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Abstract

We study the existence of combustion waves for an autocatalytic reaction

in the non-adiabatic case. Basing on the fact that the reaction system has

canard solutions separating the slow combustion regime from the explosive

one, we prove by applying the geometric theory of singularly perturbed di�er-

ential equations the existence of a new type of travelling waves solutions, the

so-called canard travelling waves.

1 Introduction

Let us consider the singularly perturbed system

dx

dt
= f(x; y; ");

"
dy

dt
= g(x; y; �; ")

(1)

with x 2 Rn; y 2 Rm, " and � are parameters, where " is small and positive, f and

g are su�ciently smooth.

Let y = �(x; �) be an isolated simple root of the degenerate equation

g(x; y; �; 0) = 0

to system (1). We denote the graph of � by S� and call it slow manifold of (1). S�
consists of equilibria of the associated equation to (1)

dy

d�
= g(x; y; �; 0): (2)

Let B(x; �) be the Jacobian matrix of g(x; y; �; 0) with respect to y at the root

y = �(x; �). We denote by �(B(x; �)) the spectrum of B(x; �). We de�ne the

subsets Ss

�
and Su

�
of S� by

Ss

�
:= f(x; y) 2 S� : Re�

�
B(x; �)

�
< 0g;

Su

�
:= f(x; y) 2 S� : �

�
B(x; �)

�
\
�
Re z > 0

�
6= ;g:

Ss

�
(Su

�
) consists of stable (unstable) equilibria of (2), therefore we call Ss

�
(Su

�
)

the stable (unstable) slow manifold of (1). A point (x; �(x; �)) of S� satisfying

detB(x; �) = 0 is called impass point.

1



According to the geometric theory of singularly perturbed systems (see e.g. [7, 16,

25]), there is to given � a su�ciently small positive number "0 such that for 0 <

" � "0 system (1) has in a small neighborhood of Ss

�
(Su

�
) an attracting (repelling)

locally invariant manifold Ss

�;"
(Su

�;"
). Usually, Ss

�;"
and Su

�;"
do not belong to the

same integral manifold of (1). Under some additional conditions, to any su�ciently

small �xed " there exists a � = ��(") such that there are a trajectory in Ss

��(");"

and a trajectory in Su

��(");" which can be glued together near an impass point [24].

As a result we get a trajectory containing an attracting and a repelling part. We

call such a trajectory canard solution (or French duck solution) [1, 6, 18]. We note

that the existence of a canard trajectory can imply the phenomenon of delayed loss

of stability [19]. Concerning the existence of canards in chemical systems see e.g.

[3, 10] and references therein.

In modeling the self�ignition regime in case of an autocatalytic combustion reaction

the following interesting fact was discovered: the occurrence of a critical regime can

be characterized by the existence of a canard solution (see [12, 13]).

In this paper we shall consider the problem of thermal explosion in case of an auto-

catalytic combustion reaction. Taking into account heat convection and di�usion of

the reacting substances and restricting to one space dimension we get the following

model ([9, 13])



@�

@t
= �(1� �) exp(

�

1 + ��
)� �� + Æ

@2�

@�2
;



@�

@t
= 
�(1� �) exp(

�

1 + ��
) + �

@2�

@�2
:

Here, � denotes the dimensionless temperature, � is the dimensionless depth of

conversion of the gas mixture, ��� describes the volumetric heat loss, 
 and � are

parameters which are small in case of a highly exothermic reactions. In what follows

we suppose for simplicity � = 0, i.e. we shall investigate the system



@�

@t
= �(1� �)e� � �� + Æ

@2�

@�2
;



@�

@t
= 
�(1� �)e� + �

@2�

@�2
:

(3)

The goal of this paper is to study travelling wave solutions of (3) connecting the

steady states O(� = 0; � = 0) and P(� = 1; � = 0). Analyzing the corresponding

boundary value problem we will show that it is possible to choose the parameters in

such a way that the projection of the associated heteroclinic trajectory into the �; �-

plane is located in a small neighborhood of the canard trajectory characterizing the

occurrence of a critical regime. We call the corresponding travelling wave solution

a canard travelling wave solution.
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Note that combustion waves have been extensively studied during the last three

decades (see [2, 4, 8, 9, 17, 20, 21, 22, 23, 26, 28] and references therein). Most of

research has been focussed on the adiabatic case for �rst order combustion reactions

(for n-th order reactions see [2, 4]). The non-adiabatic case for a �rst order reaction

has been studied in [27]. In the present paper we investigate the non-adiabatic case

(� > 0) in case of an autocatalytic reaction.

2 Canard solutions in a self-ignition problem

First we study the reaction�di�usion system (3) in a homogeneous medium, that is,

we investigate the reaction system



d�

dt
= �(1� �)e� � ��;

d�

dt
= �(1� �)e�;

(4)

where we suppose that 
 is a small positive parameter. The chemically relevant

phase space of (4) is de�ned by � � 0; 0 � � � 1. A qualitative investigation of

system (4) has been performed in [12, 13, 14, 15]. In what follows we recall the main

results.

The degenerate equation to (4) reads

0 = �(1� �)� ��e��:

Its solution set is called the slow manifold S� of (4) which is depictured in the �gures

Fig. 1 � Fig. 3 for di�erent values of �.

It can be easily veri�ed that the stable slow manifold Ss

�
(unstable slow manifold

Su

�
) of (4) is located in the region 0 � � < 1 (� > 1). We represent Ss

�
(Su

�
) by a

solid (dashed) line.

1

P PP

O

1

O O

1 θθθ

ηηη

Ss
α

Su
α

Ss
α

Su
α

Ss
α

Su
α

Ss
α

Su
α

Su
αSs

α

Fig. 1. � > e=4 Fig. 2. � = e=4 Fig. 3. � < e=4
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Fig. 1 shows S� for some � > e=4. Here, each set Ss

�
and Su

�
consists of a single

connected curve. For � > e=4 and 
 su�ciently small, system (4) has an attracting

invariant manifold Ss

�;

and a repelling invariant manifold Su

�;

near the slow manifold

Ss

�
and Su

�
, respectively. To study the behavior of (4) we consider the initial value

problem



d�

dt
= �(1 � �)e� � ��;

d�

dt
= �(1 � �)e�; t > 0; (5)

�(0) = 0; �(0) = �0; 0 < �0 � 1:

Since the initial point (0; �0) belongs to the basin of attraction of the set Ss

�
, after

some short transition period the solution of (5) follows the attracting slow invariant

manifold Ss

�;

and tends to the equilibrium P as t tends to1. We call this behavior

the slow combustion regime.

Fig. 3 shows S� for some � < e=4. Each set Ss

�
and Su

�
consists of two di�erent

components. For � < e=4 and 
 su�ciently small, system (4) has an attracting

invariant manifold Ss

�;

(repelling invariant manifold Su

�;

) near each component of

the slow invariant manifold Ss

�
( Su

�
). For 
 su�ciently small and after some short

transition period, the solution of (5) will follow the component of Ss

�;

which is

related to the origin until it reaches the value � = 1. After this moment, �(t) will

increase very fast. This behavior characterizes the explosive regime.

Fig. 2 depictures the special case � = e=4 where the slow manifold possesses a

singularity which corresponds to a transcritical bifurcation of the set of equilibria

of the associated system (2). For � = e=4 and 
 su�ciently small, system (4) has

an attracting invariant manifold Ss

�;

(repelling invariant manifold Su

�;

) near each

component of the slow manifold Ss

�
(Su

�
). If we study the initial value problem

(5), then to given small 
 and for � near e=4 but less than e=4 we can observe

the existence of canard solutions which describe the transition between the slow

combustion regime and the explosive regime. That means, to given small 
 there

is an �-interval (�e(
); �c(
)) such that for � > �c(
) (� < �e(
)) the solution

of (5) belongs to the slow regime (explosive regime). The interval (�e(
); �c(
))

characterizes the critical regime, that is, after some short transition time, for � 2
(�e(
); �c(
)) the solution of (5) follows the component of Ss

�
which is related to the

origin until it reaches the value � = 1. After this moment, it follows the component

Su

�
which is located in the region � > 1

2
up to some point J from which the solution

�jumps� towards the attracting manifold Ss

�
related to the equilibrium P . Then it

follows this manifold to approach P as t tends to 1 (see Fig. 4).
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Fig. 4. Canard trajectories of system (4) for 
 = 0:05, �0 = 0:659941603;

�00 = 0:659941646; �000 = 0:659952218:

It is known that the interval (�e(
); �c(
)) satis�es �e(
) � �c(
) = O(e�k=
) as


 ! 0 for some k > 0 such that for � 2 (�e(
); �c(
)) it holds the representation

� = ��(
) +O(e�k=
) as 
 ! 0;

where the critical value ��(
) has the asymptotic expansion

��(
) = �0 + 
�1 + 
2�2 + : : : : (6)

In what follows we look for an asymptotic representation of the canard solution

� = H(�; 
) of (4) as long as it follows the slow manifold S� and is continuous at

� = 1

� = H(�; 
) � H0(�) + 
H1(�) + : : : : (7)

In order to �nd the coe�cients �i and Hi(�) we substitute the expansions (6), (7)

into the equation
d�

dt
= H 0(�)

d�

dt

expressing the invariance of the canard trajectory. Equating the coe�cients corre-

sponding to the same powers of 
 we get

�0 =
H0(1 �H0)e

�

�

�����
�=1

=
e

4
;

H0(�) =
1

2
�
s
1

4
� �0�e��;
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�1 =
��0
H 0

0

�����
�=1

= � ep
2
;

H1(�) =
�(�1H

0

0 + �0)

H 0

0(1 � 2H0)e�
;

�2 = ��1H
0

1 +H 0

0H
2
1e

H 0

0

�����
�=1

= �49

36
e;

H2(�) =
� (�1H

0

1 + �2H
0

0) +H 0

0H
2
1e

� +H1 (1�H 0

1) (1 � 2H0) e
�

H 0

0(1 � 2H0)e�
:

Here, the values �i are chosen in such a way that Hi are continuous at � = 1. All

details can be found in [12, 13]. Thus, the critical values ��(
) has the representation

��(
) =
e

4

�
1 � 2

p
2
 � 49

9

2
�
+O(
3):

3 Canard travelling waves

We are interested in travelling wave solutions of (3) with speed c and which connect

the steady states O and P. That means we are looking for solutions to (3) of the

type

�(t; �) = ~�(� + ct) � �(x); �(t; �) = ~�(� + ct) � �(x) (8)

satisfying

lim
x!�1

�(x) = lim
x!�1

�(x) = 0;

lim
x!+1

�(x) = 1; lim
x!+1

�(x) = 0;

and where x = � + ct is the phase of the wave. Such solution corresponds to a

one-dimensional propagating �ame.

Substituting (8) into (3) we get


c
d�

dx
= �(1� �)e� � �� + Æ

d2�

dx2
;


c
d�

dx
= 
�(1� �)e� + �

d2�

dx2
:

(9)

At �rst we consider the case of a travelling wave solution with speed c = �=
 where

� does not depend on 
. Since 
 is a small parameter we are looking for travelling

waves with high speed.

In that case, (9) takes the form
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�
d�

dx
= �(1� �)e� � �� + Æ

d2�

dx2
;

�
d�

dx
= 
�(1� �)e� + �

d2�

dx2
:

This system is equivalent to the system

d�

dx
= 
p ;

d�

dx
= q ;

Æ
dq

dx
= �q � �(1� �)e� + �� ;

�
dp

dx
= �p� �(1� �)e� :

(10)

Introducing the new independent variable s by s = 
x (
 6= 0) we obtain

d�

ds
= p ;



d�

ds
= q ;


Æ
dq

ds
= �q � �(1� �)e� + �� ;


�
dp

ds
= �p � �(1� �)e� :

(11)

Since 
 is assumed to be small, (11) is a singularly perturbed system with the slow

variable � and the fast variables �; p; q. We are interested in a solution of (11)

satisfying the boundary conditions

lim
s!�1

�(s) = lim
s!�1

p(s) = lim
s!�1

�(s) = 0; lim
s!�1

q(s) = 0;

lim
s!+1

�(s) = 1; lim
s!+1

p(s) = lim
s!+1

�(s) = 0; lim
s!+1

q(s) = 0;

that is, we are looking for a heteroclinic trajectory of the singularly perturbed system

(11) connecting the equilibria O and P.

The degenerate equations of (11) read

0 = q ;

0 = �q � �(1 � �)e� + �� ;

0 = �p � �(1 � �)e� ;

or, in more convenient form,
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0 = q ;

0 = ��(1� �)e� + �� ;

�p = �� :

(12)

System (12) de�nes the slow manifold ~S� of system (11) in R4. It is easy to see

that ~S� is a di�erentiable curve located in the plane q = 0; p = ��=c and that

its projection into the �; �-plane coincides with the manifold S� introduced in the

previous section. ~S� represents the set of equilibria of the associated system to (3)

d�

d�
= q ;

Æ
dq

d�
= �q � �(1� �)e� + �� ; (13)

�
dp

d�
= �p � �(1� �)e� :

It can be checked that for � < 0 the slow manifold ~S� consists of stable (unstable)

equilibria of (13) in the region � > 1 (� < 1).

Lemma 1. To given �; Æ; � there is a su�ciently small positive number 
0 such that

for 
 2 (0; 
0) there is an ~�� = ~��(
) such that (10) has a canard trajectory. ~��(
)

has the asymptotic representation

~�� = ~�0 + 
 ~�1 + 
2~�2 + : : : : (14)

Near the slow manifold the canard trajectory can be approximated by the asymptotic

series

� = ~H(�; 
) = ~H0(�) + 
 ~H1(�) + 
2 ~H2(�) + ::: ;

q = 
 ~Q(�; 
) = 
 ~Q1(�) + 
2 ~Q2(�) + ::: ;

p = ~P (�; 
) = ~P0(�) + 
 ~P1(�) + 
2~P2(�) + ::: :

(15)

Proof. We give only a sketch of the proof. First we linearize system (11) for � = e=4

at the impass point � = 0:5; � = 1; q = 0; p = �=�. The corresonding Jacobian ma-

trix has the eigenvalues �1 = �2 = 0; �3 = �4 = � 6= 0: For � near e=4 we may

reduce system (11) near the impass point by means of the center manifold theorem

to a two-dimensional system which is singularly perturbed with the small parameter


. Then, we apply the same technique as we have used in [14] to prove the existence

of an �-interval near � = e=4 such that (11) has a canard trajectory if � belongs to

that interval.

To calculate the coe�cients of the asymptotic expansions we substitute these series

into (11) and equate the coe�cients with the same power of 
. We get

~�0 = �0; ~�1 = �1; ~�2 = �2 +
e2

2c2

�
5

3
Æ � �

�
;
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~H0 = H0; ~H1 = H1;

where �i and Hi are de�ned in section 2.
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Fig. 5. Projection of canard trajectories of system (10) for 
 = 0:05,

�0 = 0:66022803; �00 = 0:66025281; �000 = 0:66024835:

Let us return now to system (9). In what follows we assume

Æ = ��; (16)

where � is some positive constant.

Introducing the new variable z by x = �cz we get from (9) and taking into account

(16)

�
 d�
dz

= �(1� �)e� � �� +
��

c2
d2�

dz2
;

�
 d�
dz

= 
�(1� �)e� +
�

c2
d2�

dz2
:

(17)

For the sequel we set

" := �=c2

and assume " to be small, that is, we assume that the quotient of the di�usivity

and the square of the velocity is small. System (17) is equivalent to the singularly

perturbed system

9



d�

dz
= �p;

d�

dz
= �q ;

�"
dq

dz
= �
 + q�(1� �)e� � �� ;

"
dp

dz
= �
p + 
�(1� �)e�:

(18)

Assuming � > 0, system (18) has the equilibria O1 := (p = q = � = � = 0) and

P1 := (p = q = � = 0; � = 1) which do not depend on any parameter.

The corresponding degenerate equations are

0 = 
q � �(1� �)e� + �� ;

0 = p � �(1� �)e� ;

their solution set S� can be represented in the form

q = 
�1(�(1� �)e� � ��) ;

p = �(1� �)e� :

It is easy to check that S� contains no impass point. According to a fundamental

result of the geometric theory of singularly perturbed di�erential equations [7, 25],

there exists for su�ciently small " a smooth invariant manifold S�;" of (18) which is

close to S�, contains the equilibria O1 and P1 and can be represented in the form

q = '(�; �; ") = 
�1
h
�(1� �)e� � �� + "'1(�; �) +O("2)

i
;

p =  (�; �; ") = �(1� �)e� + " 1(�; �) +O("2) :

On S�;" system (18) can be written as

d�

dz
= �(1 � �)e� + " 1(�; �) +O("2);



d�

dz
= �(1 � �)e� � �� + "'1(�; �) +O("2):

(19)

Lemma 2. To given su�ciently small 
 there is a an exponentially small �-interval

I�(
) and a su�ciently small "0 such that for 0 � " < "0 and for ~�� 2 I�(
) system
(19) has a canard trajectory connecting the equilibria O and P.

Proof. We note that for " = 0 system (19) coincides with system (4) having O as a

saddle equilibrium and P as a stable node. Moreover, it has been proven that for suf-

�ciently small 
 and if � belongs to some exponentially small interval (ae(
); ac(
)),

there is canard trajectory Th(
) of (4) connecting the equilibria O and P. As the

10



stable manifold of P and the unstable manifold of O intersect transversally, Th(
)
is a transversal heteroclinic trajectory. Thus, su�ciently small perturbations of (4)

do not destroy the existence of Th(
). Since the right hand side of (19) depends

smoothly on " we can conclude that to given small 
 there is a su�ciently small

"0(
) such that for " 2 (0; "0(
)) system (19) has a heteroclinic trajectory Th(
; ")
connecting O and P. Moreover, since under our conditions a solution of (19) depends

continuously on the right hand side, there is an exponentially small �-interval I�(
)

such that for � 2 (I�(
)) Th(
; ") is a canard trajectory. This completes the proof

of the lemma.

From Lemma 2 we get immediately

Theorem 1. To given su�ciently small 
 there is an exponentially small �-interval

I�(
) and a su�ciently small "0(
) such that for 0 � �(c2) < "0(
) and for

~�� 2 I�(
) system (3) has a canard travelling wave solution connecting the equi-

libria O and P.

The canard value ~��(
) separates two types of waves corresponding to the slow com-

bustion regime and to the thermal explosion (self-ignition) one, respectively. Like

in section 2, the case � > ~��(
) corresponds to slow combustion pro�les, while the

case � < ~��(
) characterizes to self-ignition pro�les.

The following �gures show numerical investigations of the travelling wave solution

of system (3) in the case of critical regime.
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Fig. 6. ��pro�les of the canard travelling wave solution of system (3)

for 
 = 0:05; � = 0:58443; Æ = � = 1.
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