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Metastability in simple climate models:

Pathwise analysis of slowly driven Langevin equations

Nils Berglund and Barbara Gentz

Abstract

We consider simple stochastic climate models, described by slowly time-dependent

Langevin equations. We show that when the noise intensity is not too large, these

systems can spend substantial amounts of time in metastable equilibrium, instead of

adiabatically following the stationary distribution of the frozen system. This behaviour

can be characterized by describing the location of typical paths, and bounding the

probability of atypical paths. We illustrate this approach by giving a quantitative

description of phenomena associated with bistability, for three famous examples of

simple climate models: Stochastic resonance in an energy balance model describing

Ice Ages; hysteresis in a box model for the Atlantic thermohaline circulation; and

bifurcation delay in the case of the Lorenz model for Rayleigh�Bénard convection.

Date. November 4, 2001.

2000 Mathematical Subject Classi�cation. 37H20 (primary), 60H10, 34E15, 82C31 (secondary).

Keywords and phrases. Stochastic resonance, dynamical hysteresis, bifurcation delay, double-

well potential, �rst-exit time, scaling laws, Lorenz model, thermohaline circulation, white noise,

coloured noise.

1 Introduction

One of the main di�culties of realistic climate models is that they involve a huge number

of interacting degrees of freedom, on a wide range of time and length scales. In order

to be able to control these models analytically, or at least numerically, it is necessary

to simplify them by eliminating the less relevant degrees of freedom (e. g. high-frequency

or short-wavelength modes). A possible way to do this is to average the equations of

motion over all fast degrees of freedom, a rather drastic approximation. As proposed by

Hasselmann [20] (see also [2]), a more realistic approximation is obtained by modeling the

e�ect of fast degrees of freedom by noise.

In a number of cases, it is appropriate to distinguish between three rather than two

time scales: Fast degrees of freedom (e. g. the �weather�), which are modeled by a stochastic

process; intermediate �dominant modes� (e. g. the average temperature of the atmosphere)

whose dynamics we want to predict; and slow degrees of freedom (e. g. the mean insolation

depending on the eccentricity of the Earth's orbit), which evolve on very long time scales

of several centuries or millennia, and can be viewed as an external forcing. Such a system

can often be modeled by a slowly time-dependent Langevin equation

dxt = f(xt; "t) dt + �G("t) dWt; (1.1)

where the adiabatic parameter " and the noise intensity � are small parameters, Wt is a

standard vector-valued Wiener process (describing white noise) and G is a matrix.
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Our aim in this paper is to describe the e�ect of the noise term on the dynamics of (1.1),

assuming the dynamics without noise is known. For this purpose, we will concentrate on

bistable systems, which frequently occur in simple climate models: For instance, in models

for the major Ice Ages, where the two possible stable equilibria correspond to warm and

cold climate [4], or in models of the Atlantic thermohaline circulation [34, 30]. Noise

may enable transitions between the two stable states, which would be impossible in the

deterministic case, and our main concern will be to quantify this e�ect.

The method used to study the stochastic di�erential equation (SDE) (1.1) will depend

on the time scale we are interested in. Let us �rst illustrate this on a static one-dimensional

example, namely the overdamped motion in a symmetric double-well potential:

dxt = �
@

@x
V (xt) dt + � dWt; V (x) =

1

4
bx

4 �
1

2
ax

2
: (1.2)

where a and b are positive constants. The potential has two wells at �
p
a=b, separated by

a barrier of height H = a
2
=(4b). A �rst possibility to analyse this equation is to compute

the probability density p(x; t) of xt. It obeys the Fokker�Planck equation

@

@t
p(x; t) =

@

@x

�
@V

@x
(x)p(x; t)

�
+
�
2

2

@
2

@x2
p(x; t); (1.3)

which admits in particular the stationary solution

p0(x) =
1

N
e2V (x)=�2

; (1.4)

where N is the normalization. At equilibrium, there is equal probability to �nd xt in

either potential well, and for weak noise it is unlikely to observe xt anywhere else than in

a neighbourhood of order � of one of the wells.

Assume now that the initial distribution x0 is concentrated at the bottom
p
a=b of the

right-hand potential well. Then it may take quite a long time for the density to approach its

asymptotic value (1.4). A possible way to investigate this problem relies on spectral theory.

Denote the right-hand side of (1.3) as Lp(x; t), where L is a linear di�erential operator.

The stationary density (1.4) is an eigenfunction of L with eigenvalue 0. We may assume

that L has eigenvalues � � � < �k < � � � < �2 < �1 < 0, c. f. [21, Section 6.7]. Decomposing

p(x; t) on a basis of eigenfunctions of L, we see that p approaches the stationary solution

in a characteristic time of order 1=j�1j.
There exists, however, a much more precise description of the process xt than by its

probability density. Recall that for almost every realizationWt(!) of the Brownian motion,

the sample path t 7! xt(!) is continuous. Instead of computing the time needed for p(x; t)

to relax to p0(x), we can consider the random variable

�(!) = inf
�
t > 0: xt(!) < 0

	
; (1.5)

describing the �rst time at which the path xt crosses the saddle (one could as well consider

the �rst time the bottom of the left-hand well is reached). The distribution of � is asymp-

totically exponential, with expectation behaving in the weak-noise limit like Kramers' time

TKramers = e2H=�2
: (1.6)

A mathematical theory allowing to estimate �rst-exit times for general n-dimensional sys-

tems (with a drift term not necessarily deriving from a potential) has been developed by
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Freidlin and Wentzell [18]. In speci�c situations, more precise results are available, for

instance subexponential corrections to the asymptotic expression (1.6), see [3, 15]. Even

the limiting behaviour of the distribution of the �rst-exit time from a neighbourhood of a

unique stable equilibrium point has been obtained [14]. The �rst-exit time from a neigh-

bourhood of a saddle has been considered by Kifer in the seminal paper [25].

If the noise intensity � is small (compared to the square root of the barrier height),

then the time needed to overcome the potential barrier is extremely long, and the time

required to relax to the stationary distribution p0(x) is even longer. In fact, on time

scales shorter than Kramers' time, solutions of (1.2) starting in one potential well will

hardly feel the second potential well. As we will see in Section 2, xt is well approximated

by an Ornstein�Uhlenbeck process, describing the overdamped motion of a particle in a

potential of constant curvature c = 2a. The Ornstein�Uhlenbeck process relaxes to a

stationary Gaussian process with variance �2=(2c) in a characteristic time

Trelax =
1

c
: (1.7)

Thus for 0 6 t � Trelax, the behaviour of xt is transient; for Trelax � t � TKramers, xt
is close to a stationary Ornstein�Uhlenbeck process with variance �2=(2c); and only for

t � TKramers will the distribution of xt approach the bimodal stationary solution (1.4).

This phenomenon, where a process seems stationary for a long time before ultimately

relaxing to a new (possibly stationary) state, is known as metastability. It is all the more

remarkable in an asymmetric double-well potential: then a process starting at the bottom

of the shallow well will �rst relax to a metastable distribution concentrated in the shallow

well, which is radically di�erent from the stationary distribution having most of its mass

concentrated in the deeper well.

A di�erent approach, based on the concept of random attractors (see [12, 31, 1]),

gives complementary information on the long-time regime. In particular, in [13] it is

proved that for arbitrarily weak noise, paths of (1.2) with di�erent initial conditions but

same realization of noise almost surely converge to a random point. The time needed for

this convergence, however, diverges rapidly in the limit � ! 0, because paths starting in

di�erent potential wells are unlikely to overcome the potential barrier and start approaching

each other before Kramers' time.

We now turn to situations in which the potential varies slowly in time. For simplicity,

we will consider the family of Ginzburg�Landau potentials

V (x; �; �) =
1

4
x
4 �

1

2
�x

2 � �x; (1.8)

and let either � or � vary in time, with low speed ". For instance, � or � may depend

periodically on time, with low frequency 2�". The potential V has two wells if 27�2 < 4�3

and one well if 27�2 > 4�3, and when � or � are varied, the number of wells may change.

Crossing one of the curves 27�2 = 4�3, � > 0, corresponds to a saddle�node bifurcation,

and crossing the point � = � = 0 corresponds to a pitchfork bifurcation.

The slow time-dependence introduces a new time scale Tforcing = 1=". Since curvature

and barrier height are no longer constant, we replace the de�nitions (1.6) and (1.7) by

T
(max)

Kramers = e2Hmax=�
2

and T
(min)

relax =
1

cmax

; (1.9)

where Hmax denotes the maximal barrier height during one period, and cmax denotes the

maximal curvature at the bottom of a potential well. Here we are interested in the regime

T
(min)

relax � Tforcing � T
(max)

Kramers; (1.10)
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which means that the process has time to reach a metastable �equilibrium� during one

period, but not the bimodal stationary distribution. Mathematically, we thus assume that

"� cmax and �
2 � 2Hmax=jlog "j. We allow, however, the minimal curvature and barrier

height to become small, or even to vanish.

For time-dependent potentials, the Fokker�Planck equation (1.3) is even harder to solve

(and in fact, it does not admit a stationary solution). Moreover, random attractors are not

straightforward to de�ne in this time-dependent setting. We believe that the dynamics

on time scales shorter than T
(max)

Kramers is discussed best via an understanding of �typical�

paths. The idea is to show that the vast majority of paths remain concentrated in small

space�time sets, whose shape and size depend on the potential and the noise intensity.

These sets are typically located in a neighbourhood of the potential wells, but under some

conditions paths may also switch potential wells. There are thus two problems to solve:

�rst characterize the sets in which typical paths live, and then estimate the probability of

atypical paths. It turns out that these properties have universal characteristics, depending

only on qualitative properties of the potential, especially its bifurcation points.

We start, in Section 2, by discussing the simplest situation, which occurs when the

initial condition of the process lies in the basin of attraction of a stable equilibrium branch.

For su�ciently small noise intensity, the majority of paths remain concentrated for a

long time in a neighbourhood of the equilibrium branch. We determine the shape of

this neighbourhood and outline how coloured noise can decrease the spreading of paths.

Section 3 is devoted to the phenomenon of stochastic resonance. We �rst recall the

energy-budget model introduced in [4] to give a possible explanation for the close-to-

periodic appearance of the major Ice Ages. This model is equivalent to the overdamped

motion of a particle in a modulated double-well potential, where the driving amplitude is

too small to allow for transitions between wells in the absence of noise. Turning to the

description of typical paths, we �nd a threshold value for the noise intensity below which

the paths remain in one well, while above threshold, they switch back and forth between

wells twice per period. The switching events occur close to the instants of minimal barrier

height. Several important quantities have a power-law dependence on the small parameters,

in particular the critical noise intensity, the width of transition windows, and the exponent

controlling the exponential decay of the probability of atypical paths.

In Section 4, we start by discussing a variant [11] of Stommel's box model [34] of

the Atlantic thermohaline circulation. Assuming slow changes in the typical weather,

this model also reduces to the motion in a modulated double-well potential, where the

modulation depends on the freshwater �ux. If the amplitude of the modulation exceeds a

threshold, the potential barrier vanishes twice per period, so that the deterministic motion

displays hysteresis. Additive noise in�uences the shape of hysteresis cycles, and may even

create macroscopic cycles for subthreshold modulation amplitude. We characterize the

distribution of the random freshwater �ux causing the system to switch from one stable

state to the other one.

Finally, in Section 5, we consider the Lorenz model for Rayleigh�Bénard convection with

slowly increasing heating. In the deterministic case, convection rolls appear only some time

after the steady state looses stability in a pitchfork bifurcation. This bifurcation delay is

signi�cantly decreased by additive noise, as soon as its intensity is not exponentially small.
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2 Near stable equilibria

Let us start by investigating Equation (1.1) in the one-dimensional case, i. e., when xt,

Wt and G(t) = g(t) are scalar. Since we are interested in the dynamics on the time scale

Tforcing = 1=", we rescale time by a factor ", which results in the SDE

dxt =
1

"
f(xt; t) dt +

�
p
"
g(t) dWt: (2.1)

The factor 1=
p
" is due to the di�usive nature of the Brownian motion.

In this section, we will consider the dynamics near a stable equilibrium branch of f ,

i. e., a curve x?(t) such that

f(x?(t); t) = 0 and a
?(t) =

@f

@x
(x?(t); t) 6 �a0 (2.2)

for all t, where a0 is a positive constant. In the one-dimensional case, f always derives

from a potential V , and �a?(t) represents the curvature at the bottom x
?(t) of a potential

well.

In the deterministic case � = 0, solutions of (2.1) track the equilibrium branch x
?(t)

adiabatically. In fact, Tihonov's Theorem [36, 19] asserts that for � = 0, (2.1) admits a

particular solution �xdett with an asymptotic expansion of the form

�xdett = x
?(t) + "

_x?(t)

a?(t)
+O("2): (2.3)

Since a?(t) is negative, �xdett lies a little bit to the left of x?(t) if x?(t) moves to the right,

and vice versa. The adiabatic solution �xdett attracts nearby solutions exponentially fast in

t=".

Consider now the SDE (2.1) with positive noise intensity. For the sake of brevity, we

assume that g is positive and bounded away from zero. In a nutshell, our main result can

be formulated as follows: Up to Kramer's time, paths starting near �xdet0 are concentrated in

a neighbourhood of order �g(t)=
p
ja?(t)j of the deterministic solution with the same initial

condition, as shown in Figure 1. Larger noise intensities and smaller curvatures thus lead

to a larger spreading of paths. This result holds as long as the spreading is smaller than

the distance between x
?(t) and the nearest unstable equilibrium (i. e., the nearest saddle

of the potential).

To make this claim mathematically precise, we need a few de�nitions. For simplicity,

we discuss �rst the particular case x0 = �xdet0 . We use the notations

a(t) =
@f

@x
(�xdett ; t); �(t; s) =

Z t

s

a(u) du and �(t) = �(t; 0): (2.4)

Note that by (2.3), a(t) = a
?(t) + O(") is negative for su�ciently small ". The main

idea is that xt � �xdett is well approximated by a generalized Ornstein�Uhlenbeck process,

with time-dependent damping a(t)=" and di�usion coe�cient �g(t)=
p
". This process is

obtained by linearizing the SDE (2.1) around �xdett , and has variance

v(t) =
�
2

"

Z t

0

e2�(t;s)=" g(s)2 ds: (2.5)
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x
?(t)

x
det

t

xt

B(h)

Figure 1. A sample path of the SDE (2.1), for f(x; t) = a?(t)(x � x?(t)) deriving from

a quadratic single-well potential, and g(t) � 1. The potential well is located at x?(t) =
sin(2�t), and has curvature �a?(t) = 4 � 2 sin(4�t). Parameter values are " = 0:04 and

� = 0:025. After a short transient motion, the deterministic solution xdett tracks x?(t) at
a distance of order ". The path xt is likely to stay in the shaded set B(h) (shown here for

h = 3), which is centred at xdett and has time-dependent width of order h�=
p
ja?(t)j.

The function v(t) solves the ordinary di�erential equation (ODE) " _v = 2a(t)v + �
2
g(t)2.

In analogy with (2.3), this equation also admits a particular solution �v(t) satisfying

�v(t) =
�
2

2ja(t)j
�
g(t)2 + O(")

�
; (2.6)

and since �(t) 6 �a0t for t > 0, the variance v(t) = �v(t) � �v(0) e2�(t)=" approaches �v(t)

exponentially fast. We now introduce the set

B(h) =
�
(x; t) : jx� �xdett j < h

p
�v(t)

	
; (2.7)

which depends on a real parameter h > 0. The strip B(h) is centred in the adiabatic

solution �xdett tracking the bottom of the potential well, and has time-dependent width

h�g(t)=
p

2ja?(t)j[1 +O(")]. To lowest order in " and �, B(h) coincides with the points in

the potential well for which V (x; t)� V (�xdett ; t) is smaller than (1
2
h�g(t))2.

The main result is that for h � 1, paths fxsgs>0 are unlikely to leave the set B(h)
before Kramers' time. Equivalently, the �rst-exit time

�B(h) = inf
�
t > 0: (xt; t) 62 B(h)

	
(2.8)

is unlikely to be smaller than TKramers. Indeed, one can prove the following estimate (see

[6, Theorem 2.4] and [8, Theorem 2.2]). There is a constant h0 > 0 such that

P
�
�B(h) > t

	
6 C(t; ") e��h

2

(2.9)

holds for all t > 0 and all h 6 h0=�, where

C(t; ") =
j�(t)j
"2

+ 2 and � =
1

2
� O(")�O(�h): (2.10)

The exponential term e��h
2

in (2.9) is independent of time, and becomes small as soon as

h � 1. The constant h0 depends on f and is the smaller the smaller a0 is: The �atter

the well, the more restrictive the condition h 6 h0=� becomes. The prefactor C(t; "),

which grows as time increases (and is certainly not optimal) only leads to subexponential
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corrections on the time scale Tforcing. Some time dependence of the prefactor is to be

expected, as it re�ects the fact that occasionally a path will make an unusually large

excursion, and the longer we wait the more excursions we will observe. The prefactor

also depends on ". A factor 1=" is due to the fact that we are working on the time scale

Tforcing, while the actual factor of 1="2 allows us to obtain the best possible exponent.

Choosing � slightly smaller allows to replace "2 by the more natural " in the de�nition

of C(t; "). Thus we �nd that paths are unlikely to leave B(h) before time t, provided

h
2
0=�

2 > h
2 � logC(t; ").

The same results hold if xt does not start on the adiabatic solution �xdett , but in some

deterministic x0 su�ciently close to it. Then �xdett has to be replaced in (2.4) and (2.7) by

the solution xdett of the deterministic equation with initial condition x0. We still have that

a(t) is negative (and bounded away from zero), but note that (2.6) may not hold for very

small t, when x
det
t has not yet approached �xdett .

If the potential V grows at least quadratically for large jxj, one can deduce from (2.9)

that the moments of jxt � x
det
t j are bounded by those of a centred Gaussian distribution

with variance of order �v(t), for times small compared to Kramers' time [8, Corollary 2.4],

even if V has other potential wells than the one at x?(t). Assume for instance that V

has two potential wells, with the shallower one at x?(t). Then the system is in metastable

�equilibrium� for an exponentially long time span during which the existence of the deeper

well is not felt.

Similar statements are valid in the multidimensional case (in which f does not neces-

sarily derive from a potential). Let x?(t) be an equilibrium branch of f , and denote by

A
?(t) the Jacobian matrix of f at x?(t). We assume that the eigenvalues of A?(t) have

real parts smaller than some negative constant �a0 for all times, so that x?(t) is asymp-

totically stable. In the deterministic case � = 0, Tihonov's theorem shows the existence of

an adiabatic solution

�xdett = x
?(t) + "A

?(t)�1 _x?(t) + O("2); (2.11)

which attracts nearby orbits exponentially fast. Let A(t) be the Jacobian matrix of f at

�xdett . It satis�es A(t) = A
?(t) +O("). The solution of the SDE (1.1) linearized at �xdett has

a Gaussian distribution, with covariance matrix

X(t) =
�
2

"

Z t

0

U(t; s)G(s)G(s)TU(t; s)T ds; (2.12)

where U(t; s) is the fundamental solution of " _y = A(t)y with initial condition U(s; s) = 1l.

To keep the presentation simple, we will assume that the smallest eigenvalue of G(s)G(s)T

is bounded away from zero and the largest one is bounded above. Note that X(t) obeys

the ODE " _X = AX + XA
T + �

2
GG

T , and approaches exponentially fast a matrix X(t)

which satis�es

X(t) = X0(t) +O("); where AX0 +X0A
T = ��2GGT

: (2.13)

Given a deterministic solution x
det
t , the de�nition of the set B(h) reads now

B(h) =
�
(x; t) : (x� x

det
t )TX(t)�1(x� x

det
t ) < h

2
	
; (2.14)

and (2.9) generalizes to the following statement (see [8, Theorem 6.1] for a discussion; the

proof will be given in [5]): There is a constant h0 > 0 such that for all h 6 h0=� and all

� 2 (0; 1=2),

P
�
�B(h) > t

	
6 C(t; ") e��h

2(1�O(")�O(�h))
; (2.15)
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where

C(t; ") =
�
t

"2
+ 1

�� 1

1� 2�

�n=2
; (2.16)

n being the dimension of x. Paths are thus concentrated, up to a given time t, in sets of the

form B(h), which have an ellipsoïdal cross-section de�ned by X(t). Again the parameter

h must satisfy h20=�
2 > h

2 � logC(t; ").

This result can be used, in particular, to understand the e�ect of coloured noise. As-

sume for instance that the one-dimensional system

dxt = f(xt; "t) dt+ g("t) dZt (2.17)

is not driven by white noise, but by an Ornstein�Uhlenbeck process Zt obeying the SDE

dZt = �
Zt dt + � dWt: (2.18)

The equations (2.17) and (2.18) can be rewritten, on the time scale 1=", as a two-dimensional

system of the form (1.1) for (xt; Zt). We assume that f has a stable equilibrium branch

x
?(t) with linearization a?(t) 6 �a0 < 0. To leading order in ", the asymptotic covariance

matrix (2.13) is given by

X0(t) = �
2

0
BBB@

g(t)2

2(
 + ja?(t)j)
g(t)

2(
 + ja?(t)j)

g(t)

2(
 + ja?(t)j)
1

2


1
CCCA : (2.19)

The conditions on GG
T mentioned above can be relaxed (c. f. [8, Theorem 6.1]), so

that (2.15) is applicable. We �nd in particular that the path fxtgt>0 is concentrated

in a strip of width proportional to �g(t)=
p

 + ja?(t)j, centred around x

det
t . Hence larger

�noise colour� 
 yields a smaller spreading of the paths, in the same way as if the curvature

of the potential were increased by 
.

3 Stochastic resonance

In the previous section, we have seen that on a certain time scale, paths typically remain in

metastable equilibrium. With overwhelming probability, they are concentrated in a strip

of order �g(t)=
p
ja?(t)j near the bottom of a potential well with curvature ja?(t)j. This

roughly holds as long as the strip does not extend to the nearest saddle of the potential.

New phenomena may occur when this hypothesis is violated, either because the noise

coe�cient �g(t) becomes too large, or because the curvature or the distance to the saddle

become too small. Then paths may overcome the potential barrier and reach another

potential well. This mechanism has various interesting consequences, one of them being

the e�ect called stochastic resonance.

Stochastic resonance (SR) was initially introduced as a possible explanation for the

close-to-periodic appearance of the major Ice Ages [4]. While this explanation remains

controversial, SR has been detected in several other physical and biological systems, see

for instance [29, 39] for a review.

The original model in [4] is based on an energy balance of the Earth in integrated form.

The evolution of the mean surface temperature T is described by the di�erential equation

c
dT

dt
= Q(1 +A cos!t)(1� �(T ))� E(T ): (3.1)
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Here the term Rin = Q(1 + A cos!t) is the incoming solar radiation, where Q denotes

the solar constant, and the periodic term models the e�ect of the Earth's varying orbital

eccentricity. The amplitude A of this modulation is very small, of the order 5 � 10�4,
while its period 2�=! equals 92 000 years. The outgoing radiation Rout = �(T )Rin+E(T )

depends on the albedo �(T ) of the Earth and its emissivity. c denotes the heat capacity.

To account for the existence of two stable climate states (warm climate and Ice Age),

the right-hand side of (3.1) should have two stable and one unstable equilibrium points.

The authors of [4] postulate that


(T ) =
Q

E(T )
(1� �(T ))� 1 = �

�
1�

T

T1

��
1�

T

T2

��
1�

T

T3

�
; (3.2)

where T1 = 278:6 K and T3 = 288:6 K are the representative temperatures of the two

stable states, and T2 = 283:3 K represents the unstable state. Since E(T ) � T
4 varies

little on this range, the problem can be further simpli�ed by neglecting the T -dependence

of E(T ) ' hEi. Equation (3.1) becomes

dT

dt
=
hEi
c

�
�

�
1�

T

T1

��
1�

T

T2

��
1�

T

T3

�
(1 + A cos!t) +A cos!t

�
: (3.3)

The parameter � is related to the relaxation time � ' 8 years of the system via

1

�
=
hEi
c
�

1

T3

�
1�

T3

T1

��
1�

T3

T2

�
: (3.4)

Let us now transform this system to a dimensionless form. We do this in two steps: First

we scale time by a factor !=2�, so that in the new variables, the system has period 1.

Then we introduce the variable x = (T � T2)=�T , where �T = (T3 � T1)=2 = 5 K. The

resulting system is

dx

dt
=

1

"

�
�x(x� x1)(x� x3)(1 + A cos 2�t) +K cos 2�t

�
; (3.5)

where x1 = (T1 � T2)=�T ' �0:94 and x3 = (T3 � T2)=�T ' 1:06. The adiabatic

parameter " is given by

" =
!�

2�

2(T3 � T2)

�T
' 1:8� 10�4: (3.6)

This con�rms that we are in the adiabatic regime. Using the value hEi=c = 8:77 �
10�3=4000 Ks�1 from [4], we �nd a driving amplitude

K =
A

�

T1T2T3

(�T )3
' 0:12: (3.7)

The term in brackets in (3.5) derives from a double-well potential, which is almost of the

Ginzburg�Landau type (1.8). If we set, for simplicity, x1 = �1 and x3 = 1, and neglect the

term A cos 2�t, then we obtain indeed a force deriving from the potential (1.8), with � = 1

and � = K cos 2�t. This potential has two wells if and only if j�j < �c = 2=3
p
3 ' 0:38, and

thus the amplitude K of the forcing is too small to enable transitions between the potential

wells. Note, however, that although A is very small, K is not negligible compared to �c.

The main new idea in [4] is that if one models the e�ect of the �weather� by an additive

noise term, then transitions between potential wells not only become possible but, due to
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Figure 2. The potential V (x; t) = 1
4
x4� 1

2
x2�K cos(2�t)x, from which derives the drift

term in (3.8). For cos(2�t) = 0, the potential is symmetric (middle), for integer times, the

left-hand well approaches the saddle (right), while for half-integer times, the right-hand

well approaches the saddle (left). If the amplitude K is smaller than the threshold �c,

there is always a potential barrier, which an overdamped particle cannot overcome in the

deterministic case. Su�ciently strong noise, however, helps the particle to switch from the

shallower to the deeper well. This e�ect is the stronger the lower the barrier is, so that

switching typically occurs close to the instants of minimal barrier height.

the periodic forcing, these transitions will be more likely at some times than at others, so

that the evolution of T can be close to periodic. We will illustrate this on the model SDE

dxt =
1

"

�
xt � x

3
t +K cos 2�t

�
dt+

�
p
"
dWt: (3.8)

However, the results in [7] apply to a more general class of periodically forced double-well

potentials, including (3.5).

Various characterizations of the e�ect of noise on the dynamics of (3.8), and various

measures of periodicity have been proposed. A widespread approach uses the signal-to-

noise ratio, a property of the power spectrum of xt, which shows peaks near multiples of

the driving frequency [16, 27, 24]. For small driving amplitudes K, the signal-to-noise ratio

behaves like e�H=�2
=�

4, where H is the height of the potential barrier in the absence of

periodic driving (i. e., for K = 0). The signal's �periodicity� is thus optimal for �2 = H=2.

A di�erent approach is used in [17], where the Lp-distance between sample paths and a

periodic limiting function is shown to converge to zero in probability as � ! 0. This result

requires " to be of order e�2H=�2 , which implies exponentially long forcing periods.

We examine here a di�erent regime, in which the forcing amplitude K is not necessarily

a small parameter, but may approach �c. In this way, transitions become possible for

values of " which are not exponentially small. The potential barrier is lowest at integer

and half-integer times. At integer times, the left-hand well approaches the saddle, while

at half-integer times, the right-hand well approaches the saddle, c. f. Figure 2.

The minimal values Hmin, cmin and Æmin of the barrier height, the curvature at the

bottom of the wells, and the distance between the bottom of one of the wells and the

saddle can be expressed as functions of a parameter a0 = �c � K. For small a0, they

behave like Hmin(a0) � a
3=2
0 , cmin(a0) � a

1=2
0 and Æmin(a0) � a

1=2
0 (meaning c�a

3=2
0 6

Hmin(a0) 6 c+a
3=2
0 for some positive constants c� independent of a0, and so on).

Intuitively, our results from Section 2 indicate that the maximal spreading of paths

is of order �=cmin(a0)
1=2, provided this value is smaller than Æmin(a0), i. e., provided � �

a
3=4
0 . Assume for instance that we start at time 1=4 (when the potential is symmetric)

near the right-hand potential well. We call transition probability the probability Ptrans

of having reached the left-hand potential well by time 3=4, after passing through the

10



con�guration with the shallowest right-hand well. Extrapolating (2.9) with h of the order

Æminc
1=2

min=� � H
1=2

min=�, we �nd

Ptrans 6
const

"2
e�const a

3=2
0

=�2 =
const

"2
e�const Hmin=�

2

for � 6 a
3=4
0 . (3.9)

Note the similarity with Kramers' time for the potential frozen at the moment of minimal

barrier height.

A bound of this form can indeed be proved, but (3.9) turns out to be a little bit

too pessimistic for very small a0. This is a rather subtle dynamical e�ect, related to the

behaviour of the deterministic system. Recall that the set B(h) in (2.7) is de�ned via

the linearization at the adiabatic solution �xdett , not at the bottom x
?(t) of the potential

well. This distinction is irrelevant as long as the minimal curvature remains of order one,

but not when it is a small parameter. In that case, the asymptotic expansion (2.3) does

not necessarily converge. Using methods from singular perturbation theory [10], one can

show that �xdett never approaches the saddle closer than a distance of order
p
", so that the

curvature at �xdett never becomes smaller than a quantity of order
p
", even if a0 < ". As a

consequence, for a0 < ", the system behaves as if there were an e�ective potential barrier

of height "3=2.

In fact, one can prove the following bound (see [7, Theorem 2.6] and [8, Theorem 3.1]):

There exist constants C; � > 0 such that

Ptrans 6
C

"
e���

2
c =�

2

for � 6 �c = (a0 _ ")3=4, (3.10)

where a _ b denotes the maximum of two real numbers a and b. In addition, paths remain

concentrated in a set B(h) of the form (2.7). Examining the behaviour of the integral (2.5),

one can show that the width of B(h) behaves, near t = 1=2, like h�=(jt�1=2j1=2_�1=3c ). The

various exponents entering these relations do not depend on the details of the potential,

but only on some qualitative properties of the �avoided bifurcation�, and can be deduced

geometrically from a Newton polygon [10].

What happens when � exceeds the threshold value �c? Away from half-integer times,

the right-hand well may still be su�ciently deep to con�ne the paths. However, there are

time intervals near half-integer t during which it becomes possible to overcome the barrier.

Near t = 1=2, the curvature c(t) at �xdett and the distance between �xdett and the saddle both

behave like jt� 1=2j _ �2=3c . Transitions thus become possible for jt� 1=2j 6 �
2=3.

During this time interval, the process xt makes a certain number of attempts to over-

come the barrier. If the saddle is reached, xt has roughly equal probability to fall back into

the right-hand well, in which case it will make further attempts to cross the barrier, or to

fall into the deeper left-hand well, where it is likely to stay during the next half-period.

One can show that the typical time for each excursion is of order "=c(t). Although the

di�erent attempts are not independent, the probability not to reach the left-hand well

during the transition window jt� 1=2j 6 �
2=3 behaves roughly like (1=2)N , where N is the

maximal number of possible excursions.

These arguments can be used to show (see [7, Theorem 2.7] and [8, Theorem 3.1]) that

there exist constants C; � > 0 such that

Ptrans > 1� C e���
4=3=("jlog�j) for � > �c. (3.11)

The factor �4=3 is proportional to the integral of c(t) over the transition window, and the

factor jlog�j takes into account the time needed to travel from the saddle to the left-hand
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Figure 3. Sample paths of the SDE (3.8) for " = a0 = 0:005, and � = 0:02 (upper

picture) and � = 0:14 (lower picture). Full curves represent the location of potential wells,

the broken curve represents the saddle. For weak noise, the path xt is likely to stay in the

shaded set B(h), centred at the deterministic solution tracking the right-hand well. The

maximal width of B(h) is of order h�=(a0 _ ")1=4 and is reached at half-integer times. For

strong noise, typical paths stay in the shaded set which switches back and forth between

the wells at integer and half-integer times. The width of the vertical strips is of order

�2=3. The �bumps� are due to the fact that one of the wells becomes very �at during the

transition window so that paths might also make excursions away from the saddle.

well. Ampli�cation by SR is thus optimal for noise intensities just above the threshold �c,

because stronger noise intensities will gradually blur the signal.

In the large-noise regime � > �c, the vast majority of paths stay in a strip switching

back and forth between potential wells each time the barrier height becomes minimal, as

shown in Figure 3.

Paths spend approximately half the time (for 1=4 < t < 1=2, 3=4 < t < 1, and so on)

in metastable equilibrium in the shallower potential well. This di�ers from the quasistatic

picture, when the driving period is larger than the maximal Kramers time, and paths spend

most of the time in the deeper potential well with occasional excursions to the shallower

one.

While the details of the transition process depend on the potential, the exponents

in (3.10) and (3.11) depend only on qualitative properties of the avoided bifurcation. Other

exponents arise, for instance, if V is a symmetric potential with modulated barrier height

of the form (1.8) with � = 0 and �(t) = a0+1�cos 2�t, c. f. [8, Theorem 3.2]. Here an ad-

ditional feature can be observed: For su�ciently strong noise, the process is likely to reach

the saddle during a certain transition window, but due to symmetry, it has about equal

probability to be in either of the wells when transitions become unlikely again. Observing

the process for several periods, we see that near the instants of minimal barrier height, the
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process chooses randomly between potential wells, with probability exponentially close to

1=2 for choosing either.

One can also consider the e�ect of coloured noise on SR. If the system is driven by

an Ornstein�Uhlenbeck process with damping 
, the typical spreading of paths will be

smaller, making transitions more di�cult. One can show that transitions only become

likely above a threshold noise intensity �c, given by

�
2
c = (a0 _ ")

�

 _ (a0 _ ")1=2

�
: (3.12)

If 
 < (a0 _ ")1=2, we recover the white-noise result, but for larger 
, the threshold grows

linearly with 
, namely like (a0 _ ")
.
It is, of course, not easy to decide whether the observed periodicity in the appearance

of Ice Ages can be explained by a simple, one-dimensional SDE of the form (3.8). Our

results show, however, that in order to match the observations, the noise intensity should

lie in a relatively narrow interval. Too weak noise will not allow regular transitions between

stable states, while too strong noise increases the width of the transition windows so much

that although switching does occur, no periodicity can be observed.

4 Hysteresis

The glacial cycle is not the only important bistable system in climate physics. Another

wellknown example is the Atlantic thermohaline circulation. At present time, the Gulf

Stream transports enormous amounts of heat from the Tropics as far north as the Barents

Sea, causing the current mild climate in Western Europe. It is believed, however, that this

has not always been the case in the past, and that during long time spans, the thermohaline

circulation was locked in a stable state with far less heat transported to the North (see for

instance [30]).

A simple model for oceanic circulation showing bistability is Stommel's box model [34],

where the ocean is represented by two boxes, a low-latitude box with temperature T1 and

salinity S1, and a high-latitude box with temperature T2 and salinity S2. Here we will

follow the presentation in [11], where the intrinsic dynamics of salinity and of temperature

are not modeled in the same way. The di�erences �T = T1 � T2 and �S = S1 � S2 are

assumed to evolve according to the equations

d

dt
�T = �

1

�r

(�T � �) �Q(��)�T (4.1)

d

dt
�S =

F (t)

H
S0 � Q(��)�S: (4.2)

Here �r is the relaxation time of�T to its reference value �, S0 is a reference salinity, andH

is the depth of the model ocean. F (t) is the freshwater �ux, modeling imbalances between

evaporation (which dominates at low latitudes) and precipitation (which dominates at

high latitudes). The dynamics of �T and �S are coupled via the density di�erence ��,

approximated by the linearized equation of state

�� = �S�S � �T�T; (4.3)

which induces an exchange of mass Q(��) between the boxes. We will use here Cessi's

model [11] for Q,

Q(��) =
1

�d
+

q

V
��2; (4.4)
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where �d is the di�usion time scale, q the Poiseuille transport coe�cient and V the volume

of the box. Stommel uses a di�erent relation, with ��2 replaced by j��j, but we will not
make this choice here because it leads to a singularity.

Using the dimensionless variables y = �S�S=(�T�), z = �T=� and rescaling time by

a factor �d, (4.1) and (4.2) can be rewritten as

_y = p(t)� y
�
1 + �

2(y � z)2
�

"0 _z = �(z � 1)� "0z
�
1 + �

2(y � z)2
�
;

(4.5)

where "0 = �r=�d, �
2 = �d(�T�)

2
q=V , and p(t) is proportional to the freshwater �ux

F (t), with a factor �SS0�d=(�T�H). Cessi uses the estimates �2 ' 7:5, �r ' 25 days and

�d ' 219 years. This yields "0 ' 3 � 10�4, implying that (4.5) is a slow�fast system.

Tihonov's theorem [36] allows us to reduce the dynamics to the attracting slow manifold

z = 1 +O("0). To leading order, we thus �nd

_y = �y
�
1 + �

2(y � 1)2
�
+ p(t): (4.6)

Stochasticity shows up in this model through the weather-dependent term p(t). To

model long-scale variations in the typical weather, we will assume that p(t) can be repre-

sented as the sum of a periodic term �p(t) and white noise, where the period 1=" of �p(t) is

much longer than the di�usion time, which equals 1. (Recall that we have already rescaled

time by a factor of �d.) We thus obtain the SDE

dyt = f(yt; t) dt+ �0 dWt; where f(y; t) = �y
�
1 + �

2(y � 1)2
�
+ �p(t): (4.7)

Note that f has an in�ection point at y = 2=3, and that

�f

�
2

3
+
x

�
; t

�
= �

�
�p(t)�

2

3
�

2

27
�
2

�
+

�
1

3
�
2 � 1

�
x� x

3
; (4.8)

which derives from the Ginzburg�Landau potential (1.8) with parameters � = (�2=3� 1)

and �(t) = �(�p(t)� 2=3� 2�2=27). As we already know, the potential has two wells if and

only if �2 < �
2
c = 4�3=27, which means, for �2 = 7:5, that �p 2 [0:96; 1:48]. The double-well

potential is symmetric for �p = �p0 = 2=3 + 2�2=27 ' 1:22.

For a deterministic forcing given by �(t) = K cos 2�"t, the SDE for x = �(y � 2=3)

becomes, on the time scale 1=",

dxt =
1

"

�
�x� x

3 +K cos 2�t
�
dt +

�
p
"
dWt; (4.9)

where � = �0�. This SDE is of the same form as (3.8). While in Section 3, we assumed

K < �c, we will now allow K to exceed �c, so that the di�erence a0 = K ��c may change

sign. (Note that in Section 3, a0 had the opposite sign.)

In the deterministic case � = 0, Equation (4.9) has been used to model a laser [23], and

a similar equation describes the dynamics of a mean-�eld Curie�Weiss ferromagnet [37].

In the limit of in�nitely slow forcing, solutions always remain in the same potential well if

K < �c. If K > �c, however, the well tracked by xt disappears in a saddle�node bifurcation

when j�(t)j crosses �c from below, causing xt to jump to the other well, which leads to

hysteresis, see Figure 4.

For positive ", the system does not react immediately to changes in the potential, so

that the hysteresis cycles are deformed. One can show [23, 10] that
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Figure 4. The potential V (x; t) = 1
4
x4 � 1

2
x2 � �(t)x, with �(t) = K cos(2�t), when K

exceeds the threshold �c. In the deterministic case, with " � 1, the overdamped particle

jumps to a new well whenever j�(t)j becomes larger than �c, leading to hysteresis. Larger

values of " increase the size of hysteresis cycles, but additive noise of su�cient intensity

decreases the size of typical cycles, because it advances transitions to the deeper well.

� For K 6 �c +O("), xt always tracks the same potential well, at a distance at most of

order "=
p
ja0j if a0 6 �", and of order

p
" if ja0j is of order ".

� For K > �c+O("), xt is attracted by a hysteresis cycle, which is larger than the static

hysteresis cycle; in particular, xt crosses the �-axis when �(t) = K cos 2�t = �
0, where

�
0 satis�es

j�0j � �c � "
2=3

a
1=3
0 ; with a0 = K � �c. (4.10)

Additive noise will also in�uence the shape of hysteresis cycles, because it can kick the

state over the potential barrier, as has been noted in [28] in the context of the thermohaline

circulation. For positive noise intensities �, the value �0 at which xt crosses the �-axis,

becomes a random variable. Assume for instance that we start at time t0 = 1=4 in the

right-hand potential well. We de�ne

�
0(!) = inf

n
t 2

h1
4
;
3

4

i
: xt(!) < 0

o
; �

0(!) = �(�0(!)); (4.11)

with the convention that �0(!) = 1 and �
0(!) = 1 if xt(!) > 0 for all t 2 [1

4
;
3
4
]. We

thus have �0 2 [1
4
;
3
4
] [ f1g and �

0 2 [�K;K] [ f1g. We will indicate the parameter-

dependence by �0 = �
0("; �), keeping in mind that this random variable also depends on a0

and �. In the deterministic case, �0("; 0) =1 if K 6 �c+O("), and �0("; 0) satis�es (4.10)

if K > �c + O(").

As we know from the previous section, for K < �c, there is an amplitude-dependent

threshold noise level �c such that during one period, xt is unlikely to cross the potential

barrier for � � �c, while it is likely to cross it for � � �c. In fact, in the latter case, there

is a large probability to cross the barrier a time of order �2=3 before the instant t = 1=2

of minimal barrier height, when � is of order �c � �
4=3. In that case, the hysteresis cycle

will be smaller than the static cycle. A similar distinction between a small-noise and a

large-noise regime exists for large-amplitude forcing.

It turns out that the distribution of �0 can be of three di�erent types, depending on

the values of the parameters (c. f. Figure 5 and Figure 6):
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(a)

�

x (b)

�

x (c)

�

x

Figure 5. Typical random hysteresis �cycles� in the three parameter regimes. (a) Case I:

Driving amplitude K and noise intensity � are too small to allow the path to switch

potential wells. (b) Case II: For large amplitude but weak noise, the path tracks the deter-

ministic hysteresis cycle, which is larger than the static one. (c) Case III: For su�ciently

strong noise, the path can overcome the potential barrier, so that typical hysteresis cycles

are smaller than the static one.

� Case I � Small-amplitude regime: a0 6 const " and � 6 (ja0j _ ")3=4.
Then xt is unlikely to cross the potential barrier, and there are constants C; � > 0 such

that (see [9, Theorem 2.3])

P
�
�
0
<1

	
6
C

"
e��(ja0j_")

3=2=�2
: (4.12)

The probability to observe a �macroscopic� hysteresis cycle is very small, as most paths

are concentrated in a small neighbourhood of the bottom of the right-hand potential

well (Figure 5a).

� Case II � Large-amplitude regime: a0 > const " and � 6 ("
p
a0 )

1=2.

This regime is actually the most di�cult to study, since the deterministic solution

jumps when j�(t)j � �c � ("
p
a0)

2=3, and crosses a zone of instability before reaching

the left-hand potential well. One can show, however, that j�0j is concentrated in an

interval of length of order ("
p
a0 )

2=3 around the deterministic value [9, Theorem 2.4].

More precisely, there are constants C; � > 0 such that

P
�
j�0j < �c � L

	
6
C

"
e��L

3=2=�2 (4.13)

for ("
p
a0 )

2=3 6 L 6 L0=jlog("
p
a0 )j, and

P
�
j�0j < �c + L1("

p
a0)

2=3
	
6
C

"
e��"

p
a0=�

2

; (4.14)

where the constants L0; L1 > 0 are independent of the small parameters. Hence it

is unlikely to observe a substantially smaller value of j�0j than the deterministic one,

provided � � ("
p
a0)

1=2. On the other hand, there is a constant L2 > L1 such that

P
�
j�0j > �c + L

	
6 3 e��L=(�

2("
p
a0 )

2=3jlog("pa0 )j) (4.15)

for all L > L2("
p
a0 )

2=3. As a consequence, the vast majority of hysteresis cycles will

look very similar to the deterministic ones, which are slightly larger than the static

hysteresis cycle (Figure 5b).
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�" 0 "
a0 = K � �c

�

Case I

(transitions unlikely)

Case II

Case III

"
3=4

ja0j3=4

("
p
a0 )

1=2

�c j�0("; 0)j
j�0j

width � ("
p
a0 )

2=3

�c�̂ j�0j

�4=3 " or "
p
a0=�

2=3

Figure 6. The three hysteresis regimes, shown in the plane driving-amplitude�noise-

intensity, for �xed driving frequency. The insets sketch the distribution of the random value

�0 of the forcing �(t) when xt changes sign for the �rst time. In Case I, such transitions are

unlikely. In Case II, j�0j is concentrated in an interval [�c+L1("
p
a0 )

2=3; �c+L2("
p
a0 )

2=3]
containing the deterministic value j�0("; 0)j. The broken curve indicates that we do not

control the distribution inside this interval. In Case III, j�0j is concentrated around a value

�̂ which is smaller than �c by an amount of order �4=3. The distribution decays faster to

the right, with a width of order " (actually, "jlog�j) if a0 6 " or � > ja0j3=4, and of order

"
p
a0=�

2=3 if a0 > " and � 6 ja0j3=4.

� Case III � Large-noise regime: Either a0 6 " and � > (ja0j _ ")3=4 or a0 > " and

� > ("
p
a0)

1=2.

In this case, the noise is su�ciently strong to drive xt over the potential barrier, with

large probability, some time before the barrier is lowest or vanishes, leading to a smaller

hysteresis cycle than in the deterministic case (Figure 5c). It turns out that j�0j is
always concentrated around a (deterministic) value �̂ satisfying �c � �̂ � �

4=3. It

follows from [9, Proposition 5.1] that

P
�
j�0j < �̂� L

	
6
C

"
e��L

3=2=�2 +
3

2
e���

4=3=("jlog�j) (4.16)

for 0 6 L 6 �̂ and

P
�
j�0j > �̂+ L

	
6

3

2
e��L=("jlog�j) (4.17)

for positive L up toK��̂ if a0 6 ". If a0 > ", the same bound holds forL 6 �c��̂, while
the behaviour for larger L is described by (4.15). The estimates (4.16) and (4.17) hold

if a0 6 " or � > a
3=4
0 . In the other case, two exponents are modi�ed: �4=3=("jlog �j) is

replaced by �2=("
p
a0 jlog �j), and L=("jlog �j) is replaced by �2=3L=("

p
a0 jlog �j).

Note that in all cases, the distribution of �0 decays faster to the right than to the left

of �̂, and it is unlikely to observe �0 larger than �c, except when approaching the lower

boundary of Region III.

17



In some physical applications, for instance in ferromagnets, the area enclosed by hys-

teresis cycles represents the energy dissipation per period. The distribution of the random

hysteresis area can also be described, and bounds on its expectation and variance can be

obtained. We refer to [9] and [8, Section 4] for details.

For Stommel's box model, the above properties have two important consequences.

First, noise can drive the system from one stable equilibrium to the other before the

potential barrier between them disappears, so that a smaller deviation from the mean

freshwater �ux than expected from the deterministic analysis can switch the system's

state. Second, this early switching to the other state is likely only if the noise intensity

exceeds a threshold value (which is lowest when the amplitude K is close to �c). Still,

the system spends roughly half of the time per period in metastable equilibrium in the

shallower well.

5 Delay

Convective motions in the atmosphere can be simulated in a laboratory experiment known

as Rayleigh�Bénard convection. A �uid contained between two horizontal plates is heated

from below. For low heating, the �uid remains at rest. Above a threshold, stationary

convection rolls develop. With increasing energy supply, the angular velocity of the rolls

becomes time-dependent, �rst periodically, and then, after a sequence of bifurcations de-

pending on the geometry of the set-up, chaotic. For still stronger heating, the convection

rolls are destroyed and the dynamics becomes turbulent.

Lorenz' famous model [26] uses a three-modes Galerkin approximation of the hydro-

dynamic equations. The amplitudes of these modes obey the ODEs

_X = Pr(Y �X)

_Y = rX � Y �XZ

_Z = �bZ +XY:

(5.1)

Here X measures the angular velocity of convection rolls, while Y and Z parametrize the

temperature �eld. The Prandtl number Pr > 0 is a characteristic of the �uid, b depends

on the geometry of the container, and r is proportional to the heating.

For 0 6 r 6 1, the origin (X; Y; Z) = (0; 0; 0) is a global attractor of the system,

corresponding to the �uid at rest. At r = 1, this state becomes unstable in a pitchfork

bifurcation. Two new stable equilibrium branches (�
p
b(r� 1);�

p
b(r� 1); r � 1) are

created, which correspond to convection rolls with the two possible directions of rotation.

We will focus on this simplest bifurcation, ignoring all the other sequences of bifurcations

ultimately leading to a strange attractor (see for instance [32]).

We are interested in the situation where r = r("t) growsmonotonously through r(0) = 1

with low speed " (e. g. r = 1 + "t). Near the bifurcation point, one can reduce the system

to an invariant center manifold, on which the dynamics is governed (c. f. [10]), after scaling

time by a factor ", by the one-dimensional equation

"
dx

dt
= �(t)x+ c(t)x3 + O(x5): (5.2)

Here �(t) = a(t) + O("), where a(t) = 1
2

�
�(Pr + 1) +

p
(Pr + 1)2 + 4Pr(r(t)� 1)

�
is the

largest eigenvalue of the linearization of (5.1) at 0, which has the same sign as r(t)�1, and

c(t) is negative and bounded away from zero. The right-hand side of (5.2) derives from
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Figure 7. The potential V (x; t) = 1
4x

4� 1
2�(t)x

2 transforms, as � changes from negative

to positive, from a single-well to a double-well potential. In the deterministic case, an

overdamped particle stays close to the saddle for a macroscopic time before falling into

one of the wells. Noise tends to reduce this delay.

a potential similar to the Ginzburg�Landau potential (1.8) with � = 0, which remains

symmetric while transforming from a single-well to a double-well as �(t) becomes positive,

see Figure 7.

The solution of (5.2) with initial condition x0 > 0 for t0 < 0 can be written in the form

xt = '(x0; t) e
�(t;t0)="; �(t; t0) =

Z t

t0

�(s) ds; (5.3)

with 0 < '(x0; t) 6 x0 for all t. Thus xt is exponentially small if �(t; t0) is negative. The

important point to note is that �(t; t0) can be negative even when a(t) is positive. For

instance, if �(s) = s, then �(t; t0) = 1
2
(t2 � t

2
0) is negative for t0 < t < �t0. Thus xt

will remain exponentially close to the saddle at x = 0 up to time �t0 after crossing the

bifurcation point. This phenomenon is called bifurcation delay. It means that when r is

slowly increased, convection rolls will not appear at r = 1, as expected from the static

analysis, but only for some larger value of r, which depends on the initial condition.

It is clear that the existence of a delay depends crucially on the fact that xt can approach

the saddle exponentially closely, where the repulsion is very small. Noise present in the

system will help kicking xt away from the saddle, and thus reduce the delay. The question

is to determine how the delay depends on the noise intensity �.

For brevity, we will illustrate the results in the particular case of a Ginzburg�Landau

potential, with dynamics governed by the SDE

dxt =
1

"

�
�(t)xt � x

3
t

�
dt +

�
p
"
dWt: (5.4)

The case without the term �x3t has been analysed by several authors [38, 33, 35, 22], with

the result that the typical bifurcation delay in the presence of noise behaves like
p
jlog �j.

The results in [6] cover more general nonlinearities than �x3.
We assume that �(t) is increasing, and satis�es �(0) = 0, �0(0) > const > 0. For

simplicity, we consider �rst the case where xt starts at a time t0 < 0 at the origin x = 0.

From the results of Section 2, we expect the paths to remain concentrated, for some time,

in a set whose width is related to the linearization of (5.4) around x = 0. We de�ne the

function

�v(t) = �v0 e
2�(t)="+

�
2

"

Z t

t0

e2�(t;s)=" ds; where �(t) = �(t; 0). (5.5)
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For a suitably chosen �v0 � �
2
=j�(t0)j, one can show that �v(t) is increasing and satis�es

�v(t) �

8><
>:
�
2
=j�(t)j for t0 6 t 6 �

p
"

�
2
=
p
" for �

p
" 6 t 6

p
"

�
2 e2�(t)=" =

p
" for t >

p
".

(5.6)

Note that although the curvature j�(t)j of the potential at the origin vanishes at time 0,

�v(t) grows slowly until time
p
" after the bifurcation point, and only then it starts growing

faster and faster.

We now introduce, as in Section 2, the set

B(h) =
�
(x; t) : jxj 6 h

p
�v(t)

	
: (5.7)

Then one can show (see [6, Theorem 2.10]) the existence of a constant h0 > 0 such that

the �rst-exit time �B(h) of xt from B(h) satis�es

P
�
�B(h) < t

	
6 C(t; ") e��h

2

(5.8)

for all h 6 h0�=�v(t), where

C(t; ") =
1

"2

Z t

t0

j�(s)j ds+O
�
1

"

�
; and � =

1

2
�O(

p
")� O

�
h
2�v(t)2

�2

�
: (5.9)

The paths are concentrated in B(h), provided h
2
0�

2
=�v(t)2 > h

2 � logC(t; "). As a conse-

quence, we can distinguish between three regimes, depending on noise intensity:

� Regime I: � 6 e�K=" for some K > 0.

The paths are concentrated near x = 0 at least as long as 2�(t) � K. This implies

that there is still a macroscopic bifurcation delay.

� Regime II: e�1="
p
6 � �

p
" for some p < 1.

The paths are concentrated near x = 0 at least up to time
p
", with a typical spreading

growing like �=
p
j�(t)j for t 6 �

p
", and remaining of order �="1=4 for jtj 6

p
".

� Regime III: � >
p
".

The paths are concentrated near x = 0 at least up to time ��, with a typical spreading

growing like �=
p
j�(t)j. Near t = 0, the potential becomes too �at to counteract the

di�usion, and as t grows further, paths keep switching back and forth between the

wells, before ultimately settling for a well.

Similar results hold if xt starts, at t0 < 0, away from x = 0, say in x0 > 0. Then the set

B(h) is centred at the deterministic solution x
det
t (with the same initial condition), which

jumps to the right-hand well when �(t; t0) becomes positive, see Figure 8. In Regime I,

with K su�ciently large, the majority of paths follow x
det
t into the right-hand potential

well.

It remains to understand the behaviour after time
p
" in Regime II. To this end, we

introduce the set

D(%) =
�
(x; t) : t >

p
"; jxj 6

p
(1� %)�(t)

	
; (5.10)

depending on a parameter % 2 [0; 2=3). The set D(0) contains the points lying between

the two stable equilibrium branches �
p
�(t). One can show (see [6, Theorem 2.11]) that if

% 2 (0; 2=3) and �jlog�j3=2 = O(
p
"), then the �rst-exit time �D(%) of xt from D(%) satis�es

P
�
�D(%) > t

	
6 C(t; ")

jlog�j
�

e�%�(t;
p
")="p

1� e�2%�(t;
p
")="

; (5.11)
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t

B(h)

(t0; x0)
D(%)

xdet
t

xt

p
t

p
"

Figure 8. A sample path xt of the SDE (5.4) with �(t) = t, for " = 0:01 and � = 0:015.
The deterministic solution xdett , starting in x0 > 0 at time t0, jumps to the right-hand

well, located at x?(t) =
p
t, at time jt0j. Typical paths stay in the set B(h), whose width

increases like h�=(
p
jtj_ "1=4), until time

p
" after the bifurcation. They leave the domain

D(%) (shown for % = 2=3) at a random time � = �D(%), which is typically of order
p
"jlog�j.

After leaving D(%), each path is likely to stay in a strip of width of order h�=
p
t, centred

at a deterministic solution approaching either +x?(t) or �x?(t).

where

C(t; ") = const �(t)

�
1 +

�(t;
p
")

"

�
: (5.12)

The estimate (5.11) shows that paths are unlikely to stay in D(%) as soon as t satis�es

%�(t;
p
")� "jlog �j. Since � is quadratic in t, most paths will have left D(%) for

t�
p
"jlog �j: (5.13)

Once xt has left D(%), one can further show that it is likely to track a deterministic

solution which approaches the bottom of one of the potential wells. Assume for instance

that xt leaves D(%) through the upper boundary, at a random time � = �D(%). Then, for

1=2 < % < 2=3, [6, Theorem 2.12] shows that the deterministic solution x
det;�
t , starting in

the same point at time � , approaches the bottom of the well at
p
�(t) like "=�(t)3=2 +p

�(�) e���(t;�)=", where � = 2 � 3%, and the path xt is likely to stay in a strip of width

�=
p
�(t) around x

det;� . Thus after another time span of the form (5.13), most paths will

have concentrated near the bottom of a potential well again.

We note that di�erent kinds of metastability play a rôle here. First, paths remain

concentrated for some time near the unstable saddle. Second, they will concentrate again

near one of the potential wells after some time. Some paths will choose the left-hand well

and others the right-hand well (with probability exponentially close to 1=2 in Regime II),

but all the paths which choose a given potential well are unlikely to cross the barrier again.

In fact, one can show that if �(t) grows at least linearly, then the probability ever to cross

the saddle again is of order e�const=�2 . If we start the system at a positive t0 in one of the

wells, the distribution will never approach a symmetric bimodal one.
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In the case of the Rayleigh�Bénard convection with slowly growing heat supply r("t)

and additive noise, these results mean that exponentially weak noise will not prevent the

delayed appearance of convection rolls. For moderate noise intensity, rolls will appear after

a delay of order
p
jlog �j=", which is considerably shorter than the delay in the deterministic

case which is of order 1=". The direction of rotation is unlikely to change after another time

span of that order. For strong noise, convection rolls may appear early, but their angular

velocity will �uctuate around zero until a time of order �=" after the bifurcation before

settling for a sign, and even then occasional changes of rotation direction are possible.
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