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Abstract

We consider the inverse di�raction problem to recover a two-dimensional periodic

structure from scattered waves measured above the structure. Following an approach

by Kirsch and Kress, the inverse problem is reformulated as a nonlinear optimization

problem. The resulting Tikhonov regularized least squares problem is then solved

iteratively by the Levenberg-Marquardt algorithm. Numerical results for synthetic

data demonstrate the practicability of the inversion algorithm. We also present some

convergence results for the Tikhonov regularization of the reconstruction problem

and for the optimization method.

1 Introduction

The scattering theory in periodic structures has many applications in micro-optics, where

periodic structures are often called di�raction gratings. For an introduction to the direct

problem of calculating the electromagnetic scattering produced by periodic interfaces, we

refer to the monograph [16]. The inverse problem of recovering the periodic structure or

the shape of the grating pro�le from the scattered �eld is also of great practical importance

in modern di�ractive optics, e,g� in quality control and design of di�ractive elements with

prescribed far �eld patterns (see [2], [17]).

In this paper, we shall restrict our attention to the simplest case of two-dimensional per-

fectly conducting gratings and consider the pro�le reconstruction problem for Dirichlet

boundary conditions. Uniqueness results and local stability estimates were obtained in

[13], [1], [3], [10], and a result on conditional (global) stability was proved in [4]. Recently,

Ito and Reitich [11] proposed a conjugate gradient algorithm based on analytic continu-

ation for the numerical solution of this problem, which appears to be rather e�cient for

smooth pro�les given by a �nite Fourier series.

The goal of this paper is to present an alternative algorithm for the inverse Dirichlet prob-

lem, following an approach �rst developed by Kirsch and Kress [14] (see also [7], Chap.5)

for acoustic obstacle scattering. In this method, the inverse problem is decomposed into

the severely ill-posed linear problem of reconstructing the scattered wave from a knowl-

edge of its far �eld pattern, and into the well-posed nonlinear problem of determining the

unknown pro�le curve as the location of the zeros of the total �eld. The discretization of

the resulting optimization problem then leads to a nonlinear least squares problem which

is solved iteratively by the Levenberg-Marquardt algorithm.

Numerical results are reported for two examples of smooth pro�les, where the data are

generated using the direct solver of Bruno and Reitich [5]. The computed pro�les demon-

strate that the numerical performance of our method, whose implementation turns out to

be rather easy, is comparable to that of the method used in [11].

We also present a theoretical convergence result for our optimization method, which even

holds for general Lipschitz pro�le curves (see [9] for a detailed presentation). Moreover,
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for a suitable class of smooth pro�les and small wave numbers, we derive a logarithmic

convergence rate for the Tikhonov regularized reconstruction problem from the a priori

parameter choice of Cheng and Yamamoto [6] and the stability result of [4]. This can be

considered as a �rst step to an error analysis of the reconstruction algorithm.

This paper is organized as follows:

� Section 2. Direct and inverse di�raction problems

� Section 3. Tikhonov regularization

� Section 4. An optimization method

� Section 5. Reconstruction algorithm

� Section 6. Numerical results.

2 Direct and inverse di�raction problems

The scattering of time-harmonic electromagnetic waves in the TE (transverse electric)

mode by two-dimensional perfectly re�ecting periodic structures is modelled by the Dirich-

let problem for the Helmholtz equation. Let the pro�le of the di�raction grating be

described by the curve

�f := f(x1; f(x1)) : x1 2 Rg

with a periodic function f of period 2�: If nothing else is said we always assume that

f 2 C
2(R). Let


f := fx 2 R
2 : x2 > f(x1); x1 2 Rg

be �lled with a material whose index of refraction (or wave number) k is a positive

constant, where k = !c
�1(��)1=2: Here ! is the angular frequency, c the speed of light, �

the magnetic permeability which is assumed to be 1 everywhere, and � is the dielectric

coe�cient. Suppose that a plane wave given by

u
in(x) = exp(i�x1 � i�x2)

is incident on �f from the top, where � = k sin �; � = k cos �; and � 2 (��=2; �=2)

is the incident angle. Then the direct scattering problem is to �nd the scattered �eld

u 2 C
2(
f ) \ C(
f) such that

�u+ k
2
u = 0 in 
f ; u = �u

in on �f ; (2.1)

and (as the incident wave) u is assumed to be �-quasiperiodic:

u(x1 + 2�; x2) = exp(2�i�)u(x1; x2): (2.2)

Moreover, we require that u satis�es a radiation (or outgoing wave) condition, i.e., u is

composed of bounded outgoing plane waves:

u(x) =
X
n2Z

An expfi(n + �)x1 + i�nx2)g; (2.3)
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with �n := (k2� (n+�)2)1=2 for jn+�j � k; �n := i((n+�)2� k2)1=2 for jn+�j > k and

the Rayleigh coe�cients An 2 C : We further exclude resonances by assuming �n 6= 0 for

all n 2 Z throughout the paper. Then the sum over the �nite index set

U := fn 2 Z : jn+ �j < kg;

i.e. �n > 0 for n 2 U ; corresponds to the propagating modes of the scattered �eld, whereas

the terms in (2.3) for n 2 ZnU represent evanescent (exponentially decaying) waves. The

optical e�ciencies of the grating are de�ned by

en := (�n=�)jAnj
2
; n 2 U ;

which is the ratio of the energy of the nth propagating mode to the energy of the incident

wave.

The existence of a unique solution to the Dirichlet problem (2.1)�(2.3) is established by

integral equation methods or variational methods (see, e.g., [12]), and the result may

be generalized to arbitrary Lipschitz pro�les [9]. Our goal in this paper is to study the

inverse problem of pro�le reconstruction. More precisely, given the incident wave uin and

b > kfkC(R); we introduce the 'output' operator

A : f ! u(x1; b);

which maps the pro�le function f onto the trace of the scattered �eld on the line x2 = b:

In terms of this operator, given the exact scattered �eld on x2 = b (or, equivalently, the

Rayleigh coe�cients An for all n 2 Z), the inverse problem just consists in solving the

nonlinear and ill-posed equation

A(f) = ub := u(x1; b) (2.4)

for the unknown pro�le function f: Hence it is quite natural to apply regularization

methods to this equation.

Note that in problem (2.4) the knowledge of all modes of the scattered waves is required.

From the practical point of view this is not quite satisfactory since one is not able to

measure the evanescent waves far away from the grating structure. In our numerical

implementation we therefore consider the following more practical reconstruction problem:

Given the Rayleigh coe�cients An or the e�ciencies en for u 2 U , i.e. for the propagating

modes, possibly for several wave numbers and/or incident angles, determine a �nite section

of the Fourier series of the pro�le function f:

However, so far we are only able to prove some convergence results for the regularization

methods applied to problem (2.4).

3 Tikhonov regularization

To deal with the ill-posedness for a stable pro�le reconstruction, a regularized version of

(2.4) should be considered, e.g., the Tikhonov regularization. In the following, we choose

M to be a set of 2�-periodic functions f 2 C
2(R); which is compact with respect to
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the convergence in the space of 2�-periodic C1-functions. We further select b such that

b > supfkfkC(R) : f 2 Mg and consider the Tikhonov functional

F (f ; 
) := kAf � ubk
2 + 
kfk

2
: (3.1)

Here ub is a measured scattered �eld on x2 = b; k � k denotes the norm in the (complex)

Hilbert space X = L
2(0; 2�); and 
 > 0 is the regularization parameter. It follows from

the compactness of M and the fact that the output operator A : M! X is continuous

with respect to the convergence in C
1(R) (see [12], Thm. 9) that for any 
 > 0 there

exists a minimizer f
 2 M of (3.1), i.e.,

F (f
; 
) = inffF (f ; 
) : f 2 Mg:

Now let Æ > 0; and let uÆb 2 X be a measured scattered �eld with noise level � Æ
1=2
; i.e.,

kub � u
Æ
bk

2
� Æ; (3.2)

where ub is the exact pattern of the scattered �eld for some pro�le function f0 2 M :

Af0 = ub: (3.3)

To approximate the reconstruction problem (3.3), we consider the Tikhonov functional

(3.1) with ub replaced by uÆb and choose the regularization parameter 
 := Æ following the

strategy proposed in [6]:

F (f ; Æ) := kAf � u
Æ
bk

2 + Ækfk
2
: (3.4)

Let fÆ 2 M be a minimizer of (3.4). Using again the compactness ofM and the continuity

property of A mentioned above, one easily obtains the following result.

Proposition 3.1 Let ub be the exact output of the scattered �eld on x2 = b which corre-

sponds to some pro�le function f0 2 M; and for any Æ > 0 let fÆ be a minimizer of the

functional (3.4). Then for Æ ! 0 there exists a convergent subsequence fÆ ! f
�
; where

the limit point f � 2 M represents a pro�le function with Af � = ub: Under the additional

assumption that problem (3.3) is uniquely solvable, the total sequence (fÆ) converges to f0:

Proof. We have AfÆ ! Af
� in X: Furthermore, (3.2) and (3.3) imply the estimate

kAfÆ � Af0k
2
� 2(kAfÆ � u

Æ
bk

2 + ku
Æ
b � ubk

2)

� 2Æ + 2min
f2M

fkAf � u
Æ
bk

2 + Ækfk
2
g (3.5)

� 2Æ + 2(kAf0 � u
Æ
bk

2 + Ækf0k
2) � CÆ;

where C only depends on M: Hence, Af � = Af0 = ub:

Remark 3.1 Problem (3.3) is uniquely solvable if the wavenumber k is su�ciently small

(see [4],[10]). In the general case we can try to achieve uniqueness of problem (3.3) and

more accurate reconstructions by using more incident waves uinj (j = 1; :::; n) with di�erent

wavelengths and/or incident angles. In fact, it was proved in [10] that the grating pro�le

is uniquely determined by a �nite number of wave numbers if some a priori information
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on the amplitude of the periodic structure is available. For the Tikhonov regularization

of (3.3) we then have to replace the cost functional (3.4) by a corresponding sum over j:

Remark 3.2 The above result may be extended to more general admissible sets of pro�le

curves. Let M be a set of 2�-periodic Lipschitz functions, which is compact with respect

to the convergence in C(R): Then Proposition 3.1 carries over to this case since fn ! f

in C(R) implies Afn ! Af in X (see [9], Thm. 2.1).

Applying the stability result of [4], we can derive a convergence rate for the Tikhonov

regularization of (3.3) when the wave number k is su�ciently small and an appropriate

admissible set of smooth pro�les with �xed endpoints is chosen. Given �; 0 < � � 1 and

a 2 R; let M be a set of 2�-periodic functions, which is bounded in the norm of C3;�(R)

and such that f(0) = f(2�) = a for all f 2 M: Retaining the notation of Proposition 3.1,

we are now in a position to prove the following theorem.

Theorem 3.1 Assume that 0 < k < 1=2�: Then

kfÆ � f0kC(R) � C=j log log(1=Æ)j; (3.6)

where C only depends on M:

Proof. Choose b1 such that b1 > b > supfkfkC(R) : f 2 Mg; and let A1 be the output

operator mapping the pro�le function onto the trace of the scattered �eld on x2 = b1:

Then we have the stability estimate

kfÆ � f0kC(R) � C=j log log(1=kA1fÆ � A1f0kH1)j; (3.7)

where C only depends onM and H1 stands for the �-quasiperiodic Sobolev space of order

1. This follows from Theorem 2.1 in [4] after performing a suitable shift in x2-direction.

Moreover, using the corresponding Rayleigh expansions (2.3) of the solutions u0 and uÆ to

the forward problem in 
f0 and 
fÆ ; respectively, and the orthogonality of the functions

exp(inx1) in X; we obtain the elementary estimate

kA1fÆ � A1f0kH1 � kAfÆ � Af0k; (3.8)

with a constant c only depending on b and b1: Combining (3.7), (3.8) and (3.5) then gives

the desired bound (3.6).

Using local stability estimates (see [3] for smooth pro�les and [8] for polygonal pro�les),

the double-log estimate (3.6) can be improved to a Lipschitz type estimate. However, this

requires rather strong a priori assumptions on the admissible set M:

4 An optimization method

We want to apply a method developed by Kirsch and Kress for the case of acoustic waves

and bounded impenetrable obstacles; see [14] and the detailed presentation in [7]. Assume

that we have the a priori information about our inverse periodic di�raction problem (2.4)

that, without loss of generality, the unknown pro�le �f lies above the line x2 = 0 and

below x2 = b: We try to represent the scattered �eld as a single layer potential

u(x) =

Z 2�

0

'(t)G(x1; x2; t; 0)dt (4.1)
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with an unknown density function ' 2 X = L
2(0; 2�) and the free space quasiperiodic

Green function (cf., e.g., [12])

G(x; y) =
i

2�

X
n2Z

1

�n
exp(i(n+ �)(x1 � y1) + i�njx2 � y2j); x 6= y: (4.2)

The function (4.2) is well de�ned since we assumed �n 6= 0 for all n 2 Z: For �xed f;

introduce the linear operators T; Sf : X ! X by

T'(x1) =

Z 2�

0

'(t)G(x1; b; t; 0)dt;

(4.3)

Sf'(x1) =

Z 2�

0

'(t)G(x1; f(x1); t; 0)dt:

Note that T' approximates the output Af of the scattered �eld u on x2 = b; whereas Sf'

(which is nonlinear with respect to f) represents an approximation of u on the pro�le �f :

Here and in the following we identify the (�-quasiperiodic) space L2(�f) with X via

kv Æ fkX = (

Z 2�

0

jv(f(x1))j
2
dx1)

1=2
; v 2 L

2(�f);

which is a uniformly equivalent norm when f varies in a set of pro�le functions with

uniformly bounded C0;1 norm. If ' is given as a Fourier series

'(t) =
X
n2Z

'n exp(i(� + n)t) 2 X; 'n 2 C ;

then from (4.2) and (4.3) we obtain

T'(t) = i

X
n2Z

'n�
�1
n exp(i(� + n)t+ i�nb);

(4.4)
Sf'(t) = i

X
n2Z

'n�
�1
n exp(i(� + n)t+ i�nf(t)):

Because of j�nj � jnj as n!1 and our a priori assumption on �f ; the series in (4.4) are

convergent in any �-quasiperiodic Sobolev norm. Moreover, it can be easily checked that

T : X ! X is an injective compact operator with dense range and with the exponentially

decreasing singular values j��1n exp(i�nb)j: Hence, given the output ub of the scattered �eld,

the determination of the density ' from ub by solving the �rst kind equation T' = ub is

a severely ill-posed problem.

We may solve its Tikhonov regularized version


'+ T
�
T' = T

�
ub; (4.5)

with regularization parameter 
 > 0: Given the solution '
 2 X of (4.5) and the corre-

sponding approximation u
 of the scattered �eld, we can then seek the pro�le �f of the

grating by minimizing the defect

ku
in + u
kL2(�f ); f 2 M; (4.6)
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over a class of admissible curves �f : In the following we will choose M to be a compact

set (with respect to the C1;Æ norm, 0 < Æ � 1) of all 2�-periodic C2 functions such that

0 < c � inffkfkC(R) : f 2 Mg; supfkfkC(R) : f 2 Mg � d < b:

For a reformulation of the inverse di�raction problem (2.4) as an optimization problem,

we now combine the minimization of the Tikhonov functional for (4.5) and the defect

minimization (4.6) into the following cost functional:

F ('; f ; 
) := kT'� ubk
2 + 
k'k

2 + �ku
in
Æ f + Sf'k

2
: (4.7)

Here, 
 > 0 is again the regularization parameter and � > 0 denotes a coupling parameter

which has to be chosen appropriately for the numerical implementation. The justi�cation

of the ansatz (4.1) and the choice of the cost functional (4.7) is given by the following

lemma.

Lemma 4.1 For any pro�le �f ; f 2 M; Sf : X ! L
2(�f) is an injective compact

operator with dense range.

The proof is given in [13], Lemma 3.2. Our method now consists in solving the following

optimization problem.

(OP): Find ' 2 X and f 2 M such that

F ('; f ; 
) = m(
) := inffF ( ; g; 
) :  2 X; g 2 Mg:

The existence of a minimizer is guaranteed by the following theorem.

Theorem 4.1 For each 
 > 0 the problem (OP) has a solution.

Here we need not assume that ub is an exact output of the scattered �eld. The proof

is analogous to that of Theorem 5.20 in [7]. Applying the integral equation method of

[13] and the arguments used in the proof of Theorems 5.21 and 5.22 in [7], we obtain the

following convergence result.

Theorem 4.2 Let ub be the exact pattern of the scattered �eld u on x2 = b which corre-

sponds to some pro�le curve f 2 M: Then we have:

(i) lim
!0m(
) = 0:

(ii) Let (
n) be a null sequence and let ('n; fn) be a corresponding sequence of solutions

to (OP) with regularization parameter 
n: Then there exists a convergent subsequence of

(fn); and every limit point f � of (fn) represents a pro�le function such that the total �eld

u
in + u vanishes on �f�:

If we have the a priori information that the inverse problem (2.4) is uniqely solvable (e.g.,

for su�ciently small wave number or height of the grating, see [10]), we obtain convergence

of the total sequence (fn) to f: As in Remark 3.2 we can achieve uniqeness and more

accurate reconstructions by replacing the cost functional (4.7) by a sum corresponding to

several incident waves.
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Remark 4.1 The above results on the problem (OP) can be generalized to admissible

sets of Lipschitz pro�les. Let f and fn (n 2 N) be 2�-periodic Lipschitz functions, and

de�ne the convergence fn ! f in the sense that

kfn � fkC(R) �! 0 and kfnkC0;1(R) � c as n!1: (4.8)

Let M be a set of 2�-periodic Lipschitz functions, which is compact with respect to the

convergence de�ned in (4.8). Then Theorems 4.2 and 4.3 carry over to this case; see [9]

for the proof which is based on the variational approach to the direct problem (2.1)�(2.3)

rather than on integral equation methods.

5 The reconstruction algorithm

We now discuss the implementation of our optimization method for the reconstruction

problem introduced at the end of Section 2. In this problem, given the Rayleigh coe�cients

An; n 2 U , for the propagating modes, we approximate the unknown pro�le function f as

a truncated Fourier series

f(t) =
X
jmj�M

cm exp(imt); (5.1)

where c�m = cm for all indices m. Moreover, the unknown density � in (4.1) is also sought

as a trigonometric polynomial

�(t) =
X
jnj�N

an exp(int):

Introducing the vectors

y = (a; c); a = (an) 2 C
2N+1

; c = (cm) 2 C
2M+1

and replacing the scattered �eld ub on the line x2 = b by the 'far �eld'

u1(t) :=
X
n2U

An expfi(n+ �)t+ i�nbg;

the cost functional (4.7) then takes the form

kT'� u1k
2 + 
k'k

2 + �ku
in
Æ f + Sf'k

2

= 2�
X
jnj�N

(jgn(a)j
2 + 
janj

2) + �

Z 2�

0

jh(y; t)j2dt; (5.2)

where

gn(a) = i�
�1
n an � An ; n 2 U ; gn(a) = i�

�1
n exp(i�nb) an ; n =2 U ;

h(y; t) = exp
�
� i�

X
jmj�M

cm exp(imt)
�

(5.3)

+
X
jnj�N

i�
�1
n an exp

�
int + i�n

X
jmj�M

cm exp(imt)
�
:
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The integral in (5.2) is discretized using the trapezoidal rule for 2�-periodic functions:

Z 2�

0

jh(y; t)j2dt � (2�=K)

KX
j=1

jh(y; 2�j=K)j2:

The problem (OP) is then replaced by the �nite dimensional nonlinear least squares

problem

min
n
kF(y)k2

C4N+K+2 : y 2 C
2(N+M+1)

o
; (5.4)

where the �rst 2N + 1 components of F are constant multiples of the linear functions

gn(a) de�ned in (5.3), the next 2N +1 components are equal to (2�
)1=2an , and the last

K components are given by

Fj+4N+2(y) = (2��=K)1=2 h(y; 2�j=K); j = 1; :::; K: (5.5)

In the Levenberg�Marquardt method (see, e.g., [15]), the solution of the nonlinear problem

(5.4) is obtained iteratively by solving the linear least squares problem

min
n
kF

0(y)p+ F(y)k2
C4N+K+2 + �Ikpk

2
C2(N+M+1) : p 2 C

2(N+M+1)
o

(5.6)

at each iteration step. Here the current iterate is sought in the form y+p where y denotes

the preceding iterate, F 0(y) stands for the Jacobian matrix of F evaluated at y, and the

parameter � � 0 is suitably chosen (note that � = 0 corresponds to the Gauss�Newton

method). The normal equations for (5.6) to be solved at each iteration are

(F 0(y)�F 0(y) + �I)p = �F
0(y)�F(y);

where the star designates the adjoint matrix and I is the unit matrix of order 2(N+M+1).

The entries of F 0(y) can be obtained immediately from (5.3) and (5.5). Note that we have,

in particular, the decomposition

F
0(y)�F 0(y) =

�
A+D C

C
�

B

�
;

where D is the diagonal matrix of order 2N + 1 with entries 2�(j��1n exp(i�nb)j
2 + 
),

jnj � N , independent of y, whereas the entries of A, B and C are expressible in terms of

the partial derivatives of the functions h( � ; 2�j=K); j = 1; :::; K, at y = (a; c).

To implement the reconstruction algorithm for nonsmooth pro�les, the unknown pro�le

function should rather be sought as a spline (e.g., a piecewise linear function) with �xed

equidistant knots or with free knots on the interval [0; 2�]. In that case the integrals

occurring in the last term of (5.2) can be calculated analytically.

6 Numerical results

Here we present the results of numerical experiments using our method with synthetic

data in the case of a smooth pro�le function f(t) given as a trigonometric polynomial (5.1).

We performed numerical experiments for the following two pro�le functions, chosen as in

the examples discussed in [5] and [11] :

f(t) = h cos(t) + c0 ; (6.1)
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f(t) = h(cos(t) + cos(2t) + cos(3t)) + c0 : (6.2)

We chose c0 = 2 and h > 0 small enough so that f(t) > 0 for t 2 [0; 2�].

The far �eld data, i.e., the Rayleigh coe�cients of the propagating modes, were generated

solving the direct problem by the analytic continuation method presented in [5] and [11].

In the inverse computation we applied the optimization method described in Section 5 to

reconstruct the target pro�les (6.1) and (6.2). The set of admissible pro�les was taken

to coincide with the family of Fourier gratings with three and seven modes, i.e. M = 1

and M = 3, respectively, in (5.1). Usually, we used the far �eld data for a number nI of

di�erent incident waves with characteristics (lj; �j); j = 1; :::; nI: Here an incident plane

wave is characterized by the pair (l; �), where l := 1=k, k is the wave number, and � denotes

the incident angle. Recall that 
 is the regularization parameter and � the weight of the

last term in the cost functional. The number of Gauss-Newton or Levenberg-Marquardt

iterations is denoted by nit.

We �rst considered pro�le curves of the form (6.1) and incident waves of the following

characteristics:

1: nI = 1; (`; �) = (:55; 0);

2: nI = 1; (`; �) = (:22; 0);

3: nI = 2; (`; �) = (:22; 0:5); (:22;�0:5);

4: nI = 1; (`; �) = (:22; 0:5):

With respect to the three values h = 0:10�; 0:15�; 0:20� we performed three series A,

B, C of experiments with the incident waves 1�4 in each case. The number of iterations

was varied from 10 to 100 if necessary. Because of the unsymmetry of data, we took


 = 1; � = 10�1 and 
 = 102; � = 1 in experiments B4 and B4, respectively, whereas

the choice 
 = 10�8; � = 10�1 was satisfactory in all other cases. The numerical results

are given in the following three tables:

target initial A1 A2 A3 A4

c�1 0.1570796 0.0 0.157075 0.157077 0.1570494 0.1571

c0 2.000000 2.0 2.00000 2.000004 2.00001 2.0007

c1 0.1570796 0.0 0.157075 0.157080 0.1570498 0.1562

target initial B1 B2 B3 B4

c�1 0.235619 0.1 0.2355 0.23559 0.23507 0.2344

c0 2.000000 2.0 2.00001 1.9999996 2.0003 2.007

c1 0.235619 0.1 0.2355 0.235617 0.23506 0.2292

target initial C1 C2 C3 C4

c�1 0.3141 0.1 0.3136 0.3144 0.311 0.2839

c0 2.000000 2.0 2.00003 2.0005 2.002 2.03

c1 0.3141 0.1 0.3136 0.3140 0.311 0.2835

Table 1: Experiments in the case (6.1)

In the case of pro�le functions of the form (6.2) we only considered 'symmetrical data',

i.e., the pro�le is symmetrically illuminated. Then the computation requires almost no
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regularization, and the computed coe�cients turn out to be symmetrical in the sense that

c�m � cm: Moreover, we took nit = 50 and 
 = 10�8; � = 10�1:

In a �rst series of experiments we chose h = 0:05�; which is very close to the choice

h = 0:045� in [11]. In the experiments 1, 2, 3 we �xed l = 0:44 and varied the incoming

wave with respect to its incidencent angle �:

1: nI = 2; � = 0:5;�0:5;

2: nI = 5; � = 1:; 0:5; 0:;�0:5;�1

3: nI = 11; � = 1:3; 1:; 0:8; 0:5; 0:25; 0:;�0:25;�0:5;�0:8;�1:;�1:3

Then we varied both the wave number and incident angle:

4: nI = 4; (`; �) = (:44; :5); (:44;�:5); (:54; :5); (:54;�:5)

5: nI = 6; (`; �) = (:44; :5); (:44;�:5); (:54; :5); (:54;�:5); (:64; :5); (:64;�:5)

6: nI = 15; (`; �) = (:44; 1:); (:44; :5); (:44; 0:); (:44;�:5); (:44;�1:); (:59; 1:); (:59; :5);

(:59; 0:); (:59;�:5); (:59;�1:); (:74; 1:); (:74; :5); (:74; 0:); (:74;�:5); (:74;�1:)

Finally, we �xed � = 0 and changed only the wave number:

7: nI = 15; ` = :44; :46; :49; :51; :54; :56; :59; :62; :64; :67; :69; :71; :74; :77; :79

In the following table the computed real parts of the coe�cients cm; m = 0; ::; 3; are

given. The imaginary parts turned out to be at least one order in magnitude smaller than

the real parts.

c target initial 1 2 3 4 5 6 7

0 2.0000 1.9 2.0138 2.0078 2.0063 2.016 2.018 2.011 2.023

1 0.0785 0.13 0.0865 0.0813 0.0804 0.0860 0.0861 0.0824 0.0948

2 0.0785 0.0 0.0664 0.0750 0.0764 0.0677 0.0681 0.0739 0.0853

3 0.0785 0.0 0.0590 0.0666 0.0683 0.0517 0.0468 0.0608 -0.0047

Table 2: Case (6.2) for h = 0:05�

In a second series of experiments we chose h = 0; 005� and the following incident waves:

8: nI = 2; (`; �) = (:44; :5); (:44;�:5)

9: nI = 4; (`; �) = (:44; :5); (:44;�:5); (:54; :5); (:54;�:5)

10: nI = 6; (`; �) = (:44; :5); (:44;�:5); (:54; :5); (:54;�:5); (:64; :5); (:64;�:5)

Here, much better results were obtained than in the preceding examples:

c target initial 8 9 10

0 2.00000 1.9 2.000003 2.000005 2.000006

1 0.007853 0.0 0.007857 0.007855 0.007854

2 0.007853 0.0 0.0078270 0.0078279 0.0078285

3 0.007853 0.0 0.00781 0.00778 0.00776

Table 3: Case (6.2) for h = 0:005�
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Figure 2: jmj � 5

Finally, we considered far �eld data of higher frequency:

11: h = 0:005�; nI = 1; (`; �) = (0:22; 0:)

12: h = 0:05�; nI = 1; (`; �) = (0:22; 0:)

c target initial 11 target initial 12

0 2.000000 1.9 2.000001 2.00000 2.1 2.0008

1 0.00785398 0.0 0.0078541 0.07853 0.0 0.0804

2 0.00785398 0.0 0.00785399 0.07853 0.0 0.0793

3 0.00785398 0.0 0.00785397 0.07853 0.0 0.0759

Table 4: Case (6.2) for ` = 0:22

In Figure 1 the results of experiments 1 (cf. Table 2) and 12 (cf. Table 4) are plotted

compared with the target pro�le. Figure 2 shows the pro�le of experiment 12 computed

using the weaker a priori information jmj � 5 in comparison with the respective initial

guess and target pro�le.

As a result of the computations, we obtained satisfactory approximations of the target

parameters, rather independent on the initial guess. We observed the following:

1) The performance of the algorithm depends on the amplitude of the target pro�le and

on the character of the far �eld data. The reconstruction of the target is rather good if the

pro�le is �at enough. It becomes worse if the steepness of the pro�le increases. Moreover,

higher frequency data lead to a more accurate reconstruction than in the lower frequency

case.

2) If one uses data from a symmetrical illumination of the pro�le, then a regularization is

12



not needed. On the other hand, in the unsymmetrical case a strong regularization might

be necessary to produce satisfactory numerical results.
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