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Abstract

We address the problem of estimating the value of a linear functional hf; xi

from random noisy observations of y = Ax in Hilbert scales. Both the white

noise and density observation models are considered. We develop an inverse

estimator of hf; xi which automatically adapts to unknown smoothness of x

and f . It is shown that accuracy of this adaptive estimator is only by a loga-

rithmic factor worse than one could achieve in the case of known smoothness.

As an illustrative example, the problem of deconvolving a bivariate density

with singular support is considered.

1 Introduction

Consider an operator equation

Ax = y; (1)

where A is a linear compact injective operator from some real Hilbert space X into

a real Hilbert space Y. We denote the inner products in the Hilbert spaces X;Y

by h�; �i and corresponding norms by k � k = h�; �i1=2. It will be always clear from

the context which space is considered. The problem of inverse statistical estimation

is to reconstruct x or a functional of it, provided that the right hand side of (1) is

observed with a random error. The statistical model can be written in the form

y" = Ax+ "�; (2)

where � is a random noise, and " is a small positive number measuring the noise

level.

Two typical models of observations have been considered in the statistical litera-

ture. One can assume that � is the Gaussian white noise of the intensity " [e.g.,

Skorohod (1974)]. This speci�cally means that for every element � 2 Y we can

observe

y"(�) = hAx; �i+ "�(�); (3)

where �(�) is a Gaussian random variable on a probability space (
;A;P) with zero

mean and variance k�k2. Denoting E the expectation with respect to P, we have in

addition E [�(�)�( )] = h�;  i, 8�;  2 Y. We refer to such a model as the white

noise model.

On the other hand, in some practical situations it is natural to assume that we are

given an i.i.d. sample Y1; : : : ; Yn of random elements on a probability space (
;A;P)
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which are in some sense directly related to y. In this case the data allow to construct

i.i.d. statistics ŷ1; : : : ; ŷn de�ned on the same probability space and taking values

in Y with the following properties: E ŷi = y and Ekŷik2 < 1. Then a sensible

estimator of y is given by

y" =
1

n

nX
i=1

ŷi; and Eky" � yk2 = O(n�1); n!1: (4)

This observation scheme corresponds to (2) with � =
p
n(y" � y) and " = n�1=2.

We will refer to such a model as the density observation model because it is typical

in applications related to density estimation from indirect data. For examples of

inverse estimation in this setup see Ruymgaart (1993), Mair & Ruymgaart (1996),

and van Rooij, Ruymgaart & van Zwet (1999).

In this paper we consider the problem of estimating a linear functional lf (x) = hf; xi
for the two aforementioned models of indirect observations. Accuracy in estimating

lf(x) is essentially determined by: (i) ill�posedness of the operator A, (ii) smooth-

ness of the representer f , and (iii) smoothness of the unknown solution x. These

factors can be characterized in several ways. For example, if a singular value de-

composition (SVD) of A is known, then the inverse problem can be represented in

a sequence space. In this case both ill�posedness of A and smoothness of f and x

are naturally measured by the rate at which corresponding coe�cients of the SVD

representation decrease [e.g., Cavalier & Tsybakov (2000)]. In this paper we adopt

a di�erent approach. In order to quantify the e�ect of smoothness of x and f , and

ill�posedness of A on the estimation accuracy, we embed the problem into a Hilbert

scale. This approach to statistical inverse estimation has been advocated by Mair &

Ruymgaart (1996), and Mathe & Pereverzev (2001). The operator A may �t some

standard Hilbert scale such as a Sobolev scale. If this is not the case, the Hilbert

scale can be always constructed using the generating operator L := (A�A)�1 [e.g.,

Natterer (1984), Hegland (1995)]. In what follows we call the Hilbert scale gener-

ated by (A�A)�1 natural. Thus within this framework smoothness of x and f , and

ill�posedness of A are measured with respect to a particular Hilbert scale.

An inverse estimator of a linear functional lf(x) in Hilbert scales, adaptive to un-

known smoothness of x, has been developed recently by Goldenshluger &

Pereverzev (2000) [henceforth G&P (2000)] for the white noise model. It was as-

sumed there that smoothness of the representer f with respect to the corresponding

Hilbert scale is known. However, it is often di�cult to characterize smoothness of f

relative to a particular Hilbert scale. For example, if the operator A is not well stud-

ied then smoothness of the representer f with respect to the natural Hilbert scale is

usually unknown. Therefore developing inverse estimators that are simultaneously

adaptive to unknown smoothness of x and f is of prime interest.

We consider the following basic example that motivated this paper.

Example 1 Let z be a bivariate random variable that has a singular distribution on

the plane with mass concentrated on a contour with given parametric representation.
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In particular, assume that z = �(') expf{'g, { = p�1, where �(�) is a given positive

periodic function on [0; 2�], and ' is a random variable with unknown density x on

[0; 2�]. Suppose we observe

Yj = �('j) expf{'jg+ wj; j = 1; : : : ; n; (5)

where wj are bivariate Gaussian normal variables with zero mean and covariance

matrix �2I. Here we identify R
2 with the complex plane C . The objective is to

estimate the density x at a single point '0 2 [0; 2�]. The case of �(') = const has

been considered recently by Goldenshluger (2001). It will be shown in Section 4 that,

if �(�) 6= const and x 2 L2(0; 2�), then x satis�es the following integral equation

Ax(t) :=

Z 2�

0

J0(t�('))x(') d' = y(t); t 2 [0; %]; for any % > 0: (6)

Here J0(�) is the Bessel function of the order 0, A : L2(0; 2�) ! L2(0; %), and y

is a function that can be estimated from the data at the parametric rate. Thus

we are in the framework of the density observation model. Clearly, smoothness of

lf(x) = x('0) relative to the natural Hilbert scale is unknown, and this information

cannot be used in estimator construction.

Given a functional f , let l̂" = l̂"(f; x) be an estimate of lf (x) based on the available

data. Accuracy of an estimate l̂"(f; x) is measured by its uniform with respect to

W risk

R[l̂";W ] := sup
x2W

E jlf (x)� l̂"(f; x)j2

where W is a prespeci�ed subset of X re�ecting prior knowledge on smoothness of

x = A�1y. The minimax risk is de�ned by

R�["; f;W ] := inf
l̂"
R[l̂";W ];

where inf is taken over all possible estimates l̂". The objective is to construct an

optimal in order estimate l̂" = l̂"(f; x) of a functional lf (x) = hf; xi satisfying

R[l̂";W ] � O(1)R�["; f;W ]; "! 0:

It turns out that dependence of the minimax risk R�["; f;W ] on f is expressed

only through the smoothness properties of f . Therefore, for a given representer

smoothness set F , the minimax risk can be measured uniformly over f 2 F by

R�[";F;W ] := sup
f2F

R�["; f ;W ]:

Typically construction of optimal in order estimators requires prior information on

the solution setW and on the representer smoothness set F . As Example 1 indicates,

the last requirement is particularly restrictive when dealing with inverse estimation

in Hilbert scales. Let F denote a family of representer sets F , and W be a family
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of solution sets W . We say that an estimator l̂" = l̂"(f; x) is adaptive with respect

to W and F , or fully adaptive, if

sup
F2F

sup
W2W

n
R[l̂";W ]=R�[";F;W ]

o
� C("); (7)

where sup"C(") <1, or C(") grows slowly as " goes to 0, i.e. lim
"!0

[C(r")=C(")] = 1

for any r > 0.

The goal of the present paper is develop an inverse estimator of a linear functional

in Hilbert scales which automatically adapts to unknown smoothness of x and f .

The proposed estimator satis�es (7) with both F and W being wide collections of

balls in the Hilbert scale. This substantially extends the results of G&P (2000)

where F is a �xed known ball in the Hilbert scale. We show that accuracy of our

adaptive estimator is only by a logarithmic factor worse than one could achieve

in the case where F and W are known exactly. It is well known that often this

extra logarithmic factor cannot be avoided in adaptive estimating linear functionals

[cf. Lepski (1990, 1992), Brown & Low (1996)]. In these situations our estimator

has the best possible adaptation properties. Using the general results we treat

the problem of deconvolving a bivariate density with singular support described in

Example 1. A fully adaptive estimator is developed and its properties are studied.

The rest of the paper is organized as follows. In Section 2 we introduce our notation

and main assumptions. Section 3 de�nes our adaptive estimator and establishes

main results for the white noise and density observation models. In Section 4 we

consider the problem of inverse estimating a bivariate density with singular support,

and Section 5 contains the proofs.

2 Hilbert scale setup

Recall that a Hilbert scale
�
X
�
	
�2R

is a family of Hilbert spaces X� with inner

products hu; vi� := hL�u; L�vi, where L is a given unbounded strictly positive self-

adjoint operator in a dense domain of the initial Hilbert space X. More precisely, X�

is the completion of the intersection of domains of the operators Ls; s � 0, endowed

with the norm k � k� de�ned by k � k� := h�; �i1=2� . Here X0 = X and k � k0 = k � k.
Following Natterer (1984) we assume that A is adapted to the Hilbert scale in the

following sense.

(A) There exist positive constants a,d, and D such that

dkuk�a � kAuk � Dkuk�a; 8u 2 X: (8)

Examples of operators A satisfying (8) can be found in Neubauer (1988), Mair and

Ruymgaart (1996), and Mathe and Pereverzev (2001). As it was already mentioned,

even if the operator A does not �t some standard Hilbert scale (for instance, as in
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Example 1), one can always construct a scale adapted to A. Namely, any compact

injective operator A meets the condition (8) for a = 1=2 and the Hilbert scale

generated by the operator L = (A�A)
�1
, where A� is the adjoint of the operator A

in X, i.e. A� : Y ! X.

Within the Hilbert scale setup the natural assumption on the linear functional

lf(x) = hf; xi is that both the representer f and the unknown solution x belong

to some balls in the Hilbert scale. In particular, suppose that

x 2 W�(M); W�(M) := fx 2 X
� : kxk� �Mg

for some index � > 0 and constant M > 0. Since the dual space of X� is X�� [e.g.,

Krein et al. (1982, p. 237)], and X
r is embedded in X

s for r > s, we need also the

condition f 2 X
� ; � � ��, to ensure that the linear functional lf(x) = hf; xi is

well�de�ned. To be more speci�c, we assume that

f 2 W�(N); � � ��: (9)

The condition (8) implies that the inverse operator A�1 acts boundedly from Y into

X
�a . Since the norm k � k�a is weaker than the norm k � k of the initial Hilbert space

X, the problem (1) is ill-posed. Therefore some kind of regularization is required

for estimating the value of lf (x) = hf; xi. It is well known [e.g., Tautenhann (1996)]

that a wide variety of regularization methods can be constructed in the following

way.

Let g�(�) be a piecewise continuous function on [0; D2] depending on a regularization

parameter � > 0 and satisfying the following conditions:

sup
�2[0;D2]

j�g�(�)j � c�
�1; 0 �  � 1;

sup
�2[0;D2]

j��[1� �g�(�)]j � c��
�; 0 � � � 1;

where D is given in (8), and c; c� are positive constants. Fix a non-negative number

s and de�ne the regularized estimator l̂"�;s(x) of lf(x) = hf; xi by

l̂"�;s(x) = hy"; AL�sg�(L�sA�AL�s)L�sfi ; (10)

where y" is given by (3) for the white noise model and by (4) for the density obser-

vation model. Observe that if s � �� then AL�sg�(L
�sA�AL�s)L�sf 2 Y, and the

estimate is well�de�ned. The well-known Tikhonov-Phillips regularization method

is characterized by (10) with g�(�) = (�+ �)�1 and s = 0.

The mean squared error of the estimate l̂"�;s(x) admits the following standard bias�

variance decomposition:

E jlf (x)� l̂"�;s(x)j2 = b2�;s(f; x) + "2Ev2�;s(f; �);

where

lf (x)� l̂"�;s = b�;s(f; x) + "v�;s(f; �)
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and

b�;s(f; x) = hf; (I � L�sg�(L
�sA�AL�s)L�sA�A)xi;

v�;s(f; �) = �h�; AL�sg�(L�sA�AL�s)L�sfi: (11)

The following statements have been proved in G&P (2000).

Lemma 2.1 Let Assumption (A) hold, f 2 W�(N), � < a, and l̂"�;s(x) be associated

with s � maxf0;��g. Then for every � 2 (��; 2s+ a] one has

sup
x2W�(M)

jb�;s(f; x)j � c1Mkfk� �
�+�

2(a+s) ; (12)

where c1 = c1(�; a; s; d;D) depends on �; a; s; d;D only.

Lemma 2.2 Let Assumption (A) hold, and s � maxf0;��g. Then for the white

noise observation model

Ev2�;s(f; �) = kAL�sg�(L�sA�AL�s)L�sfk2

and for f 2 W�(N), � < a,

Ev2�;s(f; �) � c2 �
��a

a+s ; (13)

where c2 = c2(�; a; s; N) depends on �, a, s and N only.

We note in passing that condition � < a in the above statement implies that f

is a generalized function relative to the Hilbert space X. In Section 5, under some

natural assumptions on the distribution of �, we establish the same upper bound (13)

on the variance term for the density observation model. In this case the constant c2
depends also on some properties of the error distribution.

The above results allow to establish upper bounds on the uniform risk. In particular,

for the white noise observation model it follows from Lemmas 2.1, 2.2 that the

uniform risk of the estimate l̂"�;s(x) associated with s � maxf0;��g and � > 0

admits the following upper bound

R[l̂"�;s;W�(M)] � c3

�
M2�

�+�

a+s + "2�
��a

a+s

�
; 8� 2 (��; 2s+ a];

where c3 = c3(�; s; a; N; d;D). Thus, with the optimal choice � � (M�1")
2(a+s)

�+a one

has

R[l̂"�;s;W�(M)] � c3M
�

2(��a)

�+a "
2(�+�)

�+a ; 8� 2 (��; 2s+ a]; (14)

where �� means equivalent in the sense of the order. It follows from the renormal-

ization argument of Donoho & Low (1992) that, for the white noise model, the rate

of convergence on the right hand side of (14) cannot be improved for estimating

linear functionals f 2 W�(N). More precisely, it is shown that

R�[";W�(N);W�(M)] �M�
��a

�+a "
2(�+�)

�+a ; �� � � � a: (15)
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Thus, the estimate l̂"�;s(x) is optimal in order for any pair of ballsW�(N) andW�(M)

satisfying � 2 (��; 2s + a], � < a. Observe, however, that prior knowledge on

smoothness of the unknown solution x is needed in order to choose the regularization

parameter � optimally.

An inverse estimator of a linear functional lf(x) = hf; xi, f 2 W�(N), which auto-

matically adapts to unknown smoothness of x has been developed by G&P (2000).

The adaptation procedure there is a particular implementation of the Lepski (1991)

general adaptation scheme for the case where the class W�(N) is completely speci-

�ed. Note that this construction depends crucially on the actual smoothness � of f

because the 'typical value' of the stochastic term in the error decomposition depends

on �. In the next section we introduce our estimator which is adaptive in the sense

of (7) over a wide collection of representer sets W�(N) and solution sets W�(M).

3 Adaptive estimator

In this section we de�ne our adaptive estimator and study its properties both for

the white noise and density observation models.

First, introduce assumptions on the collection of possible representer sets W�(N).

We assume that f 2 W�(N), where � is unknown and belongs to the discrete set

�� := f�0; : : : ; �mg; � = �0 < �1 < � � � < �m = � < a:

Let Æ := minf�i � �i�1 : i = 1; : : : ; m+ 1g, where �m+1 := a by de�nition.

The basic idea underlying construction of our adaptive estimator is the following.

We consider a discrete ordered set �� of possible regularization parameters, and

a family of estimates l̂"�;s(x) associated with � 2 ��. For every �xed smoothness

index �j from �� we can choose adaptively the regularization parameter from ��

using the Lepski adaptation procedure. In this way we obtain a family of m +

1 estimates corresponding to di�erent thresholds in the adaptation scheme. If a

parameter �j 2 �� is greater than the actual smoothness index �, the threshold in

the adaptation scheme is small, and on a set of 'large' probability the adaptation

procedure yields a 'too small' value for the regularization parameter. It turns out

that this can be detected very precisely from the data using a special construction of

the set ��. Our adaptive estimator is de�ned in two steps. First, using the Lepski

adaptation scheme we obtain a sequence of regularization parameters corresponding

to di�erent smoothness indices �j 2 ��. Second, we select among these the minimal

regularization parameter which is not 'too small'. Note that our construction is the

same for both white noise and density observation models. In the last case " is equal

to n�1=2.

Fix � = 1 and let

� = "p; where p =
4(a+ s)

Æ

�a� �

a� �

�
: (16)
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For q > 1 de�ne

�� = f� 2 [�; �] : � = �j = qj�; j = 0; 1; : : :g:
Let r�() = �(a��)=(2(a+s)), and, for brevity, write l̂ for l̂";s(x). For a given { � 1,

let �̂j denote the maximal � from �� such that

jl̂ � l̂�j � 2{"[r�j() + r�j (�)]; 8; � � �; ; � 2 ��: (17)

In other words, �̂j denotes the regularization parameter chosen by the Lepski pro-

cedure with the threshold associated with the smoothness index �j 2 �� . The basic

property of the sequence �̂j, j = 0; 1; : : : ; m is that it is monotone non-increasing:

�̂0 � �̂1 � � � � � �̂m: (18)

Indeed, the threshold on the right hand of (17) decreases monotonically as �j grows.

Therefore the set of estimates satisfying the inequality becomes smaller as �j de-

creases.

Let � = "2(a+s)=(a��), and

j+ := maxfj : j 2 J�g; J� := fj : �̂j � �; j = 0; : : : ; mg: (19)

De�ne �̂+ = �̂j+ if the set J� is not empty; otherwise we set �̂+ = � . The estimate

we are interested in is de�ned as

l̂+(x) = l̂"�̂+;s(x):

We stress that the parameters � and M of the solution set W�(M), and the pa-

rameter � of the representer set W�(N) are not involved in the construction of the

estimator l̂+(x). Note that l̂+(x) depends on the three design parameters {, s and

q; in what follows { will be chosen as a function of ", s, and q, and other known

parameters of the problem.

Below we establish our main results on accuracy of the estimator l̂+(x) for the white

noise and density observation models.

3.1 White noise model

Here we assume the model is given by (3). Under this assumption, the stochastic

error v�;s(f; �) de�ned in (11) is a Gaussian random variable with zero mean and

variance

Ev2�;s(f; �) = kAL�sg�(L�sA�AL�s)L�sfk2:
In view of Lemma 2.2 it is reasonable to consider the so-called e�ective smoothness

of the representer f . We will say that f has the e�ective smoothness � if

(F) f 2 X
� , and there exists a constant c� = c�(�; a; s) such that for all su�ciently

small �

kAL�sg�
�
L�sA�AL�s

�
L�sfk � c��

��a

2(a+s) : (20)
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The condition (20) is rather natural. It simply means that for considered functionals

the order of the variance indicated in (13) cannot be improved in the power scale.

Using the same argument as in Neubauer (1997) one can show that from (13) it

follows only that f 2 X
r for all r < �. Therefore, (20) allows to specify smoothness

of f through the properties of a �xed estimator determined by concrete g�. For this

reason we treat � in (F) as the e�ective smoothness of the representer f .

The next theorem establishes an upper bound on the risk of the estimate

l̂+(x) = l̂"�̂+;s(x).

Theorem 3.1 Let Assumptions (A) and (F) hold, and (9) be ful�lled with some

� 2 �� and N � �N , where �N is known. Let " be small enough such that for some

constant C1 = C1(�; a; s; d;D; q)

"
p
ln "�1 � C1minfM;M�

a��

�+� g: (21)

Assume also that

� 2 (��; 2s+ a]: (22)

Then there exists a constant C2 = C2(a; s; �; �; d;D; �N) such that for the estimate

l̂+(x) associated with { = C2

p
ln "�1 and s � maxf0;��g one has

R[l̂+;W�(M)] � C3

h
M

a��

�+a ("2 ln "�1)
�+�

�+a +m"2(ln "�1)3=2
i
; (23)

where C3 = C3(a; s; q; �; N; d;D; c�).

Proof is given in Section 5.

Note that C2 depends only on known parameters of the problem so that the choice

of { can be implemented. If we knew in advance parameters �, M of the solution

set W�(M) and the smoothness index � of the representer f we could achieve the

minimax rate of convergence given in (15). Thus accuracy of our adaptive estimator

coincides within a logarithmic in "�1 factor with the minimax rate of convergence.

We stress, however, that the upper bound (23) holds simultaneously over a wide

collections W and F of solution sets W�(M) and representer sets W�(N). Both

W and F are de�ned by the conditions of the theorem. In particular, W is the

family of balls W�(M) with parameters � and M satisfying (21) and (22), while

F is the family of sets W�(N) with � 2 �� and N � �N satisfying (22), (20), and

s � maxf0;��g. One can argue also that in many important cases the estimate

l̂+(x) has the best possible adaptive properties; for discussion of this issue we refer

to G&P (2000). In Theorem 3.1 we assumed that the discrete set �� is such that

Æ is �xed and positive. It can be seen from the proof that this assumption may be

relaxed. In particular, one can assume that Æ tends slowly to zero as "! 0. In this

case the only important requirement is that the true smoothness index � belongs

to the set �� for every ". The statement of Theorem 3.1 remains valid under these

circumstances.
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3.2 Density model

In this subsection we establish an upper bound on estimation accuracy of the esti-

mator l̂+(x) for the density observation model. Here the noisy data are represented

by y", a random element of Y de�ned in (4). Consider i.i.d. Y-valued random el-

ements �i = ŷi � y, i = 1; : : : ; n, and let P� denote the probability distribution of

� (we write � for a generic random element in Y with the same distribution as �i).

The following conditions on P� will be used in the sequel.

(P1) P� is a Radon probability measure on Y which has the strong second order,

i.e. Ek�k2 =
R k�k2P�(d�) <1. In addition, the mean value of the probability

measure P� is equal to 0, i.e.

E h�; �i =
Z
h�; �iP�(d�) = 0; 8� 2 Y: (24)

The covariance operator K� : Y ! Y of P� is de�ned by the relation

hK��1; �2i =
Z
h�; �1ih�; �2iP�(d�); �1; �2 2 Y:

It is well known that K� is a self�adjoint positive operator with the �nite trace

tr(K�) =
R k�k2P�(d�) < 1 [e.g., Vakhania et. al (1986, p. 177)]. We require a

slightly stronger condition on K�.

(P2) The covariance operator K� is strictly positive and

0 < � = inf
�2Y

hK��; �i
h�; �i � sup

�2Y

hK��; �i
h�; �i = � <1 (25)

for some absolute constants � and �.

The next assumptions require existence of the exponential moment and some regu-

larity of P� near zero.

(P3) There exist positive constants b1 and H1 such that

Eetk�k =

Z
etk�kP�(d�) � b1 <1; for jtj � H1:

(P4) There exist positive constants b2 and H2 such that

Pfk�k � tg � b2t; 0 � t � H2: (26)

We note that (P4) is only one of possible conditions on regularity of the distribution

of k�k near zero. In fact, the distribution of k�k should not have an atom at zero; for

example, any polynomial decrease of Pfk�k � tg as t ! 0 will be appropriate. We

10



have intentionally considered (26) in order to avoid additional technicalities and to

give a uni�ed proof of main results for both the white noise and density observation

models.

We formulate an analog of Theorem 3.1 for the density observation model under

assumptions (P1)-(P4). The constants appearing in the below theorem, unless it is

said explicitly, may depend on a, s, d, D, q, c� and on all parameters involved in

Assumptions (P1)-(P4).

Theorem 3.2 Let Assumptions (A), (F) and (P1)-(P4) hold. Assume that (9) is

ful�lled with some � 2 �� and N � �N , where �N is known. Let n be large enough

such that for some constant C1r
lnn

n
� C1maxf1;M;M�

a��

�+� g;
Assume also that (22) is satis�ed. Then there exists a constant C2 depending on a,

s, �, �, �N , d, D, and � such that for the estimate l̂+(x) associated with { = C2

p
lnn

and s � maxf0;��g one has

R[l̂+;W�(M)] � C3

h
M

a��

�+a

� lnn
n

��+�

�+a

+
m

n
(lnn)3=2

i
:

Thus the theorem shows that, similarly to the white noise model, the proposed

estimator adapts automatically to unknown smoothness of x and f . Observe also

that the constant C2 is de�ned in terms of known parameters of the problem only.

Therefore the choice of { can be implemented.

Remark Inspection of the proofs of Section 5 reveals that Theorems 3.1 and 3.2

also hold under relaxed Assumption (F). For example, the right hand side of (20)

may have the order �(��a+Æ=2)=(2(a+s)). In this case the estimator should be modi�ed:

one should put in (16) 2p instead of p.

4 Deconvolving bivariate densities with singular sup-

port

To illustrate general results of Section 3 we consider the problem of estimating a

bivariate density with singular support from indirect observations on the plane. The

context is that of Example 1.

Let 	z(u) = E expf{z0ug and 	w(u) = E expf{w0ug be the characteristic functions

of random variables z = �(') expf{'g and w. Here z; w 2 R
2 = C , and 0 denotes

transpose. For u = t expfi�g write 	z(u) = 	z(t; �) and 	w(u) = 	w(t; �). For any

u 2 R
2 we have

~y(u) = ~y(t; �) := 	�1
w (t; �)	z(t; �)

= E expf{�(')t cos('� �)g =

Z 2�

0

expf{�(')r cos('� �)gx(')d' :

11



Integrating the both sides of the last equality over � 2 [0; 2�] we obtain

y(t) :=
1

2�

Z 2�

0

~y(t; �)d� =

Z 2�

0

J0(t�('))x(')d' ; (27)

where J0(�) is the Bessel function of the zero order. If �(') 6= const, the integral

on the right hand side of (27) can be considered as an integral operator acting from

L2(0; 2�) to L2(0; %) for some % > 0.

The function y(�) on the left hand side of (27) can be estimated from the observations

Yj, j = 1; : : : ; n, given by (5). By de�nition

~y(u) = ~y(t; �) = E

h
expf�2juj2=2g expf{Y 0

jug
i

= expf�2t2=2gE
h
expf{tjYjj cos(arg(Yj)� �)g

i
;

and therefore, y(t) = expf�2t2=2gE [J0(tjYjj)]. Now setting for j = 1; : : : ; n

ŷj(t) = expf�2t2=2gJ0(tjYjj); t 2 [0; %]

we have E ŷj = y and Ekŷjk2 � % expf�2%2g < 1, where k � k denotes the norm in

L2(0; %). In addition, for y" = n�1
Pn

j=1 ŷj

Eky" � yk2 � 4% expf�2%2gn�1

because jJ0(t)j � 1, 8t. Thus we are in the framework of the density observa-

tion model, and our goal is to apply general results of Section 3 to this particular

estimation problem.

First, we verify Assumptions (P1)-(P4) for our problem. Assumption (P1) is trivially

ful�lled, and Assumption (P3) holds because

k�jk2 = kyj � yk2

=

Z %

0

expf�2t2g
h
J0(tjYjj)� EJ0(tjYjj)

i2
dt (28)

� 4% expf�2%2g <1:

In order to check Assumption (P4) we observe that the integrand in (28) is a bounded

continuous and positive function of t. Therefore, it is su�cient to verify the condition

(26) for the random variable jJ0(k�jY j)j, where k� 2 [0; �] is a constant. Because

jJ0(k�jY j)j is a smooth function of jY j with uniformly bounded �rst derivative,

Assumption (P4) will follow if the distribution of jY j has the property (26). But this
is an immediate consequence of the fact that Y has a bounded in�nitely di�erentiable

density function on the plane. As for Assumption (P2), the upper bound in (25)

follows immediately from boundedness of the random variable k�k. The lower bound,
however, should be checked for each concrete contour.

Clearly, one cannot expect that for a given contour the operator A from (6) will

satisfy (8) with some standard Hilbert scale as, e.g., the Sobolev one. Therefore

12



it is reasonable to embed the problem into the natural Hilbert scale generated by

operator L = (A�A)�1. Of course, smoothness of the representer f of the functional

lf(x) = x('0), that we are interested in, and smoothness of the solution x relative to

such a scale are generally unknown. Note, however, that (8) is satis�ed automatically

with a = 1=2; d = D = 1. Thus we can apply our adaptive estimator from Section 3.

Observe that for in�nitely di�erentiable �(�) the natural Hilbert scale corresponding
to the operator A in (27) de�nes sets of in�nitely di�erentiable functions. For such

a scale the representer f of the linear functional x('0) belongs to a ballW�(N) with

negative � that is close to zero. This follows from the fact that even for small positive

� the ball W�(M) contains continuous functionals. In this case it is reasonable to

consider the regularized estimator (10) associated with s = 0. The reasonable choice

of g� is g�(�) = (� + �)�1 that corresponds to Tikhonov-Phillips regularization

method. With such a choice the regularized estimator l̂� of lf(x) = x('0) is de�ned

as l̂�(x) = x�('0), where x�(') is the solution of the Fredholm integral equation of

the second kind

�x�(') +

2�Z
0

a(';  )x�( )d = gn('); ' 2 [0; 2�];

where

a(';  ) =

�Z
0

J0(t�('))J0(t�( ))dt; gn(') =
1

n

nX
j=1

�Z
0

J0(t�(')) ŷj(t)dt:

Then the next statement is an immediate consequence of Theorem 3.2.

Theorem 4.1 Let the lower bound of (25) hold true for the covariance operator

K� of �i = ŷi � y, i = 1; 2; :::; n. Assume that the e�ective smoothness � of the

representer of functional lf(x) = x('0) relative to the natural Hilbert scale belongs

to the set ��, � = 0, and � 2 (��; 1=2]. Then for su�ciently large n there exists a

constant C1 depending on �, '0 and � such that for �̂+ de�ned by (17), (19) with

{ = C1

p
lnn one has

E jx('0)� x�̂+('0)j2 � C2

�
kxk

1�2�
2�+1
�

�
lnn

n

� 2(�+�)

2�+1

+
m

n
(lnn)3=2

�
:

5 Proofs

In this section we prove the main results of the paper, Theorems 3.1 and 3.2. The

following notation is used in the proofs both for the white noise and the density

observation models.

Denote B�(x) = c1kxk�kfk��(�+�)=(2(a+s)), and c1 is the constant appearing on the

right hand side of (12). De�ne

�� = maxf� 2 �� : B�(x) � {"r�(�)g:

13



In fact, �� is the ideal regularization parameter that balances the squared bias and

variance. Consider the event


{ := f! 2 
 : max
�2��

[r�1� (�)jv�;s(f; �)j] � {g: (29)

The event 
{ corresponds to the 'typical' behavior of the stochastic term v�;s(f; �).

Also, for notational convenience, we denote t := minfj 2 f0; : : : ; mg : �j > �g, i.e.
� = �t�1 for some t 2 f1; : : : ; mg.
In the proofs below c1; c2; : : : and k1; k2; : : : stand for constants depending on pa-

rameters of the problem. They may be di�erent on di�erent occasions.

5.1 White noise model

The goal of this subsection is to prove Theorem 3.1. First, we establish some auxil-

iary lemmas.

The next statement shows that conditionally on 
{ the regularization parameter �̂t
given by the adaptive scheme is typically 'small'. Recall that �̂t corresponds to the

threshold with �t > � = �t�1; here � is the e�ective smoothness of f .

Lemma 5.1 Let Assumption (F) hold and �� � �(a��t)=(a��). Then for every � 2
�� satisfying

� � �
a��t

a�� (30)

one has

Pf�̂t � � j
{g � k1{�
�t��

2(a+s) ; (31)

where k1 = k1(c�) depends only on c� from (20).

Proof We prove the lemma considering the cases � � �� and � > �� separately.

10. Assume that � � ��. We have

Pf�̂t � � j
{g � Pfjl̂� � l̂�j � 2{"[r�t(�) + r�t(�)] j
{g
= 1� Pfjl̂� � l̂�j > 2{"[r�t(�) + r�t(�)] j
{g: (32)

On the set 
{

jl̂� � l̂�j � jl̂� � lj � jl̂� � lj
� "jv�;s(f; �)j �B�(x)� 2{"r�(�)

� "jv�;s(f; �)j � 3{"r�(�):

Here we have used the fact that jl̂� � lj � 2{"r�(�) on the set 
{, and B�(x) �
B�(x) � {"r�(�) because � � ��. Thus we have

Pfjl̂� � l̂�j > 2{"[r�t(�) + r�t(�)] j
{g �
Pf"jv�;s(f; �)j > {"[2r�t(�) + 2r�t(�) + 3r�(�)] j
{g �

Pf"jv�;s(f; �)j > {"[4r�t(�) + 3r�(�)] j
{g:
(33)
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By (30), r�t(�) dominates r�(�): r�(�) � r�t(�). Therefore the last probability in

(33) is bounded from below by

Pfjv�;s(f; �)j > 7{r�t(�) j
{g = 1� Pfjv�;s(f; �)j � 7{r�t(�) j
{g
= 1� PfjN (0; 1)j � 7{[Ev2�;s(f; �)]

�1=2r�t(�) j
{g
� 1� 14{p

2�
[Ev2�;s(f; �)]

�1=2r�t(�)

� 1� k1{�
�t��

2(a+s) (34)

where N (0; 1) denotes the standard Gaussian random variable, and by (20) the

constant k1 depends on c� only. Combining (34) and (33) with (32) we obtain (31)

under assumption that � � ��.

20. Now consider the case where � > ��. Here, by de�nition of �̂t,

Pf�̂t � � j
{g � Pfjl̂�
�

� l̂�j � 2{"[r�t(��) + r�t(�) j
{g:

The further proof goes along the same lines as in the previous case with � replaced

by ��.

An immediate consequence of (18) and Lemma 5.1 is that the same bound holds for

all estimates �̂j associated with �j > �; namely, under conditions (30) we have

Pf�̂j � � j
{g � k1{�
�t��

2(a+s) ; 8j � t = minfj : �j > �g: (35)

Thus Lemma 5.1 shows that if we misspecify � in the threshold of the procedure

(17) by choosing the value greater than �, the scheme will yield a regularization

parameter which with 'large' probability less than �(�t��)=(a��).

The above considerations motivated our rule (19). We show that under some natural

conditions on � , the quantity j+ determined there detects the 'right' value of � with

'large' probability conditionally on 
{.

Lemma 5.2 Let �(a��t)=(a��) � � � �� and (20) hold. If the event 
{ holds then

j+ � t� 1. In addition,

P(j+ = t� 1 j
{) � 1� k1{�
�t��

2(a+s) ; (36)

where k1 is de�ned in Lemma 5.1.

Proof The �rst statement follows immediately from (18) and the standard proper-

ties of the Lepski adaptation scheme. Indeed, if we put the 'right' value of � = �t�1
in the threshold on the right hand side of (17), then on the set 
{ the result-

ing regularization parameter �̂t�1 will be greater than �� by construction [see,

e.g., G&P (2000)]. In view of � � �� and monotonicity of f�̂jg, on the set 
{,

J� � f0; 1; : : : ; t� 1g. Hence j+ � t� 1 as claimed.
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To prove (36) we note that the event fj+ � tg means that there exists an estimate

�̂j associated with �j > � such that �̂j � � . But by Lemma 5.1 [see also (35)] for

j � t

Pf�̂j � � j
{g � k1{�
�t��

2(a+s) :

This completes the proof.

Proof of Theorem 3.1

Write

E jl̂+ � lj2 = I1 + I2 := E [jl̂+ � lj21(
{)] + E [jl̂+ � lj21(�
{)];
where l = lf(x) = hf; xi. We bound I1 and I2 separately.

10. It follows immediately from (12) and (9) that

{"r�(q��) < Bq�
�

(x) � c1Mkfk�(q��)
�+�

2(a+s)

and

�� � q�1[(c1Mkfk�)�1{"]
2(a+s)

�+a � [k2M
�1
{"]

2(a+s)

�+a (37)

for some constant k2 = k2(a; s; �; d; N;D; q). Note that (21) ensures that �� 2 [�; �]

for small enough ". Further, for our choice of � = "2(a+s)=(a��) and � given by (16)

we have � � �(a��t)=(a��). In order to show this it is su�cient to verify that

p
�a� �t

a� �

�
� 2(a+ s)

a� �
:

This follows because

2

Æ
(a� �)

�a� �t

a� �

�
� 2

Æ
(a� �t) � 2 :

Thus, Lemma 5.2 is applicable with our choice of � and �.

20. First we bound I1. Let the event 
{ hold; then, by Lemma 5.2, j+ � t� 1,

i.e. 
{ � fj+ � t � 1g. Consider the events Bj = fj+ = jg, j = t � 1; t; : : : ; m.

Lemma 5.2 implies

P(Bt�1 j
{) � 1� k1{�
�t��

2(a+s) and

P(Bj j
{) � k1{�
�t��

2(a+s) 8j = t; : : : ; m; (38)

with k1 = k1(c�) [see Lemma 5.1]. Write

I1 =

mX
j=t�1

E [jl̂+ � lj21(
{ \ Bj)]:

On the set 
{ \Bt�1 we have �̂+ = �̂t�1, and the adaptive procedure runs with the

'right' value of � = �t�1. In this case �̂+ = �t�1 � ��. The standard calculations

[see G&P (2000, p. 178)] yield jl̂�̂+ � lj � 6{"r�(��) showing that

E [jl̂+ � lj21(
{ \Bt�1)] � [6{"r�(��)]
2 :
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Now assume that the event 
{ \Bj holds for j � t. This means that the algorithm

chooses �̂+ = �̂j � � corresponding to some �j > �. In this case

jl̂�̂+ � lj = jl̂�̂j � lj � jl̂�̂j � l̂� j+ jl̂� � lj
� 4{"r�j(�) +B� (x) + "jv�;s(f; �)j
� 4{"r�j(�) + 2{"r�(�) � 6{"r�(�): (39)

Here we have taken into account that:

(i) �̂+ = �̂j � � by construction. Hence the distance between l̂�̂+ and l̂� can be

bounded in terms of the threshold corresponding to � = �j;

(ii) � � �� by the premise of the theorem. Therefore on the set 
{\Bj the typical

value of the stochastic error dominates the bias;

(iii) r�(�) decreases when � grows and � is �xed, i.e. r�j(�) � r�(�).

It follows from (38) and (39) that for any j � t

E [jl̂+ � lj21(
{ \Bj)] � [6{"r�(�)]
2
P(
{ \ Bj)

� [6{"r�(�)]
2k1{�

�t��

2(a+s) :

Thus we have the following bound on I1:

I1 = E [jl̂+ � lj21(
{)] � k1m{�
�t��

2(a+s) [6{"r�(�)]
2 + [6{"r�(��)]

2 :

Using (16) we obtain

�
�t��

2(a+s) [r�(�)]
2 � "

2(���)

a�� � 1

so that

I1 � [6{"r�(��)]
2 + k1m{

3"2;

and substituting the expression for �� [see (37)] we �nally obtain

I1 � k3

h
M

a��

�+a ("2 ln "�1)
�+�

�+a +m"2(ln "�1)3=2
i
;

where k3 = k3(a; s; q; �; N; d;D; c�).

30. Now we consider the case where the event �
{ holds. Here our algorithm will

choose a value that is not less than � . The further proof coincides with the proof

given in G&P (2000) with evident modi�cations (� in the paper should be replaced

by �). We emphasize only that in this case { is chosen as k4
p
ln "�1, where k4

depends on a, s, �, �, d, D and �N .
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5.2 Density model

Basically, the proof of Theorem 3.2 goes along the same lines as the proof of The-

orem 3.1. The main di�erence is that the stochastic term v�;s(f; �) for the density

observation model is non�Gaussian. Nevertheless, Assumptions (P1)-(P4) allow to

establish similar results. Below we indicate how the arguments in the proof of The-

orem 3.1 should be modi�ed in order to prove Theorem 3.2.

Recall that the estimate l̂�;s(x) associated with the regularization parameter � is

de�ned by (10), and

lf(x)� l̂�;s(x) = b�;s(f; x) + n�1=2v�;s(f; �)

where � = n�1=2
Pn

i=1 �i = n�1=2
Pn

i=1(ŷi � y).

First, we establish an analog of Lemma 2.2 for the density observations model.

Lemma 5.3 Let Assumptions (A), (P1) and (P2) hold. Assume that f 2 W�(N)

with � < a, and s � maxf0;��g. Then
Ev2�;s(f; �) � k4�

��a

a+s ; (40)

where k4 = k4(�; �; a; s; N). In addition, if Assumption (F) holds then there exists

a constant k5 = k5(�; �; a; s; c�) such that

Ev2�;s(f; �) � k5�
��a

a+s :

Proof Denote for brevity �� := Q�f , where Q� = AL�sg� (L
�sA�AL�s)L�s. By

(24) and independence of �i, i = 1; : : : ; n we have

Ev2�;s(f; �) = E

��� 1p
n

nX
i=1

h�i; ��i
���2 = E jh�i ; ��ij2 = hK���; ��i:

Then Assumption (P2) implies that

�k��k2 � Ev2�;s(f; �) � �k��k2 :
The upper bound (40) follows from the same considerations as in Lemma 2.2. The

lower bound is a consequence of (20).

Recall that for a �xed { � 1 the event 
{ is de�ned by (29). The proof of Theo-

rem 3.1 is essentially based on the fact that the constant { can be chosen in such a

way that the event 
{ is of 'large' probability. This is easily proved for the white

noise model because v�;s(f; �) is a Gaussian normal variable. Now we establish a

similar exponential inequality for the density observation model.

Lemma 5.4 Let Assumptions (P1)-(P3) and (F) hold. Assume that { � k6
p
n for

some constant k6 = k6(�; �; a; s; N; b1; H1). Then

P(�
{) � 2S� exp
n
� {

2

2k7

o
;

where S� = card(��), and k7 = k7(�; �; a; s; N).

18



Proof Write

~v�;s(f; �) = r�1� (�)v�;s(f; �) =
1p
n

nX
i=1

h�i; r�1� (�)��i;

where �� is as in the proof of Lemma 5.3. Note that the random variables

h�i; r�1� (�)��i have zero mean. In view of Assumption (P3)

E expfth�; r�1� (�)��ig � E expftr�1� (�)k�k k��kg � b1 <1
for 0 � t � H1c

�1
�
, where c� is the constant appearing on the right hand side of

(20); c� provides a lower bound on k��k. Thus, for �xed ��, the random variable

h�; r�1� (�)��i has the moments of all orders and the following relation holds

log[E expfth�; r�1� (�)��ig] = 1

2
t2r�2� (�)E jh�; ��ij2 + o(t2); as t! 0:

Taking into account (40) we obtain that for any constant k7 � k4=2 the inequality

log[E expfth�; r�1� (�)��ig] � 1

2
k7t

2

holds for su�ciently small t. In other words, there exist positive constants k7 =

k7(�; �; a; s; N) and ~H1 such that

E expfth�; r�1� (�)��ig � expfk7t2=2g; for 0 � t � ~H1:

Then Theorem 2.6 from Petrov (1995) implies that

Pf~v�;s(f; �) � {g = P

n nX
i=1

h�i; r�1� (�)��i �
p
n{
o
� exp

n
� {

2

2k7

o

for 0 � { � k7 ~H1

p
n. Similarly the bound on Pf~v�;s(f; �) � �{g is derived so that

Pfj~v�;s(f; �)j � {g � 2 exp
n
� {

2

2k7

o
; 0 � { � k7 ~H1

p
n:

The statement of the lemma is an immediate consequence of these results.

Proof of Theorem 3.2

The proof goes along the same lines as the proof of Theorem 3.1. Below we indicate

only di�erences.

First, we note that, under Assumptions (P1)-(P4) and (F), Lemma 5.1 remains

valid. The di�erence only is that now k1 = k1(c�; b2), and the bound (31) holds

provided n is greater than some constant depending on �, �, a, s, H2 only. Here in

order to prove (34) we use Assumption (P4). Then Lemma 5.2 follows with evident

modi�cations.

The proof of Theorem 3.2 on the set 
{ coincides with the proof of Theorem 3.1. To

bound the error on the complimentary event �
{ we use the exponential inequality

of Lemma 5.4. Other details of the proof remain unchanged.
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