
WIAS-preprint No. 691 ISSN 0946 { 8633

GLAUBER DYNAMICS OF THE RANDOM ENERGY MODEL

II. Aging below the critical temperature

G�erard Ben Arous1

Anton Bovier2, V�eronique Gayrard3,

October 16, 2001; 13:40

Abstract: We investigate the long-time behavior of the Glauber dynamics for the random

energy model below the critical temperature. We establish that for a suitably chosen timescale

that diverges with the size of the system, one can prove that a natural autocorrelation function

exhibits aging. Moreover, we show that the long-time asymptotics of this function coincide

with those of the so-called \REM-like trap model" proposed by Bouchaud and Dean. Our

results rely on very precise estimates on the distribution of transition times of the process

between di�erent states of extremely low energy.

Keywords: aging, Glauber dynamics, random energy model, trap models, metastability, ex-

treme values,

AMS Subject Classi�cation: 82C44, 60K35

1DMA, EPFL, CH-1015, Switzerland.

email: Gerard.Benarous@ep.ch
2Weierstrass-Institut f�ur Angewandte Analysis und Stochastik, Mohrenstrasse 39, D-10117 Berlin,

Germany. e-mail: bovier@wias-berlin.de
3DMA, EPFL, CH-1015, Switzerland, and

On leave from CPT-CNRS, Luminy, Case 907, F-13288 Marseille Cedex 9, France

e-mail: Veronique.Gayrard@ep.ch, Veronique.Gayrard@cpt.univ-mrs.fr

16=october=2001; 13:40 1



2 Section 1

1.Introduction and background

1.1. Introduction.

In this paper we continue the analysis of the Glauber dynamics of the random energy

model that was started in [BBG1]. We refer the reader to the introduction of that paper for

the general background of the problem.

We recall that we consider the following version of the REM. A spin con�guration �

is a vertex of the hypercube SN � f�1; 1gN . On an abstract probability space (
;F ; P )
we de�ne the family of i.i.d. standard normal random variables fX�g�2SN . We set E� �
[X�]+ � (X� ^ 0). We de�ne a random (Gibbs) probability measure on SN , ��;N , by setting

��;N (�) � e
�
p
NE�

Z�;N
(1:1)

where Z�;N is the normalizing partition function4. It is well-known [D1,D2]] that this model

exhibits a phase transition at �c =
p
2 ln 2. For � � �c, the Gibbs measures is supported,

asymptotically as N " 1 on the set of states � for which E� �
p
N�, and no single con�g-

uration has positive mass. For � > �c, on the other hand, the Gibbs measure gives positive

mass to the extreme elements of the order statistics of the family E�.

The dynamics we will consider is a discrete time Glauber dynamics. That is we construct

a Markov chain �(t) with state space SN and discrete time t 2 N by prescribing transition

probabilities pN(�; �) = P [�(t+ 1) = �j�(t) = �] by

pN(�; �) =

8><>:
1
N
e
��

p
NE� ; if k� � �k2 =

p
2

1� e
��

p
NE� ; if � = �

0; otherwise

(1:2)

Note that the dynamics is also random, i.e. the law of the Markov chain is a measure valued

random variable on 
 that takes values in the space of Markov measures on the path space

SNN . We will mostly take a pointwise point of view, i.e. we consider the dynamics for a given

�xed realization of the disorder parameter ! 2 
 (we persistently suppress the dependence

on ! in the notation).

It is easy to see that this dynamics is reversible with respect to the Gibbs measure ��;N .

One also sees that it represents a nearest neighbor random walk on the hypercube with traps

4The standard model has X� instead of E� . This modi�cation has no e�ect on the equilibrium properties

of the model, and will be helpful for setting up the dynamics.
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of random depths (i.e. the probability to make a zero step is rather large when E� is large)5.

1.2 Bouchaud's trap model.

In this sub-section we will explain the heuristics of the dynamics of the REM that was

developed in several papers by Bouchaud and others [B,BD,BM,BCKM]. We will actually

give a slightly varied form of this model that will �t better with the rigorous analysis we will

present later. Understanding the trap model will provide a crucial guideline for the analysis

of the full model later on.

The basic idea of Bouchaud can be explained as follows. As was explained in [BBG1], the

Gibbs measure of the REM for � >
p
2 ln 2 is concentrated, asymptotically, on a countable set

of states. Therefore we know that the Glauber dynamics for these temperatures will spend

almost all of its time in these same states. This suggests, as we will do in the main part of the

paper, to consider the dynamics on these states at appropriate time scales. Instead of doing

this, Bouchaud proposes to de�ne directly an new dynamics on these countably many states

in the in�nite volume limit6 that he expects to behave in the same way as the real model.

Thus we start with the random measure ~�� de�ned in Eq. 1.12 of [BBG1]. We want

to introduce a stochastic process on the support of this measure that leaves ~�� invariant.

Obviously we can identify the support of this measure with the atoms of the Poisson point

process P (de�ned in Section 1.2 of [BBG1]). The question is what the transition probabilities

should be.

Bouchaud proposes the following: Starting at a state i with energy Ei, the process waits

an exponential time of mean �0 exp(�Ei) (where � has the physical meaning of � = �=�c),

and then jumps at random to any of the other states j with equal probability. Here �0

denotes a time-scale that will have to be chosen appropriately later. The problem is that

while we would want the process to reach each state with equal probability, this makes no

sense given that there are in�nitely many states. Thus we have to introduce some cut-o�

procedure. Bouchaud proposes to allow jumps only to the M states of largest mass, and to

take the limit as M " 1 in the end. We �nd it more instructive to restrict our process to

states whose energy is larger than E, where E is a parameter that will be taken to �1 later7.

5We have chosen this particular dynamics for technical reasons. To study e.g. the Metropolis algorithm

would require some extra work, but we expect essentially the same results to hold.
6This is completely analogous to the procedure of Ruelle to de�ne a model based on Poisson process as

the in�nite volume version of Derrida's REM rather then proving the convergence of Derrida's model to this

limit.
7This has the advantage that via the parameter E we control explicitly the time-scale we consider, whereas
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This is very convenient, since it amounts to replace the Poisson process P (from Section 1.2

of [BBG1]) by its restriction PE to the half line [E;1). Since our new Poisson process has

a �nite intensity measure, it has a very useful representation: Consider a random variable

nE 2 N that is Poisson distributed with parameter
R1
E
e
�x
dx = e

�E . Let Ei; i 2 N be a

family of i.i.d. real valued r.v., independent of nE whose common distribution has density

e
E
e
�x1Ix�E with respect to Lebesgue measure. Then PE is equal in distribution to

nEX
i=1

ÆEi (1:3)

Given a realization of PE , we can now de�ne a Markov process on the random set SE �
f1; : : : ;M(E)g. Let YE(n); n 2 N be an discrete time Markov chain with state space SE . We

will actually only consider the case where YE(n) are i.i.d. random variables with some distri-

bution q. Next we introduce, for each i 2 N, a family Tn(i); n 2 N of i.i.d. random variables

taking values in R+ and having an exponential distribution with rates �i � �0 exp(�Ei), i.e.

P [Tn(i) � t] � Fi(t) = 1� e
�t=�i (1:4)

Now we set

Rn �
nX

k=1

Tk(YE(k)) (1:5)

and

r(t) = n if Rn � t < Rn+1 (1:6)

Finally, the Markov jump process is de�ned as

XE(t) � YE(r(t)) t � 0 (1:7)

Observe that the random variables �i are the atoms of a Poisson point process N � obtained

from P by transformation with the map � : E ! �0e
�E . A simple computation shows that

N � is a Poisson process with intensity measure ��(dx) = �
�1
�
1=�
0 x

�(1+�)=�
dx (see [Rue]).

We will also denote by N �
E the transform of the restricted process NE which is of course just

the restriction of N � to the half-line [�0e
��E

;1).

Let us note that in the case where YE(n); n 2 N are i.i.d., the random variables Tk(YE(k)); k 2
N are also i.i.d., and therefore r(t) is a renewal process. Moreover, in the case when the dis-

tribution, q, of YE(k) is of the form q(YE(k) = i) = p(�i), for some non-negative function

otherwise this would be some non-trivial random variable.
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p satisfying
PnE

i=1 p(�i) = 1, the law of the renewal variable Tk(YE(k)) can be expressed in

terms of the process N �
E as

P [Tk(YE(k)) > t] � 1� FE(t) =

nEX
i=1

qi(1� Fi(t)) =

Z
N �
E(ds)p(s)e

�t=s (1:8)

The two point function that is used to characterize the \aging" phenomenon is the probability

that during a time-interval [t; t+ s] the process does not jump, i.e.

�E(s; t) � P
�8u2[t;t+s];XE(u�)=XE(u)

�
(1:9)

(we set f(u�) � limv"u f(v)). Here we assume that the initial distribution of the chain

coincides with the jump distribution, i.e., P (XE(0) = i) = p(�i).

The following theorem paraphrases the results on the asymptotic behaviour for this cor-

relation function as found by Bouchaud and Dean [BD]

Proposition 1.1:De�ne

H0(w) �
1

�cosec (�=�)

Z 1

w

dx
1

(1 + x)x1=�
(1:10)

Then, for � > 0,

lim
E#�1

�E(s; t)

H0(s=t)
= 1; P -a.s. (1:11)

Moreover, the asymptotic behavior of H0(t=s) when s=t tends to zero or 1, respectively, is

readily evaluated:

(i) If (s=t) # 0,

H0(s=t) = 1� 1

�cosec (�=�)

Z s=t

0

dx
1

(1 + x)x1=�
� 1� (s=t)1�1=�

(1� 1=�)�cosec (�=�)
(1:12)

(ii) If (s=t) " 1,

H0(s=t) �
1

�cosec (�=�)

Z 1

s=t

dx
1

x1+1=�
=

(t=s)1=�

(1=�)�cosec (�=�)
(1:13)

In the remainder of this subsection we outline the proof of this theorem.

Lemma 1.2 The function �E(s; t) de�ned in (1.9) satis�es the equations

�E(s; t) = 1� FE(s+ t) +

Z t

0

�E(; t� u)dFE(u) (1:14)
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Proof: The proof of this lemma is elementary since �E(s; t) is a function of the renewal

process r(t) alone. }

Remember that we study the solution of this equation in the limit when E # �1. For

this it is important to make a choice of the time-scale �0. The choice �0 = e
��E is natural

since in this way we will measure time at the scale of the fastest states8. Our �rst step will

be to replace FE by its limit9

F1(t) � 1� �
�1
Z 1

1

dxe
�t=x

x
�(1+�)=� (1:15)

which is no longer random. From now on we will only consider the case when q is the uniform

measure, qi =
1
nE

. Let �1(s; t) denote the unique solution of the equation

�1(s; t) = 1� F1(s+ t) +

Z t

0

�1(s; t� u)dF1(u) (1:16)

Lemma 1.4 For all s; t � 0,

lim
E#�1

�E(s; t) = �1(s; t); P-a.s (1:17)

The limiting equation (1.16) is solved following standard procedures (see e.g. [Fe]). One

de�nes the renewal function M(t) that solves the equation

M(t) = F1(t) +

Z t

0

M(t� u)dF1(u) (1:18)

In terms of this function, the solution of (1.16) is then given as

�1(s; t) = 1� F1(s+ t) +

Z t

0

(1� F1(s+ t� u))dM(u) (1:19)

Setting f1(t) � F
0
1(t),

f1(t) = �
�1
Z 1

1

e
�t=x

x
�(2�+1)=�

dx (1:20)

8Other choices may lead to completely di�erent behaviors.
9In this introduction we will not justify the various passages to limits (which is also never done in the

physics literature). Note however that these issues are treated in Section 5, and the results proven there can

easily be used to justify everything that we will do in the present section.
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Denote by g� the Laplace transform of a function g, i.e. g�(u) =
R1
0
e
�ut

g(t). Then

F
�
1(u) = u

�1 � �
�1
Z 1

1

dx

(ux+ 1)x1=�

= u
�1 � �

�1
u
(1��)=�

Z u1

u

dx

(1 + x)x1=�

(1:21)

In the last expression, the integration is understood to be along a transformed path in the

complex plane if u is complex. Note that10Z 1

0

dx

(1 + x)x1=�
= �(��1)�(1 � �

�1) =
�

sin(�=�)
= �cosec (�=�) (1:22)

Thus, when u ! 0, the integral in (1.21) converges to the constant �cosec (�=�). Similarly,

we have that

f
�
1(u) = �

�1
Z 1

1

1

1 + ux
x
�(1+�)=�

dx (1:23)

In particular, f�1(0) = 1, and

1� f
�
1(u) = �

�1
Z 1

1

�
1� 1

1 + ux

�
x
�(1+�)=�

dx = �
�1
u
1=�

Z u1

u

dx

(x+ 1)x1=�
(1:24)

Taking the Laplace transform of (1.18) this implies that

M
�(u) =

F
�
1(u)

1� f�1(u)
=

1

��1u(1+�)=�
R u1
u

dx
(1+x)x1=�

� u
�1 (1:25)

and, by classical results on the asymptotics of the inverse Laplace transform (see [Doe], Vol.

2, Section 7), this in turn implies that for t " +1,

M(t) � t
1=�

���1�(��1)cosec (�=�)
� 1 (1:26)

Finally, we can compute the asymptotics of the solution of equation (1.16). Here we will

directly make use of the fact that the Laplace transform of �1(s; t) is given explicitly as

��1(u; s) =
�
R1
1
e
�s=x dx

(ux+1)x1=�

1� f�1(u)
(1:27)

10Performing the change of variable x = y�1 � 1,
R
1

0

dx

(1+x)x1=�
=
R 1
0

dy

(1�x)1=�x1�1=� where one recog-

nizes the Beta integral
R 1

0

dy

(1�y)��1y��1 =
�(�)�(�)

�(�+�)
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we have already established the asymptotics of 1� f
�
1(u) near u = 0. We still need to treat

the numerator. It will be convenient to write

�
�1
Z 1

1

e
�s=x dx

(ux+ 1)x1=�
= �

�1
Z 1

1

dx

Z 1

s=x

dve
�v 1

(ux+ 1)x1=�

=��1
Z 1

0

dve
�v
Z 1

s=v^1
dx

1

(ux+ 1)x1=�

=��1
Z 1

0

dve
�v
Z 1

s=v

dx
1

(ux+ 1)x1=�

� �
�1
Z 1

s

dve
�v
Z 1

s=v

dx
1

(ux+ 1)x1=�

(1:28)

Now the �rst term can be conveniently represented as u� times an explicit Laplace transform:

�
�1
Z 1

0

dve
�v
Z 1

s=v

dx
1

(ux+ 1)x1=�
= �

�1
u
1=�

Z 1=u

0

dve
�uv

Z u1

s=v

dx
1

(x+ 1)x1=�
(1:29)

Note that since all integrands vanish at in�nity in the right-half plane, 0=u and u1 can be

replaced with 0 and 1, resp., i.e. the integration contours can be deformed to integrations

along the real line. We will show that this term is the dominant one.

In fact, combining (1.24) with (1.28) we get from (1.27) that

��1(u; s) =

R1=u

0
dve

�uv R u1
s=v

dx
1

(1+x)x1=�R1
u

dx
(1+x)x1=�

�
R1
s
dve

�v R 1
s=v

dx
1

(u+1=x)x1=�

u1=�
R1
u

dx
(1+x)x1=�

(1:30)

Now the integral in the denominator equalsZ 1

u

dx

(1 + x)x1=�
=

Z 1

0

dx

(1 + x)x1=�
�
Z u

0

dx

(1 + x)x1=�

= �cosec (�=�) � u
1�1=�

1X
n=0

(�1)n u
n

n+ 1� 1=�

(1:31)

where the last sum is convergent for juj < 1. Thus the leading singular (at u = 0) term from

the �rst term in (1.30) is given byR1
0
dve

�uv R1
s=v

dx
1

(1+x)x1=�

�cosec (�=�)
(1:32)

which obviously is the Laplace transform of the function H0(s=t).

It remains to consider the second term in (1.30). Here the numerator converges to a

constant as u tends to zero, in fact, at u = 0 it equalsZ 1

s

dve
�v
Z 1

s=v

dx
1

x1=�
=

1

1� 1=�

Z 1

s

dye
�y
h
1� y

1�1=�
i
� const:e

�s (1:33)
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Therefore the leading asymptotic of the second term is given by

Const:u
�1=�

e
�s (1:34)

The inverse Laplace transform of the second term has therefore the leading asymptotic be-

havior

H1(s; t) � Const:t
1=��1

e
�s (1:35)

Note that while the asymptotics in t looks the same as that of the second term of H0(s=t) in

the case s=t # 0, due to the exponential decay in s, this term can be neglected if s is large.

Thus we have now established the \aging" asymptotics found in Bouchaud.

1.3. The renewal equations. Statement of the main results.

Guided by Bouchaud's trap model, we can now construct the setup for the analysis of

aging in the full REM dynamics. First of all the natural subset of states in SN to play the

rôle of the state space in the trap model is the set

TN (E) �
�
� 2 SN

��E� � uN (E)
	

(1:36)

where (recall Section 1.1 of [BBG1])

uN (x) �
p
2N ln 2 +

xp
2N ln 2

� 1

2

ln(N ln 2) + ln 4�p
2N ln 2

(1:37)

We will call the set TN (E) 'the top', and frequently suppress indices, writing T = T (E) =

TN (E) whenever no confusion seems possible. Moreover, we will use the convention that

M � jTN (E)j, and d � 2M .

The idea is clearly to observe the process only at its visits to T . The natural generalization

of Bouchaud's correlation function �E(s; t) is therefore the probability that the process does

not jump from a state in the top to another state in the top during a time interval of the form

[n; n+m]. There is some ambiguity how this should be de�ned precisely, but the following

de�nition appears most convenient. To formulate it, let us introduce the following random

times. For any k 2 N, let k� denote the last time before k at which the process has visited

the top, i.e.

k� � sup fl < k j �(l) 2 TN (E)g (1:38)

Now set

�(n;m;N;E) � P
�8k2[n+1;n+m] �(k) 62 TN (E)n�(k�)

�
(1:39)
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Of course we still have to specify the initial distribution. To be as close as possible to

Bouchaud, the natural choice is the uniform distribution on TN (E) that we will denote by

�E . However, we will also need to introduce the respective functions with starting point in

an arbitrary state �. Thus we set

��(m;m;N;E) � P
�8k2[n+1;n+m] �(k) 62 TN (E)n�(k�) j �(0) = �

�
(1:40)

and

�(m;n;N;E) � 1

jTN (E)j
X

�2TN (E)

��(n;m;N;E) (1:41)

We will also use vector notation and write �(n;m;N;E) for the M dimensional vector with

components ��(n;m;N;E), � 2 TN (E). We are now ready to state the main theorem of

this paper.

Theorem 1 Let � >
p
2 ln 2. Then there is a sequence cN � exp(�

p
NuN (E)) such that

for any � > 0

lim
t;s"1

lim
E#�1

lim
N"1

P

������([cNs]; [cN t]; N;E)�1(s; t)
� 1

���� > �

�
= 0 (1:42)

where �1(s; t) is the limiting correlation function of the trap model, de�ned in (1.17).

Before closing the introduction, let us say a few words about the heuristics of this theorem

and the diÆculties we will have to expect. Let us recall from [BBG1]the notation, for � 2
SN ; I � SN ,

�
�
I � inffn > 0 j �(n) 2 I; �(0) = �g (1:43)

for the �rst positive time the process starting in � reaches the set I, Note that it is easy to

derive a renewal equation for the quantities (1.40). Namely, the event in the probability in

(1.40) occurs either

(i) if �(k) 62 T (E)n�, for all k 2 [0; n+m], or

(ii) if there is 0 < l � n, s.t. l = inffk � n j �(k) 2 T (E)n�g, and 8k2[n+1;n+m] �(k) 62
TN (E)n�(k�).

Since this decomposition is disjoint, it implies immediately the following system of renewal
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equations:

��(m;n;E) = P[��T (E)n� > m+ n]

+

nX
k=1

X
�02T (E)n�

P�[�
�
T (E)n� = k;Xk = �

0
;Xl 62 T (E)nXl� ;8n � l � m+ n]

= P[��T (E)n� > m+ n] +

nX
k=1

X
�02T (E)n�

P[���0 = �
�
T (E)n� = k]��0(m;n� k;E)

(1:44)

The extra diÆculty stems from the fact that the kernels P[���0 = �
�
T (E)n� = k] depend on both

� and �0, while in the trap model it is assumed that this quantity is independent of �0 for

any value of k. Indeed, if we had the relation

P[���0 = �
�
T (E)n� = k] =

�E(�
0)

1� �E(�)
P[��T (E)n� = k] (1:45)

averaging (1.44) over � would yield

�(m;n;E) =
X

�2T (E)
�E(�)P[�

�
T (E)n� > m+ n]

+

nX
k=1

X
�2T (E)

�E(�)P[�
�
T (E)n� = k]

X
�02T (E)n�

�E(�
0)

1� �E(�)
��0(m;n� k;E)

=
X

�2T (E)
�E(�)P[�

�
T (E)n� > m+ n] +

nX
k=1

X
�2T (E)

�E(�)P[�
�
T (E)n� = k]�(m;n� k;E)

+

nX
k=1

X
�2T (E)

�E(�)

1� �E(�)
P[��T (E)n� = k]�E(�)[�(m;n � k;E) ���(m;n� k;E)]

(1:46)

The last term is bounded by jT (E)j�1 which tends to zero uniformly as E " 1 and would be

treated as an error term. If we ignore this term for a moment, (1.46) takes the desired form:

Setting

FN;E(n) �
X

�2T (E)
�E(�)P[�

�
T (E)n� > n] (1:47)

and

fN;E(n) �
X

�2T (E)
�E(�)P[�

�
T (E)n� = n] (1:48)

Eq. (1.46) then becomes

�(m;n;E) = FN;E(m+ n) +

nX
k=1

fN;E(k)�(m;n� k;E) (1:49)
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which has the form of the equation in the trap model. Unfortunately, even though we will

show in Section 2 that (1.45) is true (up to an negligible error) when summed over k, we have

not been able to �nd an argument that would show that (1.45) was true pointwise. Thus the

only way out appears to be to study the solution of the full system (1.44). This will require

some substantial preparations and will be undertaken only in Section 5.

The remainder of this paper is devoted to proving Theorem 1. In the next section we recall

some important results from [BBG1]. In Section 3 we prove the necessary re�ned estimates

on the probability distributions appearing as kernels or inhomogeneous terms in the renewal

system (1.44). Armed with these estimates, we will return to the analysis of the solution of

this system in Section 4 where we prove Theorem 1.

2. Basic estimates.

We will briey recall a number of estimates that were proven in [BBG1] and that we will

use heavily in our analysis.

The �rst concerns various hitting probabilities.

Proposition 2.1: Set M = jT (E)j, d = 2M and Æ(N) � �
d
N

�1=2
logN . There exists a

subset E � 
 with P (E) = 1, such that for all ! 2 E, for all N large enough, the following

holds:

For " > 0 a constant, de�ne the sets

Bp"N (�) = f�0 2 SN j k�0 � �k2 �
p
"Ng; � 2 SN (2:1)

and

W"(I) �
\
�2I

Bcp
"N

(�); I � SN (2:2)

Then,

i) For all " > 0 there exists a constant c > 0 such that, for all � 2 T and all � 2W"(T ),���P���� < �
�
Tn�

�
� 1

M

��� � d
NM

(1 + cÆ(N)) (2:3)

ii) There exists a constant c > 0 such that, for all � 2 T and �� 2 T with � 6= ��,���e�pNE��P

�
�
��
� < �

��
Tn�

�
� 1

M

��� � d
NM

(1 + cÆ(N)) (2:4)
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iii) There exists a constant c > 0 such that, for all � 2 T and �� 2 T with � 6= ��,���P�� ��� < �
��
Tnf�;��g

�
� 1

M�1

��� � d
N(M�1) (1 + cÆ(N)) (2:5)

iv) There exists a constant c > 0 such that, for all � 2 T ,���e�pNE�P

�
�
�
Tn� < �

�
�

�
� �1� 1

M

���� � �1� 1
M

�
d
N
(1 + cÆ(N)) (2:6)

v) There exists a constant c > 0 such that, for all � =2 T ,
�
1� 1

M

� �
1� d

N
(1 + cÆ(N))

� � e
�
p
NE�P (��T < �

�
� ) � 1 (2:7)

vi) For all " > 0 there exists a constant c > 0 such that, for all � =2 T and all �� 2W"(T [ �),

P
�
�
��
� � �

��
T

� � 1
M

+ d
NM

(1 + cÆ(N)) (2:8)

The next statement (Theorem 1.4 of [BBG1]) gives sharp estimates on mean transition

times.

Theorem 2.2: Assume that � � �=
p
2 ln 2 > 1. Then there exists a subset eE � 
 with

P (eE) = 1, such that for all ! 2 eE, for all N large enough, the following holds:

i) For all � 2 T (E),

E(�
�
T (E)n� ) =

1

1� 1
M

h
e
�
p
NE+

� +W�;N;T (E)

i
(1 +O(1=N)) (2:9)

ii) For all � =2 T (E),

E (��T (E) ) �
1

1� 1
M

h
e
�
p
NE+

� +W�;N;T (E)

i
(1 +O(1=N))

E (��T (E) ) �
1

1� 1
M

�
e
�
p
NE+

� +
1� e

E(�� 1)

1 + 1=M
W�;N;T (E)

�
(1 +O(1=N))

(2:10)

iii) For all �; �� 2 T (E), � 6= ��,���E (���� j ���� � �
�
T (E)n�)� E(�

�
T (E)n� )

��� � 1

1� 1
M

W�;N;T (E)O(1=N) (2:11)
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where

W�;N;T (E) �
e
(��1)E+�

p
NuN (0)

M(� � 1)

�
1 + VN;EeE=2

�� 1p
2�� 1

�
(2:12)

and VN;E is a random variable of mean zero and variance one.

We will also make use of the following simple corollary to this proposition:

Corollary 2.3: Under the assumptions and with the notation of Theorem 2.2 we have:

i) For all �; �� 2 T , � 6= ��:����� 1

jT (E) n �j
X

��2T (E)n�
E (�

�
�� j ���� � �

�
T (E)n�)�E (���� j ���� � �

�
T (E)n�)

����� � 1

1� 1
M

W�;N;T (E)O(1=N)

(2:13)

ii) For all � 2 T (E),

0 < E (�
�
T (E)n� )� P

�1(��
Tn� < �

�
� ) �

1

1� 1
M

W�;N;T (E)(1 +O(1=N)) (2:14)

Proof of Corollary 2.3: The �rst assertion is an obvious consequence of the last assertion

of Theorem 2.2. The second assertion simply follows from Eq. (3.8) of [BBG1] and is proven

just as the �rst assertion of Theorem 2.2. }

Equipped with this information we proceed in the next section to analyse the Laplace

transforms of the distribution functions of such transition times.

3. Estimates on Laplace transforms.

We will use the method of Laplace tranforms to solve the system of renewal equations

(1.44). Doing so this will require precise control on the Laplace transforms of the distributions

functions of the probability distributions appearing in these equations. In this section we

derive the basic estimates on these Laplace transforms.

As in [BEGK1], Section 3, the �rst crucial step is an estimate of the maximal mean time

to reach the set T (E).

Lemma 3.1: De�ne

�(E) � max
�2SN

E�
�
T (E) (3:1)
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and

b�(E) � (1� 1
jT (E)j )

�1
e
�
p
NuN (0)+�E

�
1 +

e
�E

jT (E)j(� � 1)

�
1 + VeE=2 �� 1p

2�� 1

��
(1 +O(1=N))

(3:2)

where V is a random variable of mean zero and variance 1. Then, under the assumptions of

Theorem 2.2,

�(E) � b�(E) (3:3)

Proof: For � 62 T (E), the bound E�
�
T (E)

� b�(E) follows immediately from the estimate

from Theorem 2.2, i). If � 2 T (E), the forward Kolmogorov equation shows that

E�
�
T (E) =

X
�02T (E)

pN(�; �
0) +

X
�0 62T (E)

pN (�; �
0)(1 + E�

�0

T (E) ) (3:4)

Using the previous result in (3.4) one sees that the same estimate holds in this case. }

We de�ne, for � 2 SN , I; J � SN , and u 2 D � C ,

G
�
I;J(u) � Ee

u��I 1If��
I
���

J
g �

1X
n=1

P[��I = n � �
�
J ] (3:5)

where D is chosen such that the right-hand side of (3.5) exists. Note that this is always the

case for u s.t. <(u) � 0, but in fact, for x; I; J given, there will be some u0 � u0(�; I; J) > 0,

s.t. G�
I;J(u) exists for all u with <(u) � u0.

Theorem 3.2: For any � 2 T (E), the Laplace transform G
�
T (E)n�(u) can be written as

G
�
T (E)n�(u) =

a�

1� (1� e�u)E��
T (E)n� b�

+R�(u) (3:6)

where

a� = 1 +O(b�(E)=E��T (E)n� ) (3:7)

b� = 1 +O(b�(E)=E��T (E)n� ) (3:8)

and R�(u) is analytic in the half-plane <(u) < 1=b�(E), periodic with period 2� in the imag-

inary direction, and satis�es

(i) for all juj � a=b�(E),
jR�(u)j � C(a)

�
e
��

p
NE� b�(E)�2 (3:9)
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and

(ii) for all u with <(u) < (1� �)b�(E) and j1� e
�uj � 2��1e��

p
NE�

jR�(u)j � 2
e
��

p
NE�

j1� e�uj(1�<(u)b�(E)) (3:10)

Moreover,

a� +R�(0) = 1 (3:11)

This proposition allows in fact to prove very good estimates on the distribution function

of ��T (E)n� . Note �rst that if

L(u) �
1X
n=0

e
un
P[��T (E)n� > n] (3:12)

then

L(u) =
G
�
T (E)n�(u)� 1

eu � 1
(3:13)

Corollary 3.3: With the notation of Theorem 3.2, for any � > 0 and for any positive

integer n 2 N,

P[��T (E)n� = n] =
a�

E��
T (E)n� b�

e
�n=E��T (E)n�b�

+O

�
e
�n(1��)=b�(E)

e
��

p
NE��

�1 ln
�b�(E)��� (3:14)

and (for n > 0)

P[��T (E)n� > n] = a�e
�n=E��T (E)n�b� +O

�
e
�n(1��)=b�(E)

e
��

p
NE� b�(E)��1� (3:15)

Proof of Theorem 3.2: Our analysis of the Laplace transforms will follow closely the

strategy employed in [BEGK1], but some simpli�cations will occur due to the particular

properties of the model at hand.
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3.1 A priori estimates on Laplace transforms.

As in [BEGK1], Lemma 3.1 implies immediate control on the Laplace transforms g�
0

� (u) �
G
�0

�;T (E)(u):

Lemma 3.4: For all � > 0, and for all real u � (1� �)=b�(E), for all �; �0 2 SN ,
g
�0

� (u) � 1

1� ub�(E) � �
�1 (3:16)

Proof: The proof is identical to the proof of Lemma 3.2 of [BEGK1]. Just note that if we

set

vu(�
0) �

8><>:
g
�0

� (u); for �0 62 T (E) [ �
1; for �0 = �

0; for �0 2 T (E)n�
(3:17)

then vu is the unique solution of the Dirichlet problem

(1� e
u
PN )vu(�

0) = 0; if �
0 62 T (E) [ �

vu(�) = 1

vu(�
0) = 0 if �

0 2 T (E)n�
(3:18)

Setting wu(�
0) � vu(�

0)� v0(�
0), we see that wu solves

(1� PN )wu(�
0) = (1� e

�u)vu(�
0); if �

0 62 T (E) [ �
wu(�

0) = 0 if �
0 2 T (E) [ �

(3:19)

The solution of (3.19) can be represented as

wu(�
0) = E

��
0

T (E)[��1X
t=1

(1� e
�u)vu(Xt) (3:20)

implying that

vu(�
0) = P[��

0

� = �
�0

T (E)[� ] + (1� e
�u)E

��
0

T (E)[��1X
t=1

vu(Xt) (3:21)

Setting S(u) � max�0 62T (E)[� vu(�
0), (3.21) implies

S(u) � 1 + (1� e
�u) max

�0 62T (E)[�
E�

�0

T (E)[�S(u)

� 1 + ub�(E)S(u) (3:22)
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and hence

S(u) � 1

1� ub�(E) (3:23)

which proves the lemma.}

This basic estimate can be improved in certain cases:

Lemma 3.5: Let � 2 T (E). Then, for u as in Lemma 3.4,

(i)

G
�
T (E)n�;�(u) � e

��
p
NE�

e
u

1� ub�(E) � 2��1P[��T (E) < �
�
� ] (3:24)

(ii)

G
�
�;T (E)(u) � e

u

 
1 + e

��
p
NE�

1

1� ub�(E)
!
� 1 + 2��1P[��T (E) < �

�
� ] (3:25)

Proof: Let us �rst prove (i). This goes essentially along the same lines as the proof of

Lemma 3.4. De�ne

 u(�
0) �

8><>:
G
�0

T (E)n�;�(u); for �0 62 T (E) [ �
1; for �0 2 T (E)n�
0; for �0 = �

(3:26)

and �u(�
0) �  u(�

0)�  0(�
0). Then �u solves

(1� PN )�u(�
0) = (1� e

�u) u(�
0); if �

0 62 T (E)
�u(�

0) = 0 if �
0 2 T (E)

(3:27)

Just as in the previous proof, we get �rst the uniform bound

 u(�
0) � 1

1� ub�(E) (3:28)

Now

G
�
T (E)n�;�(u) =

X
�0 6=�

pN (�; �
0)euG�0

T (E)n�;�(u) �
X
�0 6=�

1

N
e
��

p
NE�

e
u

1� ub�(E) (3:29)

Since P[��T (E) < �
�
� ] � e

��
p
NE� , (i) is proven.
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In the same way,

G
�
�;T (E)(u) = e

u
pN (�; �) + e

u
X
�0 6=�

pN (�; �
0)G�0

�;T (E)(u)

�
 
1 + e

��
p
NE�

1

1� ub�(E)
!
e
u

(3:30)

and this proves (ii).}

Finally we turn to the Laplace transform of hitting times without extra exclusion sets. We

set G�
I (u) � Ee

u��I .

Proposition 3.6: Let � 2 T (E). Then, for u = �=E�
�
T (E)n� , if j�j � (1� ),  > 0,

G
�
T (E)n�

�
�=E�

�
T (E)n�

�
=

1

1� �
�
1 +O(e��u

�1

N
(E�)+E) + �O

�
(b�(E)=E��

T (E)n� )
2
��

�
�
1 + �O(b�(E)=E ��T (E)n� )�

(3:31)

Proof: As in the analogous analysis in [BEGK1], the starting point of our analysis is the

renewal equation

G
�
T (E)n�(u) =

G
�
T (E)n�;�(u)

1�G
�
�;T (E)

(u)
(3:32)

It is reasonable to rewrite this as

G
�
T (E)n�(u) =

P[��T (E)n� < �
�
� ]

1�G
�
�;T (E)

(u)
+
G
�
T (E)n�;�(u)�G

�
T (E)n�;�(0)

1�G
�
�;T (E)

(u)
� (I) + (II) (3:33)

Using Taylor-Lagrange formula with remainder to second order, we have

(I) =
P[��T (E)n� < �

�
� ]

P[��
T (E)n� < ��� ]� uE��� 1If������T(E)

g � u2=2 d2

du2
G
�
�;T (E)

(~u)

=

"
1� �

E�
�
� 1If������T(E)

g

P[��
T (E)n� < ��� ]E�

�
T (E)n�

� 1

2
�
2

d2

du2
G
�
�;T (E)(~u)

P[��
T (E)n� < ��� ](E�

�
T (E)n� )

2

#�1 (3:34)

We want to show that the coeÆcient of � in the denominator is essentially equal to one, while

the coeÆcient of �2 tends to zero. Di�erentiating the renewal equation (3.32) and evaluating

at u = 0 gives

E [��Tn� j��Tn� = �
�
T ] = E [��Tn� ]�

E�
�
� 1If������T g

1� P[��� � �
�
T ]

(3:35)
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which implies immediately that

E�
�
� 1If������T(E)

g

P[��
T (E)n� < ��� ]E�

�
T (E)n�

� 1 (3:36)

Moreover,

E�
�
� 1If������T(E)

g � P[�s� = 1] = 1� e
�
p
NE� (3:37)

while by (2.9) of Theorem 2.2 and (2.6) of Proposition 2.1, the denominator in (3.36) is

bounded from above by

1 + e
��u�1

N
(E�)Ve�E=2 �� 1p

2� � 1
(3:38)

Thus
E�

�
� 1If������T(E)

g

P[��
T (E)n� < ��� ]E�

�
T (E)n�

� 1� e
��

p
NE�

1 + e
��u�1

N
(E�)VeE=2 ��1p

2��1
(3:39)

Next we turn to the coeÆcient of �2. By (3.30) we can write

G
�
�;T (E)(u) = e

u
pN (�; �) + f(u) (3:40)

where f(u) is analytic in the half-plane <(u) < 1=b�(E) and satis�es

f(u) � e
��

p
NE�

e
u

1� ub�(E) (3:41)

By Cauchy's integral formula, this implies that for <(u) < (1� )=b�(E),
jf 00(u)j � e

��
p
NE�

C
�1

(b�(E)�1 �<(u))2 (3:42)

with some universal numerical constant C. Thus for u = �=E�
�
T (E)n� � (1� )=b�(E),  > 0,

we get ���f 00 ��=E��T (E)n�

���� � e
��

p
NE�C

�3b�(E)2 (3:43)

Therefore, under the same condition,�����
d2

du2
G
�
�;T (E)

(~u)

P[��
T (E)n� < ��� ](E�

�
T (E)n� )

2

����� � e
��

p
NE�C

�2

P[��
T (E)n� < ��� ]

b�(E)2
(E��

T (E)n� )
2
� 2C�3

b�(E)2
(E��

T (E)n� )
2

(3:44)

which is small if u�1N (E�)� E.

Finally we turn to the term (II). While the denominator is the same as in (I), the numerator

can now be written as

G
�
T (E)n�;�(u)�G

�
T (E)n�;�(0) = u

d

du
G
�
T (E)n�;�(~u) (3:45)
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This can be bounded in the same way as before, using the Cauchy estimates under the same

assumptions on u (with a di�erent constant C), by���� dduG�
T (E)n�;�(~u)

���� � e
��

p
NE�C

�2b�(E) (3:46)

This shows that (II) can be estimated as a small fraction of (I). This concludes the proof of

the proposition.}

3.2. Analyticity properties.

Let us note �rst that all Laplace transform that we are considering can be identi�ed with

meromorphic function that are given as the solutions of Dirichlet problems of the same type

as (3.18). Note also that trivially all these functions are periodic with period 2� in the

imaginary direction. Equation (3.32) allows to derive more precise estimates on our Laplace

transform when we have obtained so far. Note that both Laplace transform on the left hand

side of (3.32) are analytic in the half plane <(u) < 1=b�. This implies that that the only

singularities of G�
T(E)n�(u) in that half-plane are poles at those values of u for which the

denominator vanishes, i.e.

1 = G
�
�;T (E)(u) (3:47)

By inspection of the proof of Proposition 3.6, there is only one solution of this equation in

the strip �� � =(u) � �, u� = �=E�
�
T (E)n� , where � satis�es

1� � = �O(e��u
�1

N
(E�)+�E) + �

2
O
�
(b�(E)=E��T (E)n� )2� (3:48)

This implies the existence of a solution �0 = 1 +O
�
(b�(E)=E��T (E)n� )

2
�
.

This implies that the function G�
T (E)n�(u) has simple poles at u�(mod+i2�), and all other

poles satisfy <(u) � b�(E)�1, =(u) = 0 or =(u) = �. Moreover, Proposition 3.6 implies that

the residue at u� equals

res u� =
G
�
T (E)n�(u�)

d
du
G�
�;T (E)

(u�)
=

1

E��
T (E)n�

�
1 +O

�
(b�(E)=E��T (E)n� )

2
��

(3:49)

This allows in particular to extend the validity of the renewal equation (3.32) to the entire

domain of analyticity of this function. This will prove very helpful in obtaining good bounds.

As a �rst observation, we note that the domain of validity of (3.31) can be immediately

extended to the set � < E�
�
T (E)n�=

b�(E).
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We will now estimate the di�erence between G
�
T (E)n�(u) and the contribution from the

pole at u�. We set

R�(u) = G
�
T (E)n�(u) +

G
�
T (E)n�;T (E)(u�)

(u� u�)
d
du
G
�
�;T (E)

(u�)
(3:50)

We �rst give a uniform estimate of the modulus of R� on the disk juj � a=b�(E), a < 1. Note

that a straightforward computation and the use of Taylor expansion to �rst order shows that

R�(u)

=
G
�
T (E)n�;T (E)(u)(u� u�)

d
du
G
�
�;T (E)(u�)�G

�
T (E)n�;T (E)(u�)(G

�
�;T (E)(u)�G

�
�;T (E)(u�))

(1�G
�
�;T (E)

(u))(u� u�)
d
du
G
�
�;T (E)

(u�)

=

d
du
G
�
�;T (E)(u�)

d
du
G
�
T (E)n�;T (E)(~u)� 1

2
G
�
T (E)n�;T (E)(u�)

d2

du2
G
�
�;T (E)(û)

d
du
G�
�;T (E)

(u�)
d
du
G�
�;T (E)

(u0)

(3:51)

where ~u; û; u0 are somewhere on the ray between u� and u. From (3.30) and the Cauchy

bounds used as in (3.42) we get that

���� d
du
G
�
�;T (E)(u)� pN (�; �)e

u

���� � C
e
��

p
NE� b�(E)

1�<(u)b�(E) (3:52)

���� dduG�
T (E)n�;T (E)(u)

���� � C
e
��

p
NE� b�(E)

1�<(u)b�(E) (3:53)

���� d2du2G�
�;T (E)(u)

���� � e
<(u) + C

e
��

p
NE� (b�(E))2

(1�<(u)b�(E))2 (3:54)

and by Lemma 3.5, ���G�
T (E)n�;T (E)(u)

��� � C
e
��

p
NE�

1�<(u)b�(E) (3:55)

Combining these estimates, we see that indeed on juj � a=b�(E),
jR�(u)j � C(a)

�
e
��

p
NE� b�(E)�2 (3:56)

as desired.

It remains to estimate G�
T (E)n�(u) for

(1=E��T (E)n� ) < <(u) < 1=b�(E)
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To do so, we rely on (3.32). We will use (3.24) to bound the numerator uniformly in the imag-

inary part of u, while the denominator will provide extra decay in the imaginary direction.

Note that by (3.30),

���G�
�;T (E)(u)� pN (�; �)e

u
��� � e

��
p
NE� jeujmax

�0��
jG�0

�;T (E)(u)j

� e
��

p
NE� jeuj

1�<(u)b�(E)
(3:57)

Therefore

jG�
�;T (E)(u)� 1j � jeujj1� e

�uj � e
��

p
NE�

 
1� 1

1�<(u)b�(E)
!

(3:58)

Combining this estimate with (i) of Lemma 3.5, we arrive at the bound, valid for <(u) <
(1� �)=b�(E) and j1� e

�uj � 2��1e��
p
NE�

jG�
T (E)n�(u)j � 2

e
��

p
NE�

(1� ub�(E))j1 � e�uj
(3:59)

Combining these observations we arrive at the assertion of Theorem 3.2. }}

Finally we prove Corollary 3.3.

Proof of Corollary 3.3: We give only the proof of (3.14), the proof of (3.15) being

completely analogous.

Note that by the Laplace inversion formula [Doe],

P[��T (E)n� = n] =
1

2�i

Z i�

�i�
e
�un

G
�
T (E)n�(u)du (3:60)

where the integration is along the imaginary axis. Inserting (3.6) into (3.60), in the �rst two

terms the integration contour can be modi�ed to any circle enclosing the point 1=E��T (E)n� b�,

and the integral yields, by Cauchy's theorem, the residue of e�un a�
1�(1�e�u)E��

T (E)n�b�
at this

point. In the integral over the remainder term R�(u), we shift the contour by (1 � �)=b�(E)
along the positive real axis and use the uniform bound (3.10) along the integration contour.

This gives the claimed estimate. }
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Re u

Im u

Pi

-Pi

Integration contour Deformed integration contour

-Pi

Pi

Im u

Re u Re u

Deformed integration contour

-Pi

Pi

Im u

4. The renewal equations.

4.1 Introduction.

We have now all ingredients needed to study the system of renewal equations (1.44) es-

tablished in Section 1.4. As usual, to solve (1.44) we pass to Laplace transforms, solve the

ensuing linear system, and then transform back. We set

���(m;u;E) �
1X
n=0

e
nu��(m;n;E) (4:1)

for u 2 C whenever this sum converges. Let us de�ne

F
�
� (m;u) �

1X
n=0

e
nu
P[��T (E)n� > m+ n] (4:2)

Then it follows from (1.44) that for any � 2 T (E),

���(m;u;E) = F
�
� (m;u) +

X
�02T (E)n�

G
�
�0;T (E)n�(u)�

�
�0 (m;u;E) (4:3)

Let us denote by K�
E(u) the jT (E)j � jT (E)j matrix with elements11

(K�
E(u))�;�0 �

�
G
�
�0;T (E)n�(u); if � 6= �

0

0; if � = �
0 (4:4)

Then clearly the solution of equation (4.3) can be written as12

��(m;u;E) =
�
[1I�K

�
E(u)]

�1
K
�
E(u) + 1I

�
F
�(m;u) (4:5)

11We will often write K�
�;�0

(u) instead of (K�
E
(u))�;�0 whenever no confusion is possible

12The reason for separating the 1I in this representation is that the operator
�
1I�K�

E
(u)
�
�1

K�
E
(u) has

better decay properties at in�nity than the
�
1I�K�

E
(u)
�
�1

itself. This is important for computing the inverse

Laplace transforms.
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where �� and F � denote the vectors with components ���, and F
�
� .

The matrix

M
�
E(u) � [1I�K

�
E(u)]

�1
K
�
E(u) (4:6)

is known as the Laplace transform of the resolvent of the system of renewal equations.

Our task is to compute the inverse Laplace transform of the right hand side of (4.5). This

requires estimates in the complex u-plane. We will separate this analysis in two steps. First,

we establish a priori bounds on the norm of M�
E in a suitable domain. Next we will perform

a suitable perturbation analysis that is valid in a small neighborhood of u = 0 only. Then we

show that the dominant part of the contribution from the Laplace-inversion formula comes

from this region and is thus explicitly computed, while the remainder is controlled by our a

priori bounds.

4.2. Bounds on the resolvent.

In the sequel we will always work with the matrix norm

kKk � max
�2T (E)

X
�02T (E)

jK�;�0 j (4:7)

Note that k : k is an operator norm in L1(CM ) equipped with the supremum norm, i.e.

kKFk1 � kKk kFk1. This norm serves our purposes, and moreover will turn out to be

particularly well suited to the matrices that we need to deal with.

We will begin by deriving estimates on the matrices K�
E(u). It follows from the results of

Section 3 that

Lemma 4.1: Considered as a function C ! L(CM ; C
M ), K�

E(u) is

(i) Periodic with period 2� in the imaginary direction.

(ii) Meromorphic in C with poles only on the positive real axis and its 2� translates.

(iii) For � 6= �
0 2 T (E),

K
�
�;�0(u) =

G
�
�0;T (E)(u)

1�G
�
�;T (E)(u)

(4:8)

The following observation will be extremely useful:
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Lemma 4.2: For any u 2 C for which G�
T (E)n�;T (E)(u) is �nite,X

�02T (E)n�
G
�
�0;T (E)(u) = G

�
T (E)n�;T (E)(u) (4:9)

Proof: it is enough to prove (4.9) for u in the negative imaginary half plane. Now

1I��
T(E)n����T(E)

=
X

�02T (E)n�
1I��

�0
���

T(E)
(4:10)

Thus

G
�
T (E)n�;T (E)(u) =Ee

u��T (E)n�1It�
T (E)n����T(E)

= E

X
�02T (E)n�

e
u��T (E)n�1I��

�0
���

T (E)

=
X

�02T (E)n�
Ee

u��
�0 1I��

�0
���

T(E)
=

X
�02T (E)n�

G
�
�0;T (E)(u)

(4:11)

}

An immediate, but important consequence of Lemma 4.2 is that

kK�
E(0)k = 1 (4:12)

The �rst step towards control in the complex plane will be to show that kK�
E(u)k decreases

down from zero along the imaginary axis in the strip =(u) 2 [��; �].

Lemma 4.3: Let v 2 [��; �] and set

�� � e
�
p
NuN (0)+�E (4:13)

Recall M = jT (E)j and d = 2M . Then (for N large enough),

kK�
E(iv)k �

1q
2(1� cos v) ��2

�
1�O( ���1)

�
+ 1� 4

M�1 (1 +O(d=N))
(4:14)

Before proving the lemma, we will note the obvious consequence that

Corollary 4.4: Under the assumptions and notations of Lemma 4.3,

(i) If ��jvj > 3p
M�1 , then kK�

E(iv)k < 1.
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(ii) For any 0 < � < 1, if

2(1 � cos v) � ���2
�

�

1� �

2� �

1� �
+

9

(m� 1)(1 � �)

�
(1 +O(d=N)) (4:15)

then kK�
E(iv)k � 1� �.

(iii) Under the same assumptions as in (i),

kM�
E(iv)k �

1p
1 + 2��2(1� cos v)(1 �O( ���1))� 1� 4

M�1 (1 +O(d=N))
(4:16)

Proof: To bound the norm of K�
E , we use simply that

X
�02Tn�

jK�
�;�0(iv)j =

P
�02Tn� jG�

�0;T (iv)j
j1�G�

�;T (iv)j

�
P[��Tn� � �

�
T ]

j1�G�
�;T (iv)j

(4:17)

Thus the key point is to bound the denominator from below. Now

=G�
�;T (E)(iv) =

1X
n=1

sin(vn)P[��� = �
�
T (E) = n]

= sin(v)pN (�; �) +
X

�0 62T (E)
pN(�; �

0)
1X
n=1

sin(v(n+ 1))P[��
0

� = �
�0

T (E) = n]

� pN (�; �) sin v + d�(v)

(4:18)

where

jd�(v)j � e
��

p
NE�

X
�0��

1

N
P[��

0

� = �
�0

T (E)] � 2
e
��

p
NE�

jT (E)j (1 +O(jT (E)j=N)) (4:19)

where we used the bound (2.3) from Proposition 2.1.

<
�
1�G

�
�;T (E)(iv)

�
= pN (�; �)(1 � cos v) + c�(v) (4:20)

where

P[��T (E)n� = �
�
T (E)] � c�(v) � P[��T (E)n� = �

�
T (E)] + 2

e
��

p
NE�

jT (E)j (1 +O(jT (E)j=N)) (4:21)
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Thus we have that

j1�G
�
�;T (iv)j �

r
(pN (�; �) sin v)2 +

�
pN (�; �)(1 � cos v) + P[��

Tn� = �
�
T ]
�2

� jd�(v)j � jc�(v) � P[��Tn� = �
�
T ]j

(4:22)

To simplify the notation, set pN � pN (�; �), P� � P[��Tn� = �
�
T ]. Let

Y � (pN sin v)2 + (pN (1� cos v) + P�)
2
= 2pN (1� cos v)(pN + P�) + P

2
� (4:23)

Thus we have in fact that

j1�G
�
�;T (iv)j �

p
2pN (1� cos v)(pN + P�) + P2� �

4

M
e
��

p
NE� (1 +O(M=N)) (4:24)

which together with (4.17) gives thatX
�02Tn�

jK�
�;�0(iv)j �

P�p
2pN (1� cos v)(pN + P�) + P2� � 4

M
e��

p
NE� (1 +O(M=N))

=
1q

2pNP
�2
� (1� cos v)(pN + P�) + 1� 4

M
P
�1
� e��

p
NE� (1 +O(M=N))

(4:25)

Now recall from Proposition 2.1, (iii), that

1

1� 1
M

(1�O(d=N)) � P
�1
� e

��
p
NE� � 1

1� 1
M

(1 +O(d=N)) (4:26)

It follows readily that

pN + P� = 1� e
��

p
NE� + P� � 1� e

��
p
NE�

M
(1�O(d=N)) (4:27)

and hence

1 > pN (pN + P�) � 1� e
��

p
NE� (1 + 1=M)(1 +O(d=N)) (4:28)

Since by de�nition of T , min�2T (E)
p
NE� � uN (E), this implies

min
�2T

pN (pN + P�) � 1� ���1(1 + 1=M)(1 +O(d=N)) (4:29)

and

kK�
E(iv)k �

1p
��22(1 � cos v)(1 � ���1(1 + 1=M) + 1� 4

M�1 (1 +O(d=N))
(4:30)

which proves the Lemma.}
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The proof of Corollary 4.4 is an exercise in simple algebra and is left to the reader.

Next we use these results to extend similar bounds somewhat into the positive imaginary

half plane. The important point permitting this is that we will need to Taylor-expand in the

real part of u only Dirichlet Green's functions with exclusion set T and these are analytic up

to <(u) � 1=b�. Let us �rst �x some notation.

Notation: As before the letter u 2 C denotes a complex number. Its real and imaginary

parts will always be called w and v:

u = w + iv (4:31)

For given u 2 C , we will denote by z 2 C the number

z = b�(E)u (4:32)

The real and imaginary parts of z will always be called r and s:

z = r + is (4:33)

Thus
r = b�(E)w
s = b�(E)v (4:34)

To simplify the notation the dependence on u of z (or on w, resp. v, of r, resp. s) will never

be made explicit. No confusion should arise from this as, up until Section 4.713, the letters

u;w; v and z; r; s will be used exclusively according to the relations speci�ed above.

For ready reference we make the following de�nitions.

De�nition 4.5: Let 0 < C1; C2 < 1, and 0 <  < 1 be numerical constants. With the

above notation we de�ne the sets:

D1(C1) �
n
u 2 C :

p
r2 + s2 � C1=

p
M

o
D2(C2; ) �

�
u 2 C : 0 � r < min

�
s

2

C2

p
1 + s2

; 1� 

�
; v 2 [��; �]

�
D3 � fu 2 C : �1 � r < 0; jsj < 1g
D4 � fu 2 C : jrj < 1; jsj < 1g

(4:35)

13There, the letter s will retrieve the initial meaning it was given in Theorem 1.
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Lemma 4.6: There exist constants 0 < C;C
0
< 1 such that, for all 0 <  < 1 and all

u 2 D2(C
0
; ),

kK�
E(u)k �

1 + C
�1
rq

1 + b�22(1 � cos v)(1�O( ���1))� 4
M�1 (1 +O(d=N)) � C 0�1r

(4:36)

Proof: As in the proof of Lemma 4.3, we begin by writing the analogue of (4.17) and again

we bound the numerator by the value obtained when putting its imaginary part equal to

zero. This yields

kK�
E(u)k �

P
�02Tn� jG�

�0;T (w)j
j1�G�

�;T (w + iv)j

=
G
�
Tn�;T (w)

j1�G�
�;T (w + iv)j

(4:37)

We now Taylor expand both the numerator and the denominator. Note that we will only be

interested in w � (1 � )=b�. For the numerator we will use (3.45) together with the bound

(3.46) to write, for 0 � w � (1� )=b�,
G
�
Tn�;T (w) � P[��Tn� � �

�
T ] + Cw

�1b�e��pNE� (4:38)

On the other hand, from (3.30) and the Cauchy bound we get that, again for 0 � ~w �
(1� )=b�, ���� ddwG�

�;T (E)(iv + ~w)

���� � je ~wj+ C
�1
e
��

p
NE� b�(E) � C

0

�1 (4:39)

This implies again

j1�G
�
�;T (iv + w)j � j1�G

�
�;T (iv)j �w

�1
C
0 (4:40)

As we already have bounded the �rst term on the right in the proof of Lemma 4.3, we readily

arrive atX
�02Tn�

jK�
�;�0(u)j

� 1 + Cwb��1e��pNE�P
�1
�q

1 + 2P�2� pN (1� cos v)(pN + P�)� 4e��
p
NE�

MP�
(1 +O(M=N))� C 0�1P�1� w

(4:41)

Proceeding from there on exactly as in the proof of Lemma 4.3 we then get, using relation

(4.34),X
�02Tn�

jK�
�;�0 (u)j �

1 + C
�1
rq

1 + P
�2
� 2(1 � cos v)(1�O( ���1))� 4

M�1 (1 +O(d=N)) � C0�1r

P�b�
(4:42)
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Since we need to take the maximum over all � 2 T , it is important to restrict r as a function

of v in such a way that the maximum will be taken on by the � that maximises P�. Some

elementary algebra shows that this will be the case provided that�
2(1 � cos v)b�2(1�O( ���1))

�2
1 + 2(1� cos v)b�2(1�O( ���1))

� �C 0�1r�2 (4:43)

or

r � 2(1� cos v)b�2(1�O( ���1))

�1C 0
q
1 + 2(1� cos v)b�2(1�O( ���1))

(4:44)

Since this is a serious condition only if v is very small we see, using relation (4.34), that this

condition reduces to

r < min

�
s

2

C 0
p
1 + s2

; 1� 

�
(4:45)

On this domain we can thus estimate the norm of K�
E by

kK�
E(u)k �

1 + C
�1
rq

1 + b�22(1 � cos v)(1�O( ���1))� 4
M�1 (1 +O(d=N)) � C 0�1r

(4:46)

This proves the lemma.}

As in the case of Lemma 4.3, we get as an immediate corollary an upper bound on the

norm of the resolvent.

Corollary 4.7: For all 0 <  < 1 there exists a constant 0 < L <1 (depending on C;C 0

and ) such that, for all u 2 D1(4) \D2(L; ),

kK�
E(u)k < 1 (4:47)

and

kM�
E(u)k �

1 + C
�1
rq

1 + b�22(1 � cos v)(1 �O( ���1))� 1� 4
M�1 (1 +O(d=N)) � (C +C 0)�1r

(4:48)

Finally we will need an estimate on kM�
E(u)k in the case when juj is very small and w � 0

that shows that there, the negative real part helps to depress kK�
E(u)k < 1 down from one.
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Lemma 4.8: For M large enough,

(i) for all u 2 D3,

kK�
E(u)k �

1p
1 + r2 + s2 � 5

M

(4:49)

(i) for all u 2 D1(4) \D3, kK�
E(u)k < 1 and

kM�
E(u)k �

1p
1 + r2 + s2 � 1� 5

M

(4:50)

Proof: The proof of this estimate goes quite along the lines of the proof of the previous

lemmas. However, to simplify things, we bound the Green function in the numerator of

(4.37) by its value at zero and, instead of using (4.40) in the denominator, we go back to the

estimates (4.18) and (4.20) which we modify slightly to yield, for w � 0,

=G�
�;T (E)(iv + w) =

1X
n=1

e
nw sin(vn)P[��� = �

�
T (E) = n]

= e
w sin(v)pN (�; �) +

X
�0 62T (E)

pN (�; �
0)

1X
n=1

e
wn sin(v(n+ 1))P[��

0

� = �
�0

T (E) = n]

� pN (�; �)e
w sin v + d�(v)

(4:51)

with d�(v) from (4.18). Similarly,

<
�
1�G

�
�;T (E)(iv + w)

�
= pN (�; �)(1 � e

w cos v) + c�(v) (4:52)

with c�(v) from (4.20). On the other hand

jP�+pN (1�eu)j2 = P
2
�+2pN (1�cos v)(pN +P�)�2 cos vpN (e

w�1)(pN +P�)+p
2
N (e

2w�1)

(4:53)

For w small, we can expand ew to second order and, using that w � 0, we get

jP� + pN(1� e
u)j2

= P
2
� + 2pN (1� cos v)(pN + P�)� 2wpN [pN � cos v(pN + P�)]

+ +w2
pN [2pN � cos v(pN + P�)] +O(w3)

= P
2
� + 2pN (1� cos v)(pN + P�)(1� w)� 2wpN (1� pN )

+ w
2
pN [2pN � cos v(pN + P�)] +O(w3)

� P
2
� + v

2 + w
2 +O(w3)

(4:54)
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Thus X
�02Tn�

jK�
�;�0(u)j �

1q
1 + P

�2
�
b�2(s2 + r2)� 5

M

(4:55)

and since this is clearly monotone in P�, it follows that

kK�
E(u)k �

1p
1 + s2 + w2 � 5

M

(4:56)

and hence, for u 2 D1(4), kK�
E(u)k < 1 and

kM�
E(u)k �

1p
1 + s2 +w2 � 1� 5

M

(4:57)

}

4.3. Perturbative estimates for small u.

The a priori bounds obtained in the last subsection will suÆce to show that the contri-

butions from u away from zero in the Laplace inversion formula are sub-dominant. In the

neighborhood of zero we have to proceed more carefully and extract the dominant contribu-

tion to the resolvent, while estimating the remainders. This will be done by decomposing

K
�
E(u) in a suitable way, the idea being that the leading term should allow exact computa-

tions; in fact, we will want this term to be a matrix with constant columns. To this end note

that for � 6= �
0, by Taylor's formula,

K
�
�;�0(u) =

1

1�G
�
�;T (u)

�
G
�
�0;T (0) + u

d

du
G
�
�0;T (0) +

u
2

2

d
2

du2
G
�
�0;T (~u)

�
=

1

1�G
�
�;T (u)

�
P[���0 � �

�
T ] + uE�

�
�0 1If��

�0
���

T
g +

u
2

2

d
2

du2
G
�
�0;T (~u)

� (4:58)

where ~u is on the ray between 0 and u. The idea is of course that since u is small, the

quadratic term is a small perturbation14 while the constant and linear terms are essentially

independent of �0, the deviations being treatable as perturbations as well.

Let us �rst establish a bound on the second order contribution. The notation and def-

initions of the present are the same as in the previous one (recall in particular De�nition

4.5).

14It will become clear only later why we expand to second order and are not content with the �rst order

as before.
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Lemma 4.9: Denote by K
�(2)
E the matrix with entries

K
�;(2)
�;�0 (u) =

8<:
1
2
u2 d2

du2
G�
�0;T (~u)

1�G�
�;T

(u)
; if � 6= �

0

0; if � = �
0

(4:59)

For 0 <  < 1, let the constant L be chosen such that�
u 2 C j r � s

2
=4
	 � D2(L; ) \D4 (4:60)

Then, there exists a constant C > 0 such that for all for u 2 D2(L; ) \ D4 and N large

enough,

kK�(2)
E (u)k � 

�2
C(s2 + r

2)p
1 + (s2 + r2)=2� 5=M

(4:61)

Remark: The assumption (4.60) is made for convenience only as it allows to simplify the

expressions of our estimates.

Remark: Note also that the bound (4.61) simply behaves, for small b�u, like �2C(s2+ r2).
Proof: To bound the denominator we proceed as in the proofs of Lemma 4.6 and 4.8 with

the di�erence that, for r > 0, the bound (4.54) becomes, using that r � s
2
=4,

jP� + pN (1� e
u)j2 � P

2
� + (v2 + w

2)=2 +O(w3) (4:62)

For the numerator we use thatX
�02Tn�

���� d2du2G�
�0;T (~u)

���� � X
�02Tn�

d
2

du2
G
�
�0;T (<~u) =

d
2

du2
G
�
Tn�;T (<~u) (4:63)

and, since <~u � (1� )=b�, bound the last quantity in the r.h.s proceeding as in the proof of

Proposition 3.6 (see the treatment of the term (II) therein). }

What remains of K�
E after subtraction of K

�(2)
E is almost of the desired form (i.e. has

almost constant columns); however, a few cosmetic changes need to be made: �rst, the

matrix elements

K
�(1)
�;�0 (u) �

1

1�G
�
�;T (u)

P[���0 � �
�
T ] (1 + uE [���0 j���0 � �

�
T ]) ; � 6= �

0 (4:64)

have to be replaced by their leading, �0-independent part

K
�(0)
�;�0 (u) �

1

1�G�
�;T (u)

�
1
M
P[��Tn� < �

�
T ]
�
1 + uE [��Tn� j��Tn� = �

�
T ]
��

; � 6= �
0 (4:65)
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As shown in the next lemma, this replacement can be done at the cost of error terms of order

at most O(1=N).

Lemma 4.10: Denote by K
�(0)
E and K

�(1)
E the matrix with o�-diagonal entries given re-

spectively by (4.65) and (4.64) and zero diagonals. Then, under the assumptions and with

the notation of Lemma 4.9 and Proposition 2.2 we have, for N large enough,

kK�(0)(u)�K
�(1)(u)k � 1 + 3

p
s2 + r2p

1 + (s2 + r2)=2 � 5=M
O(1=N) (4:66)

Second, since the matrix K�(0)(u) has zero diagonal, we still have to compare it to the

matrix K�(0) with entries

K�(0)�;�0(u) �
1

1�G�
�;T (u)

�
1
M
P[��Tn� < �

�
T ]
�
1 + uE [��Tn� j��Tn� = �

�
T ]
��

; 8�; �0 2 T (E)
(4:67)

This involves controlling the norm of the diagonal matrix K�(0)(u)�K
�(0)(u):

Lemma 4.11: Let K�(0) be the matrix de�ned in (4.67). Under the assumptions and with

the notation of Lemma 4.10 we have, for N large enough,

kK�(0)(u)�K
�(0)(u)k � 1 +

p
s2 + r2p

1 + (s2 + r2)=2� 5=M
O(1=(M � 1)) (4:68)

Proof of Lemma 4.10: For �; �0 2 T , � 6= �
0, let ��;�0(u) be de�ned through

K
�(0)
�;�0 (u)�K

�(1)
�;�0 (u) =

��;�0(u)

1�G�
�;T (u)

(4:69)

Since the denominator in (4.69) has already been dealt with in Lemma 4.9, what we need is

an upper bound on j��;�0(u)j. Appropriately sorting out the di�erent terms contributing to

��;�0(u) we may write,

j��;�0(u)j �
����P[���0 � �

�
T ]�

1

M
e
��

p
NE�

���� �1 + jujE [��Tn� j��Tn� = �
�
T ]
�

+jujP[���0 � �
�
T ]
���E [���0 j ���0 � �

�
T ]� E [��Tn� j ��Tn� = �

�
T ]
��� (4:70)

Plugging in the estimates of Proposition 2.1, ii),

j��;�0(u)j �
e
��

p
NE�

M

��
1 + jujE [��Tn� j��Tn� = �

�
T ]
�
O(1=N)

+juj
���E [���0 j ���0 � �

�
T ]� E [��Tn� j ��Tn� = �

�
T ]
��� (1 +O(1=N))

# (4:71)
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and we are left to bound the expected transition time E [��Tn� j��Tn� = �
�
T ], together with the

di�erence
���E [���0 j ���0 � �

�
T ]� E [��Tn� j ��Tn� = �

�
T ]
���. To deal with the latter, �rst observe that

di�erentiating the renewal equation G�
�0;Tn�(u) =

G�
�0;T (u)

1�G�
�;T

(u)
, we have

d

du
G
�
�0;T (0) = (1� P[��� � �

�
T ])E�

�
�0 1If��

�0
���

Tn�g � P[���0 � �
�
Tn�]E�

�
� 1If������T g

= P[���0 � �
�
T ]

�
E [���0 j ���0 � �

�
Tn�]�

E�
�
� 1If������T g

1� P[��� � ��T ]

� (4:72)

implying that

E [���0 j ���0 � �
�
T ] = E [���0 j ���0 � �

�
Tn�]�

E�
�
� 1If������T g

1� P[��� � ��T ]
(4:73)

and, since the last term in the r.h.s. is �0-independent, we can express our conditional

expectation in the following, remarkably useful form:

E [���0 j ���0 � �
�
T ] =

1

jT n �j
X

�02Tn�
E [���0 j ���0 � �

�
T ]

+

(
E [���0 j ���0 � �

�
Tn�]�

1

jT n �j
X

�02Tn�
E [���0 j ���0 � �

�
Tn�]

) (4:74)

Next observe that by (4.9),
P

�02Tn� P[�
�
�0 � �

�
T ] = P[��Tn� � �

�
T ], as well asX

�02Tn�
E�

�
�0 1If��

�0
���

T
g = E�

�
Tn�1If��Tn����T g (4:75)

hold ((4.75) is obtained by di�erentiating (4.9) and setting u = 0). On the other hand, using

(2.4) from Proposition 2.1, the �rst term in the r.h.s of (4.74) may thus be rewritten as

1

jT n �j
X

�02Tn�
E [���0 j ���0 � �

�
T ] =

X
�02Tn�

E�
�
�0 1If��

�0
���

T
g

P[��
Tn� � ��T ]

0@ 1

jT n �j
X

�002Tn�

P[���00 � �
�
T ]

P[���0 � ��T ]

1A
= E [��Tn� j ��Tn� = �

�
T ](1 +O(1=N))

(4:76)

Since the term in braces in the last line of (4.74) was estimated in Corollary 2.3, inserting

(2.13) and (4.76) in (4.74), we obtain that, under the assumptions and with the notation of

Proposition 2.2,���E [���0 j ���0 � �
�
T ]� E [��Tn� j ��Tn� = �

�
T ]
��� � O(1=N)

�
E [��Tn� j ��Tn� = �

�
T ] + (1� 1

M
)�1W�;N;T

�
(4:77)
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Therefore, collecting (4.77) and (4.71),

j��;�0(u)j �
e
��

p
NE�

M

�
1 + juj

�
2E [��Tn� j��Tn� = �

�
T ] + (1� 1

M
)�1W�;N;T

�#
O(1=N) (4:78)

and we are left to bound the term E [��Tn� j��Tn� = �
�
T ] from above. To do so, we proceed as

in (4.72), (4.73), but this time using (3.35) and the fact that E��� 1If������T g � P[��� = 1] =

1� e
��

p
NE� , we obtain that

E [��Tn� j��Tn� = �
�
T ] � E [��Tn� ]�

1

P(��
Tn� < ��� )

+
1

e�
p
NE�P(��

Tn� < ��� )

� 1

1� 1
M

�
1 +W�;N;T (E)

�
(1 +O(1=N))

(4:79)

where the second line follows from the bound (2.14) of Corollary 2.3 together with the estimate

(2.6) of Proposition 2.1. Inserting this bound in (4.78) yields,

j��;�0 (u)j �
e
��

p
NE�

M

�
1 + 3juj(1 � 1

M
)�1

�
1 +W�;N;T (E)

�#
O(1=N) (4:80)

Thus

kK�(0)(u)�K
�(1)(u)k � max

�2T

P
�02Tn� j��;�0(u)j
j1�G

�
�;T (u)j

� max
�2T

(1� 1
M
)e��

p
NE�

j1�G
�
�;T (u)j

�
1 + 3juj(1 � 1

M
)�1

�
1 +W�;N;T (E)

�#
O(1=N)

(4:81)

and observing that, by assertion (v) of Proposition 2.1,

(1� 1
M
)e��

p
NE� = G

�
Tn�;T (0)(1 +O(1=N)) (4:82)

we �nally arrive at

kK�(0)(u)�K
�(1)(u)k � max

�2T

G
�
Tn�;T (0)

j1�G�
�;T (u)j

�
1 + 3juj(1 � 1

M
)�1

�
1 +W�;N;T (E)

�#
O(1=N)

(4:83)

From there on, the proof proceeds exactly as the proofs of Lemma 4.6, 4.8 and 4.9, yielding

kK�(0)(u)�K
�(1)(u)k � 1 + 3

p
s2 + r2(1� 1

M
)�1

�
1 +W�;N;T (E)

� b��1p
1 + (s2 + r2)=2 � 5=M

O(1=N) (4:84)

which, since (1� 1
M
)�1

�
1 +W�;N;T (E)

� b��1 � 1, gives (4.68), proving Lemma 4.10. }
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Proof of Lemma 4.11: By de�nition of K�(0)(u) and K�(0)(u),

kK�(0)(u)�K
�(0)(u)k = max

�2T
jK�(0)�;� (u)j

� 1

M � 1
max
�2T

(1� 1
M
)�1e��

p
NE�

j1�G�
�;T (u)j

�
1 + jujE [��Tn� j��Tn� = �

�
T ]
�
(4:85)

Eq. (4.79) then yields the bound

kK�(0)(u)�K�(0)(u)k � 1

M � 1
max
�2T

(1� 1
M
)e��

p
NE�

j1�G
�
�;T (u)j

�
1+juj(1� 1

M
)�1

�
1 +W�;N;T (E)

�#
O(1=N)

(4:86)

which, up to some constants, is identical to that of (4.81). From there on the proof follows

that of Lemma 4.10.}

Let us introduce the decomposition

K
�(u) � K�(0)(u) +K�(1)(u) (4:87)

and note that K�(1)(u) can be written in the form

K�(1)(u) � (K�(0)(u)�K�(0)(u)) + (K�(1)(u)�K
�(0)(u)) +K

�(2)(u) (4:88)

The following corollary then is an immediate consequence of the previous three lemmata.

Corollary 4.12: Under the assumptions and with the notation of Lemma 4.9 and Lemma

4.10 we have, for N large enough,

kK�(1)(u)k � 
�2
C(s2 + r

2) + (1 + 3
p
s2 + r2)max (O(1=(M � 1)); O(1=N))p

1 + (s2 + r2)=2� 5=M
(4:89)

The leading contribution to K�(u) thus comes from the matrix K�(0)(u) whose spectrum
is easily analysed. In particular, K�(0)(u) has a unique non zero eigenvalue of algebraic

multiplicity one, denoted by �(u), and given by:

�(u) �
X
�2T

K�(0)�;�0(u) (4:90)

The corresponding left eigenvector is proportional to (1; 1; : : : ; 1). Similarly, de�ning

M
�(0)(u) � [1I�K�(0)(u)]�1K�(0)(u) (4:91)
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we decompose the Laplace transform of the resolvent (de�ned in (4.6)) into

M
�(u) �M

�(0)(u) +M
�(1)(u) (4:92)

It obviously follows from the previous results that M�(0)(u) has two eigenvalues, 0 and

�(u)[1 � �(u)]�1, the latter having algebraic multiplicity one. We will have to show that

the matrix M
�(1)(u) has small norm, and this smallness should be inferred from that of

kK�(1)(u)k. To make this explicit we want to use the following result:

Lemma 4.13: Set
R(u) � [1I�K�(0)(u)]�1

�(u) � max
�j1� �(u)j�1; 1� (4:93)

Then,

M
�(1)(u) = R(u)K�(1)(u)R(u) 1

1I �R(u)K�(1)(u) (4:94)

and, if kR(u)K�(1)(u)k < 1,

kM�(1)(u)k � kK�(1)(u)k�(u)2
1� kK�(1)(u)k�(u) (4:95)

Proof: Observe that, using the decomposition(4.87), [1I �K
�(u)]�1 can be written in the

form
1

1I�K�(u)
= R(u) +R(u)K�(1)(u) 1

1I�K�(u)
(4:96)

Thus

M
�(u) =M

�(0)(u) +R(u)K�(1)(u) +R(u)K�(1)(u) 1

1I �K�(u)
K
�(u)

=M
�(0)(u) +R(u)K�(1)(u) 1

1I �K�(u)

(4:97)

Eq. (4.94) then results from (4.97) together with the identity

1

1I�K�(u)
= R(u)

1

1I�R(u)K�(1)(u) (4:98)

We now turn to the proof of (4.96). It follows from the spectral properties of K�(0)(u) that

k[1I�K�(0)(u)]�1k = max
�j1� �(u)j�1; 1� � �(u) (4:99)

Eq. (4.94) then yields the bound

kM�(1)(u)k � �(u)2kK�(1)(u)k k[1I �R(u)K�(1)(u)]�1k (4:100)



40 Section 4

and (4.95) follows from the fact that, if kR(u)K�(1)(u)k < 1, then

k[1I�R(u)K�(1)(u)]�1k � [1� kR(u)K�(1)(u)k]�1 � [1� �(u)kK�(1)(u)k]�1 (4:101)

The lemma is proven. }

At this stage we see that to fully control the behavior of both M�(0)(u) and M�(1)(u) in

a small neighborhood of the origin requires a precise control of 1� �(u). Observe that

1� �(u) =
1

jT j
X
�2T

"
1�

G
�
Tn�;T (0)

1�G
�
�;T (u)

�
1 + uE [��Tn� j��Tn� = �

�
T ]
�#

(4:102)

so that 1 � �(u) takes the form of a sum over �. The evaluation of such sums is a rather

involved question whose treatment is the object of the next subsection. The analysis of

M
�(0)(u) and M

�(1)(u) will then be brought to a close in Section 4.5. As for the present

section, we conclude it with the analysis of the summands of (4.102).

Lemma 4.14: Recall that u = z=b�(E) and set

z� �
�
1� 1

M

�
e
��

p
NE� b�(E) (4:103)

If u belongs to the set

DÆ �
�
u 2 C j r < s

2
=4 ; jzj � Æ

	
; 0 < Æ < 1 (4:104)

then, for N large enough,�����1� G
�
Tn�;T (0)

1�G
�
�;T (u)

�
1 + uE [��Tn� j��Tn� = �

�
T ]
�
� z

z � z�

����� � C(Æ)jzj (4:105)

for some constant 0 < C(Æ) <1 that only depends on Æ.

Proof: Let us write

1�
G
�
Tn�;T (0)

1�G
�
�;T (u)

�
1 + uE [��Tn� j��Tn� = �

�
T ]
�

=

 
1�

G
�
Tn�;T (0)

1�G
�
�;T (u)

!�
1 + uE [��Tn� j��Tn� = �

�
T ]
�
� uE [��Tn� j��Tn� = �

�
T ]

(4:106)



Aging in the REM. Part 2. 41

Recall that we denote by u� the smallest real number that solves the equation G�
�;T (u) = 1.

We will �rst look at the term in round brackets.

1�
G
�
Tn�;T (0)

1�G�
�;T (u)

=
G
�
�;T (0) �G

�
�;T (u)

1�G�
�;T (u)

= � G
�
�;T (0) �G
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�;T (u)

(u� u�)
d
du
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�;T (u�)

+ (G�
�;T (0)�G

�
�;T (u))

 
1

1�G�
�;T (u)

+
1

(u� u�)
d
du
G
�
�;T (u�)

!

=
u

u� u�
� G

�
�;T (0) �G

�
�;T (u) + u

d
du
G
�
�;T (u�)

(u� u�)
d
du
G�
�;T (u�)

+
(G�

�;T (0)�G
�
�;T (u))

�
(u� u�)

d
du
G
�
�;T (u�) + 1�G

�
�;T (u)

�
(1�G�

�;T (u))(u � u�)
d
du
G�
�;T (u�)

=
u

u� u�
(1 + eR�(u)) + bR�(u)

(4:107)

eR� and bR� being de�ned through

eR�(u) �
(~u� u�)

d2

du2
G
�
�;T (û)

d
du
G�
�;T (u�)

bR�(u) � u
d

du
G
�
�;T (~u)

1
2
d2

du2
G
�
�;T (�u)

d
du
G�
�;T (u

0) d
du
G�
�;T (u�)

(4:108)

where ~u is on the ray between 0 and u, û on the ray between ~u and u�, and both �u and u0

are on the ray between u and u�, and u
0.

The various �rst and second derivatives entering the expressions of bR�(u) and eR�(u) can

be bounded with the help of (3.52) and (3.54). We then get that on the disk juj � Æ=b�(E),
0 < Æ < 1,

j bR�(u)j � c(Æ)z� jzj (4:109)

where z� is de�ned in (4.103) and 0 < c(Æ) < 1 only depends on Æ. Similarly, using that ~u

is on the ray between 0 and u,

j eR�(u)j � c
0(Æ)z�(jzj + jb�(E)u� j) (4:110)

for some 0 < c
0(Æ) <1. Recall from Section 3.2 (formula (3.48)) that u� � 1

E��
T (E)n�

; however,

inspecting the proof of Proposition 3.6 (see also (2.9)) an alternative representation is

u� = G
�
T (E)n�;T (E)(0)(1 +O(e��

p
NE� b�(E))) (4:111)
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and this will be even more convenient here as, using (4.82), we then have

b�(E)u� = z�(1 +O(z�)) (4:112)

The bound (4.110) thus becomes

j eR�(u)j � c
00(Æ)z�(jzj+ z�) (4:113)

We now come to the main contribution to the r.h.s. of (4.107), namely to the term

u=(u� u�). Using (4.112) we can write

u

u� u�
=

z

z � z�
+R�(z) (4:114)

where

R�(z) � z(u� b�(E)� z�)

(z � z�)(z � u�
b�(E)) = zO(z2�)

(z � z�)(z � z�(1 +O(z�)))
(4:115)

To bound this term we use that on the set
�
z 2 C j r < s

2
=4
	
:

jz � z�j � z� (4:116)

and

jz � z�(1 +O(z�))j �
�
z�(1 +O(z�)); if z�(1 +O(z�)) � 2

2
p
z�(1 +O(z�))� 1; otherwise

(4:117)

Therefore, for z 2 DÆ,

jR�(z)j �
jzjO(z2�)

jz � z�j jz � z�(1 +O(z�))j
� cjzj (4:118)

for some constant c > 0.

Inserting (4.114) in (4.107), and plugging the resulting expression in (4.106), we may now

write
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�
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1�G
�
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�
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�
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�(u) (4:119)

where
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z
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+R�(z)

�
(1 + eR�(u)) + bR�(u)� 1

� (4:120)
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Assume that z 2 DÆ. Since E [��Tn� j��Tn� = �
�
T ]
b�(E)�1 � 1, it readily follows from the

estimates (4.109), (4.113), (4.118), and the bound���� z

z � z�

���� = ����1 + z�

z � z�

���� � 2 (4:121)

which, by (4.116), holds for all z 2 DÆ , that

jI1�(u)j � C
0(Æ)jzj (4:122)

for some constant C 0(Æ) > 0. To treat the term I
0
�(u) note that using in turn (4.113) and

(4.116), ���� z

z � z�

eR�(u)

���� � c
00(Æ)

z� jzj
jz � z�j

(jzj+ z�) � c
00(Æ)jzj(jzj + z�) (4:123)

Therefore, ����I0�(u)� z

z � z�

���� � C
00(Æ)jzj (4:124)

for some constant C 00(Æ) > 0. Combining (4.119) together with (4.123) and (4.124) yields

(4.105). This concludes the proof of Lemma 4.13.}

4.4 Poisson convergence.

Finally we need to control the convergence of various integral functions of the variables

z�. We will do this in a general setting �rst and then apply this to the various occurrences

later on.

Note �rst that by (4.103) and (3.2),

z� = (1� 1=M)e��
p
NE� b�(E)

= e
��(u�1

N
(E�)�E)

�
1 +

e
�E

jT (E)j(� � 1)

�
1 + VN;EeE=2

�� 1p
2�� 1

��
(1 +O(1=N))

� 1

e
�(u�1

N
(E�)�E)�E;N

(4:125)

only depends on � through u�1N (E�). As has been explained in Section 1, the point process

N �
N;E �

X
�2f�1;1gN

Æ
expf�(�E+u�1

N
(E�))g =

X
�2f�1;1gN

Æ1=(z��N;E) (4:126)

converges weakly to the Poisson point processN �
E on [1;1) with intensity measure ��1eEx�1�1=�dx.

We will now show how to make use of the convergence of our point processes to Poisson

point processes in the analysis of the asymptotic behavior of our functions as both N and E



44 Section 4

tend to in�nity. As a �rst example we will explain how to control the behavior of the random

coeÆcients �N;E.

Lemma 4.15: Set �1 � ��1
�

. Then,

lim
E#�1

lim
N"1

�N;E = �1; in Probability. (4:127)

Proof: �N;E depends on two random variables, VN;E (de�ned in Eq. (3.2) of [BBG1]) and

jT (E)j. Let us �rst look at VN;E. We want to show that VN;EeE=2 tends to zero. By

Chebychev's inequality of order four, we have that

P[jVN;Ee+E=2j > �] � EV4
N;E

�4e�2E
(4:128)

But (see [BKL], Lemma 3.3, where however the normalisation of VN is di�erent) the moments

of the random variable VN;E converge, as N " 1, and in particular

lim
N"1

EV4
N;E =

(2� � 1)2

4�� 1
e
�E + 3 (4:129)

Therefore, there exists N0, such that for all N > N0, and for �E large enough,

P[jVN;EeE=2j > �] � 4eE

�4
(4:130)

Next we note that jT (E)j = R1
E
NN(dx) converges, as N " 1, to a Poisson random variable

with parameter eE . In particular,

lim
N"1

P[jeE jT (E)j � 1j > �] =

e�E(1��)X
n=0

e
�nE

n!
e
�e�E +

1X
n=e�E(1+�)

e
�nE

n!
e
�e�E � Ce

�E
e
��2e�E

(4:131)

Combining these two observations proves the lemma. }

Remark: Note that we actually prove that �N;E converges, as N " 1, to a random variable

�E which in turn, as E # �1, converges to a constant. This latter convergence can easily

be shown to take place almost surely. However, it is not correct that the joint convergence

takes place almost surely. It may be possible to show that almost sure convergence holds

along certain diagonal limits N " 1 with E = EN depending on N in a suitable way. Due

to the generally rather slow convergence of extremal distributions, proving such a statement

rigorously would require a considerable extra e�ort and is not guaranteed to succeed.
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The next lemma is an immediate application of the weak convergence of the point process

N �
N;E:

Lemma 4.16: Let g be a bounded continuous function on R
+ , such that

��R1
0

dx
x1+1=� g(x)

�� <
+1, and let XN be a family of positive random variables that converge in distribution to the

positive random variable X. Then for any b > 0,

(i)
R1
b
N �
N;E(dx)g(xXN ) converges, as N " 1, to the random variable

R1
b
N �
E(dx)g(xX).

(ii) If XE is a family of random variables such that, as E # �1, XE ! a 2 R
+ almost surely,

then

lim
E#�1

e
+E

Z 1

1

N �
E(dx)g(xXE) = �

�1
Z 1

1

dx

x1+1=�
g(xa); a.s. (4:132)

(iii) If g is a complex valued function on C , and if for some domain B � C , for all x 2 R
+ ,

z 2 B, g(zx) is bounded, and for all z 2 B,����Z 1

0

dx

x1+1=�
g(zx)

���� <1 (4:133)

holds, then

lim
E#�1

P

�
lim
N"1

sup
z2B

����eE Z 1

1

N �
E(dx)g(zxXE )� (az)1=���1

Z 1

az

dx

x1+1=�
g(x)

���� > �

�
= 0

(4:134)

Proof: (i) is a standard result that follow from the equivalence of convergence in distribution

of a r.v. and almost sure convergence of a sequence of r.v. having the same distribution. To

prove (ii), recall that by de�nition of the Poisson process N �
E ,Z 1

1

N �
E(dx)g(x) =

nEX
i=1

g(xi) (4:135)

where nE is a Poisson random variable with mean eE , and xi; i 2 N are i.i.d. random variables

such that

P [xi � a] � �
�1
Z a

1

dx

x1+1=�
(4:136)

Note that �rst by continuity g(xXE)� g(xa) converge to zero and since g is integrable w.r.t.

the law of xi, g(xXE) � g(xa) # 0 as a random variable. On the other hand, it follows

from our assumptions that g(xi) are bounded random variables. In particular, their moment
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generating functions Ee�g(xi ) is �nite for all �. Therefore standard arguments imply that

there exists a constant c such that

P

"
jn�1E

nEX
i=1

(g(xi)� Eg(xi))j > �

#
� 2EnE exp

�
� �

2
nE

cvar2(g)

�
(4:137)

where EnE denotes expectation with respect to the Poisson variable nE and

var2(g) � �
�1
Z 1

1

dx

x1+1=�

�
g(x)� �

�1
Z 1

1

dx

x1+1=�
g(x)

�2

(4:138)

is, by our assumptions on g, �nite. Together with the exponential estimate on the concen-

tration of the Poisson variable nE (4.131), this yields

P

�����n�1E Z 1

1

N �
E(dx)g(x) � �

�1
Z 1

1

dx

x1+1=�
g(x)

���� � �

�
� 2 exp

�
� �

2
e
�E

2cvar2(g)

�
+Ce�Ee�e

�E=4

(4:139)

From this (ii) follows immediately. To prove (iii), note that (ii) also holds if g takes complex

values by simply considering real and imaginary part separately. By a simple change of

variables we have, for s � 1,

Eg(s�) = s
1=�

�
�1
Z 1

s

dx

x1+1=�
g(x) (4:140)

and

var2(g(s�)) = s
1=�

�
�1
Z 1

s

dx

x1+1=�

�
g(x) � s

1=�
�
�1
Z 1

s

dx

x1+1=�
g(x)

�2

(4:141)

If (4.133) holds, this implies that Eg(s�) � Cs
1=� and var2(g(s�)) � Cs

1=� for small s. Thus,

for s small, we get from (4.139) that for some �nite constant Cg depending on g

P

�����eE Z 1

1

N �
E(dx)g(sx) � �

�1
Z 1

1

g(sx)

���� � s
1=(2�)

�

�
� 2 exp

�
��

2
e
�E

2Cg

�
+ Ce

�E
e
�e�E=4

(4:142)

Remark: This means that uctuations are at most of order s1=(2�)eE=2 which is less than

the mean as long as s > e
E . This should be taken as a sign that on time scales larger than

e
�E self-averaging no longer takes place.

The uniformity of the convergence in z claimed under (iii) follows from the exponential

estimate (4.142) and the continuity of g by standard arguments. This concludes the proof of

the lemma.}
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As �rst and main application of this lemma we obtain the

Corollary 4.17: Uniformly in <(z) < max(j=(z)j; 1=2),

lim
E#�1

lim
N"1

1

jT (E)j
X

�2T (E)

z

z � z�

= �
�1
Z 1

1

dx

x1+1=�

xz�1
xz�1 � 1

; in Probability.

(4:143)

Moreover, on the same set,

�
�1
Z 1

1

dx

x1+1=�

xz�1
xz�1 � 1

= (�z�1)1=��cosec (�=�) +O(jzj) (4:144)

for jzj small.

Proof: To get (4.143), just check that the hypothesis of Lemma 4.16 are satis�ed. To prove

(4.144), note �rst that

����Z 1

0

dx

x1+1=�

xz�1
xz�1 � 1

���� � Z 1

0

dx

x1+1=�

jzj�1xp
2

=
jzj�1p

2

1

1� 1=�

(4:145)

where we used that j(a+ ib� 1)j�1 � [(a� 1)2 + a
2]�1=2 � 2�1=2, if a � jbj. Thus it remains

to compute the integral from zero to in�nity. To do this we change variables from x to xz�1.

This turns the integral into an integration over a path C1 in the complex plane which is the

straight line from zero passing through s to in�nity. Since z
z�1 is analytic in the complex

plane with the positive real axis removed, the integration path C1 can be rotated to the

negative real axis C2 without changing the integral, since the integral along the arc A at

in�nity vanishes. (see �gure). In fact

Z 1

0

dx

x1+1=�

xz�1
xz�1 � 1

= z
1=�

�
1=�
1

Z 1z

0

dx

x1+1=�

x

x� 1
= z

1=�
�
1=�
1

Z �1

0

dx

x1+1=�

x

x� 1

= (�z)1=��1=�1

Z 1

0

dx

x1+1=�

x

x+ 1
(4:146)
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s

Rotation of  the integration contour to the real axis

A
C1

C2 Re

Im

This proves the lemma.}

We can now collect the results obtained in this and the previous subsection to control the

asymptotics of the eigenvalue �(u).

Corollary 4.18: with u = zb�(E)�1, on the domain DÆ de�ned in (4.104),

lim
E#�1

lim
N"1

(1� �(u)) = (�z�1)1=��cosec (�=�) +O(jzj); in Probability. (4:147)

Proof: it suÆces to combine formula (4.102), the estimate (4.105) of Lemma 4.14, and

Corollary 4.17. }

Remark: The diligent reader (if any) who has reached this point will be relieved to �nally

see some formulas familiar from the trap-model emerge.

Having this result, we can now also estimate the norm of the error term M
�(1)(u).

Corollary 4.19: with u = zb�(E)�1, on the domain DÆ de�ned in (4.104),

lim sup
E#�1

lim sup
N"1

kM�(1)(u)k � C(d)jzj2(1�1=�) ; in Probability. (4:148)

Proof: This follows from Lemma 4.13 and Corollary 4.18.}
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Remark: We can only now appreciate why we expanded to second order in (4.58). It is

crucial to have the norm of K�(1)(u) bounded by something of order jzj2 to obtain an estimate

that tends to zero in the corollary above.

4.5 Controlling the inhomogeneous term.

Our next step is to establish control over the inhomogeneous term F
�
� (m;u) de�ned in

(4.2). To do so we use the Markov property to represent

P[��T (E)n� > m+ n] =
X

�0 62T (E)n�
P[�(m) = �

0
; �

�
T (E)n� > m]P[��

0

T (E)n� > n]

=
X

�0 62T (E)
P[�(m) = �

0
; �

�
T (E)n� > m]P[��

0

T (E)n� > n]

+ P[�(m) = �; �
�
T (E)n� > m]P[��T (E)n� > n]

(4:149)

Inserting this relation into (4.2) we obtain that

F
�
� (m;u) =

X
�0 62T (E)

P[�(m) = �
0
; �

�
T (E)n� > m]L�0� (u)

+ P[�(m) = �; �
�
T (E)n� > m]L��(u)

(4:150)

where L��(u) is given by (3.13) and

L�0� (u) =
G
�0

T (E)n�(u)� 1

eu � 1
(4:151)

Thus, using that

G
�0

T (E)n�(u) = G
�0

T (E)n�;T (E)(u) +G
�0

�;T (E)(u)G
�
T (E)n�(u) (4:152)

we get

F
�
� (m;u) =

1

eu � 1

"
P[�(m) = �; �

�
T (E)n� > m]

�
G
�
T (E)n�(u)� 1

�
+

X
�0 62T (E)

P[�(m) = �
0
; �

�
T (E)n� > m]

�
G
�0

T (E)n�;T (E)(u) +G
�0

�;T (E)(u)G
�
T (E)n�(u)� 1

�#
(4:153)

As by now usual, we will need a rather crude bound for u away from the origin complemented

by a �ner estimate for very small values of juj. The former follows from the next lemma.

Lemma 4.20: Assume that <(u) � 1
2
b��1. Then

jF �� (m;u)j �
2

jeu � 1jP[�
�
T (E)n� > m]

����G�
T (E)n�(u)

���+ 2
�

(4:154)
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Proof: By Lemma 3.4, under the condition on u,
���G�0

�;T (E)(u)
��� = ���g�0� (u)

��� � 2 (in fact

� 2=(M � 1)). Similarly,
���G�0

T (E)n�;T (E)(u)
��� � 2. Inserting this into (4.153) and noting thatP

�0 62T (E)n� P[�(m) = �
0
; �

�
T (E)n� > m] = P[��T (E)n� > m] one arrives readily at the claimed

bound.}

Bounds for juj � 1.

As was the case for the resolvent, we have to identify more precisely the leading term of

the inhomogeneous term for the contribution to the inversion integral for u very close to the

origin. We begin with the m-dependent probabilities in (4.153).

Lemma 4.21: There is a �nite positive constant C such that, with b� as in (3.8),���P h��T (E)n� > m;�(m) = �

i
� pN (�; �)

m
��� � Cme

��
p
NE�e

�m=E��T n�b� (4:155)

Proof: Note that pN (�; �)
m is the probability of the event that �(k) remains at � during the

entire period from time zero to time m which is a subset of the event f��T (E)n� > m;�(m) =

�g. In what remains, there must be a �rst time when �(k) 6= �. Thus���P h��T (E)n� > m;�(m) = �

i
� pN (�; �)

m
���

�
m�1X
k=1

pN (�; �)
k�1 X

�0��
pN(�; �

0)P
h
�
�0

T (E)n� > m� k; �(m� k) = �

i

� (1� pN (�; �))

m�1X
k=1

pN (�; �)
k�1max

�0��
P

h
�
�0

T (E)n� > m� k

i (4:156)

The probability in the last line is similar to the probabilities estimated in Corollary 3.3, except

that the starting point is now �
0 instead of �. However using the decomposition (4.152), one

veri�es easily that following the same lines as in the proof of that corollary, one obtains the

estimate

P

h
�
�0

T (E)n� > m� k

i
� Ce

�(m�k)=E��0T n�b� (4:157)

which is all we will need here. Inserting this estimate into (4.156) and using that, by Propo-

sition 2.2 (together with the remark that follows it),

pN (�; �)
k = (1� e

��
p
NE� )k � e

�ke��
p
NE� � e

�k=E��T n� (4:158)
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the bound (4.155) follows directly. }

Remark: Let us note that the bound (4.155) is really e�ectively smaller than the dominant

term, if E� is \deep" within the top, even though we concede a little of the exponential decay

when replacing e�
p
NE� by E

�
Tn� . The point is that this error will tend to zero, while the

prefactor of the exponential tends to zero as well. Since it will be the � with exceptionally

large E� that contribute to the long time behavior, this will do the job.

Lemma 4.22: There exists a �nite positive constant C such that

(i) If E��Tn� >
b�, then

P

h
�
�
T (E)n� > m;�(m) 62 T (E)

i
� e

��
p
NE� b�

1� b�=E��
Tn�

e
�m=E��T n�b� (4:159)

(ii) If E��Tn� � b�, then
P

h
�
�
T (E)n� > m;�(m) 62 T (E)

i
� mb� e�m=b� (4:160)

Proof: Note that if the event f��T (E)n� > m;�(m) 62 T (E)g occurs, then there exists a last

time m� k < m when the process visits the �. This gives us the bound

P

h
�
�
T (E)n� > m;�(m) 62 T (E)

i
�

m�1X
k=1

P

h
�
�
T (E)n� > m� k;

i X
�0��

pN (�; �
0)P
h
�
�0

T (E) > k � 1
i

� (1� pN (�; �))

m�1X
k=1

e
�(m�k)=E��T n��(k�1)=b�(E)

(4:161)

In case (i) we can extract e�m=E��T n� from the sum and oversum the remaining geometric

series to get (4.159), while in the latter case we simply bound the exponential terms by their

maximum and retain that there are only m terms in the sum. This proves the lemma. }

Next we want to deal with the Laplace transforms appearing in (4.153). Concerning the

�rst line, we are already in good position, since we have the estimates needed for G�
T (E)n�(u)�

1 (see Proposition 3.6). The second term has, as we have seen, a prefactor that is of lower

order in the m behavior, but we have to show that the u-dependent coeÆcient is not more
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singular than that of the �rst term. To this end we rewrite

G
�0

T (E)n�;T (E)(u) +G
�0

�;T (E)(u)G
�
T (E)n�(u)� 1

= G
�0

T (E)n�;T (E)(u) +G
�0

�;T (E)(u)
�
G
�
T (E)n�(u)� 1

�
+G

�0

�;T (E)(u)� 1

= G
�0

T (E)(u)� 1 +G
�0

�;T (E)(u)
�
G
�
T (E)n�(u)� 1

� (4:162)

It will suÆce to use that, for <u < 1
2
b��1,

jG�0

T (E)(u)� 1j � jujb� (4:163)

and that G�0

�;T (E)(u) is bounded and analytic.

4.6 Laplace inversion 1. The error terms.

After this preparation we are now ready to attack the Laplace inversion of the function

��(u;m;E) given in principle by (4.5). Recall that we are interested in computing

�(n;m;E) � 1

jT (E)j
X

�2T (E)
��(n;m;E) � (1I;�(n;m;E)) (4:164)

Setting

�0(n;m;E) � �(n;m;E)� (1I; F (n;m)) (4:165)

(4.5) and the inversion formula for Laplace transforms we can write

�0(n;m;E) =
1

2�i

Z i�

�i�
due

�un (1I;M�
E(u)F

�(m;u)) (4:166)

The notation of Section 4.2 (see (4.31)-(4.34)) are again brought into force in the present

section; recall in particular that z = b�u. The �rst step of the analysis consists in deforming

the contour of integration to the contour C consisting of the three parts

A �
n
u 2 C : <z = 1=2; j=zj 2 [1=

p
2�; �b�]o (4:167)

B � �u 2 C : <z 2 [1=~t; 1=2]; <z = �j=zj2	 (4:168)

and

D � D1 [ D2 (4:169)

where

D1 �
�
u 2 C : jzj = 1=t ; <z < cj=zj2	

D2 �
n
u 2 C : <z 2 [

p
1=(4�2) + 1=t2 � 1=(2�); 1=~t]; <z = �j=zj2

o (4:170)



Aging in the REM. Part 2. 53

Here t and � are positive parameters that are assumed to be chosen such that C lies in the

domain of validity of Corollary 4.7 and Lemma 4.8, (ii), namely in

(D1(4) \D2(L; )) [D3; for some �xed 1
2
�  < 1 (4:171)

(Note that this essentially only imposes a constraint on �, which has to be taken small enough

compared with =L.) In what follows, t must be thought of as very large compared with one.

At this stage no constraint is imposed on the parameter ~t; it will be chosen as ~t = t
�, for

suitable 0 < � < 1, later. For future reference let us de�ne the points:

zA = rA + isA; zB = rB + isB ; zD = rD + isD

rA = 1=2; rB = 1=~t; rD =
p
1=(4�2) + 1=t2 � 1=(2�)

sA = 1=
p
2�; sB = 1=

p
�~t; sD = ((

p
1 + (2�=t)2 � 1)=2�2)1=2

D
D

A

~

1
2

z

z

zA

D

B

B

r

s

The contour   C  in the variables  r  and  s

0.51/t 1/ t 

We expect the main contribution to the integral to come from the part D of the integration.

Thus we show �rst how to bound the two other contributions. From now on the letter c will

denote a positive constant whose value may change from line to line.

Lemma 4.23: Let A be de�ned in (4.167). Then����Z
A
due

�un (1I;M�
E(u)F

�(m;u))

���� � ce
�n=(2b�) (4:172)
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Proof: Calling IA the left hand side of (4.172) we clearly have

IA � 2e�n=(2b�)

Z �

sA=b� dv
����1I;M�

E(1=(2
b�) + iv)F �(m; 1=(2b�) + iv)

����
� 2e�n=(2b�)b��1 Z �b�

1=
p
2�

ds

M�
E((1=2 + is)=b�)F �(m; (1=2 + is)=b�)

1

(4:173)

Under our assumption on �,
M�

E((1=2 + is)=b�) can be bounded as in (4.48) of Corollary

4.7. Since cos(s=b�) is monotone decreasing on [1=
p
2�; �b�], we may add to our previous

requirement on � that it is chosen small enough so thatp
1�O( ���1)

2

q
1 + b�22(1 � cos(1=(b�p2�))) � 1+

4

M � 1
(1+O(d=N)) +

C + C
0

2
(4:174)

The bound (4.48) then yields

M�
E((1=2 + is)=b�) � 1 + C

�1p
1�O( ���1)

1q
1 + b�22(1� cos(s=b�)) (4:175)

To bound
F �(m; (1=2 + is)=b�)

1
we use Lemma 4.20 together with the fact that on A, by

the estimates of Proposition 3.2, jG�
T (E)n�(u)j � c, to get that

F �(m; (1=2 + is)=b�)
1
� c

���e(1=2+is)=b� � 1
����1 (4:176)

Set � = exp(1=(2b�)) and v = s=b�. Then
���eiv � 1

��2 = (1 � �)2 + 2�(1 � cos v), and since

� > 1 + 1=(2b�),
F �(m; (1=2 + is)=b�)

1
� cb�q

1=4 + b�22(1 � cos(s=b�)) (4:177)

Inserting (4.175) and (4.177) in (4.173) we get

IA � 2ce�n=(2b�)

Z �b�
1=
p
2�

ds
1q

1 + b�22(1� cos(s=b�))q1=4 + b�22(1 � cos(s=b�))
� 2ce�n=(2b�)

Z �b�
1=
p
2�

ds
1

1=4 + b�22(1� cos(s=b�))
(4:178)
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To evaluate the last integral above, we split the integration interval into [1=
p
2�; �b�=4] and

[�b�=4; �b�]. On the �rst of these intervals, b�22(1� cos(s=b�)) is well approximated by s2 so

that Z �b�=4
1=
p
2�

ds
1

1=4 + b�22(1 � cos(s=b�)) � c

Z �b�=4
1=
p
2�

ds

1 + s2
� c

0 (4:179)

We then use that on the remaining interval b�22(1� cos(s=b�)) > b�2 so that

Z �b�
�b�=4 ds 1

1=4 + b�22(1 � cos(s=b�)) � cb� (4:180)

Inserting (4.179) and (4.180) in (4.178) yields the claim of the lemma. }

Lemma 4.24: Let B be de�ned in (4.168). If t = n=b�(E) and ~t = t
� then, for all

0 < � < 1, ����Z
B
due

�un (1I;M�
E(u)F

�(m;u))

���� � ct
� exp(�t1��) (4:181)

Proof: It will be enough to use norm estimates, that is, calling IB the left hand side of

(4.181),

IB �
Z
B
jduje�n<u kM�

E(u)k kF �(m;u)k1

= b��1 Zb�B jdzje�t<z
M�

E(z=
b�)F �(m; z=b�)

1

� 2cb��1 Z sA

sB

ds e
��s2t

M�
E((�s

2 + is)=b�)F �(m; (�s2 + is)=b�)
1

(4:182)

As in the proof of the previous lemma we use (4.48) to write the boundM�
E((�s

2 + is)=b�)
� 1 + C

�1
�s

2q
1 + b�22(1� cos(s=b�))(1�O( ���1))� 1� 4

M�1 (1 +O(d=N)) � (C + C 0)�1�s2

(4:183)

Using this time that on the integration interval, b�22(1� cos(s=b�)) � s
2(1� 1=(6�b�)2), and

that for 0 < x < 1,
p
1 + x � 1 + x=2, we get (for � small enough, t small enough compared

with M , and M;N large) that the denominator in the r.h.s. of (4.183) is greater than s2=4.

Since the numerator is bounded above by a constant, we may writeM�
E((�s

2 + is)=b�) � cs
�2 (4:184)
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Turning to the term
F �(m; (�s2 + is)=b�)

1
observe that, proceeding as we did to derive

(4.176) we obtain, F �(m; (�s2 + is)=b�)
1
� c

���e(�s2+is)=b� � 1
����1 (4:185)

Now, with � = exp((�s2)=b�) > 1 and v = s=b�, ���eiv � 1
��2 = (1 � �)2 + 2�(1 � cos v) �

2(1� cos v). Combining this with the bound established on the line following (4.183), (4.185)

becomes F �(m; (1=2 + is)=b�)
1
� cs

�1b� (4:186)

Collecting (4.182), (4.184) and (4.186), we arrive at

IB � c

Z sA

sB

ds e
��s2t

s
�3 � c

Z 1=
p
2

1=
p
~t

ds e
�s2t

s
�3 � ce

�t=~t
Z 1=

p
2

1=
p
~t

ds s
�3 � c~te�t=~t (4:187)

Thus, choosing ~t = t
�, 0 < � < 1, concludes the proof of the lemma. }

We now consider the error term resulting from the M�(1)(u) part of the resolvent on the

part D of the integration contour.

Lemma 4.25: If t = n=b�(E) then, for all 0 < Æ < 1=2,

lim sup
E#�1

lim sup
N"1

����Z
D
due

�nu
�
1I;M�(1)(u)F �(m;u)

�����
� ct

�2(1�1=�) +
c

2(1 � 1=�)
t
�2Æ(1�1=�) + ct

�(1�2Æ) exp(�t1�2Æ)
(4:188)

Proof: Again, it will be enough to use norm estimates, that is����Z
D
due

�nu
�
1I;M�(1)(u)F �(m;u)

����� � Z
D
jduje�n<ukM�(1)(u)kkF �(m;u)k1 (4:189)

To bound kF �(m;u)k1 we proceed as in the previous two lemmata and use Lemma 4.20

together with the fact that on D, by the estimates of Proposition 3.2, jG�
T (E)n�(u)j � c, to

establish that

kF �(m;u)k1 � cjeu � 1j�1 � cjuj�1 (4:190)

HenceZ
D
jduje�n<ukM�(1)(u)kkF �(m;u)k1 � c

Z
b�D jdzje�t<zkM�(1)(z=b�)kjzj�1 (4:191)
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and15 by Corollary 4.19

lim sup
E#�1

lim sup
N"1

Z
b�D jdzje�t<zkM�(1)(z=b�)kjzj�1

�c
Z
b�D jdzje�t<z jzj1�2=� � cIb�D (4:192)

We now decompose Ib�D as Ib�D = Ib�D1
+ Ib�D2

according to (4.170). Clearly

Ib�D1
�
Z 2�

0

d� t
�(1�2=�)�1 = 2�t�(2�2=�) (4:193)

To bound Ib�D2
we �rst observe that

Ib�D2
�
Z sB

sD

ds e
�s2�tp(2�s)2 + 1

�p
(�s2)2 + s2

�1�2=�
� c

Z p
�sB

p
�sD

ds e
�s2t

s
1�2=� (4:194)

and since for t large, sD � 1=t,

Ib�D2
� c

Z 1

p
�=t

ds e
�s2t

s
1�2=� (4:195)

Introducing a number 0 < Æ < 1=2, we then split the last integral above into

J1 �
Z 1=tÆ

p
�=t

ds e
�s2t

s
1�2=� and J2 �

Z 1

1=tÆ
ds e

�s2t
s
1�2=� (4:196)

As no exponential decay is to be gained in J1, we simply write

J1 �
Z 1=tÆ

p
�=t

ds s
1�2=� =

1

2(1 � 1=�)
(t�2Æ(1�1=�) � �

1�1=�
t
�2(1�1=�)) (4:197)

To deal with J2 we distinguish two cases: if 1� 2=� > 0, then

J2 �
Z 1

1=tÆ
ds e

�s2t =
1

2

Z 1

1=t2Æ
dx

e
�xt
p
x
� t

Æ

Z 1

1=t2Æ
dx e

�xt � t
�(1�Æ) exp(�t1�2Æ) (4:198)

while if 1� 2=� � 0,

J2 � t
Æ(2=��1)

Z 1

1=tÆ
ds e

�s2t � t
Æ(2=��1)�(1�Æ) exp(�t1�2Æ) � t

�(1�2Æ) exp(�t1�2Æ) (4:199)

15The appearance of b� after the limit has been taken in the inequality below may look confusing. Observe

however that, for all N;E, the rescaled contour b�D does not depend on N and E so that this notation is

formally correct.
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We have thus obtained that

Ib�D2
� c

2(1� 1=�)
t
�2Æ(1�1=�) + ct

�(1�2Æ) exp(�t1�2Æ) (4:200)

which, together with (4.193), yields the claim of the lemma.}

4.7 Laplace inversion 2. The main contributions.

Warning: In this last section we abandon the notation s = =(z) introduced in (4.33). The

letter s now takes back its initial meaning and designates the rescaled time variable s �m=b�)
of Theorem 1.

We are now moving towards the principle contributions. Note that

�
1I;M�(0)(u)F �(m;u)

�
=

�(u)

1� �(u)
(1I; F �(m;u)) � hN;E(u;m) (4:201)

We will proof the following result which together with the estimates on the error terms will

imply our main theorem.

Proposition 4.26: For u on C, we have that

lim
E#�1

lim
N"1

hN;E(u;m) = H
�
0 (s; z)(1 +O(jzj1�1=�; jzj1=�)) +O(z�1=�e�s=�1) (4:202)

where H�
0 (s; u) �

R1
0
dte

zt
R1
s=t

dx
x1=�(1+x)

is the Laplace transform of the function H0 de�ned

in (1.10).

Proof: The analysis of (1I; F �(m;u)) is in spirit and even detail very similar to that of

M
�(u), except that it is considerably simpler. Note that using (4.153), Lemma 4.21, Lemma

4.22, equation (4.162), and the estimate (4.163), the leading term in this expression is

(1I; F �(m;u)) � 1

jT (E)j
X

�2T (E)
pN(�; �)

m
G
�
T (E)n�(u)� 1

eu � 1
(4:203)

Note that from (4.107) we get furthermore that

G
�
T (E)n�(u)� 1

eu � 1
= b�(E) 1

z� � z
(1 +R(u)) (4:204)

where the remainder R(u) is of the same type as those appearing in the proof of Lemma 4.14.

Thus we obtain
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Lemma 4.27: With the notation of Lemma 4.14,�����pN (�; �)mG
�
T (E)n�(u)� 1

eu � 1
� e

�me��
p
NE�

b�(E)
z� � z

����� � C b�(E)jzj (4:205)

Proof: Essentially contained in the proof of Lemma 4.14.}

Next we can now prove the analogue of Corollary 4.17.

Lemma 4.28: Set s � m=b�. Then, uniformly on <z < max(=z; 1=2), and <(u) � j=uj,

lim
E#�1
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e
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(4:206)

Moreover,

�
�1
�1
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1

e
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= (�z�1)1=�
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Z 1
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zt

Z s=t

0

dx

x1=�(1 + x)
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+O(e�s=�1)

(4:207)

Proof: Observing that, by (4.125), me��
p
NE� = se

��
p
NE� b� = sz�(1 � 1=M)�1, (4.206)

is proven like (4.143) of Corollary 4.17. To prove (4.207), it will be convenient to extend the

integration in (4.206) all the way to zero, as in the proof of Corollary 4.17. One can easily

estimate the di�erence, namely����Z 1

0

e
�s=(x�1) dx

(1� zx�1)x1=�
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(4:208)

In the extended integral we again change variables and rotate the integration contour to

the negative real axis to get thatZ 1

0

e
�s=(x�1) dx

(1� zx�1)x1=�
= (z�1)1=��1

Z z1

0

e
�sz=x dx

(1� x)x1=�

= �(�z�1)1=��1
Z 1

0

e
+sz=x dx

(1 + x)x1=�

(4:209)
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According to whether <(z) is positive or negative, we can represent

e
+sz=x =

Z z1

�zs=x
e
�t
dt = z

Z +1

�s=x
e
�zt

dt or

e
+sz=x =
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e
�t
dt = �z
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s=x

e
+zt

dt respectively

(4:210)

Inserting these representation into (4.209) and changing the order of integration in the re-

sulting double integrals gives in both casesZ 1

0

e
�s=(x�1) dx

(1� zx�1)x1=�

= �
�1
1 (�z�1)1=�
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Z 1

0

dte
zt

Z s=t

0

dx
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! (4:211)

}

We can now combine the asymptotics for 1 � �(u) obtained in Corollary 4.18 with the

preceding result. This shows that

lim
E#�1

lim
N"1

�(u)

1� �(u)

1
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The leading term is readily identi�ed as the Laplace transform of

H0(s=t) � 1�
R s=t
0

dx
x1=�(1+x)

�cosec (�=�)
(4:213)

which we recognise as precisely the function that appeared as the leading asymptotic contri-

bution in the trap model in Theorem 1.1. The bounds on the error terms then follow from

simply estimating the corrections uniformly on C. }

The last step before completing the proof of Theorem 1 is now to consider the contribution

FN;E(n+m). We leave it to the reader to show that the leading asymptotics of this term is

given by

�
�1
Z 1

1

dxe
�(t+s)=x

x
�1�1=� � 1

�(t+ s)1=�

Z 1

0

dxe
�1=x

x
�1�1=� (4:214)

which is sub-dominant as s and t tend to in�nity. Collecting all the estimates of this section

concludes the proof of the main theorem.}}
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