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Abstract

The following generally unsolved yet problem is studied: construct the solution

of a spatially inhomogeneous Smoluchowski equation governing coagulating and dif-

fusing particles in a host gas, on the basis of solutions to homogeneous Smoluchowski

equation. In [3] we solved this problem in the case when there is no di�usion. The

non-zero di�usion term drastically complicates the situation. Under some general

assumptions we give the interrelations between the homogeneous and inhomoge-

neous cases. This provides an e�ective numerical scheme especially when the host

gas is incompressible. New Lagrangian scheme leads to a new model governing by a

Smoluchowski type equation with an additional e�ective source. We give a numerical

comparison of these two models.

The computer time of the new algorithm is so dramatically decreased, compared

to the conventional deterministic algorithm (tens of hours drop down to several min-

utes) that many practical problems like the formation of soot particles in �ames or

chemical reactions coupled to formation of a new phase can be solved in a reason-

able computer time. However this method works only if the di�usion coe�cient of

all particles is the same which can be a reasonable approximation only for special

systems. The problem of generalisation of the method presented to the case when

the di�usion coe�cient depends on the particle's size is open.

1 Introduction

The coagulation processes of aerosol particles or clusters in a spatially homogeneous �ow

when the di�usion can be neglected are governed by the Smoluchowski equation (e.g., see,

[14]):

@nl

@t
=

1

2

X
i+j=l

Kijninj � nl

1X
i=1

Klini + Fl(t) (1)

with the initial conditions nl(0) = n
(0)

l ; l = 1; 2; : : : .

We use the notation: flg-cluster, for a cluster containing l monomers (or structural units);
ni, for the number density of the fig-cluster; Kij, for the coagulation coe�cient charac-

terizing the collision frequencies between the fig- and fjg-clusters; and Fl(t), for the

intensity of the source of flg-clusters. We will use also the symbol Æ(t) for the Dirac

delta-function.

Under rather general assumptions about the coagulation coe�cients Kij there are known

the existence and uniqueness results for the solution to the equation (1) (e.g., see [1]). To

assure that these assumptions are satis�ed, we assume for simplicity that

Kij � const � i j : (2)



The phenomenon of coagulation is crucial in a wide range of applications, e.g., in the

aerosol science (formation and growth of particles), chemistry and meteorology, formation

of soot particles in the combustion processes, physics of polymers, etc. (e.g., see [14]).

Finite di�erence and �nite element methods (e.g., [6]) are usually applied in spatially

homogeneous case, provided the range of particle sizes is not too large.

The structure of the coagulation kernel Kij for di�erent collision regimes is presented,

e.g., in [14], [9]. In the case of isotropic turbulent transport of the host gas, which is the

situation we are interested in, the coe�cients Kij were derived in [13]

Kij =

 
�2�"

120�

!1=2

V1(i
1=3 + j1=3)3; (3)

where �" is the mean rate of dissipation of kinetic energy per unit mass, � is the kinematic

viscosity of the �uid, and V1 is the volume of the monomer. This seems to describe

satisfactorily the evolution of the size spectrum of particles mixed by a fully developed

turbulence without taking into account the intermittency. A strong assumption however

was made by the authors [13] that the colliding particles do not much di�er in their sizes.

In the intermittent turbulence, " is considered as a random process with lognormal distri-

bution [2]. Thus mathematically, we have the Smoluchowski equation whose coe�cients

are random processes. The most interesting question which arises here is how much may

the mean solution di�er from the solution given by Sa�man and Turner in their paper

[13]. We solved this problem in [11].

As concerning the deterministic numerical methods for solving the deterministic Smolu-

chowski equation, see, e.g., [6], [4].

Generally, even linear PDE's with stochastic coe�cients are very di�cult for solving by

conventional numerical methods. To evaluate statistical characteristics of solutions of this

kind of random equations by Monte Carlo methods, the double randomization method is

an e�cient technique (e.g., see [7]). In nonlinear case the situation is more complicated.

However it is also possible to apply the double randomization technique (see [8]).

In this presentation we extend our considerations of inhomogeneous coagulation alowing

the particles to be not only involved in the turbulent mixing, but also in the molecular

di�usion of a parcel of �ow carrying these particles.

Stochastic particle systems play an important role in the numerical analysis of the coag-

ulation equation. The standard stochastic model related to the coagulation equation is a

Markov jump process, which in the rare�ed gas dynamics is known as the Bird method

(see [9]). Some stochastic algorithms involve an additional approximation parameter, the

time step, thus providing solutions to time discretized approximations of the coagulation

equation e.g., like in the Nanbu algorithm (e.g., see [9], [3]). In the last paper we have con-

sidered the spatially inhomogeneous case where the coagulating particles are transported

by the velocity �eld v(t; x)

@nl(t; x)

@t
+ v(t; x) � rxnl(t; x) =

1

2

X
i+j=l

Kijninj � nl

1X
i=1

Klini + Fl(t; x);

with the initial conditions nl(0; x) = n
(0)

l (x); l = 1; 2; : : : . In the vector form it reads

@nE(t; x)

@t
+ v(t; x) � rxn

E(t; x) = K(nE(t; x)) + F (t; x);
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nE(0; x) = n(0)(x); x 2 R3; t 2 [0; T ]: (4)

Here the following notations are used:

nE(t; x) =
n
nEi (t; x)

o
1

i=1
; n(0)(x) =

n
n
(0)

i (x)
o
1

i=1
; F (t; x) = fFi(t; x)g

1

i=1 ;

K(nE(t; x)) =

8<
:1

2

X
i+j=l

Kijn
E
i (t; x)n

E
j (t; x)� nEl (t; x)

1X
i=1

Kiln
E
i (t; x)

9=
;
1

l=1

:

The superscrip E stands to show that the equation is considered in �xed Eulerian coordi-

nates.

In applied problems, inhomogeneous Smoluchowski equation has to be solved. For in-

stance, even in the case of homogeneous isotropic turbulence, one needs to handle the

inhomogeneous Smoluchowski equation (e.g., see [13],[10],[11]).

The idea how to solve the inhomogeneous equation through the homogeneous ones is based

on the transformation from Eulerian to Lagrangian coordinates, with the integration over

Lagrangian trajectories de�ned as the solutions to the Cauchy problem:

@X(t; x0)

@t
= v (t; X(t; x0)) ; t 2 [0; T ]; X(0; x0) = x0: (5)

We will see that in the case of non-zero di�usion the Lagrangian trajectories are governed

by stochastic di�erential equations.

2 Formulation of the problem

Let us assume that in addition to the coagulation, all the particles do di�use with a parcel

of �ow, the di�usion coe�cient being a constant D. The coagulation equation (4) is then

generalized to (for simplicity we omit the source):

@nE(t; x)

@t
+ v(t; x) � rxn

E(t; x) = D�x n
E(t; x) +K(nE(t; x));

nE(0; x) = n(0)(x); x 2 G = R3; t 2 [0; T ]; (6)

where �x is the Laplace operator acting in the spatial coordinates x. Note that for

simplicity we assume that the solution is de�ned in the whole space G = R3 so that there

is no need to consider the boundary conditions.

These equations may be considered as a conventional description of the balance of particles

which are moving in the host gas with the mean velocity v(t; x), coagulating according

to the kernel K, and di�using all with the di�usion coe�cient D not depending on the

particle size.

Now, the problem can be formulated as follows. Find a probabilistic representation of

the solution to (6) as an expectation of solutions of a stochastic di�erential equation

governing the Lagrangian trajectories of the parcel of �ow which moves according to the

mean velocity �eld v and undergoes a di�usion with the constant D.

3



3 Stochastic Lagrangian model

Let us denote through �(t;�(0)) the solution of the following spatially homogeneous co-

agulation equation:
@

@t
�(t) = K(�) (7)

with the initial conditions �(0) = �(0).

Let us introduce the following system of stochastic di�erential equations:

dX(t) = v(t; X(t)) dt+
p
2DdW (t);

X(0) = x0: (8)

We denote by p(x; t; x0) the transition density function of the process X(t) de�ned in (8),

and introduce the functional:

nL(t; x) =
Z
G

�(t; n(0)(x0))p(x; t; x0)dx0 : (9)

In what follows we present a theorem, establishing the connection between nL(t; x) and

nE(t; x), the solution to the problem (6).

Let us consider the system of stochastic di�erential equations

dX(t) = v(t; X(t)) dt+
p
2DdW (t);

d�(t) = K(�) dt;

X(0) = x0; �(0) = nE(0; x0) = n(0)(x0):

Denote by pX;�(x; �; t; x0) the probability density function of the process (X(t);�(t)),

then

pX;�(x; �; t; x0) = p�(�; t; x0) p(x; t; x0) = Æ(�� �(t; n(0; x0))p(x; t; x0) (10)

which makes the functions X and � dependent.

The following statement presents the main result.

Theorem 1. The function nL(t; x) solves the equation

@

@t
nL(t; x) +

3X
i=1

@

@xi

�
vi(t; x)n

L(t; x)
�
= D�x n

L(t; x) +K(nL) + �(t; x);

where

�(t; x) = K

0
@Z
G

� p(x; t; x0)dx0

1
A� Z

G

K(�) p(x; t; x0) dx0

with the following property:

1

2
F (t; x) � k�(t; x)k0 �

3

2
F (t; x); (11)

F (t; x) =
X
i�1

X
j�1

Kij

������
Z
G

�ip(x; t; x0)dx0

Z
G

�jp(x; t; x0)dx0 �
Z
G

�i�jp(x; t; x0)dx0

������ :

4



In the case of incompressible �ow (div v = 0) the equation for nL di�ers from (6) only by

the term �(t; x):

@

@t
nL(t; x) + v(t; x) � rxn

L(t; x) = D�x n
L(t; x) +K(nL) + �(t; x) :

Proof. To prove this statement, we evaluate the integral (9). By de�nition, from (9) and

(10) we �nd that

nLl (t; x) =
Z Z

G

�l pX;�(x; �; t; x0) dx0 d�:

The pdf pX;�(x; �; t; x0) satis�es the Fokker-Planck equation

@

@t
pX;� +

3X
i=1

@

@xi

�
vi(t; x)pX;�

�
= D�xpX;� �

X
i�1

@

@�i

�
Ki(�)pX;�

�
(12)

with the initial condition

pX;�(x; �; 0; x0) = Æ(�� n(0)(x0))Æ(x� x0):

Multiplying (12) by �l and integrating over � and x0 we get

@

@t

Z
G

Z
�lpX;� d� dx0 +

3X
i=1

@

@xi

2
4vi(t; x)

Z
G

Z
�lpX;� d� dx0

3
5 (13)

= D�x

Z
G

Z
�lpX;� d� dx0 �

X
i�1

Z
G

Z
�l

@

@�i
(Ki(�)pX;�)d� dx0 :

Let us now evaluate the integral

I =
X
i�1

Z
G

Z
�l

@

@�i
(Ki(�)pX;�)d� dx0 :

Note, that

I =
X
i6=l

Z
G

Z
@

@�i
(�lKi(�)pX;�) d� dx0 +

Z
G

Z
�l

@

@�l
(Kl(�)pX;�) d� dx0 = I1 + I2;

where

I1 =
X
i6=l

Z
G

Z  Z
@

@�i
�lKi(�)pX;� d�i

!
d�1 : : : d�i : : : dx0

=
X
i6=l

Z
G

Z �
�lKi(�)pX;�

���1
�i=0

�
d�1 : : : ^d�i : : : dx0 = 0:

(here the hat over d�i means that this multiplier should be omitted), and

I2 =
Z
G

Z
@

@�l
�lKl(�)pX;� d� dx0 �

Z
G

Z
Kl(�)pX;� d� dx0:
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The �rst term in the last relation is equal to zero due to the same arguments, as used in

the case of I1. Thus,

I2 = �
Z
G

Z
Kl(�)pX;� d� dx0

and the equation (13) reads

@

@t
nLl (t; x) +

3X
i=1

@

@xi
(vi(t; x)n

L
l (t; x)) = D�x n

L
l (t; x) +

Z
G

Z
Kl(�)pX;�d� dx0 :

We rewrite it in the form

@

@t

Z
G

nLl (t; x) +
3X
i=1

@

@xi
(vi(t; x)n

L
l (t; x)) = D�xn

L
l (t; x) +Kl(n

L) + �l(t; x);

where

�l(t; x) = Kl

0
@Z
G

Z
� pX;�d� dx0

1
A� Z

G

Z
Kl(�) pX;�d� dx0 :

Note that Z
G

�Z
� pX;�d�

�
dx0 =

Z
G

�(t; n(0)(x0))p(x; t; x0) dx0:

Therefore,

�l(t; x) =
1

2

X
i+j=l

Kij

0
@Z
G

�ipX;� dx0

Z
G

�jpX;� dx0 �
Z
G

�i�jpX;� dx0

1
A

�
X
i�1

Kil

0
@Z
G

�ipX;� dx0

Z
G

�lpX;� dx0 �
Z
G

�i�lpX;� dx0

1
A :

From this we get the inequality (11), and the theorem is proved.

In conclusion we note that we expect that for many practical kernels Kij the term � is

small enough. In these cases the Theorem ensures that nE(x; t) � nL(x; t). This implies

that using (9) one can solve the inhomogeneous Smoluchowski equation by integration over

solutions to homogeneous Smoluchowski equation. Let us describe this in more details.

4 Stochastic Lagrangian Algorithm

In this section we consider the problem of evaluation of the integral

Ih(
; t) =
Z



nL(t; x) � h(x)dx:

Here 
 is the domain in R3, h(x) = fhl(x)gl�1 is an arbitrary function de�ned in 
. In

what follows we assume that the initial conditions have the following form:

n(0)(x) = 0; x =2 
0: (14)

We present the algorithms based on the construction of the forward and backward stochas-

tic Lagrangian trajectories.

6



Direct estimator

Using the representation (9) and the condition (14), we can represent the integral Ih(
; t)

as follows:

Ih(
; t) = IE

"
h (X(t; �))

r(�)
�
�
t; n(0)(�)

�
� (X(t; �) 2 
)

#
: (15)

Here � is a random value, distributed in 
0 with a density r(x) chosen arbitrarily, ac-

cording to some physical arguments; X(t; �) is the Lagrangian trajectory, starting at the

point � and governing by (8); � is the solution to the homogemeous equation (7) and � is

the indicator function. Standard Monte Carlo calculation of Ih(
; t) is then carried out

as follows

Ih(
; t) �
1

N

NX
i=1

�(i); �(i) =
h
�
X(i)(t; �(i))

�
r(�(i))

�
�
t; n(0)(�(i))

�
�
�
X(i)

(t; �(i)) 2 

�
:

The superscript (i) shows that i independent samples of the random variable � and the

random process X are taken.

Then, the algorithm of the calculation of �(i) can be formulated as follows.

Direct algorithm

1. Choose the random point � in 
0 with the density r(x).

2. Construct the stochastic trajectory X(�; �), � 2 [0; t], as the solution to (8) with

the initial conditions X(0; �) = �; let

x := X(t; �):

3. Check, wether x 2 
.

3.1. If not, let �(i) := 0:

3.2. If yes, then construct the solution �
�
t; n(0)(�)

�
to the problem (7) and calculate

�(i) :=
h(x)

r(�)
�
�
t; n(0)(�)

�
:

Adjoint estimator

The direct algorithm cannot be applied if h(x) is the delta-function, or is de�ned on a

small support domain. In this case the adjoint algorithm, based on the construction of

the backward Lagrangian trajectories can be used.

Let us consider the random trajectory X�t (�; x), backward in time, governing by the

stochastic di�erential equation

dX�t (�) = v� (�;X�t (�)) d� +
p
2D

 

d W; � 2 [0; t]; X�t (t) = x: (16)

7



Here, the di�erential
 

d W means that the backward Ito integral is taken1.

We will denote by p�(x0; t; x) the transition density function of the solution to (16).

In [12] there has been shown, that if one takes

v�(t; x) = v(t; x)�
2D

�(t; x)
div �(t; x) ;

where �(t; x) is a positive solution to the equation

@�

@t
+

3X
i=1

@

@xi
(vi�) = D��;

then there exists the following connection between p(x; t; x0) and p�(x0; t; x):

p(x; t; x0) =
�(t; x)

�(0; x0)
p�(x0; t; x): (17)

Substituting (17) into (9), we can analagously to the direct case represent the integral

Ih(
; t) as follows:

Ih(
; t) = IE

"
h(�)

s(�)

�(t; �)

� (0; X�t (0; �))
�
�
t; n(0) (X�t (0; �))

�
� (X�t (0; �) 2 
0)

#
:

Here � is a sample point, chosen in 
 with a density s(x); X�t (�; �) is the backward

Lagrangian trajectory, starting at the point � and governing by (16); � is the solution to

the homogeneous equation (7) and � is the indicator function.

Using this representation, the following estimator for Ih(
; t) can be constructed:

Ih(
; t) �
1

N

NX
i=1

��(i);

��(i) =
h(�(i))

s(�(i))

�(t; �(i))

�(0; X
�(i)
t (0; �(i)))

�
�
t; n(0)

�
X
�(i)
t (0; �(i))

��
�
�
X
�(i)
t (0; �(i)) 2 
0

�
:

The superscript (i) denotes, that the i-th realization of the random variable � and the

random process X�t are taken.

So, we have the following algorithm of the calculation of ��(i).

1The backward Ito integral is de�ned by

tZ
s

�(�)
 

dW (�) :=

T�sZ
T�t

�(T � �) dWT (�);

s � t � T; WT (�) := W (T )�W (T � �) is a standard Wiener process. This integral does not depend on

the choice of T . For details see, e.g., [5].

8



Adjoint algorithm

1. Choose the random point � in 
 with the density s(x).

2. Construct the backward stochastic trajectory X�t (�; �), � 2 [0; t], as the solution to

(16) with X�t (t; �) = �; let

x0 := X�t (0; �):

3. Check, wether x0 2 
0.

3.1. If not, let ��(i) := 0:

3.2. If yes, then construct the solution �
�
t; n(0)(x0)

�
to the problem (7) and calculate

�(i) :=
h(�)

r(�)

�(t; �)

�(0; x0)
�
�
t; n(0)(x0)

�
:

The algorithms presented above are especially e�cient in the case of monodisperse initial

conditions

n
(0)

l (x) = Æ1lf(x):

In this case the function �(t; n(0)(x)) for each x can be expressed through the solution

u(t) to the normalized homogeneous coagulation equation

@u(t)

@t
= K(u); ul(0) = Æ1l; l � 1: (18)

Namely, we have

�(t; n(0)(x)) = f(x)u(f(x)t):

Hence it is not necessary to solve the homogeneous problem along all the Lagrangian tra-

jectories. It is su�cient to solve once the problem (18) in the time interval [0; sup
x2
0

f(x)t].

5 Estimation of �(t; x)

For simplicity let us consider the case

v(t; x) = 0:

In this case the system (10) reads:

dX(t) =
p
2DdW (t);

d�(t) = K(�) dt;

X(0) = x0; �(0) = n(0; x0) = n(0)(x0):

Here X(t) is Gaussian, with the following pdf:

p(x; t; x0) =
1

�
p
2�

exp

 
�
jx� x0j2

2�2

!
; � =

p
2Dt : (19)

9



Since p(x; t; x0) is symmetric with respect to x and x0, the function F (t; x) in the inequality

(11) can be represented as follows:

F (t; x) =
X
i�1

X
j�1

Kij

������
Z
G

�ip(x0; t; x)dx0

Z
G

�jp(x0; t; x)dx0 �
Z
G

�i�jp(x0; t; x)dx0

������ (20)

=
X
i�1

X
j�1

Kij

���IE[�i(t; n
0(�))�j(t; n

0(�))]� IE[�i(t; n
0(�))]IE[�j(t; n

0(�))]
��� :

Here �(t; n0(�)) is the solution to the spatially homogeneous coagulation equations (7)

with the initial conditions

�(0; n0(�)) = n(0)(�);

where � has the gaussian distribution with IE[�] = x and Var[�] = 2Dt.

One can �nd from (20) that k�(t; x)k0 = 0 in the case of uniform initial distribution

n(0)(x) � const. While in general case the value of k�(t; x)k0 depends on the form of the

initial conditions n(0)(x) and coagulation coe�cients Kij and on the value of the di�usion

coe�cient D.

We will now estimate F (t; x) in one particular case of the initial conditions n(0). We as-

sume that the admixture is ejected at the time instant t = 0 and the source is concentrated

in a bounded domain 
0 = G, i.e.

n(0)(x) = n(0); x 2 G; n(0)(x) = 0; otherwise: (21)

In this case, �i(t; n
(0)(x0)) = �i(t; n

(0)) for each x0 2 G and �i(t; n
(0)(x0)) = 0, when

x0 =2 G, hence Z
G

�ip(x; t; x0)dx0 = �i(t; n
(0))

Z
G

p(x; t; x0)dx0

and

F (t; x) �
3

2

X
i�1

X
j�1

Kij�i(t)�j(t)

�������
0
@Z
G

p(x; t; x0)dx0

1
A
2

�
Z
G

p(x; t; x0)dx0

������� � FR(t; x); (22)

FR(t; x) =
3

2

�
n(0)

�2
const

Z
G

p(x; t; x0)dx0

0
@1� Z

G

p(x; t; x0)dx0

1
A :

Here const is the constant from (2).

Thus, one can conclude, that F (t; x) decreases, as
Z
G

p(x; t; x0)dx0 tends to 0 or to 1.

To understand, when such situation occurs, let us assume for simplicity that G is a cube

with the edge of size of 2R and centered in the origin of the coordinates. In this case

Z
G

p(x; t; x0)dx0 = �
3
i=1fi(t; xi); fi(t; x) =

1

�
p
2�

RZ
�R

exp

 
�
(xi � x0i)

2

2�2

!
dx0i; � =

p
2Dt:

(23)
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0
x 

gaussian pdf  with
me=x, var= 2Dt    

−R R i 

Figure 1: To the de�nition of the function fi(t; x).

The function fi(t; x) has a clear geometrical sense: it is equal to the area of the shaded

domain under the curve of the gaussian pdf with the expectation x and variance 2Dt, see

Fig. 1.

One can �nd that, for �xed point xi, the function fi(t; xi) tends to 1 as t tends to 0, and

tends to 0, as t tends to in�nity.

Thus, for this particular case the right hand side of the inequality (22), estimating the

value of F (t; x), is small enough both for su�ciently small and su�ciently large times t.

To illustrate this, we plotted in Fig. 2 FR(t; x) as a function of time t (plane case) at

x = (0; 0), for di�erent values of the di�usion coe�cient D.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

t’
  

D=2.22e−2 R 
2 

(L=2R) 

D=8.88e−2 R 
2 

(L=4R) 

D=3.55e−1 R 
2 

(L=8R) 

D=1.42 R 
2 

(L=16R) 

FR (t’,0) 

Figure 2: The function FR(t0; x) for x = (0; 0) and di�erent values of the di�usion

coe�cient D.

It is more convenient to use the dimensionless time

t0 = t=Tc ; (24)

where Tc =
1

K11n(0)
is the characteristic time scale of the coagulation process. It can be

11



interpreted as the mean time of the collision at the initial time moment in the domain of

the source action.

The value of L indicates the size of the domain, in which 99:7% of admixture particles

are concentrated up to the moment t0 = 10 for the corresponding di�usion coe�cient. To

provide this, we have taken the di�usion coe�cient from the relation 3� = L, where � is

de�ned in (23).

The time t0 = 10 has been chosen regarding the following condition: to this time instant,

the coagulation process with the constant coagulation coe�cient leads to a 20% decrease

of the number of particles in the �uid element.

6 Comparison of the Eulerian and Lagrangian models.

From the previous section one can conclude, that for the considered particular case the

term �(t; x) in the statement of the theorem can be small enough for some values of

the di�usion coe�cient D and time intervals. An interesting issue is the comparison of

the functions nE(t; x) and nL(t; x), which in fact means the comparison of the Eulerian

and the Lagrangian models of the coagulation of particles, which undergo the di�usion

process.

It is important to understand, when the di�erence between the function nL(t; x) and the

solution nE(t; x) to the problem (6) is small enough, so that the solution to inhomogeneous

Smoluchowski equation can be approximated by solving the homogeneous problem along

the Lagrangian trajectories. On the other hand, the question: when these functionals are

quiet di�erent is also of great interest. One can expect, that the di�erence between the

functions nE(t; x) and nL(t; x) is small for small values of �(t; x) while it might be quite

pronounced for large values of �(t; x).

Let us again assume that

v(t; x) = 0

and let us consider the two-dimensional case of the problem (6) with Kij = const and the

following initial conditions:

n(0)(x) = n(0); x 2 G; n(0)(x) = 0; otherwise: (25)

Here G is a square of size 2R centered in the coordinates origin.

Eulerian model

To solve the coagulation-di�usion equation in the Eulerian coordinates (6) with the ini-

tial conditions (25) we have extended the �nite element method developed in [9] to the

inhomogeneous case.

It is reasonable to choose a particle size �, which is large enough, so that all nEl (t; x) for

l � � are assumed to be equal to zero. Then we can take in the interval [1; �] a �nite set

of basis functions f'k(l)gNk=1 and approximate nE(t; x) as follows:

nEl (t; x) �
NX

m=1

ym(t; x)'m(l); l = 1; : : : ; � : (26)

12



To reduce the dimension of the obtained system we consider only the equations in the

set of collocation points fqpgNp=1. Substituting (26) in (6) yields the following system of

equations for fym(t; x)gNm=1:

NX
m=1

'm(qp)
@ym(t; x)

@t
= D

NX
m=1

'm(qp)�xym(t; x)+
NX

m=1

NX
n=1

Bp
mnymyn; p = 1; : : : ; N; (27)

where

Bp
mn =

1

2

X
i+j=qp

Kij'm(i)'n(j)� 'm(qp)
�X
i=1

Kqp;i'n(i):

For simplicity, we have used the piecewise-linear basis functions. In this case the approx-

imation of nE(t; x) reads as follows:

nEl (t; x) � y�(l)'
1
�(l)(l) + y�(l)+1'

2
�(l)(l); �(l) = supfpj qp � lg;

where

'1
m(l) =

qm+1 � l

qm+1 � qm
; '2

m(l) =
l � qm

qm+1 � qm
:

Then, the system (27) takes the form:

@yp(t; x)

@t
= D�xyp(t; x) +

1

2

qp�1X
i=1

Ki;qp�iBi;qp�i � yp

�X
i=1

Ki;qpCi ; p = 1; : : : ; N; (28)

where

Bij = '1
�(i)(i)'

1
�(j)(j)y�(i)y�(j) + '1

�(i)(i)'
2
�(j)(j)y�(i)y�(j)+1

+'2
�(i)(i)'

1
�(j)(j)y�(i)+1y�(j) + '2

�(i)(i)'
2
�(j)(j)y�(i)+1y�(j)+1;

and

Ci = '1
�(i)(i)y�(i) + '2

�(i)(i)y�(i)+1:

To solve the system (28), the explicit �nite-di�erence scheme has been used. The calcu-

lations have been carried out in the dimensionless variables x0 = x=R and t0, where t0 is

de�ned in (24), with

�t0 = 0:014; �x0 = 0:07:

We have taken � = 1:4e+ 4 and chosen the collocation points as follows:

qp = round(p);  = 1:1:

Here the function round(x) equals the integer value closest to x. To check the accuracy

of this method, we have solved the system of homogeneous Smoluchowski equations with

Kij = 1 and the di�usion equation without coagulation. For both of these problems the

exact solution is known. The calculation shows, that the error of the scheme is less than

5% for both mentioned problems. It is expected that the same is true for the general case

of the coagulation-di�usion equation.

13



Lagrangian model

As we noticed in the previous section, the system (8) in our case reads as follows:

dX(t) =
p
2DdW (t);

d�(t) = K(�) dt;

X(0) = x0; �(0) � n(0):

Here X(t) is a gaussian process, with the following pdf:

p(x; t; x0) =
1

�
p
2�

exp

 
�
jx� x0j2

2�2

!
; � =

p
2Dt:

So, the functional nL(t; x) in this case has the following representation:

nLl (t; x) = �l(t; n
(0))f1(t; x1)f2(t; x2);

fi(t; xi) =
1

�
p
2�

RZ
�R

exp

 
�
(xi � x0i)

2

2�2

!
; � =

p
2Dt:

Note that in our case an explicit representation for the solution �(t; n(0)) to homogeneous

Smoluchowski equation is known. To �nd the integrals, we have used the trapezium rule.

1 2 3 4 5 6 7 8 9 10

10
−4

10
−3

10
−2

10
−1

size, i 

n  (1; 0,0) − solid line 
L 
i 

n  (1; 0,0) − dotted line 
E 
i 

D=8.88e−2 R 
2 

(L=4R) 

Figure 3: The size distributions nLi (t
0; x) and nEi (t

0; x) as functions of i for t0 = 1:0,

x = (0; 0) and D = R2 � 8:88e� 2:

To present the results of calculations, we have used the same dimensionless time t0, de�ned

in (24). The calculations have been carried out for D = R2 �8:88e�2. Such a value of the

di�usion coe�cient have been chosen to ensure that up to the moment t0 = 10 the size L

of the domain, in which 99:7% of admixture particles are concentrated, will be equal to

4R (see the previous section for the details). In Fig. 2, the estimation of the term �(t; x)

is presented for the same case (dotted line).

In Figs. 3,4,5 we have plotted the size distribution of the admixture particles, given by

Eulerian and Lagrangian models, in the point x = (0; 0), at the time moments t0 = 1,
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Figure 4: The size distribution nLi (t
0; x) and nEi (t

0; x) as a function of i for t0 = 5:0,

x = (0; 0) and D = R2 � 8:88e� 2.
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Figure 5: The size distributions nLi (t
0; x) and nEi (t

0; x) as functions of l, for t0 = 10:0,

x = (0; 0) and D = R2 � 8:88e� 2.

t0 = 5 and t0 = 10, respectively (the functionals nEl (t
0; x) and nLl (t

0; x) as functions of l).

One can �nd, that these models give practically the same results for t0 = 1. However, the

di�erence between the functionals increases with the growth of t0. Namely, the Eulerian

model provides larger number of particles of small sizes and smaller number of large

particles. At t0 = 5, this di�erence is about 50% for monomers and more than 100%

for particles whose size is larger than 10. At t0 = 10 the Eulerian model gives 2.5 times

larger number of monomers, when comparing with the Lagrangian model. The di�erence

between the number of particles whose size is larger than 15, is more than 400%.

In Figs. 6,7,8 we show the concentrations of particles of sizes 1, 5 and 10, respectively,

given by Eulerian and Lagrangian models, as functions of time t0, for D = R2 � 8:88e� 2.

When analysing these pictures, one can conclude that the Eulerian model predicts a lower

rate of growth and a lower rate of decrease of the number of particles of size l > 1. This

leads to the e�ect that the number of large particles in the Eulerian model is less than

that obtained by the Lagrangian model.
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Figure 6: The concentration of clusters of size 1 nL1 (t
0; x) and nE1 (t

0; x), for x = (0; 0) and

D = R2 � 8:88e� 2.
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Figure 7: The concentration of clusters of size 5, nL5 (t
0; x) and nE5 (t

0; x) for x = (0; 0) and

D = R2 � 8:88e� 2.

7 Coagulation and di�usion in a fully developed turbu-

lent �ow

In this section we simulate the coagulation and di�usion processes for particles moving in

an incompressible fully developed turbulent �ow.

The question we are interested in is how strong the coagulation in�uences the number

of admixture particles, under the condition that the particles are su�ciently small to be

able to undergo a molecular-like di�usion. So let us assume that the admixture particles,

containing 1 structural unit (monomers) have been ejected at the time instant t = 0 in

a domain G. The particle concentration is changing in time both due to the turbulent

motion of the host gas, to the di�usion of particles, and to their collisions leading to the

formation of larger particles. Assuming that the turbulence is well-mixing the particles in
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Figure 8: The concentration of clusters of size 10, nL10(t
0; x), and nE10(t

0; x), for x = (0; 0)

and D = R2 � 8:88e� 2.

an elementary volume, we aim at estimating under what conditions the coagulation pro-

cess makes an essential contribution into the rate of decrease of the number of monomers,

and when its contribution is so small, that it can be neglected?

More rigorously, we compare the solutions to the following two problems:

@nD(t; x)

@t
+ v(t; x) � rxn

D(t; x) = D�xn
D(t; x); (29)

nDl (0; x) = n
(0)

l (x) = f(x)Æ1l; x 2 G; nDl (0; x) = 0; otherwise

and

@nCD(t; x)

@t
+ v(t; x) � rxn

CD(t; x) = D�xn
CD(t; x) +K

�
nCD(t; x)

�
; (30)

nCDl (0; x) = n
(0)

l (x) = f(x)Æ1l; x 2 G; nCDl (0; x) = 0; otherwise.

The coagulation coe�cients Kij for the turbulent case are de�ned in the Introduction (see

(3)).

The solution to (29) has the following probabilistic representation:

nDl (t; x) =
Z
G

f(x0)Æ1lp(x; t; x0) dx0: (31)

Here p(x; t; x0) is the transition density of the random process X(t; x0), governing by the

following sde:

dX(t; x0) = v(t; X) +
p
2DdW (t); X(t; x0) = x0: (32)

To calculate nCD(t; x), we use our Lagrangian model. Then,

nCDl (t; x) =
Z
G

�l

�
t;n(0)(x0)

�
p(x; t; x0) dx0; (33)

where p(x; t; x0) is the transition density of the solution to (32) and � is the solution to

the homogeneous problem (7) with the turbulent coagulation coe�cients (3).

17



In a fully developed turbulence, it is natural to assume that the mean velocity is zero:

v(t; x) = 0:

Note, that in this case the function p(x; t; x0) has the form, de�ned in (19). We assume

that the monomers at the initial time moment were uniformly distributed in the domain

G where the particles were ejected.

n
(0)

l (x) = n(0)Æ1l; x 2 G; n
(0)

l (x) = 0; otherwise;

G is a square of size 2R centered in the origin of the coordinates.

Let us now introduce the characteristic time scale of the di�usion as follows:

TD =
R2

D
:

It can be interpreted as follows: it is the time, to which the domain, containing 99.7%

of admixture, becomes nearly 4 times larger, than G. In fact, according to (19), 99.7%

of admixture is concentrated in the domain [�3�; 3�] � [�3�; 3�], while if t =
R2

D
, then

3� � 4:2R.

We will also use the characteristic time scale of the coagulation

TC =
1

K11n(0)
;

which can be interpreted as the mean collision time the particles have had as they were

ejected in G.

To analyse the relation between the solutions to (29) and (30) it is important to note,

that these functions depend on the large number of di�erent parameters. Actually, nD is

the function of t, x, n(0), R and D; while nCD is the function of t, x, n(0), R, D, ", �, V1.

The following statement allows to simplify the situation.

Statement. The functions nD(t; x; n(0); R;D) and nCD(t; x; n(0); R;D; "; �; V1) can be

represented as follows:

nD(t; x; n(0); R;D) = n(0)ND
(t0; x0);

nCD(t; x; n(0); R;D; "; �; V1) = n(0)NCD(t0; x0; b);

where

t0 =
t

TD
; x0 =

x

R
; b =

TC

TD
:

where

ND
(t0; x0) =

1

�0
p
2�

1Z
�1

1Z
�1

exp

 
�
jx0 � x00j2

2�02

!
dx00;

NCD(t0; x0; b) =
u(bt0)

�0
p
2�

1Z
�1

1Z
�1

exp

 
�
jx0 � x00j2

2�02

!
dx00; �0 =

p
2t0:
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Figure 9: The functions ND
1 (t0; x0) and NCD

1 (t0; x0; b) for b = 0:01, b = 0:1 and b = 1 at

the point x = (0; 0).

Here u(t) is the solution to the normalized homogeneous Smoluchowski equation with the

coe�cients

Kij =
1

8

�
i1=3 + j1=3

�3
:

The proof of the statement follows from the representations (31), (33) and (19) (using the

change of the variables of the integration) taking into account that

�
�
t; n(0)(x)

�
= n(0)u

�
K11n

(0)t
�

in the case of monodisperse initial conditions.

It is now more convenient to work with the functions ND
1 and NCD

1 instead of nD1 and

nCD1 . Using the statement, the following relation between these functions in a time interval

t0 2 [0; ] can be given:

sup
t02[0;]

�����N
CD
1 (t0; x0; b)�ND

1 (t0; x0)

NCD
1 (t0; x0; b)

����� = sup
t02[0;]

����� 1

u1(bt0)
� 1

�����! 0; as b! 0:

One can see that the di�erence between the functions decreases, as the ratio
TD

TC
of the

time scales becomes smaller. It means that the in�uence of the coagulation process on

the behaviour of the admixture concentration decreases with the decrease of the relative

rate of the coagulation, compared with the rate of the di�usion.

To illustrate this, we show the functions ND
1 (t0; x0) and NCD

1 (t0; x0; b) in the points x0 =

(0; 0) (�g. 9) and x0 = (1:5; 0) (�g. 10). For both cases the following values of b have been

taken: b = 0:01, b = 0:1 and b = 1. From these pictures one can clearly see the decrease of

the di�erence between the functions with the decrease of the parameter b. In fact, these

functions practicaly coincide for b = 0:01, while for b = 1 their di�erence becomes greater

than 100%.
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Figure 10: The functions ND
1 (t0; x0) and NCD

1 (t0; x0; b) for b = 0:01, b = 0:1 and b = 1 at

the point x = (0:5; 0).

8 Conclusion

We developed a new stochastic model for simulation of coagulating particles in a mean

host �ow whose di�usion activity is characterised by a constant di�usion coe�cient not

depending on the particle's size. This model leads to a Smoluchowski type equation, one

di�erence to the classical Smoluchowski coagulation equation being an additional e�ective

source. We have analysed the behaviour of this source in some particular cases.

We compared our new model with the results obtained by a �nite-element method we

developed for solving the classical inhomogeneous Smoluchowski equation. The results

have con�rmed the di�erent predictions of two models, but also have shown regions where

the results are quite close.

We have analysed, using the method developed, the relative contributions to the con-

centration of monomer particles moving in a fully developed turbulent �ow made by the

coagulation and di�usion processes.

It should be noted that the cost of the new algorithm is so dramatically decreased, com-

pared to the conventional deterministic algorithm (a few tens of hours drop down to several

minutes) that many practical problems like the formation of soot particles in �ames or

chemical reactions coupled to formation of a new phase can be solved in a reasonable

computer time.

However it should be also mentioned that this method works only if the di�usion coe�cient

of all particles is the same which can be a reasonable approximation only for special

systems. The problem of generalisation of the method presented to the case when the

di�usion coe�cient depends on the particle's size is open.
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