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Abstract

The paper deals with calmness of a class of multifunctions in �nite dimen-

sions. Its �rst part is devoted to various calmness criteria which are derived in

terms of coderivatives and subdi�erentials. The second part demonstrates the

importance of calmness in several areas of nonsmoooth analysis. In particular,

we focus on nonsmooth calculus and solution stability in mathematical pro-

gramming and in equilibrium problems. The derived conditions �nd a number

of applications there.

1 Introduction

The concept of calmness plays a key role in the analysis of Lipschitz properties

for multifunctions. It is closely related with issues from optimization theory like

nondegenerate multiplier rules (e.g. [9],[2], [4]) or sensitivity analysis of general-

ized equations (e.g. [12], [16]). The aim of this paper is to provide subdi�erential

conditions for ensuring calmness of constraint systems in �nite dimensions and to

consider calmness in the context of di�erent applications like nonsmooth calculus or

solutions to parametric optimization or equilibrium problems.

We start by recalling some of the prominent Lipschitz properties formulated for

multifunctions. Let M : Y � X be a multifunction between metric spaces. M is

said to have the Aubin property at some (�y; �x) 2 GphM (graph ofM), if there exist

neighborhoods V and U of �y and �x as well as some L > 0 such that

d(x;M(y2)) � Ld(y1; y2) 8y1; y2 2 V 8x 2 M(y1) \ U :

M having the Aubin property at (�y; �x) is well-known to be equivalent with its inverse

M�1 being metrically regular at (�x; �y) (e.g. [24], Theorem 9.43). Fixing one of the

y-parameters as �y in the de�nition of the Aubin property, yields the calmness of M

at (�y; �x):

d(x;M(�y)) � Ld(y; �y) 8y 2 V 8x 2M(y) \ U :

Obviously, the Aubin property implies calmness whereas the converse is not true (e.g.

M(y) = fxjx2 � yg at (0; 0)). If one may choose U = X in this last de�nition, then

calmness becomes the slightly stronger local upper Lipschitz property introduced in

[22].

A restricted version of calmness, namely calmness on selections has been studied in

the context of sensitivity analysis for generalized equations ([12],[14],[5]). Here it is

required that U \M(�y) = f�xg in the general de�nition of calmness, i.e., �x is isolated
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in M(�y). Such assumption is relevant, for instance, when analyzing solutions to

nonlinear optimization problems. Moreover, one may even further restrict calmness

by combining it with local uniqueness of M at (�y; �x). Then, locally around (�y; �x),

M is just a usual function satisfying the condition

d(M(y);M(�y)) � Ld(y; �y):

This situation was studied, for instance, in [15].

For the purpose of verifying Lipschitz properties of multifunctions, it is useful to

dispose of suitable criteria from nonsmooth calculus. Such criteria have proven to

be particularly e�cient in �nite dimensions. For instance, X and Y being �nite-

dimensional, the Aubin property of a closed graph multifunctionM is equivalent to

the condition (see [19])

D�M(�y; �x)(0) = f0g: (1)

Here, 'D�' refers to Mordukhovich's co-derivative (see Section 2). This is a dual

criterion by relying on a normal cone construction to the graph of M . Similarly, an

equivalent primal criterion can be formulated in terms of the contingent derivative

'D' based on the contingent cone to GphM (see [1] (Theorem 4, p.431) for the

su�ciency in arbitrary Banach spaces and [6] (Corollary 1.19) for necessity in case

of �nite-dimensional X):

9 � > 0; � > 0 : B(0; 1) � [DM(y; x)]�1(B(0; �)) 8(y; x) 2 GphM \B((�y; �x); �):

Here, B(z; r) refers to the closed ball around z with radius r. As far as corresponding

criteria for calmness are concerned, the following primal condition was found to be

su�cient in [12] (Prop. 2.1) and necessary in [14] (Prop. 4.1) for calmness on

selections in �nite dimensions:

DM(�y; �x)(0) = f0g: (2)

Note that this condition immediately enforces isolatedness of �x in M(�y) because a

sequence xn ! �x; xn 2 M(�y); xn 6= �x would generate a nontrivial tangent vector

(0; �) to GphM at (�y; �x), whence a contradiction 0 6= � 2 DM(�y; �x)(0) to the above

condition.

Calmness in the broader sense introduced above is closely related to the regularity

concept of Io�e studied in [9], [10] even in a Banach space setting. In fact, in [10] a

su�cient condition for calmness has been derived for multifunctions of the type

M(y) = fx 2 Cjg(x) = yg; (3)

in terms of Clarke's subdi�erentials. Another su�cient condition for calmness in

the broader sense was given in [7] for multifunctions of the type

M(y) = fx 2 Cjg(x) + y 2 Dg; (4)
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where g : Rk ! R
m is locally Lipschitzian and C � R

k ; D � R
m are closed. It was

shown there, that under mild assumptions calmness ofM is implied by the condition[
y�2ND(g(�x))nf0g

D�g(�x)(y�) \ (�bdNC(�x)) = ;; (5)

where 'bd' refers to the topological boundary. Recalling the criterion (1) for the

Aubin property, it reduces in the special setting of (4) to the su�cient condition[
y�2ND(g(�x))nf0g

D�g(�x)(y�) \ (�NC(�x)) = ;: (6)

In other words: the reduction from the stronger Aubin to the weaker calmness

property in (4) is re�ected by a transition from a normal cone to its boundary in

the criteria (5) and (6), respectively. Under some additional regularity assumptions,

one may even pass to the boundary in the left part in (6). In [8] attempts were made

to extend these ideas to the in�nite-dimensional case, but it seems to be di�cult

to pass beyond convex or di�erentiable structures in this framework. For instance,

if f is a locally Lipschitzian function, regular in the sense of Clarke and satisfying

f(0) = 0, then the condition 0 =2 bd @f(0) guarantees calmness of the parametric

inequality f(x) � y at (0; 0) as long as f is de�ned on a �nite dimensional space

([7], Theorem 4.2) or f is convex on a Banach space ([8], Corollary 3.4). In contrast,

one may construct a locally Lipschitzian f de�ned on the sequence space l1which

is Clarke regular and non-convex such that the mentioned condition is satis�ed but

calmness fails to hold.

The paper is organized as follows: �rst, subdi�erential criteria for calmness in �-

nite dimensions are developed which extend those given in [7]. In particular, the

multifunction M in (4) gets the more general form M(y) = S(y) \ C with a purely

parametric contribution by S and a nonparametric contribution by C. In a second

part, calmness (as a condition by itself or implied by the previously derived subdif-

ferential criteria) is studied in several applications like nonsmooth calculus, stability

of solutions to nonsmooth optimization problems and equilibrium problems.

2 Notation and basic concepts

In the following, we denote by '@f(x)' and 'NC(x)', respectively, the subdi�erential

of a function f at some x and the normal cone to some closed set C at some x 2 C,

both in the sense of Mordukhovich. In contrast, 'TC(x)' refers to the contingent

cone. Note that if f is regular in the sense of Clarke, then @f(x) coincides with

Clarke's subdi�erential. Similarly, if C is a regular set at x, then TC(x) and NC(x)

coincide with Clarke's tangent and normal cone, respectively. In that case it also

holds true that each one of these cones is the (negative) polar cone of the other. With

a multifunction Z : Rp � R
k and some (�u; �v) 2 GphZ we associate Mordukhovich's

coderivative D�Z(�u; �v) : Rk � R
p de�ned by

D�Z(�u; �v)(v�) = fu� 2 R
p
j(u�;�v�) 2 NGphZ(�u; �v)g:
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If Z is single-valued, we simply write D�Z(�u) instead of D�Z(�u; Z(�u)). For single-

valued, locally Lipschitzian mappings Z it holds that

D�Z(�u)(v�) = @ hv�; Zi (�u):

For a detailed presentation of these concepts we refer to [18], [20], [24] and [4].

By 'B(x; r)', 'B ' and 'S' we shall denote a closed ball centered at x with radius r, the

closed unit ball and the unit sphere in corresponding spaces. By d(x; C) we denote

the point-to-set distance between x and C induced by a corresponding norm on R
n ,

whereas de
C
(x) represents the particular case of Euclidean distance function.

A basic concept which we shall use in the derivation of subdi�erential criteria for

calmness is semismoothness as introduced in [17].

De�nition 2.1 A function  : Rk ! R is called semismooth at �x 2 R
k if it is

locally Lipschitz around �x and the following property holds true: for each d 2 R
k

and for any sequences tn # 0; dn ! d; x�
n
2 @ (�x + tndn), the limit lim

n!1

hx�
n
; di

exists.

It has to be noted that in the original de�nition of [17], the corresponding property

was required for Clarke's subdi�erential of  . However, exploiting the well-known

fact that Clarke's subdi�erential is the closed convex hull of Mordukhovich's one,

it easily follows that both de�nitions of semismoothness are equivalent. As a con-

sequence of the de�nition, a semismooth function  has a conventional directional

derivative  0(�x; h) in �x in direction d which coincides with the common limit in

De�nition 2.1.

Similar to Clarke regularity, semismoothness of functions can be carried over to sets.

De�nition 2.2 A set A � R
k is called semismooth at �x 2 clA if for any sequence

xn ! �x with xn 2 A and kxn � �xk
�1

(xn � �x) ! d it holds that hx�
n
; di ! 0 for all

selections of subgradients x�
n
2 @de

A
(xn).

If A is closed and de
A
is semismooth in the sense of De�nition 2.1, then A is semis-

mooth in the sense of De�nition 2.2 (see [7], Proposition 2.4).

3 Subdi�erential characterization of calmness

We start with an auxiliary result which is crucial for passing to the boundary of the

normal cone in (5) and in the corresponding generalization we have in mind.

Proposition 3.1 Let C � R
k be regular (in the sense of Clarke) and semismooth at

�x 2 C. Consider a sequence xn ! �x such that xn 2 C and kxn��xk
�1

(xn��x) ! h

with khk = 1. Then each accumulation point x� of a sequence x�
n
2 @de

C
(xn) belongs

to bdNC(�x).
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Proof. By virtue of the semismoothness of C at �x one has hx�; hi = 0. From

@de
C
(xn) � NC(xn) and from closedness of the mapping NC(�), it follows that x

� 2

NC(�x). By construction, h 2 TC(�x), hence regularity of C at �x implies that hy�; hi �

0 for all y� 2 NC(�x). For arbitrary " > 0, one has hx� + "h; hi = " > 0, whence

x� + "h =2 NC(�x). Along with x
� 2 NC(�x) this means that x

� 2 bdNC(�x).

Consider now a multifunction M : Rp � R
k de�ned as the intersection M(y) =

S(y) \ C, where S : Rp � R
k is a multifunction with closed graph and C � R

k is

closed. As a consequence, M has closed graph as well. The following theorem is the

main result of this section:

Theorem 3.2 Consider some (�y; �x) 2 GphM . Assume that C is regular and semis-

mooth at �x. If for all y� 2 R
p it holds that

D�S�1(�x; �y)(y�) \ �bdNC(�x) =

�
; or

f0g if y� = 0
; (7)

then M is calm at (�y; �x). (Note that the case D�S�1(�x; �y)(0) \ �bdNC(�x) = ; is

formally included in (7)).

Proof. Assume by contradiction that M is not calm at (�y; �x). By de�nition, there

exist sequences xn ! �x, yn ! �y, xn 2 M(yn) such that d(xn;M(�y)) > nkyn � �yk.

Now, put h(y; x) := ky��yk so that each pair (yn; xn) is an "-minimizer of h(y; x) over

GphM with " = kyn � �yk. The application of the Ekeland's variational principle

with " and � := n" to the minimization of h over GphM yields for each n the

existence of a pair (~yn; ~xn) 2 GphM such that for all (y; x) 2 GphM

k(~yn; ~xn)� (yn; xn)k � nkyn � �yk (8)

k~yn � �yk � ky � �yk+ n�1k(y; x)� (~yn; ~xn)k (9)

>From (8) we infer that

k(~yn; ~xn)�(�y; �x)k � nkyn��yk+k(yn; xn)�(�y; �x)k < d(xn;M(�y))+k(yn; xn)�(�y; �x)k

so that (~yn; ~xn) ! (�y; �x). Furthermore, ~yn 6= �y and ~xn 6= �x, because otherwise ~xn
2M(�y) whence the contradiction

nkyn � �yk < d(xn;M(�y)) � kxn � ~xnk � nkyn � �yk

using (8). Now, (9) means that (~yn; ~xn) is a (global) solution of the problem

minfky � �yk+ n�1k(y; x)� (~yn; ~xn)k j(y; x) 2 GphMg: (10)

Since GphM = GphS \ (Rp �C), it follows that exactly one of the following cases

occurs (with S denoting the unit sphere):

f0g = NGphS(~yn; ~xn) \ [f0g � (�NC(~xn))] (11)

9 �n 2 S\NGphS(~yn; ~xn) \ [f0g � (�NC(~xn))] : (12)
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At least one of these two cases must apply for in�nitely many n. Suppose �rst that

this is true for (11). Without loss of generality, we assume that (11) is valid for all

n. Then (see [24], Theorem 6.4.2)

NGphM(~yn; ~xn) � NGph S(~yn; ~xn) + [f0g �NC(~xn)] :

Application of the necessary optimality conditions to the solution (~yn; ~xn) of the

constrained problem (10) then yields

0 2 [Sy� f0g] + n�1B +NGph S(~yn; ~xn) + [f0g �NC(~xn)] ;

where Sy refers to the unit sphere in R
p (and occurs due to ~yn 6= �y) and B is the unit

ball in Rp �R
k . Without loss of generality, B is taken with respect to the maximum

norm, hence B = B y � B x . Accordingly, there exist (y�
n
; z�

n
) 2 NGphS(~yn; ~xn) and

x�
n
2 �NC(~xn) such that

0 2 Sy + n�1B y + y�
n

and kx�
n
� z�

n
k � n�1:

By boundedness of y�
n
we may assume that y�

n
! y� 2 Sy.

If fx�
n
g is unbounded, then for x̂�

n
:= kx�

n
k
�1
x�
n
we may assume that x̂�

n
! x� for

some x� 2 Sx. Furthermore, x̂
�

n
2 �NC(~xn) and

de
NGphS(~yn;~xn)

(kx�
n
k
�1
y�
n
; x̂�

n
) � de

NGphS(~yn;~xn)
(y�
n
; x�

n
) � � kx�

n
� z�

n
k � �n�1;

where de denotes the Euclidean distance function and � > 0 is some modulus relating

Euclidean and maximum norm. Since, without loss of generality, kx�
n
k
�1
y�
n
! 0, the

closedness of the coderivative mapping implies that x� 2 D�S�1(�x; �y)(0). On the

other hand, x̂�
n
2 �NC(~xn) \ B x = �@de

C
(~xn) (see [24], Example 8.5.3). Recalling

that ~xn 6= �x and ~xn 2 C, Proposition 3.1 provides that x� 2 �bdNC(�x), whence

the contradiction x� 2 Sx \D
�S�1(�x; �y)(0) \ �bdNC(�x) with (7).

Assuming that fx�
n
g is bounded instead, one has without loss of generality that

x�
n
! x� 2 D�S�1(�x; �y)(y�) \ �NC(�x)

(again by closedness of the coderivative and of the normal cone mapping). Due to

~xn 6= �x we have that TC(�x) 6= f0g, whence NC(�x) 6= R
k and 0 2 �bdNC(�x). Now,

the case x� = 0 leads to an immediate contradiction with (7) due to y� 6= 0. If

x� 6= 0 then put

x̂�
n
:= kx�

n
k
�1
x�
n
! x̂� := kx�k

�1
x�

as before. Invoking Proposition 3.1 in the same way as above, one arrives at x̂� 2

Sx\D
�S�1(�x; �y)(kx�k

�1
y�)\�bdNC(�x) by positive homogeneity of the coderivative

mapping. This again is a contradiction with (7).

Finally, suppose instead that (12) applies for in�nitely many n. Again, we do

not relabel the corresponding subsequence. Then, denoting �n = (�y
n
; �x

n
), we may

assume without loss of generality that �n = (0; �x
n
)! (0; �x), where �x

n
; �x 2 Sx and,

according to (12),

�x
n
2 D�S�1(~xn; ~yn)(0) \ �NC(~xn):
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Consequently, �x
n
2 �@de

C
(~xn) and we may invoke Proposition 3.1 again to obtain

that �x 2 �bdNC(�x). Summarizing, we arrive at the contradiction

�x 2 D�S�1(�x; �y)(0) \ �bdNC(�x)

with (7).

Remark 3.3 The assumptions of (Clarke-) regularity and semismoothness for C

in Theorem 3.2 are completely independent (see Example 3.5 in [7]). Their joint

validity is guaranteed for a su�ciently broad class of closed sets, like convex sets or

sets de�ned by C1-inequalities and satisfying the Mangasarian-Fromovitz Constraint

Quali�cation (cf. Lemma 3.6 in [7]).

Now, we specialize the above theorem to the parametrized constraint system x 2

C; g(x; y) 2 D, where g : Rk�Rp ! R
m is locally Lipschitzian and C � R

k ; D � R
m

are closed. We associate with this system the multifunction M : Rp � R
k de�ned

by

M(y) := fx 2 C j g(x; y) 2 Dg: (13)

Corollary 3.4 In (13), let (�y; �x) 2 GphM and C be regular and semismooth at �x.

Further assume the quali�cation condition

[
y�2ND(g(�x;�y))nf0g

[@hy�; gi(�x; �y)]
x
\ �bdNC(�x) = ;; (14)

where [ ]
x
denotes projection onto the x-component. Then M is calm at (�y; �x).

Proof. The case where 0 =2 bdNC(�x) is trivial, so assume that 0 2 bdNC(�x).

Consider the map S : Rp � R
k de�ned by

S(y) := fx 2 R
k
j g(x; y) 2 Dg:

To compute D�S�1(�x; �y), we invoke a result from [20]. Since 0 2 bdNC(�x), (14)

yields in particular the implication

D�g(�x; �y)(v�) = 0; v� 2 ND(g(�x; �y)) =) v� = 0:

This is, however, the quali�cation condition from [20] (Thm. 6.10) and so one has

for each v� 2 R
p the inclusion

D�S�1(�x; �y)(v�) (15)

� fx� 2 R
k
j (x�;�v�) 2 @hy�; gi(�x; �y); y� 2 ND(g(�x; �y))g

� fx� 2 [@hy�; gi(�x; �y)]
x
j �v� 2 [@hy�; gi(�x; �y)]

y
; y� 2 ND(g(�x; �y))g:

Let us write (14) in the form

[@hy�; gi(�x; �y)]
x
\ �bdNC(�x) 6= ;; y� 2 ND(g(�x; �y)) =) y� = 0: (16)
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By combining (15) and (16) one obtains that

D�S�1(�x; �y)(0) \ �bdNC(�x) = f0g

and

D�S�1(�x; �y)(v�) \ �bdNC(�x) 6= ; =) v� = 0:

These two conditions amount, however, to (7) so that Theorem 3.2 can be applied

to �nish the proof.

The following example illustrates now the application of Theorem 3.2 in the speci�c

situation of Corollary 3.4.

Example 3.5 De�ne M in (13) by C = f(x1; x2)jx2 � jx1jg, D = R� , g(x; y) =

minfx1; x2g � y. Then, all data assumptions of Theorem 3.2 are satis�ed at the

point (�x1; �x2; �y) = (0; 0; 0) 2 GphM and also (7) holds true:

[
y�2ND(g(�x;�y))nf0g

[@hy�; gi(�x; �y)]
x
\ �bdNC(�x) =

[
y�>0

y�@minf�; �g(0; 0) \ bdC =

f(x1; x2)jx1 + x2 > 0; x1 � x2 = 0g \Gph j � j = ;:

Consequently, calmness ofM in (13) can be derived. Note that the stronger criterion

(6) ensuring the Aubin property of M fails to apply here due to

f(x1; x2)jx1 + x2 > 0; x1 � x2 = 0g \ �NC(�x) = f(0; x2)jx2 > 0g 6= ;:

At the same time, the contingent derivative criterion (2) for calmness on selections

does not apply either due toM(0) = f(x1; x2)jx2 � �x1 � 0g not being single-valued.

The following theorem provides a calmness result for the system (4) of functional

constraints with canonical perturbations. In contrast to Theorem 3.2, no regularity

or semismoothness assumption on C will be made. Rather, the regularity assump-

tion is shifted to the perturbed part of constraints.

Theorem 3.6 In (4) let g be Lipschitz near �x 2 M(0) and D be regular at g(�x).

Further assume that the function hy�; gi (�) is regular at �x for all y� 2 @de
D
(g(�x))

and that the quali�cation condition

int
[

y�2ND(g(�x))\B

@hy�; gi (�x) \ � [TC(�x)]
0
6= ; (17)

holds true. Then M is calm at (0; �x).
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Proof. Consider the composite function �(x) = de
D
(g(�x)) which is evidently Lips-

chitz near �x and for which one has �(�x) = 0. From[24] (Th. 10.49) we know that

under our assumptions � is even regular at �x and

@�(�x) =
[

y�2ND(g(�x))\B

@hy�; gi (�x): (18)

>From (17) and (18) we infer the existence of some ~z� 2 � [TC(�x)]
0
and of some � >

0 such that B(~z�; �) � @�(�x). Then, regularity of � at �x implies that h~z� + �p�; hi �

�0(�x; h) for all p� 2 B and all h 2 R
k , where �0(�x; h) refers to the conventional

directional derivative of � taken at �x in direction h. Consequently,

� hp�; hi � �0(�x; h)� h~z�; hi � �0(�x; h) 8p� 2 B 8h 2 TC(�x):

For arbitrary h 2 TC(�x) \ S we put p� := h and derive from the last relation that

�0(�x; h) � � > 0 8h 2 TC(�x) \ S: (19)

Assume that M fails to be calm at (0; �x). Then, as in the proof of Theorem 3.2,

there exist sequences xn ! �x, yn ! 0, xn 2 M(yn) such that d(xn;M(0)) > nkynk:

From here we deduce that xn 6= �x, xn 2 C and kxn � �xk > n(�(xn) � �(�x)) for

all n. This amounts to kxn � �xk�1(�(xn) � �(�x)) < n�1. It su�ces now to pass

to an appropriate subsequence fxn0g such that kxn0 � �xk�1(xn0 � �x) ! h for some

h 2 TC(�x) \ S. Local Lipschitz continuity of � yields that �0(�x; h) = 0, which

contradicts (19) and thus proves the calmness of M at (0; �x).

Remark 3.7 From (19) it immediately follows that (17) implies besides calmness

also the isolatedness of �x in M(0), i.e., U\M(0) = f�xg for some neighbourhood U

of �x.

Example 3.5 shows that the last remark does not apply to the setting of Theorem

3.2 or Corollary 3.4, where no regularity assumptions are made with respect to S or

g.

4 Calmness in applications

4.1 Nonsmooth calculus

As shown e. g. in [2], [4], [25], calmness plays an important role in deriving optimality

conditions and in construction of local Lipschitzian error bounds. It enables, among

others, to replace the constraint system

g(x) 2 D; x 2 C (20)

9



by a more easily tractable constraint

(y; x) 2 GphM;

where M is given by (13), and the new variable y enters the objective via a suitable

penalty term. Clearly, the feasible set given by (20) amounts to M(0). For the

evaluation of the normal cone to M(0) at a given point �x one usually employs var-

ious constraint quali�cations. A prominent place is occupied by the Mangasarian�

Fromovitz Constraint Quali�cation which in case of (20) becomes (6).(6) ensures the

Aubin property of M around (0; �x) and, á fortiori, the inclusion

NM(0)(�x) �
[

y�2ND(g(�x))

D�g(�x) (y�) +NC(�x): (21)

It turns out, however, that calmness of M at (0; �x) also implies (21) and therefore,

at least in some cases, condition (6) can be weakened..

Theorem 4.1 Consider the multifunction M given by (4) and a pair (0; �x) 2

GphM . Assume that g is Lipschitz near �x and that M is calm at (0; �x). Then

inclusion (21) holds true.

Proof. We start with the observation that (see [20], Th. 6.10)

NGphM(0; �x) � f(y�; x�)jy� 2 ND(g(�x)); x
�
2 @hy�; gi (�x) +NC(�x)g: (22)

Let L be the modulus of calmness of M at (0; �x). We claim:

8x� 2 @de
M(0)(�x) 9y

�
2 LB : (y�; x�) 2 NGphM(0; �x): (23)

To see this, note that x� 2 @de
M(0)(�x) means the existence of sequences xn ! �x

(xn 2M(0)), rn # 0, x�
n
! x� and "n # 0 such that

de
M(0)(x)� de

M(0)(�x) � hx�
n
; x� xni � "nkx� xnk 8x 2 B(xn; rn):

Since M is calm at (0; �x), along with L > 0 there exists some r > 0 such that

de
M(0)(x) � Lkyk 8x 2 B(�x; r) \M(y); y 2 B(0; r): (24)

This implies that

Lkyk � hx�
n
; x� xni+ "nkx� xnk � 0 (25)

8(y; x) 2 GphM \ (B(0; r)� B(xn; rn));

for su�ciently large n. The function of (y; x) on the left-hand side of (25) attains a

constrained minimum at (0; xn). According to Prop. 4.3.4 in [4], the function

Lkyk � hx�
n
; x� xni+ "nkx� xnk+KdeGphM(y; x)

10



attains an unconstrained local minimum at (0; xn) for su�ciently large penalty pa-

rameter K. The respective optimality conditions imply existence of some y�
n
2 LB

such that

0 2 f�y�
n
g � (f�x�

n
g+ "nB ) +NGphM(0; xn):

We let now n tend to in�nity and, passing to a subsequence fy�
n0
g establish the

existence of a limit vector y� 2 LB such that (y�; x�) 2 NGphM(0; �x). This proves

(23). It remains to observe that for each � 2 NM(0)(�x) there is some x
� 2 @de

M(0)(�x) =

NM(0)(�x)\ B such that � = k�kx�. Since g is Lipschitz, the result follows from (22)

and (23).

Corollary 4.2 In (4), let k = m and �x 2 C \D. Assume that the map

~M(y) := fx 2 C j x+ y 2 Dg

is calm at (0; �x). Then one has

NC\D(�x) � NC(�x) +ND(�x): (26)

Proof. It su�ces to specialize the statement of Theorem 4.1 for g being the identity

mapping.

Remark 4.3 The calmness of ~M at (0; �x) is closely related to the so-called metric

inequality for the sets C;D at �x ([11]) which also implies inclusion (26).

In the literature (e. g. [18, 20]) one usually requires the quali�cation condition

ND(�x) \ �NC(�x) = f0g (27)

to ensure the validity of inclusion (26). Condition (27) implies, however, the Aubin

property of ~M around (0; �x) and is thus clearly more demanding than the calmness

required in Corollary 4.2.

By combining Theorem 3.2 and the above corollary, we immediately conclude that,

to ensure inclusion (26), it su�ces to replace (27) by a weaker condition

ND(�x) \ �bdNC(�x) = f0g; (28)

whenever C is regular and semismooth at �x. Moreover, as observed by A. Kruger,

condition (28) alone (without regularity or semismoothness assumptions) implies in-

clusion (26). The respective statement can be formulated even for a general mapping

M permitting noncanonical perturbations.

Proposition 4.4 [13] Consider the map M given by (13), where g is Lipschitz

around a reference pair (�y; �x) 2 GphM and C; D are closed subsets of the respective

spaces. Assume that (14) is ful�lled. Then either M possesses the Aubin property

around (�y; �x) or [
y�2ND(g(�x;�y))nf0g

[@hy�; gi(�x; �y)]
x
+NC(�x) = R

p : (29)

11



Proof. If [
y�2ND(g(�x;�y))nf0g

[@hy�; gi(�x; �y)]
x
\ �NC(�x) = ;; (30)

then it follows from [20] (Th. 6.10) that

D�M(�y; �x) (x�) � f y� 2 R
m
j (y�;�x�) 2 D�g(�x; �y) ÆND(g(�x; �y)) (31)

+ (0�NC(�x))g:

Combining (30) and (31) provides D�M(�y; �x) (0) = f0g, whence the Aubin property

of M at (�y; �x) (see (1). According to (14), assume therefore that

[
y�2ND(g(�x;�y))nf0g

[@hy�; gi(�x; �y)]
x
\ �intNC(�x) 6= ;: (32)

Then

9y� 2 ND(g(�x; �y)) n f0g 9x
�
2 [@hy�; gi(�x; �y)]

x
9� > 0 : B(x�; �) � �NC(�x):

This implies for each p� 2 B(0; �) that

p� 2
[

y�2ND(g(�x;�y))nf0g

[@hy�; gi(�x; �y)]
x
+NC(�x):

Now, the result follows.

Corollary 4.5 Let C;D � R
k be arbitrary closed sets with �x 2 C \D. Then (28)

ensures inclusion (26).

Proof. Apply Proposition 4.4 with g(x; y) := x.

According to the proof of Proposition 4.4, the di�erence between (14) and the clas-

sical Mangasarian-Fromovitz Constraint Quali�cation (30) reduces to the case (32),

for which Remark 3.7 implies local isolatedness of feasible points ofM(0) (under the

additional assumptions of Theorem 3.6). This fact is easily interpreted for mathe-

matical programs of the form

minff(x)jx 2M(0)g: (33)

Evidently, isolated points of M(0) are automatically local minima, hence, in this

context (14) goes beyond the Mangasarian-Fromovitz Constraint Quali�cation as

a condition providing nondegenerate Lagrange multipliers just in that it identi�es

local minima given by isolated feasible points.

Another observation is the following: Since polyhedral mappings are automatically

calm (cf. [23]), we derive from Theorem 4.1 that a nonsmooth calculus rule like (21)

can be obtained under no constraint quali�cations for polyhedral data.

12



4.2 First-order growth (weak sharp minima), local unique-

ness and stability of solutions

Consider the problem

(P ) minff(x)jx 2 Cg;

where f : Rk ! R is a continuous function and C � R
k a closed subset. Denote the

solution set of (P ) by S. Recall the following de�nition.

De�nition 4.6 In (P ), the objective function f is said to satisfy a �rst-order growth

condition if there exist a constant c > 0 and a neighbourhood N of S such that

f(x) � f� + cd(x; S) 8x 2 C \N ;

where f� = infff(x)jx 2 Cg. Equivalently, f is said to have a set S of weak sharp

minima with respect to C \ N (cf. [3]).

Lemma 4.7 Let the solution set S of (P ) be nonempty and bounded and suppose

that the multifunction M(y) := fx 2 Cjf(x) � yg is calm on ff�g� S (i.e., calm at

all (f�; x) with x 2 S). Then, f satis�es a �rst-order growth condition in (P ).

Proof. Fix an arbitrary x0 2 S. Obviously, f(x0) = f�, hence calmness of M at

(f(x0); x0) implies the existence of "; Æ; L > 0 such that

d(x;M(f(x0))) � Ljy � f(x0)j 8y : jy � f(x0)j < Æ 8x 2M(y) \ B(x0; "):

Choose " > 0 small enough to meet jf(x) � f(x0)j < Æ for all x 2 B(x0; "). Now,

one may put y := f(x) in the above estimation and derive from M(f(x0)) = S that

d(x; S) � Ljf(x)� f(x0)j 8x 2 C \ B(x0; "):

From f(x) � f(x0) for all x 2 C, it follows that

f(x) � f� + L�1d(x; S) 8x 2 C \B(x0; "):

By our assumptions, S is compact. Hence, a �nite number of xi 2 S; "i > 0 and

Li > 0 exists such that S � [iB(xi; "i) and

f(x) � f� + L�1
i
d(x; S) 8x 2 C \B(x0; "i):

This implies f to satisfy a �rst-order growth condition with c := (maxLi)
�1 and

N := [iB(xi; "i).

Corollary 4.8 In (P ) let f be locally Lipschitzian and C be regular and semismooth.

Then, f satis�es a �rst-order growth condition if the solution set S is nonempty and

bounded and, moreover, the condition

@f(x) \ �bdNC(x) = ; 8x 2 S

holds true.
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Proof. Combine Lemma 4.7 with Corollary 3.4 (putting g(x; y) := f(x) + y and

D := R� there).

A consequence of the constraint quali�cation in the last corollary is that solutions

are locally isolated:

Proposition 4.9 Let f : Rk ! R be Lipschitz near �x 2 S and C � R
k be regu-

lar at �x. If, in addition, C or f is semismooth at �x, then the condition @f(�x) \

�bdNC(�x) = ; entails that U \ S = f�xg for some neighbourhood U of �x.

Proof. Assume by contradiction, that xn ! �x for some sequence xn 2 Snf�xg.

Then, without loss of generality, kxn � �xk
�1

(xn � �x) ! h 2 TC(�x). On the other

hand, as xn 2 S, it follows that f(xn) = f(�x) and 0 2 @f(xn)+NC(xn). Accordingly,

we may extract a sequence y�
n
2 @f(xn) \ �NC(xn). This sequence is bounded due

to f being Lipschitz around �x. Hence, without loss of generality, y�
n
! y� for some

y� 2 @f(�x) \ �NC(�x). We claim that y� 2 �bdNC(�x), whence a contradiction

to the assumed condition @f(�x) \ �bdNC(�x) = ;. Indeed, if C is semismooth at

�x, this is an immediate consequence of Proposition 3.1. In the opposite case, the

semismoothness of f at �x provides that

hy�
n
; hi ! hy�; hi = f 0(�x; h) = lim

n!1

kxn � �xk
�1

(f(xn)� f(�x)) = 0:

Now the same reasoning as in the proof of Proposition 3.1 allows to derive that

y� 2 �bdNC(�x).

Evidently, Proposition 4.9 may be taken as a subdi�erential criterion for local

uniqueness of solutions. Now we are in a position to state a result on subdi�er-

ential characterization of upper Lipschitz stability of solution sets. Consider the

parametric optimization problem

P (y) minff(x)jg(x) � y g;

where f : Rk ! R and g : Rk ! R
m are locally Lipschitzian and M(y) and S(y)

denote the parameter-dependent sets of feasible points and solutions, respectively.

The set of active indices at x in the relation g(x) � y will be denoted by I(x).

Theorem 4.10 Let S(0) be nonempty and bounded and assume the following con-

ditions to hold true for all x 2 S(0) :

1. All components gi of g are regular and semismooth at x.

2. @f(x) \ �bdNg�1(Rm
�
)(x) = ;.

3. 0 =2 bd conv f@gi(x)gji 2 I(x)g ('conv'= convex hull).

Then, there exists some neighbourhood U of S(0) and constants "; L > 0, such that

d(x; S(0)) � L kyk 8y 2 B(0; ") 8x 2 U \ S(y):

14



Proof. We shall show that S is calm at (0; x) for all x 2 S(0) and that S(0) consists

just of isolated points. Given this fact, our compactness assumption ensures S(0) to

consist of �nitely many points only, say S(0) = fx1; : : : ; xNg. The calmness property

then means existence of constants Li; "i; Æi such that

d(x; S(0)) � Li kyk 8y 2 B(0; "i) 8x 2 B(xi; Æi) \ S(y) (i = 1; : : : ; N):

Setting L := max Li; " := min "i and U := [B(xi; Æi) , the assertion of the theorem

follows.

In order to prove the stated facts, let �x 2 S(0) be arbitrarily given. Note that our

constraint system M(y) = fxjg(x) � y g is a special case of (4) with D := R
m

�
and

C := R
k . It is easily checked, that our assumption 1 implies the setting considered in

Theorem 3.6. Indeed, regularity of the gi implies regularity of any function
P

m

i=1 y
�

i
gi

with y�
i
� 0, hence hy�; gi is regular at �x for all

y� 2 @de
D
(g(�x)) = ND(g(�x)) \ B = fy� 2 R

m

+ j ky
�
k � 1; y�

i
= 0 (i =2 I(�x))g:

as required in Theorem 3.6.

Suppose �rst that 0 2 intH, where H := conv f@gi(�x)gji 2 I(�x)g. By regularity of

the gi, the subdi�erentials @gi(�x) are convex, hence

H =

8<
:
X
i2I(�x)

y�
i
@gi(�x)g

������
X
i2I(�x)

y�
i
= 1; y�

i
� 0

9=
; :

Therefore

H �
[

y�2ND(g(�x))\B

@hy�; gi (�x);

which along with [TC(�x)]
0
= f0g implies (17) to hold. Hence, by Remark 3.7, M(0)

is locally isolated at �x. Then, S(0) is isolated at �x as well due to S(0) � M(0).

Furthermore, Theorem 3.6 allows to derive calmness of M at (0; �x), i.e.

d(x;M(0)) � L kyk 8y 2 B(0; ") 8x 2 V \M(y)

for some neighbourhood V of �x and some "; L > 0. Choosing V small enough to

meet d(x; S(0)) = kx� �xk (by local isolatedness of S(0)), one may conclude that

d(x; S(0)) � d(x;M(0)) � L kyk 8y 2 B(0; ") 8x 2 V \ S(y);

where we used once more that S(y) � M(y). This, however, is calmness of S at �x.

In the opposite case, 0 =2 intH, our assumption 3. entails that 0 =2 H. This condition

along with assumption 1. implies regularity and semismoothness of the set g�1(Rm
�
)

at �x (see [7], Lemma 3.6). Then, in view of our assumptions, Proposition 4.9 may

be invoked to show local isolatedness of S(0) at �x again. Furthermore, the condition

0 =2 H is nothing but the Mangasarian-Fromovitz Constraint Quali�cation for a

�nite set of locally Lipschitzian inequalities. So it is well-known that the constraint
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mapping M has even the Aubin property at (0; �x) which is stronger than calmness.

Hence, exactly the same argument as in the previous case can be applied to derive

calmness of S at (0; �x).

Concerning the �rst assumption in Theorem 4.10, an analogous statement as in Re-

mark 3.3 applies. In particular, convex and C1-functions are regular and semismooth

(even a maximum of such functions).

The subsequent example illustrates the application of Theorem 4.10 in a smooth

setting and, by the way, demonstrates how the upper Lipschitz stability of solu-

tions can be established despite violation of the Mangasarian-Fromovitz Constraint

Quali�cation.

Example 4.11 Consider the parametric optimization problem

minf(x1 � 1=2)2j � x1 � x2 � y1; x2 � y2; x1(1� x1)� x2 � y3g:

Then S(0) = fxa; xbg with xa = (0; 0); xb = (1; 0). Obviously, S(0) is nonempty

and bounded and the constraint functions satisfy assumption 1. of Theorem 4.10 by

smoothness. At xa all unperturbed constraints are binding, hence the set H from

assumption 3. calculates as the convex hull of the three gradients:

H = conv f(�1;�1); (0; 1); (1;�1)g:

Obviously, 0 2 intH, hence the Mangasarian-Fromovitz Constraint Quali�cation

is violated at xa. In contrast, the condition 0 =2 bdH of assumption 3 is ful�lled.

Furthermore, 0 2 intH implies the unperturbed constraint set M(0) = g�1(R3
�
) to

be locally isolated at xa (see proof of Th. 4.10). Therefore, Ng�1(R3
�
)(x

a) = R
2 and

assumption 2. holds trivially. Concerning xb, only the second and third constraint

are binding, so H = conv f(0; 1); (�1;�1)g and 0 =2 H. Again, assumption 3.

is satis�ed. Moreover, Ng�1(R3
�
)(x

b) is the convex cone generated by the two active

gradients (0; 1) and (�1;�1), so its negative boundary is (R+ �(0;�1))[(R+ �(1; 1)).

Again, assumption 2. is ful�lled. Summarizing, the upper Lipschitz behaviour of

solutions to the above parametric problem can be derived.

4.3 Equilibrium mappings

In [21] and [5] the authors study various stability properties of parameterized equi-

libria governed by the generalized equations

0 2 f(x; y) +Q(x); (34)

where x 2 R
k is the decision variable, y 2 R

p is the parameter, f : Rk � R
p ! R

k

is continuously di�erentiable and Q : Rk � R
k is a closed-valued multifunction. If

one considers an optimization problem with (34) as a constraint, and an additional
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abstract constraint (x; y) 2 C, then it is important to verify the calmness of the

mapping H : Rk � R
k � R

p de�ned by

H(z) := f(x; y) 2 Cjz 2 f(x; y) +Q(x)g :

H can be easily converted to the form (13) and so Corollary 3.4 can be applied. In

fact, this procedure is illustrated in [7] by a parameterized equilibrium governed by

a nonlinear complementarity problem. In this section we concentrate on a di�erent

mapping associated with parameterized equilibria, namely the intersection

�(y) := S(y) \ C

where S is the so-called solution mapping de�ned by

S(y) = fx 2 R
k
j 0 2 f(x; y) +Q(x; y)g; (35)

and C is a closed subset of Rk specifying the feasible decision variables. In (35) we

admit that Q also depends on the parameter y, which extends the class of considered

equilibria. Calmness of S (with Q depending only on x) has been investigated in

[5], but in the narrower sense of calmness on selections (see Introduction) where, for

a reference pair (�y; �x), one requires �x to be an isolated point of S(�y).

The mapping S can be written in the form S(y) = fx 2 R
k jg(x; y) 2 Dg, where

g(x; y) = (x; y;�f(x; y))T and D = GphQ. Therefore, � has exactly the structure

of the multifunction M in (13) and we obtain immediately the following statement

from Corollary 3.4:

Theorem 4.12 Let C be regular and semismooth at �x 2 �(�y). Further assume that

the quali�cation condition

0 2 w � (rxf(�x; �y))
T z + bdNC(�x)

(w; v; z) 2 NGphQ(�x; �y;�f(�x; �y))

�
implies

8<
:

w = 0

v = 0

z = 0

(36)

holds true. Then � is calm at (�y; �x).

If Q depends just on x, then g(x; y) = (x;�f(x; y))T and the quali�cation condition

(36) reduces to

0 2 w � (rxf(�x; �y))
T z + bdNC(�x)

(w; z) 2 NGphQ(�x;�f(�x; �y))

�
implies

�
w = 0

z = 0:
(37)

The following example shows that the quali�cation conditions (36), (37) may well

be violated although � is calm at (�y; �x).

Example 4.13 In (35) let k = p = 1, f � 0, and

Q(x; y) = @'(x) +Ny+R�(x); '(x) =

�
�x for x � 0

0 for x > 0:
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Clearly,

S(y) =

�
y for y � 0

[0; y] otherwise.

Let (�y; �x) = (0; 0). It is easily seen that with C = R+ or C = R� the mapping � is

calm at (�y; �x). Nevertheless, condition (36) is not ful�lled.

The reason for the failure of (36) in the last example is that this condition works

with too a large upper approximation of D�S(�y; �x). In such cases it makes sense

directly to apply Theorem 3.2: In Example 4.13 one calculates

D�S�1(�y; �x) (y�) =

�
y� if y� 6= 0

R� if y� = 0:

Both for C = R+ and C = R� , it is easily veri�ed that (7) holds true and, hence,

calmness of � can be derived. Observe that this result could not be obtained when

considering the whole cone NC(�x) instead of its boundary.

Remark 4.14 The calmness of � in the above example follows directly from its

polyhedral nature. Nevertheless, it illustrates well the need to weaken the standard

criteria ensuring the Aubin property when analyzing calmness.
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