hence,

(2.12)�(2.14) has a unique global solution �
k 2 W

1;1(0; T ;L1(
)) . But then

(2.15)�(2.17) constitutes a linear heat conduction problem, where the right-hand

side of (2.15) belongs to L1(
T ) . Using standard parabolic theory (cf., for instance,
Lemma 3.3 in [7]), we can infer that (2.15)�(2.17) admits a unique solution �

k 2

L
1(
T )\H

1(0; T ;L2(
))\L2(0; T ;H2(
)) , so that the iterative procedure (2.12)�
(2.17) is well-de�ned and produces a sequence (�k ; �k) 2 (L1(
T ))

2 , where �
k
t 2

L
1(
T ) and �

k 2 H1(0; T ;L2(
)) \ L2(0; T ;H2(
)) .

Next, observe that (2.6) and the boundedness of the nonlinear terms on the right-

hand side of (2.12) imply the existence of some C1 > 0 (which is independent of

k 2 IN ) such that

j�
k
t (x; t)j � C1

�
1 + j�

k�1(x; t)j
�

a. e. in 
T : (2.18)

Therefore, using the global boundedness of the terms in the bracket on the right-

hand side of (2.15) which multiplies �kt , we obtain from standard parabolic estimates

(cf. Lemma 3.3 in [7], again) that

k�
k
kL1(
T ) � C2 ; (2.19)

with some C2 � k�0k1 which is independent of k 2 IN . Taking C2 larger, if

necessary, we then conclude that also

k�
k
t kL2(
T ) + k��kkL2(
T ) � C2 8 k 2 IN ; (2.20)

which means that f�kg is bounded in L
1(
T )\H

1(0; T ;L2(
))\L2(0; T ;H2(
)) .
Now that this is shown, we can employ the general properties (i)�(iii) and (2.6) of the

cut-o� functions T" ; �" ; Z� ; Fi;� to show by exactly the same line of argumentation

as in the proof of Theorem 3.1 in [7] that the following holds:

7



(iv) f�kg is a Cauchy sequence in L
2(
T ) ,

(v) f�kg and f�kt g are Cauchy sequences in L
2(
T ) .

Therefore we can claim that there exist functions �";� ; �";� such that the following

convergences hold:

�
k
t ! �

";�
t ; strongly in L2(
T ) and weakly-* in L1(
T ) ;

�
k
! �

";�
; strongly in C([0; T ];L2(
)) and weakly-* in L1(
T ) ;

�
k
! �

";�
; strongly in L2(
T ) ; weakly-* in L1(
T ) ;

and weakly in H1(0; T ;L2(
)) \ L
2(0; T ;H2(
)) : (2.21)

By (H4), we then have P[�k]! P[�";�] , weakly in L
2(
T ) , and letting k%1 in

(2.12)�(2.17), we easily obtain that (�";� ; �";�) is a solution to the cut-o� system

(2.7)�(2.11) having the asserted properties. Arguing exactly as in the proof of

Theorem 3.1 in [7], we can easily infer that (�";� ; �";�) is the unique solution to

(2.7)�(2.11) with these properties.

Step 2: Existence of a solution having the properties (i)-(iv) in Theorem 2.1.

We now aim to show that for su�ciently small � > 0 ; " > 0 the cut-o� solution

(�";� ; �";�) is in fact a solution to (1.1)�(1.5) having the properties (i)-(iv) asserted

in the statement of Theorem 2.1. To this end, we at �rst consider (2.7) which holds

for all (x; t) 2 
T n M where M has measure zero. In what follows, we only

consider the set 
T nM . Since �"(�
";�) > 0 on 
T nM , we conclude that for

(x; t) 2 
T nM we have �
";�
t (x; t) � 0 if and only if

F
0
2;� (�

";�(x; t)) �
�T"(�

";�(x; t))

�1 + �2 T"(�";�(x; t))
F
0
1;� (�

";�(x; t))

�
1

�1 + �2 T"(�";�(x; t))

�
F
0
3;� (�

";�(x; t)) + w�(x; t)
�
: (2.22)

Likewise, �
";�
t (x; t) � 0 if and only if (2.22) holds with � replaced by � . Now it

holds, by construction,

sup
s2IR

jF
0
1;�(s)j � kF

0
1kC[0;1] ; sup

s2IR

jF
0
3;�(s)j � kF

0
3kC[0;1] ; (2.23)

�kP[1]k1 � w�(x; t) � kP[1]k1 ; where P[1](x) =
Z



K (jx� yj) dy ; (2.24)

as well as

0 �
T"(�

";�(x; t))

�1 + �2 T"(�";�(x; t))
�

1

�2
; 0 �

1

�1 + �2 T"(�";�(x; t))
�

1

�1
: (2.25)

Therefore, the absolute value of the right-hand side of (2.22) is bounded from above

by the �nite constant


̂ :=
1

�2
kF

0
1kC[0;1] +

1

�1

�
kF

0
3kC[0;1] + kP[1]k1

�
(2.26)
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which is independent of � ; " and t . Consequently, we have �
";�
t (x; t) � 0 if

F
0
2;�(�

";�(x; t)) � �
̂ , and �
";�
t (x; t) � 0 if F 02;�(�

";�(x; t)) � 
̂ . We now �x some

�̂ > 0 which is so small that p(�̂) � G(�
̂) and q(�̂) � G(
̂) , where G is the

(strictly increasing) inverse of F 02 (recall (H2)).

If then �
";�̂(x; t) < p(�̂) , it follows that F 02;�̂(�

";�̂(x; t)) = F
0
2(p(�̂)) � �
̂ so that

�
";�̂
t (x; t) � 0 . Likewise, if �";�̂(x; t) > q(�̂) then �

";�̂
t (x; t) � 0 . In conclusion, we

have for a. e. (x; t) 2 
T the inequality

a1 := p(�̂) = minf�̂; a0g � �
";�̂(x; t) � b1 := q(�̂) = maxf1� �̂; b0g : (2.27)

Note that 0 < a1 < b1 < 1 , and the constants a1 ; b1 are independent of " and T .

Besides, denoting (�" ; �") := (�";�̂; �";�̂) , we have the identities

Fi;�̂(�
") = Fi(�

") ; i = 1; 2; 3 ; Z�̂(�
") = �

"
; a. e. in 
T ;

w�̂(x; t) = w(x; t) =
Z



K (jx� yj) (1� 2�"(y; t)) dy ; a. e. in 
T : (2.28)

Therefore, the pair (�" ; �") satis�es the equations (1.2)�(1.5), and we have

�"(�
")�"t = �F

0
1(�

") �

 
�1

T"(�")
+ �2

!
F
0
2(�

") �
F
0
3(�

")

T"(�")
�

w

T"(�")
; a. e. in 
T :

(2.29)

We now aim to show that there is some "̂ > 0 such that �"̂(x; t) � "̂ a. e. in 
T .

It then follows that T"̂(�
"̂) = �

"̂ and thus �"̂(�
"̂) = �(�"̂) which then implies that

(�"̂ ; �"̂) also satis�es (1.1), i. e. is a solution to (1.1)�(1.5).

To this end, we test the equation (1.3) by an arbitrary function p 2 H
1(
T )

satisfying p � 0 a. e. in 
T . Putting z := �1 F
0
2(�) + F

0
3(�) + w , we obtain

Z



(p �"t + rp � r�
") (x; t) dx =

Z



(jpj z �"t ) (x; t) dx : (2.30)

We have, by (2.29),

z �
"
t = �

1

�"(�")
z

 
F
0
1(�

") + �2 F
0
2(�

") +
1

T"(�")
z

!
: (2.31)

We consider two cases:

Case 1: Suppose that T"(�
") � 1 . Then it follows from (2.31) and (2.6), using

Young's inequality, that

z �
"
t �

T"(�
")

4�"(�")
(F 01(�

") + �2 F
0
2(�

"))
2

�
1

4 �̂
(F 01(�

") + �2 F
0
2(�

"))
2
T"(�

") : (2.32)
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Case 2: Let T"(�
") > 1 . Then, using the second estimate in (2.6), we can infer

that

z �
"
t �

1

�"(�")
jzj jF

0
1(�

") + �2 F
0
2(�

")j

�
1

2 �̂

h
(F 01(�

") + �2 F
0
2(�

"))
2
+ z

2
i
T"(�

") : (2.33)

In conclusion, we always have

z �
"
t �

1

2 �̂

h
(F 01(�

") + �2 F
0
2(�

"))
2
+ z

2
i
T"(�

") : (2.34)

By (2.27), we therefore �nd the estimate z �"t � ĉ � T"(�
") , where the �nite positive

constant

ĉ :=
1

2 �̂
max

a1���b1

h
(F 01(�) + �2 F

0
2(�))

2
+ (�1 F

0
2(�) + F

0
3(�) + kP[1]k1)

2
i
(2.35)

is independent of " and t . Hence, by (2.30),Z



(p �"t + rp � r�
")(x; t) dx � ĉ

Z



(jpjT"(�
")) (x; t) dx ; a. e. in 
 : (2.36)

Now put "̂ := Æ e
�ĉT , and

p(x; t) := �
�
Æ e
�ĉt

� �
"̂(x; t)

�+
; (x; t) 2 
T : (2.37)

Then we can infer from (2.36) thatZ



�
p

�
p+ Æ e

�ĉt
�
t

�
(x; t) dx � ĉ

Z



jpj
�
jpj+ Æ e

�ĉt
�
(x; t) dx ; (2.38)

whence, in particular,

1

2

d

dt

Z



p
2(x; t) dx � ĉ

Z



p
2(x; t) dx : (2.39)

Therefore, by Gronwall's inequality, and since p(x; 0) = 0 ; p � 0 . Thus, �"̂(x; t) �
Æe
�ĉt � "̂ a. e., which concludes the proof that (�; �) := (�"̂ ; �"̂) is a solution

to (1.1)-(1.5) which satis�es the conditions (iii),(iv) of Theorem 2.1. By construc-

tion, we also have � 2 W
1;1(0; T ;L1(
)) and � 2 L

1(
T ) \ H
1(0; T ;L2(
)) \

L
2(0; T ;H2(
)) \ C([0; T ];H1(
)) . But then it follows that the right-hand side of

(1.1) belongs to H1(0; T ;L2(
)) so that � 2 H2(0; T ;L2(
)) . In conclusion, (�; �)
has the asserted properties (i)-(iv) of Theorem 2.1.

Step 3: Conclusion of the proof.

It remains to show that any solution of (1.1)-(1.5) satisfying (i), (ii) automatically

satis�es (iii) and (iv), as well, and the uniqueness of the solution. To this end,
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suppose that an arbitrary solution (�; �) is given such that (i) and (ii) hold. Then

we have � > 0 and thus �(�) > 0 a. e. in 
T . Moreover, 0 < � < 1 a. e. in


T . Therefore, we can argue similarly as in the derivation of estimate (2.27) in

Step 2 above to conclude that � satis�es a1 � � � b1 a. e. in 
T . But then the

argumentation in Step 2 leading to the lower bound for the temperature may be

repeated as well, showing that �(x; t) � Æ e
�ĉt almost everywhere. Thus, we can

infer that (�; �) coincides in fact with the �cut-o�� solution (�"̂;�̂; �"̂;�̂) constructed

in Step 2. Since this solution is unique by virtue of the results established in [7], the

uniqueness result follows. The assertion of Theorem 2.1 is thus completely proved.

Remark 4. The result of Theorem 2.1 remains valid if (1.3) is replaced by

CV �t + (�1 F
0
2(�) + F

0
3(�) + w) �t � ��� =  (x; t; �) ; (1.3)'

provided the source term  satis�es the following conditions:  : 
� (0; T )� IR!

IR is measurable, and there exist some  0 2 L
1(
T ) and some 	 > 0 such that

(i) � � 0 =)  (x; t; �) =  0(x; t) ;

(ii)  0(x; t) � 0 ; a. e. in 
T ;

(iii)

�����@ @� (x; t; �)
����� � 	 a. e. in 
� (0; T )� IR :

Indeed, the line of argumentation used above easily generalizes to include this case;

for details we refer to the proof of Theorem 3.1 in [7]. We note that then the constant

ĉ constructed above must be replaced by ĉ+	 .

3 Asymptotic behaviour as t! +1

Suppose that the general hypotheses (H1)�(H5) hold. Then there is a unique pair

(� ; �)2 (L1
loc

(0;1;L1(
)))2 such that

� 2 H
2(0; T ;L2(
)) \ W

1;1(0; T ;L1(
)) 8 T > 0 ;

� 2 H
1(0; T ;L2(
)) \ L

2(0; T ;H2(
)) \ C([0; T ];H1(
)) 8 T > 0 ; (3.1)

a1 � �(x; t) � b1 ; �(x; t) � Æ e
�ĉt a. e. in 
� (0;1) : (3.2)

Besides, there is some constant K1 > 0 such that

sup
(x;t)2
�(0;1)

�
max
1�i�3

jF
0
i (�(x; t))j + jw(x; t)j

�
� K1 : (3.3)

Our aim is to study the asymptotic behaviour of (� ; �) as t ! +1 . The main

di�culty in doing this lies in the fact that the lower bound Æ e
�ĉt for � tends to

zero as t! +1 . We have the following result:
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Theorem 3.1 Suppose that (H1), (H2), (H4), (H5) hold and that

�(�) �
�̂

�
8 � > 0 with some �̂ > 0 : (3.4)

Then there exists some constant Ĉ1 > 0 such that the solution (� ; �) to (1.1)�(1.5)

satis�es

0 < �(x; t) � Ĉ1 ; j�t(x; t)j � Ĉ1 ; a. e. in 
 � (0;1) ; (3.5)

tZ
0

Z



(1 + �(�))�2
t dx d� +

tZ
0

Z



�
1 +

1

�2

�
jr�j

2
dx d� � Ĉ1 8 t � 0 : (3.6)

Moreover, we have

lim
t!1

kr�(�; t)k2 = 0 : (3.7)

Finally, if (3.4) holds with equality then

lim
t!1

k�t(�; t)k2 = 0 : (3.8)

Proof: In what follows, we denote by Ck ; k 2 IN , positive constants that may

depend on the data of the system but not on T > 0 . We proceed in a series of

steps, deriving a priori estimates for (� ; �) .

Estimate 1: Consider for t > 0 the energy functional

E(t) :=
Z



h
�(x; t) + �1 F2(�(x; t)) + F3(�(x; t))

+�(x; t)
Z



K (jx� yj) (1� �(y; t)) dy
i
dx : (3.9)

Integration of (1.3) over 
� (0; t) , where t > 0 , gives E(t) � E(0) , whence, using
(3.3),

sup
t�0

k�( � ; t)k1 � C1 : (3.10)

But then (3.4) implies, in view of (1.1) and (3.3), that

j�t(x; t)j � C2 (1 + j�(x; t)j) a. e. in 
 � (0;1) : (3.11)

Applying Theorem 3.1 in [8] yields

�(x; t) � C3 a. e. in 
 � (0;1) ; (3.12)

and (3.5) is proved.
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Estimate 2: We multiply (1.1) by �t and (1.3) by � �
�1 and add. Integration

over 
� (0; t) , where t > 0 , yields that

tZ
0

Z



 
�(�)�2

t +
jr�j2

�2

!
dx d�

=
Z



[ln(�(x; t)) � ln(�0(x))] dx �

tZ
0

Z



(F 01(�) + F
0
2(�))�t dx d� � C4 : (3.13)

Using (3.4) and (3.12), we conclude from (3.13) that

tZ
0

Z



�
�
2
t + jr�j

2
�
dx d� � C5 8 t � 0 ; (3.14)

and (3.6) is proved.

Estimate 3: Next, we multiply (1.3) by �t and integrate over 
 . Then, for

a. e. t > 0 ,

k�t( � ; t)k
2
2 +

1

2

d

dt
kr�( � ; t)k22 � C6 (1 + k�t( � ; t)k1) �

1

2
k�t( � ; t)k

2
2 + C7 ; (3.15)

whence

k�t( � ; t)k
2
2 +

d

dt
kr�( � ; t)k22 � C8 : (3.16)

Thus, combining (3.14) with (3.16), and applying Lemma 3.1 in [10], we can conclude

that (3.7) holds.

Estimate 4: Now assume that �(�) = �̂ �
�1 . Then (1.1) becomes

�̂ �t = � � F
0
1(�) � (�1 + �2 �)F

0
2(�) � F

0
3(�) � w ; (3.17)

whence, di�erentiating with respect to t , multiplying by �t , and using the fact that

jwtj is bounded, we �nd that

d

dt
�
2
t � C9 (1 + j�tj) a. e. in 
 � (0;1) : (3.18)

Hence, in view of (3.16),

d

dt
k�t( � ; t)k

2
2 +

d

dt
kr�( � ; t)k22 � C10 for a. e. t > 0 : (3.19)

Therefore, invoking (3.14), we can infer from Lemma 3.1 in [10] that (3.8) holds.

This concludes the proof of the assertion.
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