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1.Introduction and background

1.1. Introduction.

The concept of \aging" has become one of the main paradigms in the theory of the dy-

namics of disordered systems4. Roughly speaking, this term refers to a particular way in

which dynamic properties of a system change with time when relaxing towards equilibrium:

the time scale at which the process evolves slows down in proportion to the elapsed time, the

system \ages". It is in fact believed that most disordered systems, or at least those quali�ed

as \glassy systems" do exhibit this phenomenon. While this is so, almost no results concern-

ing aging in \real" spin systems do exist. In fact most existing results, even on the heuristic

level, concern two types of dynamics: 1) Langevin dynamics in spherical models such as the

spherical SK model [BDG,CD], or the spherical p-spin SK model [BCKM]. 2) Trap models

[B,BD,BCKM] that are inspired by the structure of equilibrium states found in (mostly non-

rigorous) analysis of mean �eld spin-glasses. These dynamics are, however, introduced ad

hoc without any attempt to justify and derive them from an underlying Glauber dynamics

on the microscopic degrees of freedom.

In the context of the spherical models, a rigorous derivation of the aging phenomenon has

been given recently in [BDG]. This model lacks, however, many of the expected features of

spin glasses, in particular the existence of a complex energy landscape with many `metastable

states'. The simplest model showing these features is the random energy model (REM)

[D1,D2]. This model is indeed traded as one of the standard examples where aging occurs

in the physics literature; the arguments in the physics literature are however, all based on

the ad hoc introduction of an e�ective model (the REM-like trap model [B,BD,BM]) inspired

by known properties of the equilibrium distribution and some heuristic arguments. The

behaviour of the trap models can then be analysed in detail.

In this and the companion paper [BBG] we prove the �rst rigorous results on the Glauber

dynamics of the REM that will justify in a suitable sense the predictions based on the trap

model heuristic. We feel that this is an important �rst step in showing that the abundant

literature on this models is of relevance for realistic disordered systems. The key point of our

analysis, and in fact a central problem of the entire subject, will be to control the behaviour of

a Markov chain on a very high-dimensional set on a relatively small, but still asymptotically

in�nite subset of its 'most recurrent' or `most stable' states on appropriate time scales, and

4The con-mat archives in Trieste contain 263 papers containing this term in their abstracts, and 124

containing it even in the title.
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to describe the ensuing e�ective dynamics. While we will have to use many of the particular

features of the model we consider here, we feel that the general methodology developed in

this paper will be of use in many other contexts of the dynamics of complex systems.

The REM. We recall that the REM [D1,D2] is de�ned as follows. A spin con�guration �

is a vertex of the hypercube SN � f�1; 1gN . On an abstract probability space (
;F ; P )
we de�ne the family of i.i.d. standard normal random variables fX�g�2SN . We set E� �
[X�]+ � (X� ^ 0). We de�ne a random (Gibbs) probability measure on SN , ��;N , by setting

��;N (�) �
e�
p
NE�

Z�;N
(1:1)

where Z�;N is the normalizing partition function5. It is well-known [D1,D2] that this model

exhibits a phase transition at �c =
p
2 ln 2. For � � �c, the Gibbs measures is supported,

asymptotically as N " 1, on the set of states � for which E� �
p
N�, and no single

con�guration has positive mass. For � > �c, on the other hand, the Gibbs measure gives

positive mass to the extreme elements of the order statistics of the family E�; i.e. if we order

the spin con�gurations according to the magnitude of their energies s.t.

E�(1) � E�(2) � E�(3) � � � � � E
�(2

N ) (1:2)

then for any �nite k, the respective mass ��;N(�
(k)) will converge, as N tends to in�nity, to

some positive random variable �k; in fact, the entire family of masses ��;N (�
(k)); � 2 N will

converge in a suitable sense to a random process f�kgk2N, called Ruelle's point process [Ru].

We explain this in more detail below.

So far the fact that � are vertices of a hypercube has played no rôle in our considerations.

It will enter only in the de�nition of the dynamics of the model. The dynamics we will

consider is a discrete time Glauber dynamics. That is we construct a Markov chain �(t) with

state space SN and discrete time t 2 N by prescribing transition probabilities pN(�; �) =

P[�(t+ 1) = �j�(t) = �] by

pN(�; �) =

8><>:
1
N
e��

p
NE� ; if k� � �k2 =

p
2

1� e��
p
NE� ; if � = �

0; otherwise

(1:3)

Note that the dynamics is also random, i.e. the law of the Markov chain is a measure valued

random variable on 
 that takes values in the space of Markov measures on the path space

5The standard model has X� instead of E� . This modi�cation has no e�ect on the equilibrium properties

of the model, and will be helpful for setting up the dynamics.
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SNN . We will mostly take a pointwise point of view, i.e. we consider the dynamics for a

given �xed realization of the disorder parameter ! 2 
 (dependence on which we persistently

suppress in the notation).

It is easy to see that this dynamics is reversible with respect to the Gibbs measure ��;N .

On also sees that it represents a nearest neighbor random walk on the hypercube with traps of

random depths (i.e. the probability to make a zero step is rather large when E� is large)
6. The

idea suggested by the known behavior of the equilibrium distribution is that this dynamics,

for � > �c, will spend long periods of time in the states �(1); �(2); : : : etc. and will move

\quickly" from one of these con�gurations to the next. Based on this intuition, Bouchaud et

al. proposed the \REM-like" trap model: the state space is reduced toM points, representing

the M \deepest" traps. Each of the states is assigned a positive random energy Ek which is

taken to be exponentially distributed with rate one. The dynamics is now a continuous time

Markov chain Y (t) taking values in SM � f1; : : : ;Mg. If the process is in state k, it waits an

exponentially distributed time with mean proportional to eEk�, and then jumps with equal

probability in one of the other states k0 2 SM . This process is then analyzed using essentially

techniques from renewal theory. The essential point is that if one starts the process from the

uniform distribution, it is possible to show that if one only considers the times, Ti, at which

the process changes its state, then the counting process, c(t), that counts the number of these

jumps in the time interval (0; t] is a classical renewal (counting) process [KT]; moreover, as

n " 1, this renewal process converges to a renewal process with a deterministic law for the

renewal time with a heavy-tailed distribution (in the sense that that the mean is in�nite7)

whose density is proportional to t�1�1=� where � = �=�c. It is the emergence of such non-

Markovian limit processes that is ultimately responsible for all the aging phenomena observed

in the abundant literature on this and related models. Mathematically, the analysis of this

trap model presents no particular challenge and the analysis presented e.g. in the review

[BCKM] is essentially rigorous, or can be made so with minor e�orts.

Our purpose is to show, in a mathematically rigorous way, how and to what extent the

REM-like trap model can be viewed as an approximation of what happens in the REM itself.

Clearly the main diÆculty in doing this will be to explain why the rather complicated random

walk on the hypercube between the most profound traps can be interpreted as a simple jump

process. This question has two aspects:

6We have chosen this particular dynamics for technical reasons. To study e.g. the Metropolis algorithm

would require some extra work, but we expect essentially the same results to hold.
7This is clearly due to the fact that the average of the witing time e�Ei over the disorder is in�nite.
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1) Why does the process jump with the uniform distribution on the extremal states?

2) Why can this process be seen as a Markov process, in particular, why are the times between

visits of two extreme points asymptotically exponentially distributed?

While these facts may appear \obvious" to most physicists, the reason why they are not

addressed in any serious way in the literature is that a) they are not at all easy to solve

and b) they are, strictly speaking, not even true. In fact, we will see in the course of the

analysis (including the follow-up paper [BBG]) that such properties can be only established

in a very weak asymptotic form, which is, however, just enough to imply that the predictions

of Bouchaud's model apply to the long time asymptotics of the process. While this fact will

emerge here only through some very careful and tedious computations, it is clearly desirable

to develop a more profound understanding of the phenomenon.

In this �rst paper we will essentially address the question 1). We will show that if we

look at the sequence of visits of the process on a selected set of set of the states of lowest

energy, disregarding the times of these visits, the law of the sequence can indeed be described

asymptotically by a simple discrete time Markov chain on this set, which jumps from one

point to the next with the uniform distribution. We will also consider two more questions.

First we will compute the mean entrance time and the entrance law on this set starting

from an arbitrary point on the hypercube. Second we will compute the mean transition

times between points in this set. It will turn out that these mean transition times do indeed

depend, asymptotically, only on the starting point. Thus, modulo the Markovian hypothesis,

we come very close to the heuristic picture outlined above. Moreover, we will see that the

mean time to reach a set of extremes is proportional to the smallest \waiting times" on that

set (if � >
p
2 ln 2), which will be interpreted as a �rst sign of the occurrence of aging. We will

also show that in contrast, if � <
p
2 ln 2, then the mean time to reach any such point is much

longer (by an exponentially large factor) then the waiting time in that point, independent of

the starting point of measure. This dichotomy is in fact the main dynamical signature of the

transition in this model. This resolves question raised in an earlier earlier attempt by Fontes

et al. [FIKP] to analyse the dynamics of the REM using estimates on the spectral gap. This

analysis revealed no sign of a phase transition in the behaviour of the spectral gap. Indeed,

the spectral gap in this model correponds in both the high and the low temperature case

essentially to the maximal mean waiting time in one site, which depends in a regular way

on the temperature. For a di�erent approach to the high-temperature dynamics see also the

recent paper by Mathieu and Picco [MP,M].



6 Section 1

The control of the property 2) and the more re�ned analysis of the aging phenomenon will

be left two a companion paper [BBG], which will strongly rely on the results obtained here.

Our analysis will draw heavily on methods introduced only recently in the analysis of

metastability in similar Markov chains in [BEGK1,BEGK2]. We note, however, that the

situation here is in some respects quite di�erent than in the setting investigated in these

papers. In particular, the investigation of metastability concentrated on the situation where

the time scales associated to each metastable state were suÆciently far apart so that to each

state corresponds a distinct scale. Moreover, these long, metastable time-scales were assumed

to be well separated from the shorter time scales on which the process may stay away from the

set of metastable states. In the present situation, and this is a generic feature distinguishing

aging from metastability, we have on the contrary an in�nity of states that communicate on

the same time scale, and to complicate the issue, there will be no `gap' between the time

scales we are interested in and the `faster' times scales that we try to ignore. Thus the present

situation violates the conditions of the setting investigated in [BEGK2] in a maximal way.

The remainder of the introduction is organized as follows. In the next subsection we

present some background results on the equilibrium properties of the REM. Based on this

information, we will discuss in subsection 1.3 some aspects of the metastable behaviour of

the model, and state precisely the results we alluded to above.

1.2. Equilibrium results for the REM.

In this sub-section we give the necessary background on the (mostly well known, see e.g.

[Ei,GOP,OP,Ru]) static aspects of the REM, i.e. we give a precise description of the in�nite

volume asymptotics of the Gibbs measures that will help to understand the heuristics of the

model. A complete exposition can be found in [Bo]. The basic result is the following theorem

that characterizes the precise behavior of the partition function:

Proposition 1.1: [BKL] Let P denote the Poisson point process on R with intensity

measure e�xdx. If � >
p
2 ln 2, then

e�N [�
p
2 ln 2�ln 2]+�

2
[ln(N ln 2)+ln 4�]ZN

D!
Z 1

�1
e�zP(dz) (1:4)

and

lnZ�;N � E ln Z�;N
D! ln

Z 1

�1
e�zP(dz) � E ln

Z 1

�1
e�zP(dz) (1:5)
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Remark: The right hand side of (1.4) is the partition function of what is known as Ruelle's

version of the random energy model [Ru]. The simple proof of this theorem is given in

[BKL]. It relies, of course, on the classical theorem on the convergence of the point process

of (properly rescaled) extremes of i.i.d. Gaussian r.v.'s to the Poisson point process P (see

e.g. [LLR]). Namely, if we set

uN (x) �
p
2N ln 2 +

xp
2N ln 2

� 1

2

ln(N ln 2) + ln 4�p
2N ln 2

(1:6)

and de�ne the point process

PN �
X

�2f�1;1gN
Æu�1

N
(X�)

(1:7)

it is well-known that PN converges in distribution to the Poisson point process, P, with
intensity measure e�xdx on the real line. Since the left hand side of (1.4) can be written asZ

PN (dx)e�x (1:8)

the theorem follows if the convergence (in law, as N " 1) of this integral can be proven,

which is the case if and only if � > 1. For this reason the Poisson point process P will play

a central rôle in all of our analysis.

Theorem 1.1 can be extended to obtain a precise description of the Gibbs measures as

well. To formulate this result, it will be convenient to compactify the space SN by mapping

it to the interval [�1; 1] via

SN 3 � ! rN (�) �
NX
i=1

�i2
�i 2 [�1; 1] (1:9)

De�ne the pure point measure ~��;N on [�1; 1] by

~��;N �
X
�2SN

ÆrN (�)��;N (�) (1:10)

Let us introduce the Poisson point process R on the strip [�1; 1]�R with intensity measure

1
2
dy� e�xdx. If (Yk;Xk) denote the atoms of this process, de�ne a new point process W� on

[�1; 1] � (0; 1] whose atoms are (Yk; wk), where

wk �
e�XkR R(dy; dx)e�x (1:11)

With this notation we have that
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Proposition 1.2:[Bo] If � >
p
2 ln 2, with � = �=

p
2 ln 2,

~��;N
D! ~�� �

Z 1

0

W�(�; dw)w (1:12)

Proof: De�ne the point process RN on [�1; 1] � R by

RN �
X
�2SN

Æ(rN (�);uN (X�)) (1:13)

A standard result of extreme value theory (see [LLR], Theorem 5.7.2) is easily adapted to

yield that

RN
D!R; as N " 1 (1:14)

where the convergence is in the sense of weak convergence on the space of sigma-�nite mea-

sures endowed with the (metrizable) topology of vague convergence. Note that

��;N (�) =
e�u

�1

N
(X�)P

� e
�u�1

N
(X�)

=
e�u

�1

N
(X�)R RN (dy; dx)e�x

(1:15)

We can de�ne the point process

WN �
X
�2SN

Æ�
rN (�);

exp(�u
�1

N
(X�))R

RN (dy;dx) exp(�x)

� (1:16)

on [�1; 1] � (0; 1]. Then

~��;N =

Z
WN(dy; dw)Æyw (1:17)

Of course we would like to show that this quantity converges to the same object with WN

replaced by W, as N " 1. The only non-trivial issue to be resolved is to see whether the

denominators
R RN (dy; dx) exp(�x) converge. But Theorem 1.1 asserts precisely that this

is the case whenever � > 1. Standard arguments then imply that �rst WN
D! W, and

consequently, (1.12). }

Remark: Note that Theorem 1.2 contains in particular the convergence of the Gibbs measure

in the product topology on SN , since cylinders correspond to certain subintervals of [�1; 1].

Let us discuss the properties on the limiting process ~�� . It is not hard to see that with

probability one, the support of ~�� is the entire interval [�1; 1]. On the other hand, its mass

is concentrated on a countable set, i.e. the measure is pure point. This is quite easy to see

and the details of the argument can be found in [Bo].
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1.3. Metastability and statement of the main results.

The properties of the invariant distribution explained in the previous section clearly imply

that at temperatures below the critical one the dynamical process will spend most of its time

on the extreme states. This suggests that the long time behaviour of the dynamics can be

read of from observations of the process on visits to these states. More precisely, de�ne the

sets, for E 2 R,

TN (E) �
�
� 2 SN

��E� � uN (E)
	

(1:18)

where uN (E) is de�ned in (1.6). We will call the set TN (E) 'the top', and frequently suppress

indices, writing T = T (E) = TN (E) whenever no confusion is likely. Moreover, we will use

the convention that M � jTN (E)j denotes the cardinality of the top, and d � 2M . Let us

introduce, for � 2 SN ; I � SN , the (slightly abusive) notation

��I � inffn > 0j�(n) 2 I; �(0) = �g (1:19)

for the �rst positive time the process starting in � reaches the set I, i.e. here and in the

following we will write

P[��I = k] � P[��I = kj�(0) = �] (1:20)

Let us recall that in [BEGK1,BEGK2] a very similar program was carried out in a situation

that we consider generic for systems having \metastable states". A key characterization of

the e�ective dynamics on such a set M involves the quantities P[�xI < �xx ] (that, in potential

theoretic language, are closely related to Newtonian capacities). There, as here, we identi�ed

certain subsets M of the state space, �. They are called metastable sets, if they satisfy the

properties that
supx2� P[�

x
M < �xx ]

infz2M P[�zMnz < �zz ]
� 1 (1:21)

(1.21) implies a separation of the time-scales of the motion towards the set M (\fast scale")

and the motion within the set M (\slow scale"). Under some additional \non-degeneracy"

hypothesis, namely that

(i) for all pairs x; y 2 M, and any set I � Mnfx; yg either P[�xI < �xx ] � �(y)P[�
y
I < �yy ] or

P[�xI < �xx ]� �(y)P[�
y
I < �yy ], and

(ii) there exists m1 2M, s.t. for all x 2Mnm1, �(x)� �(m1),

it was shown in [BEGK2] that the motion on the set M can be described as a sequence

of exits with asymptotically exponentially distributed times (on distinct scales) towards the
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more stable states, i.e. the equilibrium. It was also shown that the inverse mean exit times

from any point x 2 M are asymptotically equal to the small eigenvalues of the generator of

the Markov chain.

In the random energy model we will �nd ourselves in a situation where all of these hy-

pothesis are not satis�ed. When checking condition (1.21) with M � T (E) we will see that

this is not satis�ed, and that, rather,

sup�2SN P[��T (E) < ��� ]

inf�2M P[��
T (E)n� < ��� ]

! 1; as E # �1 (1:22)

Moreover, all the quantities P[��T (E)n� < ��� ] for x 2 T (E) will turn out to be comparable.

Thus the situation is completely di�erent than in [BEGK2], and we have to expect a much

more complicated behaviour of the process on T (E). Moreover, there is no natural criterion

for the choice of a particular value of E, and we will, in fact, see later (in [BBG]) that it is

somehow natural to consider limits as E # �1. In any case our purpose is the description

of the process observed on T (E).

Our �rst result concerns just the \motion" of the process disregarding time. To that e�ect

we consider the random times

�0 � minfn > 0j�(n) 2 T (E)g
�` � minfn > �`�1j�(n) 2 T (E)n�(�`�1)g

(1:23)

Let �1; : : : ; �jT (E)j be an enumeration of the elements of T (E). Now de�ne (for �xed N and

E), the stochastic process Y` with state space f1; : : : ; jT (E)jg and discrete time ` 2 N by

Y
(N)

` = i, �(�`) = �i (1:24)

It is easy to see that Y` is a Markov process. Moreover, the transition matrix elements can

be expressed as

p(i; j) � P[�
�i

�j
< �

�i

T (E)nf�i[�jg] (1:25)

Note that this Markov chain has a state space whose size jT (E)j is a random variable. To

formulate our �rst theorem it will be convenient to �x the size by conditioning. Thus set

PM (�) � P (�j jT (E)j =M).
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Theorem 1.3: Let �(n) denote the Markov chain with transition matrix de�ned in (1.3)

and whose initial distribution is the uniform distribution on SN 8. Let Y (N) be the Markov

process de�ned by (1.24). Let Y` denote the Markov chain on f1; : : : ;Mg with transition

matrix p�M given by

p�M (i; j) =

� 1
M�1 ; if i 6= j

0; if i = j
(1:26)

and initial distribution p�M (i) = 1=M . Then, for all M 2 N,

Y (N) D! Y; PM -a.s. (1:27)

Remark: Note that the statement of the theorem also implies the convergence in law (w.r.t.

P ) of the probability distribution of Y (N) to that of Y .

The next results concern mean times.

Theorem 1.4: Assume that � � �=
p
2 ln 2 > 1. Then there exists a subset eE � 
 with

P (eE) = 1, such that for all ! 2 eE, for all N large enough, the following holds:

i) For all � 2 T (E),

E(�
�
T (E)n� ) =

1

1� 1
M

h
e�
p
NE+

� +W�;N;T (E)

i
(1 +O(1=N)) (1:28)

ii) For all � =2 T (E),

E (��T (E) ) �
1

1� 1
M

h
e�
p
NE+

� +W�;N;T (E)

i
(1 +O(1=N))

E (��T (E) ) �
1

1� 1
M

�
e�
p
NE+

� +
1� eE(�� 1)

1 + 1=M
W�;N;T (E)

�
(1 +O(1=N))

(1:29)

iii) For all �; �� 2 T (E), � 6= ��,���E (���� j ���� � �
�
T (E)n�)� E(�

�
T (E)n� )

��� � 1

1� 1
M

W�;N;T (E)O(1=N) (1:30)

where

W�;N;T (E) �
e(��1)E+�

p
NuN (0)

M(� � 1)

�
1 + VN;EeE=2 �� 1p

2�� 1

�
(1:31)

8In fact it is enough, for the result to hold, that the initial distribution gives zero mass to an �-neighborhood

of T (E).
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and VN;E is a random variable of mean zero and variance one.

Theorem 1.4 is complemented by a somewhat converse result in the case � < 1:

Theorem 1.5: Assume that � < 1. Then, with probability one, for all N large enough,

for all � 2 SN ,

E��T (E) =
1

M � 1
eN(�2=2+ln 2)(1 +O(1=N))� sup

�2SN
E�

�
SN n� (1:32)

Remark: Since as N " 1, E jT (E)j ! e�E , we see that for �E very large, W�;N;T (E) �
e�(E+uN (0)). Thus (ii) of Theorem 1.4 implies that if � > 1, for all � 62 T (E), the mean

time of arrival in the top is proportional to e�(E+uN (0)). On the other hand, there exists

� 2 T (E) such that
p
NE� � E + uN (0) + O(eE), so that the slowest times of exit from a

state, E�
�
SN n� = e�

p
NE� , in T (E) are just of the same order. This can be expressed by saying

that on the average the process takes a time t to reach states that have an exit time t. This

is a �rst, and weak, manifestation of the aging phenomenon that we will investigate in much

greater detail in [BBG]. In contrast, if � < 1, Theorem 1.5 E��
T (E)

� sup�2SN E�
�
SN n�, and

thus the time spent in top states is irrelevant compared to the time between successive visits

of such states. Thus we see a clear distinction between the high and the low temperature

phase of the REM on the dynamical level.

Remark: Statement iii) of Theorem 1.4 expresses the fact that the mean times of passage

from a state � 2 T (E) to another state �� 2 T (E) are asymptotically independent of the

terminal state ��. This con�rms to some extend the heuristic picture of Bouchaud. Indeed,

if we added the hypothesis that the process observed on the top is Markovian, than the two

preceding theorems would immediately imply that the waiting times must be exponentially

distributed with rates independent of the terminal state and given by (1.30). We will see in

[BBG] that this, however, cannot be justi�ed.

The remainder of this paper is devoted to proving Theorems 1.3, 1.4, and 1.5. Section 2

will in fact prove a number of results that will not only imply Theorem 1.3, but will also

furnish basic input to both Section 3 and the follow-up paper [BBG]. Section 3 contains the

proof of Theorems1.4 and 1.5.
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2. Probability estimates

In this section we provide estimates that will immediately allow to prove Theorem 1.3. In

fact we will proof much more, anticipating what will be needed in Section 3 as well as in the

follow-up paper [BBG]. These results are collected in the following proposition.

Proposition 2.1: Set M = jT (E)j, d = 2M and Æ(N) � �
d
N

�1=2
logN . There exists a

subset E � 
 with P (E) = 1, such that for all ! 2 E, for all N large enough, the following

holds:

For " > 0 a constant, de�ne the sets

Bp"N (�) = f�0 2 SN j k�0 � �k2 �
p
"Ng; � 2 SN (2:1)

and

W"(I) �
\
�2I

Bcp
"N

(�); I � SN (2:2)

Then,

i) For all " > 0 there exists a constant c > 0 such that, for all � 2 T and all � 2W"(T ),���P���� < ��Tn�

�
� 1

M

��� � d
NM

(1 + cÆ(N)) (2:3)

ii) There exists a constant c > 0 such that, for all � 2 T and �� 2 T with � 6= ��,���e�pNE+
�� P

�
� ��� < �

��
Tn�

�
� 1

M

��� � d
NM

(1 + cÆ(N)) (2:4)

iii) There exists a constant c > 0 such that, for all � 2 T and �� 2 T with � 6= ��,���P�� ��� < �
��
Tnf�;��g

�
� 1

M�1

��� � d
N(M�1) (1 + cÆ(N)) (2:5)

iv) There exists a constant c > 0 such that, for all � 2 T ,���e�pNE+
� P

�
�
�
Tn� < ���

�
� �1� 1

M

���� � �1� 1
M

�
d
N
(1 + cÆ(N)) (2:6)

v) There exists a constant c > 0 such that, for all � =2 T ,

�
1� 1

M

� �
1� d

N
(1 + cÆ(N))

� � e�
p
NE+

� P (��T < ��� ) � 1 (2:7)
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vi) For all " > 0 there exists a constant c > 0 such that, for all � =2 T and all �� 2W"(T [ �),
1

M+1
+ d

NM
(1� cÆ(N)) � P

�
� ��� � � ��T

� � 1
M

+ d
NM

(1 + cÆ(N)) (2:8)

Proof of Theorem 1.3: Assuming the Proposition, Theorem 1.3 follows immediately

from iii) and i), together with the fact that the mass of the set SnW�(T ) under the uniform

measure on SN tends to zero as N tends to in�nity.}

Let us brie
y highlight the structure of the proof of Proposition 2.1. In sub-section 2.1

we will show that, for I � SN , the probabilities P
�
��� < ��I

�
can be expressed in terms of a

lumped chain through a lumping procedure that allows to reduce the high dimensional state

space SN to a much smaller one. In sub-section 2.2 we analyse the lumped chain and establish

the probability estimates which will serve as basic input to the proof of Proposition 2.1. The

proof of the proposition is then carried out in sub-section 2.3.

2.1. Lumped chains: de�nition and properties

Lumping procedure

We begin with some preparatory notation and de�nitions. For M an integer, let SM�N be

the set of all M �N matrices whose elements belong to S = f�1; 1g. A matrix � 2 SM�N

will be written either in terms of its matrix elements, row vectors or column vectors according

to the following notation. In terms of its matrix elements we will write � = (�
�
i )

�=1;:::;M
i=1;:::;N ,

where �
�
i 2 S is the element lying at the intersection of the �-th row and i-th column. The

row and column vectors of � will be denoted respectively by �� and �i, and written, in terms

of their elements, as:
�� = (�

�
i )i=1;:::;N 2 SN ; � 2 f1; : : : ;Mg

�i = (�
�
i )

�=1;:::;M 2 SM ; i 2 f1; : : : ; Ng
(2:9)

Observe that, when carrying an index placed as a superscript, the letter � refers to an element

of the cube SN while, when carrying an index placed as a subscript, it refers to an element

of the cube SM .

As is usual, � may then be written as the N -tuple formed by its column vectors,

� = (�1; : : : ; �i; : : : ; �N ) (2:10)

or, denoting by t� the transpose matrix, as the M -tuple formed by its row vectors,

t� = (�1; : : : ; ��; : : : ; �M ) (2:11)
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Given a subset I � SN we de�ne a partition of the index set � � f1; : : : ; i; : : : ; Ng in the

following way. Let � = (�1; : : : ; �i; : : : ; �N ) 2 SjIj�N be any matrix having the property that

I =
n
�1; : : : ; ��; : : : ; �jIj

o
(2:12)

in other words, any matrix having the set I for set of row vectors. Next, let fe1; : : : ; ek; : : : ; edg
be an arbitrarily chosen labeling of all d = 2jIj elements of SjIj (this labeling will be kept

�xed throughout, whatever the choice of I is). Then � induces a partition of � into d

disjoint (possibly empty) subsets, �k(I), obtained by grouping together all indices i having

the property that �i = ek:

� =

d[
k=1

�k(I); �k(I) = fi 2 � j �i = ekg (2:13)

We will write

PI(�) = f�k(I); 1 � k � dg (2:14)

Remark: Observe that with the notation introduced above, we do not keep track of the

particular choice of the matrix � we made. The reason is that since any two matrices satisfying

(2.12) are obtained from each other by a permutation of their rows, the partitions they induce

only di�er through the labeling of the sets (2.13). As this labeling will be irrelevant for our

purposes we will as a rule forget the underlying matrix. It is understood that in all statements

involving PI(�), a choice has been �xed.

Finally, this partition is used to de�ne a many-to-one function, 
I , that maps the elements

of SN into d-dimensional vectors,


I(�) =
�

1I (�); : : : ; 


k
I (�); : : : ; 


d
I (�)

�
; � 2 SN (2:15)

where, for all k 2 f1; : : : ; dg,

kI (�) =

1

j�k(I)j
X

i2�k(I)
�i (2:16)

A few elementary properties of 
I are listed in the lemma below.

Lemma 2.2:

i) The range of 
I , �N;d(I) � 
I(SN ), is a discrete subset of the d-dimensional cube [�1; 1]d
and may be described as follows. Let fukgdk=1 be the canonical basis of Rd . Then,

x 2 �N;d(I)() x =

dX
k=1

nk

j�k(I)j
uk (2:17)
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where, for all 1 � k � d, jnkj � j�k(I)j has the same parity as j�k(I)j.

ii)

jf� 2 SN j 
I(�) = xgj =
dY

k=1

� j�k(I)j
j�k(I)j 1+xk2

�
; 8x 2 �N;d(I) (2:18)

In particular, the restriction of 
I to I is a one-to-one mapping from I onto 
I(I).

iii) The elements of I are mapped onto corners of [�1; 1]d: for all � 2 I


I(�) = (�i1 ; : : : ; �ik : : : ; �id); for any choice of indices ik 2 �k(I) (2:19)

iv) Let � 2 SN be such that inf�2In� k� � �k2 �
p
"N for some " > 0. Set x � 
I(�) and

I � 
I(I). Then

inf
y2Inx

kx� yk2 � "N

2
p
dmaxk j�k(I)j

(2:20)

Proof of Lemma 2.2: Assertions i), ii), and iii) result from elementary observations. To

prove assertion iv) note that for any � 2 I n �, setting y � 
I(�) and using (2.19), we have:

"N �
NX
i=1

(�i � �i)
2 =

dX
k=1

X
i2�k

(�i � yk)
2 = 2

dX
k=1

j�k(I)j(1 � ykxk) � 2max
k
j�k(I)j(y; y � x)

(2:21)

where we used in the last line that 1� ykxk = yk(yk � xk). But (y; y � x) � kyk2ky � xk2 =p
dky � xk2, so that

kx� yk2 � "N

2
p
dmaxk j�k(I)j

(2:22)

which, together with assertion ii) yields (2.20). }

The I-lumped chain

In the sequel we will denote by f�ÆN (t)gt2N the ordinary random walk (ORW) associated

to f�N (t)gt2N, that is, the walk evolving on the edges of GN according to the transition

probabilities

pÆN (�; �
0) =

� 1
N
; if k� � �0k2 =

p
2

0; otherwise
(2:23)

All objects referring to the ORW will be distinguished from those referring to the chain

f�N (t)g by the superscript Æ. Note in particular that f�ÆN (t)g is reversible w.r.t. the measure

�ÆN (�) = 2�N ; � 2 SN (2:24)
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We will denote by fXI;N (t)gt2N and call the I-lumped chain or the lumped chain induced

by I, the chain de�ned through

XI;N (t) � 
I(�
Æ
N (t)); 8t 2 N (2:25)

To �N;d(I) we associate an undirected graph, G(�N;d(I)) = (V (�N;d(I)); E(�N;d(I))), with

set of vertices V (�N;d(I)) = �N;d(I) and set of edges:

E(�N;d(I)) =
n
(x; x0) 2 �N;d(I) j 9k2f1;:::;dg;9s2f�1;1g : x0 � x = s 2

j�k(I)juk
o

(2:26)

The properties of fXI;N (t)g are summarized in the lemma below.

Lemma 2.3: Given any subset I 2 SN :

i) The process fXI;N (t)g is Markovian no matter how the initial distribution �Æ of f�ÆN (t)g
is chosen.

ii) Set QÆN = �ÆN Æ 
�1� . Then QÆN is the unique reversible invariant measure for the chain

fXI;N (t)g. In explicit form, the density of QÆN reads:

QÆN (x) =
1

2N
jf� 2 SN j 
I(�) = xgj; 8x 2 �N;d(I) (2:27)

iii) The transition function rÆN ( : ; : ) of fXI;N (t)g does not depend on the choice of �Æ and is

given by:

rÆN (x; x
0) =

( j�k(I)j
N

1�sxk
2

if (x; x0) 2 E(�N;d(I))) and x0 � x = s 2
j�k(I)juk

0; otherwise

(2:28)

Proof: The proof of this lemma is a direct application of the results of Burke and Rosenblatt

[BR] on Markovian functions of Markov Chains. }

Comparison lemmata

In order to make use of the above set-up we �rst need to establish how the Markov chain

�(t) relates to the ORW. This is done in the next lemma.

Lemma 2.4: Let I � SN . Then,

i) for all � =2 I and � =2 I [ �

P
�
��� < ��I

�
= PÆ

�
��� < ��I

�
(2:29)
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ii) for all � 2 I and � =2 I

P
�
��� < ��I

�
= e��

p
NE+

� PÆ
�
��� < ��I

�
(2:30)

It �nally remains to establish how the quantities PÆ
�
��� < ��I

�
can be expressed in terms

of a lumped chain.

Lemma 2.5: Let I; J;K � SN be such that I \ J = ; and I [ J � K. Then, Denoting by

RÆ the law of the K-lumped chain,

PÆ (��I � ��J ) = RÆ
�
�

K(�)


K(I)
� �


K(�)


K(J)

�
; for all � =2 I (2:31)

Remark: Note that K in the above lemma does not necessarily contain � if � =2 J .

We skip the proofs of Lemma 2.4 and 2.5 as they are nothing but elementary exercises.

2.2. Main ingredients of the proof of Proposition 2.1

Observe that the entropy produced by the lumping procedure gives rise through (2.27)

to a potential, FN (x) � � 1
N
lnQÆN (x). It moreover follows from assertions ii) and iii) of

Lemma 2.2 that this potential is convex and takes on its global maximum at the corners of

the cube [�1; 1]d. This allows us to draw on the results of [BEGK1] where such processes

were investigated.

Throughout this section I denotes an arbitrary (non empty) subset of SN whose size, jIj,
does not depend on N . Given 0 < � < 1 let K(I) and K(I)c be the sets de�ned through:

K(I) � K�(I) �
�
k 2 f1; : : : ; dg j j�k(I)j � �N

d

	
K(I)c � K�(I)

c � f1; : : : ; dg n K�(I)
(2:32)

Set � = jK(I)j. Of course � � 1 since supposing � = 0, (2.32) implies that
Pd

k=1 j�k(I)j <
�N < N , contradicting (2.13). Let � : Rd ! R� be the projection that maps x = (x1; : : : ; xd)

into �x = (xi1 ; : : : ; xi�) where, for all 1 � j � �, ij 2 K(I). Finally, set

N� = min
k2K(I)

j�kj (2:33)

With this notation we have:
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Lemma 2.6: There exists a constant c > 0 such that, for all N large enough,

RÆ (�x0 < �xx ) �
 
1� 1

N

X
�2K(I)c

j��j
!�

1� 1

N�
� c

N2�

�
; for all x 2 
I(I) (2:34)

Lemma 2.7: Let x 2 
I(I) and y 2 
I(SN ) be such that k�x��yk2 � Æ for some constant

1
2
> Æ > 0. Then there exist a constant h(Æ; �) > 0 such that, for all N large enough,

RÆ (�yx < �
y
0 ) � e�N�h(Æ;�) (2:35)

As an important consequence of the previous two lemmata we may immediately state:

Lemma 2.8: Let x 2 
I(I) and J � 
I(I) be such that for all y; y0 2 J[x, k�y0��yk2 � Æ

for some Æ > 0. Then, for all N large enough,

#

jJ j � RÆ
�
�0x � �0J

� � 1

#jJ j ; for all J � 
I(I); x 2 
I(I) (2:36)

where

# =

 
1� 1

N

X
�2K(I)c

j��j
!�

1� 1

N�
� c

N2�

�
(2:37)

In particular, if K(I)c = ;,����RÆ ��0x � �0J
�� 1

jJ j

���� � 1

jJ jN�

�
1 +

c

N�

�
(2:38)

for some constant c > 0.

Proof of Lemma 2.6: An L-steps path ! on �N;d(I), beginning at x and ending at

y is de�ned as sequence of L sites ! = (!0; !1; : : : ; !L), with !0 = x, !L = y, and !l =

(!kl )k=1;:::;d 2 V (�N;d(I)) for all 1 � l � L, that satis�es:

(!l; !l�1) 2 E(�N;d(I)); for all l = 1; : : : ; L (2:39)

(We may also write j!j = L to denote the length of !.)

Recall from Lemma 2.2 that if x 2 
I(I), then a fortiori x 2 f�1; 1gd. Without loss of

generality we may thus choose x in (2.34) as the point x = (xk)
d
k=1, xk = 1 for all 1 � k � d.

There is no loss of generality either in taking K(I) in (2.32) to be the set K(I) = f1; : : : ; �g
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and in assuming j�k(I)j to be even for all k 2 K(I). With this we introduce � one-dimensional

paths in �N;d(I), each being of length L � �N�=2, and connecting x to the endpoint y de�ned

by

y = (yk)
d
k=1; yk =

(
1� N�

j�kj ; if k 2 K(I)
1; if k 2 K(I)c

(2:40)

De�nition 2.9: For each 1 � � � �, let !(�) = (!0(�); : : : ; !n(�); : : : ; !L(�)), !n(�) =

(!kn(�))
d
k=1, be the path in �N;d(I) de�ned through

!kn(�) =

(
!
(k+��2)mod�+1
n ; if k 2 K(I)

1 if k 2 K(I)c
(2:41)

where ! = (!0; : : : ; !n; : : : ; !L), !n = (!kn)
d
k=1, is de�ned by

!0 = x (2:42)

and, for 1 � n � L,

!kn =

8><>:
1� 2

j�k(I)j
�
n�1
�

�� 2
j�k(I)j ; if k 2 K(I) and k � n� �

�
n�1
�

�
1� 2

j�k(I)j
�
n�1
�

�
; if k 2 K(I) and k > n� �

�
n�1
�

�
1 if k 2 K(I)c

(2:43)

Here [x], x 2 R, denotes the integer part of x. (The paths !(�) are in fact paths on the

subgraph fz 2 �N;d(I) j zk = 18k 2 K(I)cg.)

Let D be the subgraph of G(�N;d(I)) with set of vertices V (D) = fx0 2 �N;d(I) j kx0k2 �
kyk2g and set of edges E(D) = f(x0; x00) 2 E(�N;d(I)) j x0; x00 2 V (D)g. Denoting by ��

the subgraph of G(�N;d(I)) \generated" by the path !(�), i.e., with set of vertices V (��) =

fx0 2 �N;d(I) j 90�n�L : x0 = !n(�)g, we set

� = D [
�[

�=1

�� (2:44)

Since both x and 0 belong to � it follows from Lemma (6.1) that

RÆ (�x0 < �xx ) � eRÆ� (�x0 < �xx )

= eRÆ� ��xy < �xx
� eRÆ� (�

y
0 < �yx )

(2:45)

where the last equality is nothing but the Markov property. Again, the collection ��, 1 �
� � �, being easily seen to verify conditions (6.2) and (6.3) of Lemma 6.1 (w.r.t. the event�
�xy < �xx

	
), we have, applying the latter lemma twice in a row,

eRÆ� ��xy < �xx
� � eRÆ[��=1

��

�
�xy < �xx

� � �X
�=1

eRÆ��

�
�
!0(�)

!L(�)
< �

!0(�)

!0(�)

�
(2:46)
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and combining (2.45) and (2.46), we have,

RÆ (�x0 < �xx ) � eRÆ� (�
y
0 < �yx )

�X
�=1

eRÆ��

�
�
!0(�)

!L(�)
< �

!0(�)

!0(�)

�
(2:47)

The bound (2.45) is of course meaningless if it so happens that y = 0. In this special case we

only use (2.46) to write

RÆ (�x0 < �xx ) �
�X

�=1

eRÆ��

�
�
!0(�)

!L(�)
< �

!0(�)

!0(�)

�
(2:48)

Thus, in view of (2.47) and (2.48), Lemma 2.6 will be proven if we can establish that:

Lemma 2.10: Under the assumptions of Lemma 2.6:

i) There exists a constant c > 0 such that, for large enough N , for each � 2 K(I) and with

N� de�ned as in (2.33),

eRÆ��

�
�
!0(�)

!L(�)
< �

!0(�)

!0(�)

�
� j��j

N

�
1� 1

N�
� c

N2�

�
(2:49)

ii) Assume that y 6= 0. There exists a constant c > 0 such that, for all N large enough,

eRÆ� (�
y
0 < �yx ) � 1� cdN3=22��N=d (2:50)

Proof of Lemma 2.10 i): To simplify the presentation we will only treat the case � = 1,

that is, with the notation of De�nition 2.9, establish that

eRÆ��

�
�!0!L < �!0!0

� � j�1j
N

�
1� 1

N�
� c

N2�

�
(2:51)

As is well known that (see e.g. [Sp] or [BEGK1], Lemma 2.5)

eRÆ��

�
�!0!L < �!0!0

�
=

"
LX

n=1

eQÆ��
(!0)eQÆ��
(!n)

1erÆ��
(!n; !n�1)

#�1
(2:52)

which we may also write, using reversibility together with the de�nitions of erÆ��
and eQÆ��

(see Appendix A),

eRÆ��

�
�!0!L < �!0!0

�
=

"
L�1X
n=0

QN (!0)

QN (!n)

1

rN (!n; !n+1)

#�1
=

24N�=2�1X
m=0

�X
l=1

Am;l

35�1 (2:53)
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where

Am;l � QN (!0)

QN (!m�+l�1)
1

rN (!m�+l�1; !m�+l)
(2:54)

By (2.27) and (2.18),

A�1m;l =
j�lj �m

N

�Y
k=1

� j�kj
j�kj 1�!

k
m�+l�1

2

�
(2:55)

and by (2.43)

A�1m;l =
j�lj �m

N

Y
k>l�1

�j�kj
m

� Y
k�l�1

� j�kj
m+ 1

�

=
j�lj �m

N

�Y
k0=1

�j�k0 j
m

� Y
k�l�1

j�kj �m

m+ 1

(2:56)

where we use the convention that the second product above is one whenever the index set

k � l � 1 is empty. From now on we distinguish two cases.

1) the case � = 1: Here N� = j�1j. Inserting (2.56) in (2.53) yields

eRÆ��

�
�!0!L < �!0!0

�
=
j�1j
N

24N�=2�1X
m=0

Cm

35�1 (2:57)

where

Cm �
�j�1j
m

��1 j�1j
j�1j �m

=

�j�1j � 1

m

��1
(2:58)

Then, using the bound

�j�1j
m

��1
� 6

(j�1j � 1)3
; 3 � m � N�=2� 1 (2:59)

easily yields eRÆ��

�
�!0!L < �!0!0

� � j�1j
N

�
1� 1

N�
� c

N2�

�
(2:60)

for some constant c > 0.

2) the case � > 1: Inserting (2.56) in (2.53) yields

eRÆ��

�
�!0!L < �!0!0

�
=

24N�=2�1X
m=0

"
�Y

k0=1

�j�k0 j
m

�#�1
Bm

35�1 (2:61)
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where

Bm �
�X
l=1

N

j�lj �m

Y
k�l�1

m+ 1

j�kj �m

=
N

j�1j �m

"
1 +

�X
l=2

lY
l0=2

m+ 1

j�l0 j �m

#

� N

j�1j �m

"
1 +

�X
l=2

�
m+ 1

N� �m

�l�1#
(2:62)

Since (m+ 1)=(N� �m) < 1 for all 0 � m � N�=2� 1,

Bm � N(N� �m)

(j�1j �m)(N� � 2m� 1)
(2:63)

Inserting (2.63) in (2.61),

eRÆ��

�
�!0!L < �!0!0

� � j�1j
N

24N�=2�1X
m=0

Cm

35�1 (2:64)

where

Cm =

"
�Y

k0=1

�j�k0 j
m

�#�1
(N� �m)j�1j

(N� � 2m� 1)(j�1j �m)
(2:65)

Finally, a few simple computations yield the bounds

C0 = 1 + 1
N��1

C1 � N��
� (1 + 5N�1

� )

Cm � 2��2N�2�+1
� ; 2 � m � N�=2� 1

(2:66)

from which we easily get

eRÆ��

�
�!0!L < �!0!0

� � j�1j
N

�
1� 1

N�
� c

N��

�
(2:67)

for some constant c > 0. As (2.60) together with (2.67) give (2.51), the �rst assertion of

Lemma 2.10 is proven. }

Proof of Lemma 2.10 ii): We �rst write

eRÆ� (�
y
0 < �yx ) = 1� eRÆ� (�yx < �

y
0 ) (2:68)

and use the renewal identity (see e.g. Corollary 1.9 in [BEGK1]) to get

eRÆ� (�yx < �
y
0 ) =

eRÆ� ��yx < �
y
y[0
�

eRÆ� (�
y
x[0 < �

y
y )

(2:69)
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By reversibility the numerator of (2.69) may be rewritten as

eRÆ� ��yx < �
y
y[0
�
=
eQÆ�(x)eQÆ� (y) eRÆ�

�
�xy < �xx[0

�
(2:70)

Thus, remembering that eQÆ�(x0) = QÆN (x0)=QÆN (�) we have, by (2.27),

eRÆ� ��yx < �
y
y[0
� � QÆN (x)

QÆN (y)
=
jf� j 
(�) = xgj
jf� j 
(�) = ygj =

1

jf� j 
(�) = ygj (2:71)

which by (2.18), for y de�ned in (2.40), gives:

eRÆ� ��yx < �
y
y[0
� �

24 Y
k2K(I)

� j�kj
N�=2

�35�1 � � N�
N�=2

��1
(2:72)

where we used that there exists at least one index k 2 K(I) with the property that j�kj = N�.

Since by (2.32) N � N� � �N
d
, Stirling's formula enables us to conclude that, for large enough

N , eRÆ� ��yx < �
y
y[0
� � c

p
N�2

�N� � c
p
N2��N=d (2:73)

for some constant c > 0.

To bound the probability appearing in the denominator of (2.69) we again resort to the

path technique employed in the proof of assertion i). As we need only a rough estimate, this

probability will be estimated by means of a single path, e!. Setting
L = L0 + � � �+ Ld

Lk =

8><>:
0; if k = 0
1
2
(j�k(I)j �N�); if k 2 K(I)
j�k(I)j

2
; if k 2 K(I)c

(2:74)

e! = (e!0; : : : ; e!L) is de�ned as follows

e!n =

(
y; if n = 0e!n�1 � 2

j�k(I)juk; if
Pk�1

l=0 Ll < n �Pk
l=0 Ll; 1 � k � d

(2:75)

(Observe that e!L = 0.) Denoting by eD the subgraph of G(�N;d(I)) generated by the path e!
(i.e., with set of vertices V ( eD) = fx0 2 �N;d(I) j 90�n�L : x0 = e!ng), we have

eD � D � � (2:76)
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and thus, by Lemma 6.1,

eRÆ� ��yx[0 < �yy
� � eRÆ� ��y0 < �yy

� � eRÆeD ��y0 < �yy
�

(2:77)

To bound the last probability in (2.77) note that, just as in (2.53),

eRÆeD ��e!0e!L < �e!0e!0 � =
"
L�1X
n=0

QN (e!0)
QN (e!n) 1

rN (e!n; e!n+1)
#�1

(2:78)

At this stage, simply observe that on the one hand, QN (e!n) increases as n increases from

0 to L, implying that QN (e!0)=QN (e!n) � 1 for all 0 � n � L, while on the other hand, for

each 1 � k � d and all
Pk�1

l=0 Ll � n <
Pk

l=0 Ll,

rN (e!n; e!n+1) = j�k(I)j
2N

(1 + e!kn) � j�k(I)j
2N

(2:79)

Therefore

eRÆeD ��e!0e!L < �e!0e!0 � �
"

dX
k=1

Lk�1X
m=0

j�k(I)j
2N

#�1
=

"
dX

k=1

Lk
j�k(I)j
2N

#�1
� 1

Nd
(2:80)

where the last inequality follows from (2.74). Putting (2.80) back in (2.77) �nally gives

eRÆ� ��yx[0 < �yy
� � (Nd)�1 (2:81)

Inserting (2.81) and (2.73) in (2.69) and plugging the resulting bound in (2.68) yields (2.50).

The second assertion of Lemma 2.10 being proven, this concludes the proof of Lemma 2.10.

}

Inserting the bounds of Lemma 2.10 in (2.47) we obtain

RÆ (�x0 < �xx ) �
 
1� 1

N

X
�2K(I)c

j��j
!�

1� 1

N�
� c

N2�

��
1� c0N2��N=d)

�

�
 
1� 1

N

X
�2K(I)c

j��j
!�

1� 1

N�
� c00

N2�

� (2:82)

where the last inequality holds true for some constant c00 > 0, provided that N is large

enough. The �rst assertion of 2.6 is proven. }

Proof of Lemma 2.7: For � � 0 and x 2 
I(I) set

�
x;�
N;d(I) = fy0 2 �N;d(I) j k�x� �y0k2 > �g (2:83)
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By hypothesis,

y 2 �
x;Æ
N;d(I) (2:84)

Observe moreover that either y satis�es

i) 8z 2 f�1; 1gd \ �
x;Æ=2
N;d (I), k�z � �yk2 > Æ=2

or else

ii) 9z 2 f�1; 1gd \ �
x;Æ
N;d(I) such that k�z � �yk2 � Æ=2.

We will �rst show that in case i), (2.35) is a direct consequence of reversibility. Indeed, as

in (2.69),

RÆ (�yx < �
y
0 ) =

RÆ
�
�yx < �

y
y[0
�

RÆ (�yx[0 < �
y
y )

(2:85)

A straightforward adaptation of the proof of the bound (2.81) to the case at hand shows that

the denominator of (2.85) obeys the bound

RÆ
�
�
y
x[0 < �yy

� � 1=N (2:86)

while by reversibility its numerator may be rewritten as

RÆ
�
�yx < �

y
y[0
�
=
QÆ (x)

QÆ(y)
RÆ
�
�xy < �xx[0

�
(2:87)

Thus, by (2.27),

eRÆ� ��yx < �
y
y[0
� � QÆN (x)

QÆN (y)
=
jf� j 
(�) = xgj
jf� j 
(�) = ygj =

1

jf� j 
(�) = ygj (2:88)

where the last equality follows from the fact that x 2 
I(I) (see Lemma 2.2). To estimate

the last ratio note that condition i) combined with (2.84) implies that

inf
z02f�1;1g�

kz0 � �yk2 > Æ=2 (2:89)

which in turn implies that there exists k0 2 K(I) such that infs=�1 js � yk0 j > Æ=2
p
�, or in

other words, such that jyk0 j < 1� Æ=2
p
�. Thus, making use of (2.18) and Stirling's formula,

jf� j 
(�) = ygj�1 �
� j�k0(I)j
j�k0(I)j 1+yk02

��1
� c exp f�j�k0(I)jI(yk0)g

� c exp

�
�N� inf

juj<1�Æ=2p�
I(u)

� (2:90)
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for some constant c > 0, with N� de�ned as in (2.33), and where

�I(u) =
�
1� u

2

�
ln

�
1� u

2

�
+

�
1 + u

2

�
ln

�
1 + u

2

�
; juj � 1 (2:91)

Collecting all our bounds we arrive at

RÆ (�yx < �
y
0 ) � cN exp

�
�N� inf

juj<1�Æ=2p�
I(u)

�
(2:92)

As Æ > 0, infjuj<1�Æ=2p� I(u) > 0. Choosing h(Æ; �) = infjuj<1�Æ=2p� I(u)=2, it then follows

from (2.92) that, for all N large enough,

RÆ (�yx < �
y
0 ) � exp f�N�h(Æ; �)g (2:93)

Thus, under the assumption made in i), (2.35) is proven. Let us turn to the case ii). Observe

that for Æ < 1=2 there exists a unique point z 2 f�1; 1g� such that k�z � �yk2 � Æ=2.

Calling z� this point and introducing the discrete hyper-surface HÆ=2(z
�) = fz0 2 �N;d(I) j

kz� � �z0k2 = Æ=2g, we have

RÆ (�yx < �
y
0 ) =

X
z02HÆ=2(z�)

RÆ
�
�
y
z0 < �

y
HÆ=2(z

�)

�
RÆ
�
�z

0

x < �z
0

0

�
(2:94)

Now all points z0 2 HÆ=2(z
�) have the following properties: �rstly, as is obvious from the

de�nition of HÆ=2(z
�), k�z � �z0k2 > Æ=4 for all z 2 f�1; 1gd \ �

x;Æ
N;d(I), implying that

assumption i) is satis�ed with Æ replaced by Æ=2; secondly, since z� 2 �
x;Æ
N;d(I) by assumption,

then

Æ � k�x� �z�k2 � k�x� �z0k2 + k�z0 � �z�k2 � k�x� �z0k2 + Æ=2 (2:95)

implying that k�x� �z0k2 � Æ=2, i.e., that z0 2 �
x;Æ=2
N;d (I).

As a result, for each z0 2 HÆ=2(z
�), the probability RÆ

�
�z

0

x < �z
0

0

�
obeys the bound (2.92)

with Æ replaced by Æ=2. It therefore follows from (2.94) that

RÆ (�yx < �
y
0 ) � exp f�N�h(Æ=2; �)g

X
z02@BÆ=2(z�)

RÆ
�
�
y
z0 < �

y
@BÆ=2(z�)

�
� exp f�N�h(Æ=2; �)g

(2:96)

This concludes the proof of Lemma 2.7.}

Proof of Lemma 2.8: Again using renewal as in (2.69),

RÆ
�
�0x � �0J

�
=
RÆ
�
�0x � �0J[0

�
RÆ (�0J < �00 )

=
RÆ
�
�0x � �0J[0

�P
y2J R

Æ ��0y � �0J[0
� (2:97)
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so that we are left to bound a term of the form RÆ
�
�0y � �0J[0

�
, y 2 J . To do so observe that

RÆ
�
�0y � �0J[0

�
= RÆ

�
�0y < �00

�� RÆ
�
�0Jny < �0y < �00

�
(2:98)

and that

RÆ
�
�0Jny < �0y < �00

�
=
X
z2Jny

RÆ
�
�0z � �0J[0

�
RÆ
�
�zy < �z0

�
(2:99)

By assumption, the probabilities RÆ
�
�zy < �z0

�
in the r.h.s. above obey the bound (2.35) of

Lemma 2.7. Thus

RÆ
�
�0Jny < �0y < �00

�
� e�Nh(Æ;�)

X
z2Jny

RÆ
�
�0z � �0J[0

�
� e�Nh(Æ;�)RÆ

�
�0J < �00

� (2:100)

From (2.98) and (2.100) we deduce that

RÆ
�
�0y < �00

�� e�Nh(Æ;�)RÆ
�
�0J < �00

� � RÆ
�
�0y � �0J[0

� � RÆ
�
�0y < �00

�
(2:101)

and, summing over y 2 J ,X
y2J

RÆ
�
�0y � �00

�� jJ je�Nh(Æ;�)RÆ
�
�0J < �00

� � RÆ
�
�0J � �00

� �X
y2J

RÆ
�
�0y < �00

�
(2:102)

Inserting the bounds (2.101) and (2.102) into (2.97), and using that

RÆ
�
�0J � �00

�P
y2J R

Æ ��0y < �00
� � 1 (2:103)

we arrive at:

R� e�Nh(Æ;�) � RÆ
�
�0x � �0J

� � R

�
1

1� jJ je�Nh(Æ;�)

�
(2:104)

where

R � RÆ
�
�0x � �00

�P
y2J R

Æ ��0y � �00
� (2:105)

To estimate the above ratio we use �rst that, by reversibility,

R =
QÆN (x)RÆ (�x0 � �xx )P
y2J Q

Æ
N (y)RÆ (�y0 � �

y
y )

(2:106)

and next that, by Lemma 2.6,

#R � RÆ
�
�0x � �0J

� � R

#jJ j (2:107)
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where # is de�ned in (2.37) and

R � QÆN (x)P
y2J Q

Æ
N (y)

(2:108)

Now since J � 
I(I), and since QÆN (y) = 2�N for all y 2 
I(I),

R =
1

jJ j (2:109)

Collecting (2.104), (2.107), and (2.109) yields (2.38), concluding the proof of Lemma 2.8. }

2.3. Proof of Proposition 2.1

While the estimates of Section 2.2 will furnish all the basic ingredients to the proof of

Proposition 2.1, they depend upon the choice of the mapping 
I through several quantities.

To put them to use we still have to identify which mappings 
I will be needed and establish

the properties of all related objects. Taking a look at Proposition 2.1 in the light of Lemma

2.5 tells us at once that we will be concerned with two cases only: the case where the mapping


I is induced by the elements of the top (as required for the proof of the �rst four assertions)

or the top augmented by a non-random element of SN (which is needed for the proof of the

last one). These two cases are analysed below.

Lumped chain induced by the Top

Let t� = (�1; �2; : : : ; �jT (E)j) be the matrix formed of the elements of the top ordered

according to the magnitude of X�:

T (E) = f�1; �2; : : : ; �jT (E)jg; where X�1 � X�2 � � � � � X�jT (E)j (2:110)

Thus � is here a random variable on the probability space (
;F ; P ). One easily veri�es that

the conditional distribution of �, given that the top contains exactly M points, is the uniform

distribution over the set eSM�N of M -tuples of mutually distinct points of SN , i.e.:

P (� = � j jT (E)j =M) =

(
(2N�M)!

(2N )!
if � 2 eSM�N

0; otherwise
(2:111)

where eSM�N �
n
� 2 SM�N

��� �� 6= �� for all 1 � �; � �M;� 6= �
o

(2:112)

Set

Æ(N) � (d=N)1=2 lnN (2:113)
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and let SM�N be de�ned through

SM�N �
n
� 2 SM�N

��� j�k(�)j = N
d
(1 + �k(N)); j�k(N)j < Æ(N); 1 � k � d

o
(2:114)

The set E appearing in the statement of Proposition 2.1 may be chosen as

E =
[
N0

\
N>N0

EN (2:115)

where EN is given by

EN � �! 2 
 j �(!) 2 S jT (E)j�N
	

(2:116)

It is easy to see, using the proof of Lemma 4.2 of [G], that:

Lemma 2.11:

P (E) = 1 (2:117)

We will need a certain number of geometric properties of the set T (E), which we collect

below.

Lemma 2.12: For all 0 � " < 1=2, all ! 2 EN , and large enough N the following holds:

for all � 6= ��, � 2 T , �� 2 T ,

Bp
"N

(�) \ Bp
"N

(��) = ;; (2:118)

and

1

N

NX
i=1

�i��i � Æ(N) (2:119)

Proof: With the notation of (2.110) let �� 6= �� be any two distinct elements of T . For all

� 2 Bp"N (��) we have,

k� � ��k2 � k�� � ��k2 � k� � ��k2
� k�� � ��k2 �

p
"N

=
p
2N

 
1� 1

N

NX
i=1

��i �
�
i

!1=2

�
p
"N

(2:120)

Using (2.13) we may write

1

N

NX
i=1

��i �
�
i =

1

N

dX
k=1

j�k(�)je�ke�k (2:121)
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Since ! 2 EN by assumption, it follows from (2.114) that

1
N

NX
i=1

��i �
�
i = 1

d

dX
k=1

e�ke
�
k +

1
d

dX
k=1

�k(N)e�ke
�
k

= 1
d

dX
k=1

�k(N)e�ke
�
k

� Æ(N)

(2:122)

where the second equality follows from Lemma 2.1 of [G]. Thus (2.119) is proven. Inserting

(2.122) in (2.120) yields,

k� � ��k2 �
p
2N(1� Æ(N)) �

p
"N (2:123)

which would entail (2.118) if we hadp
2N(1 � Æ(N)) �

p
"N >

p
"N (2:124)

Now our assumptions on " imply that this is the case for all N large enough. The lemma is

therefore proven. }

With our choice of EN it readily follows from (2.16) that, for ! 2 EN , choosing e.g. � = 1=2

in de�nition (2.33),

K(T )c = ; (2:125)

and

N� = min
k2K(T )

j�k(T )j � N
d

�
1� � d

N

�1=2
lnN

�
max

k2K(T )
j�k(T )j � N

d

�
1 +

�
d
N

�1=2
lnN

� (2:126)

Of course � = d and the projection � de�ned in the line preceeding (2.33) simply is the

identity. Knowing this we have:

Lemma 2.13: Assume that ! 2 EN . Then, for all N large enough,

i) For all � 2W"(T ),

inf
x2
T (T )

k�x� �
T (�)k2 � "
p
d

2
(1� Æ(N)) (2:127)

ii) For all � 2 T ,

inf
x2
T (T )n
T (�)

k�x� �
T (�)k2 � (1� 2Æ(N))
p
d (2:128)



32 Section 2

Proof: As a consequence of (2.126) and assertion iv) of Lemma 2.2 we have, for all � 2
W"(T ),

inf
x2
T (T )

k�x� �
T (�)k2 = inf
x2
T (T )

kx� 
T (�)k2

� "N

2
p
dmaxk j�k(T )j

�"
p
d

2
(1� Æ(N))�1

(2:129)

which yields (2.127). Similarly note that if � 2 T then, by Lemma 2.12,

inf
�2Tn�

k� � �k2 �
p
2N(1� Æ(N)) (2:130)

Just as in (2.129) this property combined with (2.126) and Lemma 2.2, iv) implies that, for

all � 2 T ,

inf
x2
T (T )n
T (�)

k�x� �
T (�)k2 �
p
d
1� Æ(N)

1 + Æ(N)
(2:131)

which proves (2.128). }

We are now ready to prove the �rst �ve assertions of Proposition 2.1.

Notation: The following notation will be used throughout: T = 
T (T ), y = 
T (�), x =


T (�) and �x = 
T (��). It will moreover be assumed that ! 2 EN .

Proof of Proposition 2.1, i): Using in turn assertion i) of Lemma 2.4 and Lemma 2.5,

P

�
��� < ��Tn�

�
= PÆ

�
��� < ��Tn�

�
= RÆ

�
�yx < �

y
T nx

�
(2:132)

De�ning

R1 � RÆ
�
f�yx < �

y
T nxg \ f�y0 < �yxg

�
R2 � RÆ

�
f�yx < �

y
T nxg \ f�yx < �

y
0 g
� (2:133)

RÆ
�
�yx < �

y
T nx

�
may be decomposed as

RÆ
�
�yx < �

y
T nx

�
= R1 +R2 (2:134)

Obviously

0 � R2 � RÆ (�yx < �
y
0 ) (2:135)
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while

R1 =R
Æ
�
�
y
0 < �yx < �

y
T nx

�
=RÆ (�y0 < �

y
T )R

Æ
�
�0x < �0T nx

�
= [1� RÆ (�yT < �

y
0 )]R

Æ
�
�0x < �0T nx

� (2:136)

which, together with the bound

RÆ (�yT < �
y
0 ) �

X
x02T

RÆ (�yx0 < �
y
0 ) (2:137)

yields

RÆ
�
�0x < �0T nx

��
1�M sup

x02T
RÆ (�yx0 < �

y
0 )

�
� R1 � RÆ

�
�0x < �0T nx

�
(2:138)

We are thus left to bound the quantities supx02T R
Æ (�yx0 < �

y
0 ) and RÆ

�
�0x < �0T nx

�
, which

will be done by means of, respectively, Lemma 2.7 and Lemma 2.8: on the one hand, since

by assumption � 2 W"(T ), it follows from (2.127) that Æ in Lemma 2.7 may be chosen as

Æ = "
p
d

4
, so that inserting the bound (2.126) in (2.35) yields

RÆ (�yx0 < �
y
0 ) � e�Nh0(d); for all x0 2 T (2:139)

for some constant h0(d) > 0 and large enough N ; on the other hand, it follows from (2.128)

that Æ in Lemma 2.8 may be chosen as Æ =
p
d so that, in view of (2.125), combining the

bounds (2.38) and (2.126), we obtain����RÆ ��0x < �0T nx

�
� 1

M

���� � d

NM

�
1 + c0

�
d
N

�1=2
lnN

�
(2:140)

for some constant c0 > 0.

Collecting the previous estimates we obtain that, for large enough N ,����RÆ ��yx < �
y
T nx

�
� 1

M

���� � d

NM

�
1 + c1

�
d
N

�1=2
lnN

�
(2:141)

for some constant c1 > 0. Inserting (2.141) in (2.132) yields the claim of assertion i). }

Proof of Proposition 2.1, ii): The proof of this second assertion closely follows that of

assertion i). Keeping in mind the notation T = 
T (T ), x = 
T (�) and �x = 
T (��) we may

write, using in turn assertion ii) of Lemma 2.4 and Lemma 2.5,

P

�
� ��� < �

��
Tn�

�
= e��

p
NE+

�� PÆ
�
� ��� < �

��
Tn�

�
= e��

p
NE+

�� RÆ
�
� �xx < � �xT nx

�
(2:142)
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We then decompose RÆ
�
� �xx < � �xT nx

�
as in (2.134), and bound R2 as in (2.135). As for R1 we

write, just as in (2.136),

R1 =
�
1� RÆ

�
� �xT < � �x0

��
RÆ
�
�0x < �0T nx

�
(2:143)

but this time use (2.137) to deduce that

1� RÆ
�
� �xT < � �x0

� � 1�
X
x02T

RÆ
�
� �xx0 < � �x0

�
= RÆ

�
� �x0 < � �x�x

�� X
x02T n�x

RÆ
�
� �xx0 < � �x0

�
� RÆ

�
� �x0 < � �x�x

�� (M � 1) sup
x02T n�x

RÆ
�
� �xx0 < � �x0

� (2:144)

Therefore

RÆ
�
�0x < �0T nx

�"
RÆ
�
� �x0 < � �x�x

�� (M � 1) sup
x02T n�x

RÆ
�
� �xx0 < � �x0

�# � R1 � RÆ
�
�0x < �0T nx

�
(2:145)

Having already estimated the probability RÆ
�
�0x < �0T nx

�
in (2.140), we are left to treat the

terms RÆ (� �x0 < � �x�x ) and supx02T n�x R
Æ (� �xx0 < � �x0 ). The probabilities R

Æ (� �xx0 < � �x0 ) entering the

latter term are easily dealt with by means of Lemma 2.7: note that for all x0 2 T n x and

�x 2 T , it follows from (2.128) that Æ in Lemma 2.7 may be chosen as Æ =
p
d, so that inserting

the bound (2.126) in (2.35) yields

RÆ
�
� �xx0 < � �x0

� � e�Nh0(d); for all x0 2 T n �x (2:146)

for some constant h0(d) > 0 and large enough N . To bound RÆ (� �x0 < � �x�x ) we simply use that

by Lemma 2.6, in view of (2.125) and (2.126), there exists a constant c2 > 0 such that

RÆ
�
� �x0 < � �x�x

� � 1� d

NM

�
1 + c2

�
d
N

�1=2
lnN

�
(2:147)

Gathering our bounds, we �nally obtain����RÆ �� �xx < � �xT nx

�
� 1

M

���� � d

NM

�
1 + c3

�
d
N

�1=2
lnN

�
(2:148)

for some constant c3 > 0. Inserting (2.148) in (2.142) concludes the proof of assertion ii). }

Proof of Proposition 2.1, iii): Again, the proof of this third assertion is very similar to

that of assertion i). Using in turn assertion i) of Lemma 2.4 and Lemma 2.5,

P

�
� ��� < �

��
Tnf�;��g

�
= PÆ

�
� ��� < �

��
Tnf�;��g

�
= RÆ

�
� �xx < � �xT nfx;�xg

�
(2:149)
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De�ning

R1 � RÆ
�
f� �xx < � �xT nfx;�xgg \ f� �x0 < � �xx g

�
R2 � RÆ

�
f� �xx < � �xT nfx;�xgg \ f� �xx < � �x0 g

� (2:150)

we have

RÆ
�
� �xx < � �xT nfx;�xg

�
= R1 +R2 (2:151)

Next, just as in (2.135) we write

0 � R2 � RÆ
�
� �xx < � �x0

�
(2:152)

while proceeding as in (2.136) and (2.137) to treat the term R1 yields, in analogy with (2.138),

RÆ
�
�0x < �0T nfx;�xg

�"
1� (M � 1) sup

x02T n�x
RÆ
�
� �xx0 < � �x0

�# � R1 � RÆ
�
�0x < �0T nfx;�xg

�
(2:153)

Since the probabilities RÆ (� �xx0 < � �x0 ), x
0 2 T n�x, appearing in (2.152) and (2.153) have already

been bounded in (2.146), we are left to estimate RÆ
�
�0x < �0T nfx;�xg

�
. To do this we proceed

exactly as in the proof of (2.140) (the only di�erence being that the set J in Lemma 2.8 is

here given by J = T n fx; �xg so that jJ j =M � 1) and obtain����RÆ ��0x < �0T nfx;�xg

�
� 1

M � 1

���� � d

N(M � 1)

�
1 + c0

�
d
N

�1=2
lnN

�
(2:154)

for some constant c0 > 0. Collecting our bounds yields the claim of assertion iii). }

Proof of Proposition 2.1, iv): This assertion is nothing but a direct consequence of

assertion ii) since

P

�
�
�
Tn� < ���

�
=
X

��2Tn�
P

�
�
�
�� < �

�
Tn��

�
(2:155)

Thus (2.6) is proven. For later use (see the proof of assertion v)) let us however give a full

derivation of the lower bound in (2.6): again, with the same notation as in the proofs of the

�rst two assertions, using in turn assertion ii) of Lemma 2.4 and Lemma 2.5, it follows from

(2.155) that

P

�
�
�
Tn� < ���

�
= e��

p
NE+

� PÆ
�
�
�
Tn� < ���

�
= e��

p
NE+

� RÆ
�
�xT nx < �xx

�
(2:156)

De�ning

R1 � RÆ
�
f�xT nx < �xx g \ f�x0 < �xT nxg

�
R2 � RÆ

�
f�xT nx < �xx g \ f�xT nx < �x0 g

� (2:157)
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we have

1 � RÆ
�
�xT nx < �xx

�
= R1 +R2 � R1 (2:158)

and since

R1 =R
Æ
�
�x0 < �xT nx < �xx

�
=RÆ (�x0 < �xT )R

Æ
�
�0T nx < �0x

�
= [1� RÆ (�xT < �x0 )]

h
1� RÆ

�
�0x < �0T nx

�i (2:159)

we obtain, proceeding as in (2.144) to bound 1� RÆ (�xT < �x0 ),

R1 �
"
RÆ (�x0 < �xx )� (M � 1) sup

x02T nx
RÆ (�xx0 < �x0 )

# h
1� RÆ

�
�0x < �0T nx

�i
(2:160)

Now all the probabilities entering the above expression have already been estimated (see

respectively (2.147), (2.146) and (2.140) for the estimates on RÆ (�x0 < �xx ), R
Æ (�xx0 < �x0 ),

x0 2 T n x, and RÆ
�
�0x < �0T nx

�
). Plugging these estimates in (2.160) we obtain

RÆ
�
�xT nx < �xx

�
� �1� 1

M

��
1� d

N

�
1 + c4

�
d
N

�1=2
lnN

��
(2:161)

for some constant c4 > 0. Inserting (2.161) in (2.156) proves the lower bound of (2.6). }

As is by now routine, the proof of assertion v) of Proposition 2.1 begins as in (2.156): we

�rst invoke Lemma 2.4 to write

P (��T < ��� ) = e��
p
NE+

� PÆ (��T < ��� ) (2:162)

and next use Lemma 2.5 to express the last probability above in terms of a lumped chain:

PÆ (��T < ��� ) = RÆ
�
�

T[�(�)


T[�(T )
< �


T[�(�)


T[�(�)

�
(2:163)

Similarly, to prove assertion vi) we begin by writing:

P
�
� ��� � � ��T

�
= RÆ

�
�

T[�(��)


T[�(�)
< �


T[�(��)


T[�(T )

�
(2:164)

At this point however we see that contrary to the cases encountered so far the mapping 


involved in the last two identities is not constructed from the top alone, but the top augmented

by a non-random point �. To proceed any further we thus need to investigate its properties.
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Lumped chain induced by the Top and a non-random point

In order to study the mapping 
T[� we must go back to its de�nition (see Section 2.1).

Most of the results we will establish below rely on the simple observation that the partition

PT[�(�) induced by T [ � may be constructed by �rst constructing the partition PT (�)
induced by the top alone and next, partitioning each of the elements of PT (�) according to

the sign of �i. More precisely:

Lemma 2.14: Set d0 = 2M+1, d = 2M . There is a one-to-one correspondance between

the elements of the partition PT[�(�),

�k0(T [ �); k0 2 f1; : : : ; d0g (2:165)

and the sets

�sk(T ) = fi 2 �k(T ) j �i = sg ; (s; k) 2 f�1; 1g� 2 f1; : : : ; dg (2:166)

Proof: Let fe01; : : : ; e0k0 ; : : : ; e0d0g and fe1; : : : ; ek; : : : ; edg be arbitrarily chosen labellings of,

respectively, all d0 elements of SM+1 and all d elements of SM . For u = (u1; : : : ; uM+1) 2
RM+1 write u = (u; u), with u = (u1; : : : ; uM ) and u = uM+1. Then, clearly,

fe0k0gk02f1;:::;d0g = f(ek; s)g(s;k)2f�1;1g�2f1;:::;dg (2:167)

and that the relation

e0k0 = (ek; s) (2:168)

induces a one-to-one correspondance between the indices k0 2 f1; : : : ; d0g and the pairs (s; k) 2
f�1; 1g� 2 f1; : : : ; dg.

Let now �0 2 S(jT j+1)�N and � 2 S(jT j)�N be two matrices satisfying property (2.12) with,

respectively, I = T [ � and I = T , and chosen such that:

�0
�
=

�
�� if � 2 f1; : : : ;Mg
�; if � =M + 1

(2:169)

It then follows from de�nition (2.13) that, whenever (2.168) holds,

�k0(T [ �) � fi 2 � j �0i = e0k0g
= fi 2 � j �0

i
= e0k0 ; �

0
i = e0k0g

= fi 2 � j �i = ek; �i = sg
= fi 2 �k(T ) j �i = sg
= �sk(T )

(2:170)
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The lemma is therefore proven.}

Lemma 2.15: Let K(T [�) � K�(T [�) and Æ(N) be de�ned as in (2.32), respec. (2.113).

Choose � = 1� 2Æ(N). Then, for all ! 2 EN ,
d0

2
� jK(T [ �)j � d0 (2:171)

and

N� � min
k2K(T[�)

j�k(T [ �)j � (1� 2Æ(N))
N

d0

max
k2K(T[�)

j�k(T [ �)j � 2(1 + Æ(N))
N

d0

(2:172)

Proof: It obviously follows from de�nition (2.166) that

j�k(T )j = j�+
k (T )j+ j��k (T )j (2:173)

For �xed k 2 f1; : : : ; dg, assume that there exists s 2 f�1; 1g such that j�sk(T )j < �N
d0
. It

then follows from (2.173) that

j��sk (T )j � j�k(T )j � �
N

d0
� (1� Æ(N))

N

d
� �

N

2d
� �

N

d0
(2:174)

where the second inequality follows from (2.126) and the fact that ! 2 EN , while the last

line results from our choice of �. Thus for each k 2 f1; : : : ; dg there exists at least one index
s 2 f�1; 1g such that j�sk(T )j � �N

d0
. This together with Lemma 2.14 yields the lower bound

of (2.171). The upper bound beeing immediate, (2.171) is proven.

Let us turn to (2.172). The �rst inequality simply follows from the de�nition of K(T [ �)
and our choice �. To prove the second inequality we �rst use that by (2.173), for each pair

(s; k) 2 f�1; 1g� 2 f1; : : : ; dg,

j�sk(T )j � j�k(T )j � (1 + Æ(N))
N

d
= 2(1 + Æ(N))

N

d0
(2:175)

where the second ineqality follows from (2.126), and next conclude by means of Lemma 2.14.

The lemma is proven. }

To state the next lemma we need some extra notation. Set �0 = jK(T [ �)j and let

�0 : Rd
0 ! R�

0

be the projection that maps x = (xk0)k02f1;:::;d0g into �0x = (xk0)k02K(T[�) .

For each k 2 f1; : : : ; dg, let s� 2 f�1; 1g be de�ned through

j�s�k (T )j � j��s�k (T )j (2:176)



Aging in the REM. Part 1. 39

and set

D = fk0 2 f1; : : : ; d0g j �k0(T [ �) = �s�k (T ); k 2 f1; : : : ; dgg (2:177)

Finally, let �� : Rd
0 ! Rd be the projection that maps x = (xk0)k02f1;:::;d0g into ��x =

(xk0)k02D.

Lemma 2.16: For all � 2 T c the following holds true:

i) For all � 2 T ,

��
T[�(�) = 
T (�) (2:178)

For 0 � " < 1
2
, de�ne

A"(�) =
n
� 2 T

��� k��
T[�(�)� ��
T[�(�)k2 � "
p
d
o

(2:179)

Then,

ii) Either A"(�) = ; or else, jA"(�)j = 1.

iii) For all � 2 T n A"(�),

k�0
T[�(�)� �0
T[�(�)k2 � "
p
d (2:180)

and, for all � 2 T ,

inf
�2Tn�

k�0
T (�)� �0
T (�)k2 � (1� 2Æ(N))
p
d (2:181)

Proof: We �rst prove assertion i). By Lemma 2.14, to each k0 2 f1; : : : ; d0g there corresponds
a unique pair (s; k) 2 f�1; 1g� 2 f1; : : : ; dg verifying

�k0(T [ �) = �sk(T ) (2:182)

Fix k0 2 f1; : : : ; d0g. It follows from de�nition (2.16) and (2.182) that


k
0

T[�(�) =
1

j�sk(T )j
X

i2�s
k
(T )

�i (2:183)

Now by (2.166), we have,

�sk(T ) � �k(T ) for each s 2 f�1; 1g (2:184)
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But assertion iii) of Lemma 2.2 states that,

�i = 
kT (�); for all i 2 �k(T ) (2:185)

Hence, combining (2.185) and (2.183) we get


k
0

T[�(�) = 
kT (�) for each s 2 f�1; 1g (2:186)

Since (2.186) holds for each s 2 f�1; 1g it holds true for s = s�. We therefore have proven

that for each k0 2 f1; : : : ; d0g and each k 2 f1; : : : ; dg related through �k0(T [ �) = �s�k (T ),


k
0

T[�(�) = 
kT (�). But this, in view of (2.177), implies that ��
T[�(�) = 
T (�), concluding

the proof of assertion i).

We now turn to the proof of assertion ii). Note that by (2.178), A"(�) may be written as

A"(�) =
n
� 2 T

��� k
T (�) � ��
T[�(�)k2 � "
p
d
o

(2:187)

Assume that A"(�) 6= ;. Then there exists � 2 T such that k
T (�) � ��
T[�(�)k2 � "
p
d.

Thus,

inf
�2Tn�

k
T (�)� ��
T[�(�)k2 � inf
�2Tn�

k
T (�)� 
T (�)k2 � "
p
d

� (1� 2Æ(N))
p
d� "

p
d

(2:188)

where the last inequality follows from Lemma 2.13. Since for all 0 � " < 1
2
, 1�2Æ(N)�" > "

provided that N is suÆciently large, we conclude that jA"(�)j = 1. The claim of assertion

ii) is thus proven and it remains to prove iii).

To do so note that proceeding just as in the proof of (2.171), we easily see that D �
K(T [ �). Hence, for all y; y0 2 Rd

0

,

k�0y0 � �0yk2 � k��y0 � ��yk2 (2:189)

Now (2.180) is an immediate consequence of (2.189) and the de�nition of A"(�) while (2.181)

results from the combination of (2.189) and (2.128) of Lemma 2.13. Assertion iii) being

proven, the proof of the lemma is done. }

We are now ready to prove the last two assertions of Proposition 2.1. The following

notation will be used throughout: I � T [ �, I � 
I(I), y � 
I(�), and �y � 
I(��). It will

moreover be assumed that ! 2 EN .
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Proof of Proposition 2.1, v) and vi): With the notation introduced above, (2.163) and

(2.164) read, respectively,

PÆ (��T < ��� ) = RÆ
�
�
y
Iny < �yy

�
(2:190)

and

P
�
� ��� � � ��T

�
= RÆ

�
� �yy < �

�y
Iny

�
(2:191)

We may now distinguish two cases since, according to assertion ii) of Lemma 2.16, either �

is such that, case 1), A"(�) = ;, or else case 2), A"(�) = f�g for some � 2 T .

In case 1), a simple adaptation of the proof of the lower bound (2.161) of assertion iii)

yields

RÆ
�
�
y
Iny < �yy

�
�
�
1� 1

M+1

� �
1� d

N
(1 + c5(1 + Æ(N)))

�
(2:192)

for some constant c5 > 0. Similarly, retracing the proof of the upper bound of assertion i),

we readily obtain that���RÆ �� �yy < �
�y
Iny

�
� 1

M+1

��� � d
NM

(1 + c6(1 + Æ(N))) (2:193)

for some constant c6 > 0.

Case 2) will also be brought back to well known situations once observed that, setting

x � 
I(�),

RÆ
�
�
y
Iny < �yy

�
� RÆ

�
�
y
Infy;xg < �yy

�
(2:194)

while

RÆ
�
� �yy < �

�y
Iny

�
� RÆ

�
� �yy < �

�y
Infy;xg

�
(2:195)

Then, prooceeding as in the proof of (2.192) we obtain that

RÆ
�
�
y
Infy;xg < �yy

�
� �1� 1

M

� �
1� d

N
(1 + c7(1 + Æ(N)))

�
(2:196)

for some constant c7 > 0, while going back over the proof of (2.193) yields����RÆ �� �yy < �
�y
Infy;xg

�
� 1

M

���� � d
NM

(1 + c8(1 + Æ(N))) (2:197)

for some constant c8 > 0.

The lower bound in (2.7) then follows from (2.162) together with (2.190), (2.192), (2.194),

and (2.196); the coresponding upper bound being immediate, assertion v) is proven. Finally,

collecting (2.191), (2.193), (2.195), and (2.197) proves (2.8) of assertion vi). This completes

the proof of Proposition 2.1.}
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3. Expected times

In this section we prove Theorems 1.4 and 1.5. Let ET (E) ( : ) and VT (E) ( : ) denote the ex-

pectation and the variance with respect to the conditional distributionP ( : j T (E)(!) = T (E)).

De�ne

Z�;N (T
c(E)) �

X
�2T (E)c

e�
p
NE� (3:1)

VN;E � V�;N;T (E) �
Z�;N (T

c(E)) � ET (E) (Z�;N (T
c(E)))

VT (E)(Z�;N (T
c(E)))

(3:2)

Recall that

W�;N;T (E) �
e(��1)E+�

p
NuN (0)

M(�� 1)

�
1 + V�;N;T (E)eE=2

�� 1p
2�� 1

�
(3:3)

where M = jT (E)j.

Remark: A remark is in order concerning the random variables de�ned in (3.1) to (3.3). The

behavior of Z�;N (T
c(E)) will be studied in Lemma 3.3. It will in particular be established

that Z�;N (T
c(E)) = MW�;N;T (E)(1 + O(1=N)) (see (3.27)). This of course implies that

W�;N;T (E) is a positive random variable. Note also that by de�nition V�;N;T (E) has mean

zero and variance one, an that all its moments are �nite.

Notation: Whenever no confusion may arise we will from now on write T for T (E) and drop

the indices �, N , and T (E) in all the symbols appearing in (3.1), (3.2) and (3.3).

The cornerstone of the proof of Proposition 1.4 is a classical identity from potential theory

(see e.g. [So] or Corollary (3.3) of [BEGK2]) that expresses the expectation of conditioned

transition times in terms of the invariant measure and transition probabilities. Namely, it

states that for all subsets I; J � SN , and all � 2 SN such that � =2 I [ J ,

E (��I j ��I � ��J ) =

1

��;N (�)P(�
�
I[J < ��� )

24��;N (�) + X
�02(I[J[�)c

��;N(�
0)P(��

0

� < ��
0

I[J )
P(��

0

I � ��
0

J )

P(��I � ��J )

35
(3:4)

Eq. (3.4) generalizes the following expression for the expected value of unconditioned tran-

sition times: for all subset I � SN and all � 2 SN such that � =2 I,

E(��I ) =
1

��;N (�)P(�
�
I < ��� )

24��;N (�) + X
�02(I[�)c

��;N (�
0)P(��

0

� < ��
0

I )

35 (3:5)
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Therefore, by de�nition of ��;N , (3.4) reads

E (��I j ��I � ��J ) =

1

e�
p
NE�P(��I[J < ��� )

24e�pNE� +
X

�02(I[J[�)c
e�
p
NE�0P(��

0

� < ��
0

I[J)
P(��

0

I � ��
0

J )

P(��I � ��J )

35
(3:6)

and similarly,

E(��I ) =
1

e�
p
NE�P(��I < ��� )

24e�pNE� +
X

�02(I[�)c
e�
p
NE�0P(��

0

� < ��
0

I )

35 (3:7)

Applying (3.6) and (3.7) to the quantities E (�
�
�� j ���� � �

�
T (E)n�), E (�

�
Tn� ) and E (��T ), and

inserting the probability estimates of Proposition 2.1 in the resulting expressions, the proof

of Proposition 1.4 essentially reduces to studying the behavior of the random variable Z(T c) =P
�02T c e

�
p
NE�0 . We start by proving the �rst assertion of the proposition.

Proof of assertion i) of Theorem 1.4: We will assume throughout that the assumptions

of Proposition 2.1 are satis�ed. It follows from (3.7) that, for all � 2 T ,

E(�
�
Tn� ) =

1

e�
p
NE�P(�

�
Tn� < �

�
� )

"
e�
p
NE� +

X
�2T c

e�
p
NE�P(��� < ��Tn�)

#
(3:8)

The factor in front of the square brackets was estimated in Proposition 2.1, iv). Plugging in

this estimate yields

E (�
�
Tn� ) =

1

1� 1
M

"
e�
p
NE� +

X
�2T c

e�
p
NE�P(��� < ��Tn�)

#
(1 +O(1=N)) (3:9)

and we are left to study the term

I �
X
�2T c

e�
p
NE�PÆ(��� < ��Tn�) (3:10)

To do so, we proceed as follows: for " > 0 a constant, let Bp"N (�) and W"(T ) be de�ned as

in (2.1) and (2.2) and set

V"(T ) �
[
�2T

�
T c \ Bp

"N
(�)
�

(3:11)

Observing that

T c = V"(T ) [W"(T ) (3:12)
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I may be decomposed as

I = I1 + I2 (3:13)

with

I1 �
X

�2V"(T )
e�
p
NE�PÆ(��� < ��Tn�)

I2 �
X

�2W"(T )

e�
p
NE�PÆ(��� < ��Tn�)

(3:14)

Now obviously,

0 � I1 �
X

�2V"(T )
e�
p
NE� (3:15)

while, by Proposition 2.1, i), for all ! 2 E and large enough N , I2 obeys the bound������I2 � 1

M

X
�2W"(T )

e�
p
NE�

������ � d

NM
(1 + cÆ(N)) (3:16)

Therefore, setting

Z(V"(T )) �
X

�2V"(T )
e�
p
NE�

Z(T c) �
X
�2T c

e�
p
NE�

(3:17)

and combining (3.15) and (3.16) together with (3.13), we arrive at����I � 1

M
Z(T c)

�
1 + (M � 1)

Z(V"(T ))

Z(T c)

����� � d

NM
(1 + cÆ(N)) (3:18)

and it remains to study the behavior of the random variables Z(V"(T )) and Z(T c). As this

depends on the cardinality of V"(T ), we will �rst establish that:

Lemma 3.1: Assume that 0 < " < 1=2 and set

J(x) = (1� x) ln 1
1�x + x ln 1

x
; 0 < x < 1 (3:19)

Then, for all ! 2 E and large enough N , there exist constants, 0 < c� � c+ <1, such that

c�MN�1=2eNJ("=4) �M � jV"(T )j � c+MN1=2eNJ("=4) (3:20)

Proof: Under the assumptions of Lemma 2.12,

jV"(T )j =
X
�2T

jT c \ Bp"N (�)j =
X
�2T

jBp"N (�) n �j =
X
�2T

jBp"N (�)j �M (3:21)
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Now, for all � 2 T , �
N

"N=4

�
� jBp"N (�)j �

"N

4

�
N

"N=4

�
(3:22)

where we used that
�
N
k

�
is an increasing function of k for 0 � k � "N=4. By Stirling's

formula, for large enough N , there exist constants, 0 < a� � a+ <1 such that

a�p
�"(1 � "=4)

eNJ("=4) �
�

N

"N=4

�
� a+p

�"(1 � "=4)
eNJ("=4) (3:23)

Inserting (3.23) in (3.22) and using that, by assumption, 0 < " < 1=2 we obtain

c�N�1=2eNJ("=4) � jBp"N (�)j � c+N1=2eNJ("=4) (3:24)

for some constants, 0 < c� � c+ <1. Inserted in (3.21), (3.24) yields (3.20), concluding the

proof of Lemma 3.1.}

We are now ready to prove the following two lemmata.

Lemma 3.2: Let Z(V"(T )) be as in (3.17). Under the assumptions and with the notation

of Lemma 3.1, the following holds: there exists a constant 0 < c < 1 such that, for all

0 < " < 1=2 , and large enough N ,

P
�
Z(V"(T )) � jV"(T )je2�

p
N ln jV"(T )j

���T (!) = T
�
� cp

J("=4)
e�NJ("=4) (3:25)

Lemma 3.3: Let Z(T c) and W be as in (3.1) and (3.3). Then, for all N large enough,

P
�
Z(T c) � e�N

p
ln 2
��� T (!) = T

�
� e�e

N(ln 2)=4

(3:26)

and

Z(T c) =MW(1 +O(1=N)) (3:27)

Proof of Lemma 3.2: For Æ > 0, set a = e�
p

2(Æ+1)N ln jV"(T )j.

P (Z(V"(T )) � ajV"(T )j j T (!) = T ) � P

�
jV"(T )j max

�2V"(T )
e�
p
NE� � ajV"(T )j

��� T (!) = T

�
� jV"(T )jP

�
e�
p
NE� � a

���T (!) = T
�

= jV"(T )jP
�
e�
p
NE� � a

���E� < uN (E)
�

(3:28)
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where the second inequality holds true for all � 2 V"(T ) (thereby implying the last equality).

In explicit form, the probability appearing in the last line of (3.28) reads

P
�
e�
p
NE� � a

���E� < uN (E)
�
=

P
�p

2(Æ + 1) ln jV"(T )j � E� < uN (E)
�

P (E� < uN (E))
(3:29)

By a standard upper tail estimate for Gaussian random variables,

P
�p

2(Æ + 1) ln jV"(T )j � E� < uN (E)
�

�P
�
E� �

p
2(Æ + 1) ln jV"(T )j

�
� 1

jV"(T )jÆ+1
p
4�(Æ + 1) ln jV"(T )j

(3:30)

while

P (E� < uN (E)) = 1� 2�Ne�E (3:31)

Inserting (3.30) and (3.31) in (3.29) and combining with (3.28) yields

P (Z(V"(T )) � ajV"(T )j j T (!) = T ) � 1

jV"(T )jÆ(1� 2�Ne�E)
p
4�(Æ + 1) ln jV"(T )j

(3:32)

Choosing Æ = 1, (3.32) together with the lower bound on jV"(T )j of Lemma 3.1 gives (3.25).

This proves the lemma.}

Proof of Lemma 3.3: We �rst prove (3.27). Recall from Theorem 1.4 that ET ( : ) and

VT ( : ) denote the expectation and the variance with respect to the conditional distribution

P ( : j T (!) = T ) and set

X�
� = e�

p
NE�1IfE�<uN (E)g (3:33)

Observing that

ET (Z(T
c)) =jT cjET (X�

� )

V2
T (Z(T

c)) =ET (Z(T
c)2)� E2T (Z(T

c))2 = jT cj[ET (X�
2�)� E 2T (X

�
� )]

(3:34)

the computation of the mean and variance of Z(T c) reduces to that of ET (X
�
� ). Now

ET (X
�
� ) =

1p
2�

Z uN (E)

0

e�
x2

2
+�

p
Nxdx

P (E� < uN (E))
(3:35)

Decomposing the integral above as

1p
2�

Z uN (E)

0

e�
x2

2
+�

p
Nxdx = r1;N � r0;N (3:36)
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with

r1;N =
e�

2N=2

p
2�

Z uN (E)��
p
N

�1
e�

y2

2 dy

r0;N =
e�

2N=2

p
2�

Z ��
p
N

�1
e�

y2

2 dy

(3:37)

we have, by standard tail estimates for Gaussian,

�
p
Np

2�(1 + �2N)
� r0;N � 1p

2��2N
(3:38)

while, for � >
p
2 ln 2,

r1;N =
e(��1)E+�

p
NuN (0)

2N (�� 1)
(1 +O(1=N)) (3:39)

Inserting these bounds (3.36) and making use of (3.31), we get,

ET (X
�
� ) =

e(��1)E+�
p
NuN (0)

2N (�� 1)
(1 +O(1=N)) (3:40)

Remembering that jT cj = 2N �M , it follows from (3.34) and (3.40) that

ET (Z(T
c)) =

e(��1)E+�
p
NuN (0)

(�� 1)
(1 +O(1=N)) (3:41)

and

V2
T (Z(T

c)) =
e(2��1)E+2�

p
NuN (0)

(2� � 1)
(1 +O(1=N)) (3:42)

Hence, recalling from (3.2) that V = [Z(T c)� ET (Z(T
c))]=[VT (Z(T

c))], we have

Z(T c) = ET (Z(T
c))

�
1 + VVT (Z(T

c))

ET (Z(T c))

�
=

e(��1)E+�
p
NuN (0)

(�� 1)

�
1 + VeE=2 �� 1p

2�� 1

�
(1 +O(1=N))

=MW(1 +O(1=N))

(3:43)

where the last line follows from the de�nition of W. Thus (3.27) is proven. To prove (3.26)

we use the rather abrupt bound

P
�
Z(T c) � e�N

p
ln 2
���T (!) = T

�
�P

�
8�2T cE� <

p
N ln 2

��� T (!) = T
�

�
Y
�2T c

P
�
E� <

p
N ln 2

���E� < uN (E)
� (3:44)
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Since
p
N ln 2 < uN (E) for �xed E and large enough N , we have,

P
�
E� <

p
2N ln 2=2

���E� < uN (E)
�
=

2p
2�

R pN ln 2

0
e�

x2

2 dx

P (E� < uN (E))
(3:45)

and it follows from (3.31) together with the bound

2p
2�

Z p
N ln 2

0

e�
x2

2 dx = 1� 2p
2�

Z 1

p
N ln 2

e�
x2

2 dx � 1� 1

4
p
N
e�N(ln 2)=2 (3:46)

that

P
�
8�2T cE� <

p
N ln 2

��� T (!) = T
�
�
 
1� 1

4
p
N
e�N(ln 2)=2

1� 2�Ne�E

!jT cj

�
�
1� 1

8
p
N
e�N(ln 2)=2

�2N (1�2�NM)

� exp
�
�eN(ln 2)=2(1� 2�NM)=8

p
N
�

� exp
�
�eN(ln 2)=4

�
(3:47)

This proves (3.26) and concludes the proof of Lemma 3.3.}

We are now ready to complete the proof of assertion i) of Theorem 1.4. For � �
p
2 ln 2

and �xed 0 < " < 1=2 (to be chosen appropriately later), let eEN � eEN (�; ") be de�ned as

eEN � E \
n
! 2 
 j Z(V"(T )) � jV"(T )je2�

p
N ln jV"(T )j; Z(T c) � e�N

p
ln 2
o

(3:48)

where E is taken from Proposition 2.1. Now set

eE �[
N0

\
N>N0

eEN (3:49)

Obviously, by (3.25), (3.26) and Lemma 2.11,

P
�eE� = 1 (3:50)

Assume from now on that ! 2 eEN (and that N is large enough). By Lemma 3.1 and Lemma

3.2

Z(V"(T )) � ec�N
p
" (3:51)

for some numerical constant 0 < c <1. Thus, by (3.26) of Lemma 3.3,

0 <
Z(V"(T ))

Z(T c)
< e�c(")�N (3:52)



Aging in the REM. Part 1. 49

where c(") = ln 2 � c
p
". Let "0 be de�ned through c("0) = 0. Then, choosing 0 < " <

(1=2 ^ "0),

1

M
Z(T c)

�
1 + (M � 1)

Z(V"(T ))

Z(T c)

�
=

1

M
Z(T c)

h
1 +O

�
e�c(")�N

�i
(3:53)

which, combined with (3.27) of Lemma 3.3 yields,

1

M
Z(T c)

�
1 + (M � 1)

Z(V"(T ))

Z(T c)

�
=W(1 +O(1=N)) (3:54)

This inserted in turn in (3.18) gives,

I =W(1 +O(1=N)) (3:55)

Combining (3.55) with (3.10) and (3.9) concludes the proof of assertion i) of Theorem 1.4.}

Proof of assertion ii) of Theorem 1.4: It follows from (3.7) that, for all � =2 T ,

E (��T ) =
1

e�
p
NE�P(��T < ��� )

24e�pNE� +
X

�02T cn�
e�
p
NE�0P(��

0

� < ��
0

T )

35 (3:56)

Assuming again that the assumptions of Proposition 2.1 are satis�ed, it follows from Propo-

sition 2.1, v), thath
e�
p
NE� + I 0

i
� E (��T ) �

1

1� 1
M

h
e�
p
NE� + I 0

i
(1 +O(1=N)) (3:57)

where

I 0 �
X

�02T cn�
e�
p
NE�0P(��

0

� < ��
0

T ) (3:58)

Then, decomposing I 0 as

I 0 = I 01 + I 02 (3:59)

with (for " > 0 a constant and with V"(T ) and W"(T ) de�ned as in (3.11) and (3.12))

I 01 �
X

�02V"(T[�)
e�
p
NE�0P(��

0

� < ��
0

T )

I 02 �
X

�02W"(T[�)
e�
p
NE�0P(��

0

� < ��
0

T )
(3:60)

But clearly,

0 � I 01 �
X

�02V"(T[�)
e�
p
NE�0 (3:61)



50 Section 3

while by Lemma 2.1, vi), I 02 obeys the bounds

I 02 �
1

M + 1

X
�02W"(T[�)

e�
p
NE�0

�
1 +

d

N
(1� cÆ(N))

�

� I 02 �
1

M

X
�02W"(T[�)

e�
p
NE�0

�
1 +

d

N
(1 + cÆ(N))

� (3:62)

Therefore, recalling the de�nition of Z(V"(T )) and Z(T c) from (3.17),

I 0 � Z((T [ �)c)
M + 1

�
1� (M � 1)

Z(V"(T [ �))
Z((T [ �)c)

��
1 +

d

NM
(1 + cÆ(N))

�
I 0 � Z((T [ �)c)

M

�
1 + (M � 1)

Z(V"(T [ �))
Z((T [ �)c)

��
1 +

d

NM
(1 + cÆ(N))

� (3:63)

In other words, comparing (3.63) with (3.18), and noting that the di�erence between Z(T c)

and Z((T [ �)c is even in the worst case not larger than eE(�� 1)Z(T c) , I 0 obeys virtually

the same upper bound as does I in the proof of assertion i). From here on the proof of

assertion ii) follows step by step that of the �rst assertion.

Proof of assertion iii) of Theorem 1.4: As is the proof of the �rst two assertions we

will assume that the assumptions of Proposition 2.1 are satis�ed. By (3.6) we have, for all

�; �� 2 T (E), � 6= ��,

E(�
�
�� j ���� � �

�
Tn�) =

1

e�
p
NE�P(�

�
Tn� < �

�
� )

"
e�
p
NE� +

X
�2T c

e�
p
NE�P(��� < ��Tn�)

P(���� � ��Tn�)

P(�
�
�� � �

�
Tn�)

#
(3:64)

Recalling the de�nition of I from (3.10) and comparing equations (3.64) and (3.8), we see

that their right hand sides are identical up to the extra factor P(���� � ��Tn�)=P(�
�
�� � �

�
Tn�)

that multiplies each of the terms of the sum in I. Mimicking the proof of assertion i), set

I 0 � I 01 + I 02 (3:65)

where, for " > 0 a constant and with V"(T ) and W"(T ) de�ned as in (3.11) and (3.12),

I 01 �
X

�2V"(T )
e�
p
NE�PÆ(��� < ��Tn�)

P(���� � ��Tn�)

P(�
�
�� � �

�
Tn�)

I 02 �
X

�2W"(T )

e�
p
NE�PÆ(��� < ��Tn�)

P(���� � ��Tn�)

P(�
�
�� � �

�
Tn�)

(3:66)
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It follows from Proposition 2.1, iii) that, for � 2 V"(T ),

0 �
P(���� � ��Tn�)

P(�
�
�� � �

�
Tn�)

� (M � 1)(1 +O(1=N)) (3:67)

where we trivially used that 0 � P(���� � ��Tn�) � 1 in the numerator. In the case where

� 2 W"(T ), observing that P(���� � ��Tn�) = P(���� < ��(Tn�)n��), and making use of assertion

i) of Proposition 2.1 with T replaced by T n � (hence, since M = jT j, with M replaced by

M � 1) we get, �����P(�
�
�� � ��Tn�)

P(�
�
�� � �

�
Tn�)

� 1

����� � O(1=N) (3:68)

Thus, with I = I1 + I2, I1 and I2 being de�ned as in (3.14), we get

jI � I 0j �jI 01 � I1j+ jI 02 � I2j
�M(1 +O(1=N))I1 +O(1=N)I2

=[M(I1=I2)(1 +O(1=N)) +O(1=N)] I2

� [M(I1=I2)(1 +O(1=N)) +O(1=N)] I

(3:69)

where for Z(V"(T )) and Z(T c) de�ned as in (3.17) we have, in view of (3.15) and (3.16),

I1

I2
� MZ(V"(T ))

Z(T c)� Z(V"(T ))� d
N
(1 + cÆ(N))

� M [Z(V"(T ))=Z(V"(T ))]

1� [Z(V"(T ))=Z(V"(T ))]
�
1 + d

N
(1 + cÆ(N))

� (3:70)

With eEN de�ned as in (3.48), choosing " as in the line following (3.52), and inserting the

bound (3.52) in (3.69) we get, for large enough N ,

I1

I2
� 2e�c(")�N ; on eEN (3:71)

From this and (3.55), (3.69) yields

jI 0 � Ij � WO(1=N) (3:72)

Finally, combining (3.64) and (3.8), and using the previous bound,���E (���� j ���� � �
�
Tn�)� E (�

�
Tn� )

��� = e�
p
NE�P(�

�
Tn� < ��� )jI 0 � Ij � 1

1� 1
M

WO(1=N) (3:73)

where the pre-factor of jI 0�Ij was estimated by means of Proposition 2.1, iv). This completes

the proof of the last assertion of Theorem 1.4.}}
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Proof of Theorem 1.5: The proof of this Theorem is very similar to that of assertion (i)

of Theorem 1.4. The only di�erence is that this time, the partial partition function Z(V�(E))

is negligible compared to Z�;N . Finally, for � <
p
2 ln 2, Z�;N = eN�2=2(1 +O(N�1=4)) with

probability tending to one faster than any polynomial, as follows from easy estimates (see

[BKL] or [Bo]), and this proves the theorem.}
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A. Appendix

We state and prove a simple lemma that is used in Section 2.

Lemma 6.1: Let �k � �N , 1 � k � K, be a collection of subgraphs of �N and let eRÆ�k

denote the law of the Markov chain with transition rates

erÆ�k
(x0; x00) =

�
rÆN (x

0; x00); if x0 6= x00 ; and (x0; x00) 2 E(�k)

0; otherwise
(6:1)

Assume that

E(�k) \E(�k0) = ;; 8k; k0 2 f1; : : : ;Kg; k 6= k0 (6:2)

and that

y; x 2
K\
k=1

V (�k) (6:3)

Then

RÆ
�
�yx < �yy

� � KX
k=1

eRÆ�k

�
�yx < �yy

�
(6:4)

Proof: This lemma is a straightforward generalisation of Lemma 2.1 of [BEGK1]. Let Hy
x

denote the space of functions

Hy
x � fh : �N ! [0; 1] : h(y) = 0; h(x) = 1g (6:5)

and de�ne the Dirichlet forms

�N(h) �
X

x0;x002�N
QN (x0)rÆN (x

0; x00)[h(x0)� h(x00)]2

��k
(h) �

X
x0;x002�k

eQÆ�k
(x0)rÆ�k

(x0; x00)[h(x0)� h(x00)]2
(6:6)

where eQÆ�k
(y) = QN (y)=QN (�k). Then �N(h) �

PK
k=1 QN (�k)��k

(h), implying that

inf
h2Hy

x

�N (h) � inf
h2Hy

x

KX
k=1

QN (�k)��k
(h) �

KX
k=1

QN (�k) inf
h2Hy

x

��k
(h) (6:7)

from which the lemma follows by an application of Theorem 2.2 of [BEGK1]. }
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