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Abstract

We study the longtime dynamics of a nonlinear adaptive control system

introduced by Mareels et al. [10] to control the behavior of a plant which

can be described by a �nite dimensional SISO linear time invariant system

stabilizable by a high gain output feedback. We apply frequency domain

methods to derive conditions for global stability, to approximate the region

containing the global attractor and to estimate its Hausdor� dimension.

1 Introduction

Adaptive output gain control has been considered by I. Mareels [8], A.S. Morse [11],

C.I. Byrnes and J.C. Willems [1], A. Ilchmann [4], H. Kaufman, I. Bar�Kana and K.

Sobel [5] and I. Mareels et al. [10] to name but a few. The goal of this paper is to

study the longtime dynamics of a class of adaptive gain control systems considered

in [10].

We assume that the plant to be controlled can be described by a �nite dimensional

single input single output linear time invariant system that can be stabilized by a

high gain output feedback. Such systems have a transfer function with stable zeroes

and relative degree one. As has been proved in [9, 10], the class of systems under

consideration can be transformed into the form

dx

dt
= Ax+ by;

dy

dt
= �cTx� dy + u;

(1.1)

where u is the input, y the output, (x; y) 2 Rn � R is the state of the system, A is

an n�n-matrix, i.e. A 2 L(Rn;Rn), b; c 2 Rn, d 2 R. In [10] the adaptive feedback

law

u = �zy + e;

dz

dt
= ��z + y2; z(0) > 0

(1.2)

has been applied to (1.1). Here, � is a positive constant representing the so-called

sigma-modi�cation, and e characterizes the control o�set error. Substituting (1.2)
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into (1.1) we obtain after some rescaling

dx

dt
= Ax+ by;

dy

dt
= �cTx� dy � zy + e; (1.3)

dz

dt
= ��z + y2; z(0) > 0:

Under the assumptions that (A; b) is controllable, A is Hurwitz, and � > 0, it has

been proved in [10] that system (1.3) is dissipative in the sense of Levinson, that

is, every trajectory enters �nally a uniformly bounded region G of the phase space,

moreover an estimate of G and conditions for global stability has been derived.

An essential aim of [10] was to show by a bifurcation analysis and by numerical

investigations that, for n = 1, the longtime dynamics of system (1.3) can be very

rich, including chaotic behavior. Therefore, from the point of control theory it is

desirable to �nd conditions for (1.3) to be globally stable or to minimize the region

G containing the global attractor.

The goal of this paper is to study the longtime dynamics of (1.3) by frequency

methods. We derive estimates for the global attractor and give conditions for global

asymptotic stability which improve corresponding results in [10] at least for the case

n = 1, furthermore, we derive an upper bound for the Hausdor� dimension of the

global attractor.

2 Assumptions, Preliminaries

Throughout this paper we assume

(A1): The matrix A is Hurwitz, that is, all eigenvalues of A are located in the left

half plane.

(A2): The pair (A; b) is controllable.

Since we are using frequency methods we have to introduce some transfer functions.

First we introduce the function � : C! C by

�(s) := cT (sI �A)�1b (2.1)

which is the transfer function of the input y to the output v of the system

dx

dt
= Ax+ by;

v = cTx:

By  : C! C we denote the transfer function of system (1.1) which can be repre-

sented in the form

 (s) :=
1

s+ d + �(s)
: (2.2)
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Using the notation

�(s) := det(sI �A); p(s) := det

 
sI �A �b
c s

!
(2.3)

 (s) can be represented also in the form

 (s) =
�(s)

p(s) + d �(s)
: (2.4)

The investigation of the longtime behavior of system (1.3) will be based on the

construction of appropriate Lyapunov functions. An essential part of these functions

is some quadratic form de�ned by means of a symmetric positive de�nite matrix

H. For the existence and also for the construction of H we use frequency domain

methods, in particular, we will apply results of V.A. Yakubovich, R.E. Kalman and

V.M. Popov. For convenience of the reader we recall these results, also a theorem due

to A. Douady and J. Oesterlé that will be used to estimate the Hausdor� dimension

of the global attractor.

The following result represents a version of the Yakubovich - Kalman frequency

domain theorem (see Theorem 1.10.1 in [7]).

Theorem 2.1 Let P 2 L(Rn;Rn) be Hurwitz, let q; Æ 2 Rn, let g 2 R. We assume

(P; q) to be controllable, and (P; Æ) to be observable. Let G(�; �) be the Hermitian

form de�ned by

G(�; �) := 2Re ��Æ� + g j�j2; � 2 Cn; � 2 C: (2.5)

Then there is a positive de�nite symmetric matrix H 2 L(Rn;Rn) satisfying

2Re ��H(P� + q�) + G(�; �) � 0 8 � 2 Cn; 8� 2 C

if and only if

Re G
�
(i!I � P )�1q�; �

�
� 0 8� 2 C; 8! 2 R:

The following result is basically an application of Theorem 2.1 (see Theorem 1.12.1

in [7]).

Theorem 2.2 Let P 2 L(Rn;Rn) be Hurwitz, let q; r 2 Rn. We assume the pair

(P; q) to be controllable, and the pair (P; r) to be observable. Let � : C ! C be the

transfer function de�ned by

�(s) := rT (P T � sI)q: (2.6)

Then there exists a positive de�nite symmetric matrix H 2 L(Rn;Rn) satisfying the

relations

HP + P TH � 0 and Hq + r = 0

if and only if

Re [�(i!)] > 0 8! 2 R:
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The next result represents a special form of the criterion of Popov and coincides

essentially with the circle criterion (see Theorem 1.14.1 in [7]).

Theorem 2.3 Let the matrix P 2 L(Rn;Rn) be Hurwitz, let r; q 2 Rn, let the

pair (P; q) be controllable. Suppose that for a certain number � > 0 the following

inequality holds

��1 +Re[�(i!)] > 0 8! 2 R;

where �(s) := rT (P � sI)�1q. Then the system

dx

dt
= Px+ qy; � = rTx;

(2.7)
y = '(t; �);

where ' : R� R! R is continuous and such that

0 �
'(t; �)

�
� � 8 t; � 2 R;

is globally asymptotically stable.

It is well-known [3] that a dissipative autonomous system

dx

dt
= f(x) (2.8)

with f 2 C1(Rn;Rn) has a global attractor K. Let J(x) be the Jacobian of f(x).

The following theorem due to A. Douady and J. Oesterlé [2] aims to estimate the

Hausdor� dimension of K by means of the eigenvalues �1(x) � : : : � �n(x) of the

symmetric matrix

M(x) :=
1

2

"
J(x) + J(x)T

#
: (2.9)

It follows from a more general result (see Theorem 5.5.1 in [7]).

Theorem 2.4 Assume f 2 C1(Rn;Rn) and (2.8) to be dissipative. Let �1(x) �
: : : � �n(x) be the eigenvalues of the symmetric matrix M(x) de�ned in (2.9). Fur-

thermore, we suppose that for x 2 G, where G is an open bounded region in Rn, and

for some s 2 [0; 1] and some j; 1 � j < n, the following inequality holds

�1(x) + : : :+ �j(x) + s�j+1
(x) < 0: (2.10)

Then the Hausdor� dimension dimH K of the global attractor K of system (2.8) can

be estimated by

dimH K � j + s:

Under some additional conditions, Theorem 2.4 yields a criterion for global stability

(see Theorem 3.1.1 in [6]).
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Theorem 2.5 Suppose f 2 C1(Rn;Rn) and that there exists a bounded region G

with smooth boundary @G such that the trajectories of (2.8) transversally enter G for

increasing t. Furthermore, we assume that G contains only a �nite set of equilibria

of (2.8) and that for all x 2 G the following inequality holds

�1(x) + �2(x) < 0:

Then any solution x(t; x0) of system (2.8) with initial data x0 2 G tends to some

equilibrium as t tends to +1.

In the next section we derive some estimates for the region where the global attractor

K of (1.3) is located.

3 Localization of the global attractor

First we note that from the last equation in (1.3) we get

z(t) = e��tz(0) +
Z t

0
e��(t��)y2(� )d� � e��tz(0):

Thus, if the z-component of a solution of system (1.3) satis�es z(0) > 0 then z(t) > 0

holds for all t � 0. This implies

lim inf
t!1

z(t) � 0 for z(0) � 0: (3.1)

Theorem 3.1 Suppose the hypotheses (A1), (A2) and � > 0 to be valid. Moreover,

we assume the pair (A; c) to be observable and that for some numbers ; �; � satisfying

� � 0; � 2 (0; �];  2 R the following relations hold

(i) all eigenvalues of the matrix A+ �I have negative real parts.

(ii) � + Re [�(i! � �)] > 0 8 ! 2 R:

(iii)

(2� � �) � 0; (3.2)

2(d � � � �)�  > 0: (3.3)

Then there exists a positive de�nite symmetric matrix H such that the global attrac-

tor of system (1.3) is contained in


 :=

(
(x; y; z) 2 Rn+2 : xTHx+ y2 + z2 + z �

e2

2�(2(d � � � �) � )

)
:

5



Theorem 3.2 Suppose the hypotheses of Theorem 3.1 are valid except condition

(3.2). Then there exists a positive de�nite matrix H such that the global attractor

of system (1.3) is contained in the set

� :=

(
(x; y; z) 2 Rn+2 : xTHx+ y2 + z2 + z

�
1

2�

"
e2

2(d� � � �) � 
+

(2�� �)22

8(� � �)

# )
:

Theorem 3.3 Suppose the hypotheses (A1),(A2) and � > 0 to be valid. Addition-

ally, we assume e = 0 and that for � = 0 and for some numbers � � 0;  2 R the

relations (i) - (iii) of Theorem 3.1 are valid. Then, any solution of (1.3) tends to the

origin as t tends to +1.

Proofs of Theorem 3.1 - Theorem 3.3.

First we prove Theorem 3.1. To this end we construct a Lyapunov function in the

form

V (x; y; z) := xTHx+ y2 + z2 + z (3.4)

where H is a real positive de�nite symmetric matrix with some special property. We

will apply Theorem 2.1 to establish its existence. To this end we set P = A+�I; q =

b; Æ = �c; g = �2�. From (2.5) we get

G((i!I � P )�1q�; �) = G((i! � �)I �A)�1b�; �)

= �2
�
cT ((i! � �)I �A)

�1
b+ �

�
j�j2:

Taking into account the de�nition of the transfer function � in (2.1) we obtain

�Re [G((i!I � P )�1q�; �)] = 2(Re [�(i! � �)] + �)j�j2:

Applying Theorem 2.1 we get that under the conditions (i) and (ii) of Theorem 3.1

there exists a positive symmetric matrix H satisfying

2xTH[(A+ �I)x+ by]� 2cTxy � 2�y2 � 0 8 x 2 Rn; 8 y 2 R: (3.5)

An algorithm to construct the matrix H satisfying (3.5) can be found in [7].

Using the inequality (3.5) we get from (3.4) and (1.3)

dV

dt
+ 2�V = 2xTH[(A+ �I)x+ by]�

2cTxy � 2�y2 + 2(� � d)y2 + 2ey � 2�z2

��z + y2 + 2�(y2 + z2 + z)

� �[2(d� � � �) � ]y2 + 2ey

�2(� � �)z2 + (2� � �)z:
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From the validity of the relations (3.2) and (3.3) and taking into account (3.1) we

obtain

dV

dt
+ 2�V �

e2

2(d � � � �)� 
: (3.6)

Therefore, dV=dt is negative outside 
, and the global attractor K is located in 
.

This proves Theorem 3.1.

In case that only the inequality (3.3) holds we have

dV

dt
+ 2�V �

e2

2(d� � � �) � 
+

(2� � �)22

8(� � �)
: (3.7)

This inequality implies the validity of Theorem 3.2.

In case � = 0; e = 0 we have the inequality

dV

dt
� �

h
2(d� �)� 

i
y2 � 2�z2:

From this inequality and from the relation

V (x; y; x) �! +1 as jxj+ jyj+ jzj �!1

we get that any solution (x(t); y(t); z(t)) of system (1.3) is uniformly bounded for

t � 0. Obviously all conditions of the theorem of LaSalle (see [7]) are satis�ed.

Hence, the !-limit set of any trajectory of system (1.3) is contained in the subspace

fy = 0; z = 0g. From the invariance of the !-limit set and from the �rst di�erential

equation in (1.3) we get that for the !-limit set the relation x = 0 is valid. Therefore,

the !-limit set of any trajectory of system (1.3) consists of the equilibrium point

x = y = z = 0. This completes the proof of Theorem 3.3.

Remark 1. It is easy to see that the conditions (i) and (ii) of Theorem 3.1 can be

satis�ed if we choose � su�ciently small and � su�ciently large. Then, for negative

 and for su�ciently large jj condition (3.3) can be ful�lled. By this way, we can

always �nd parameters �; �;  such that the hypotheses of Theorem 3.2 are satis�ed.

Thus, system (1.3) is dissipative. From this point of view, Theorem 3.1 yields an

improvement of the region of dissipativity compared with Theorem 3.2. Theorem

3.1 is of special interest in case e = 0. Here, we can draw the following conclusion.

Corollary 3.4 Let the hypotheses of Theorem 3.1 be valid. Additionally we assume

e = 0. Then, on the global attractor of system (1.3) we have

0 � z � jj: (3.8)
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4 Longtime behavior and estimates of the Hausdor�

dimension of the global attractor

In this section we estimate the Hausdor� dimension of the global attractor K of

system (1.3) by means of Theorem 2.4. At the same time we derive conditions for

global stability.

To be able to apply Theorem 2.4 to system (1.3) we �rst derive conditions for

the existence of a coordinate transformation such that the Jacobian J(x) of the

transformed system has the property that J(x) + J(x)T possesses a block-diagonal

structure.

Let S be an invertible n� n-matrix. By means of the coordinate transformation

x! Sx; z !
p
2 z; y! y (4.1)

we obtain from (1.3)

dx

dt
= S�1ASx+ S�1by;

dy

dt
= �cTSx� dy �

p
2zy + e; (4.2)

dz

dt
= ��z +

p
2

2
y2:

The Jacobian of (4.2) reads

J(x) :=

0
B@
S�1AS S�1b 0

�cTS �d�
p
2z �

p
2y

0
p
2y ��

1
CA :

If we assume

S�1b = (cTS)T = STc

which is equivalent to

b = SSTc (4.3)

then J(x) + J(x)T has the block diagonal structure

J(x) + J(x)T =

0
B@
S�1AS + (S�1AS)T 0 0

0 �2(d +
p
2z) 0

0 0 �2�

1
CA : (4.4)

Our goal is to guarantee the existence of a positive de�nite symmetric matrix H

such hat

b = Hc; (A+ �I)H +H(A+ �I)T � 0: (4.5)

It is clear that the existence of a symmetric positive de�nite matrix H satisfying

(4.5) implies the existence of a regular matrix S (H = SST ) satisfying (4.3).
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The proof of the existence of the matrix H is based on the application of Theorem

2.2. To this end we set in Theorem 2.2 P = (A+ �I)T ; q = c; r = �b and assume

(H1). There is a positive number � such that

(i). A+ �I is Hurwitz.

(ii). (A+ �I; c) is controllable

(iii). (A+ �I; b) is observable.

(H2).

Re [�(i! � �)] < 0 8 ! 2 R; (4.6)

where �(s) is de�ned according to (2.6) by

�(s) := bT (AT � sI)�1c: (4.7)

Under the assumptions (H1) and (H2), it follows from Theorem 2.2 that there exists

a positive de�nite matrix H satisfying (4.5). Thus, the following lemma is valid.

Lemma 4.1 Assume the hypotheses (H1) and (H2) hold. Then there exists a regular

matrix S such that by means of the coordinate transformation (4.1) system (1.3)

can be mapped into system (4.2) whose Jacobian J(x) satis�es the relation (4.4),

moreover the inequality

S�1AS + (S�1AS)T � �2�I (4.8)

is valid.

We note that (4.8) is equivalent to

ASST + SSTAT � �2�SST (4.9)

which follows from (4.5) by setting H = SST .

Now we are able to apply Theorem 2.4 to system (4.2) in order to estimate the

Hausdor� dimension of the global attractor K.

Theorem 4.2 Suppose the hypotheses of Lemma 4.1 hold. Then, under the addi-

tional condition

min (�; �) + d > 0 (4.10)

any solution of system (1.3) tends to a stationary solution for t! +1. Under the

condition

min (�; �) + d � 0; d + � + � � 0

the Hausdor� dimension dimH K of the global attractor K satis�es

dimH K � 2 �
min(�; �) + d

max(�; �)
: (4.11)
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The same estimate holds for � < �; � + d � 0; � + n� + d > 0.

In case � � �; d + n� > 0 we have

dimH K � 1 �
d

�
:

For � � �; d + n� � 0; d+ n� + � > 0 it holds

dimH K � n+ 1�
d+ n�

�
:

Proof. Under our assumptions, we get from (4.4) and (4.9)

J(x) + J(x)T :=

0
B@
S�1AS + (S�1AS)T 0 0

0 �2(d +
p
2 z) 0

0 0 �2�

1
CA

(4.12)

�

0
B@
�2�I 0 0

0 �2d 0

0 0 �2�

1
CA :

We consider condition (4.10) and assume min(�; �) = �. Than we obtain from

(4.10) and (4.12)

�1(x) + �2(x) � �2(d + �) < 0:

Thus, according to Theorem 2.5, any solution of (1.3) tends to an equilibrium point

as t tends to +1. The case min(�; �) = � is treated analogously.

Let min(�; �) + d � 0; d + � + � � 0 and min(�; �) = �: In that case we have for

s > �(d+ �)=�

�1(x) + �2(x) + s�3(x) � �2(d+ � + s�) < 0:

This proves the estimate (4.9). The other cases can be treated similarly. This com-

pletes the proof of the theorem.

For n = 1; A = �a < 0; b = 1 we obtain from (4.7)

�(s) =
�c
s+ a

:

In that case it is easy to see that the relations (4.6) holds for c > 0 and � 2 (0; a).

Thus, we have

Corollary 4.3 Assume n = 1; a > 0; c > 0; � > 0 and

min (a; �) + d > 0:

Then any solution of system (1.3) tends to an equilibrium for t! +1.
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In case

min (a; �) + d < 0

the Hausdor� dimension of the global attractor K can be estimated by

dimH K � 2 �
min(a; �) + d

max(a; �)
:

We note that Mareels et al. [10] in case a = 1; � = 0:1; d = ��; c = 3=4��=4; � 2
[0; 1] have got numerically for e = 0 that the origin is globally stable for � 2 (0; 0:6).

In this case we obtain from Corollary 4.3 that for any e the origin is globally stable

for � 2 (0; 0:1). For � > 0:1 we obtain the following estimate of the Hausdor�

dimension of the global attractor K

dimH K � �+ 1:9:

We wish to underline that this result holds true for any e.

In what follows we consider system (1.3) in case e = 0, and under the condition

 < 0. Our goal is to derive a frequency criterion for the global asymptotical

stability of the origin which extends a corresponding result in [10].

For this purpose we study the system

_x = Ax+ by;
(4.13)

_y = �cTx� dy � z(t)y;

where we assume

0 � z(t) � � for t 2 R: (4.14)

We will apply Theorem 2.3 to system (4.13) in order to get a criterion guaranteeing

the global asymptotic stability of the origin.

First we note that the transfer function of system (4.13) with the input z(t)y and

the output �y coincides with the function  (s) de�ned in (2.2).

To satisfy the assumptions of Theorem 2.3 we have to assume

( ~A3). The matrix

~A =

 
A b

�cT �d

!

is Hurwitz.

Under the assumption (A1) we have due to Schur's lemma and taking into account

the notation introduced in (2.3) and the relation (2.4)

det(s~I � ~A) = det(sI �A) det(s+ d + cT (A� pI)�1b) = p(s) + d�(s) =
�(s)

 (s)
:

11



Thus, if assumption (A1) holds, then hypothesis ( ~A3) is equivalent to the following

hypothesis

(A3).  (s) has only poles with negative real parts.

If we additionally assume

(A4).

��1 + Re  (i!) > 0 8 ! 2 R; (4.15)

then Theorem 2.3 can be applied to system (4.13) and we get that the origin of

system (4.13) is asymptotically stable, that is, any solution of system (4.13) satis�es

lim
t!+1

x(t) = 0; lim
t!+1

y(t) = 0: (4.16)

Under the assumptions of Theorem 3.1, the z-component of system (1.3) satis�es

by Corollary 1 the condition (4.14). Thus, from (4.16) and from the last equation

in (1.3) we get that in case � > 0 the relation

lim
t!+1

z(t) = 0

holds and the origin of (1.3) is also asymptotically stable.

Theorem 4.4 Let all hypotheses of Theorem 3.1 be satis�ed. Additionally we sup-

pose e = 0 and that the assumptions (A3) and (A4) are valid. Then the origin of

system (1.3) is globally asymptotically stable.

Remark 2. We note that Theorem 4.4 improves Theorem 3.3 in [10] at least in the

case n = 1 where instead of (4.15) the condition Re (i!) > 0 is used.

Now we apply Theorem 4.4 to system (1.3) in the case n = 1; b = 1; e = 0; c >

0; A = �a:
By (2.1) and (2.2) the corresponding transfer function reads

 (s) =
s+ a

(s+ a)(s+ d) + c
: (4.17)

With � = 0, condition (ii) of Theorem 3.1 reads

Re
c

i! + a� �
> 0 8 ! 2 R:

This relation is valid for any � 2 (0; a): For the same � also condition (i) of Theorem

3.1 holds.

If we assume

a > �=2 > d;

then for

� = �=2; � > � � 2d; � = 0

all conditions of Theorem 3.1 are satis�ed. Taking into account the explicit form of

the transfer function  (s) de�ned in (4.17) we get the result:
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Corollary 4.5 Consider the case n = 1; b = 1; e = 0; a > 0; � > 0; c > 0; a >

�=2 > d. We assume that the polynomial

(s+ d)(s + a) + c (4.18)

has only zeros with negative real parts and that the frequency inequality

1

� � 2d
+ Re

"
i! + a

(i! + a)(i! + d) + c

#
> 0 8 ! 2 R (4.19)

holds true. Then system (1.3) is globally stable.

It can be easily veri�ed that all zeros of the polynomial (4.18) are located in the left

half plane if we have

a+ d > 0; ad+ c > 0:

Condition (4.19) can be written in the form

1

� � 2d
+

d!2 + a(ad+ c)

(ad+ c� !2)2 + (a+ d)2!2
> 0:

Note that in [10] it has been shown numerically that in the case

e = 0; a = 1; � = 0:1; c =
��
4

+
3

4
; d = ��; � 2 (0; 1)

the origin is globally stable for � < 0:6: From Corollary 4.5 we get that the origin

is globally stable for � < 0:5463:

We note that Theorem 3.3 in [10] is not applicable since from d < 0 it follows that

the inequality  (i!) > 0 cannot be satis�ed for su�ciently large !.
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