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Abstract

The general reverse di�usion equations are derived. They are applied to

the problem of transition density estimation of di�usion processes between two

�xed states. For this problem it is shown that density estimation based on

forward-reverse representations allows for achieving essentially better results

in comparison with usual kernel or projection estimation based on forward

representations only.

1 Introduction

Consider the SDE in the Ito sense

dX = a(s;X)ds+ �(s;X)dW (s); t0 � s � T; (1.1)

where X = (X1; :::; Xd)>; a = (a1; :::; ad)> are d-dimensional vectors, W =

(W 1; :::;Wm)> is an m-dimensional standard Wiener process, � = f�ijg is a d�m-

matrix, m � d. We assume that the d�d-matrix b := ��>; b = fbijg; is of full rank
for every (s; x); s 2 [t0; T ]; x 2 Rd. The functions ai(s; x) and �ij(s; x) are assumed

to be su�ciently good in analytical sense (for example, their �rst derivatives are

continuous and bounded). This particularly implies existence and uniqueness of

the solution Xt;x(s) 2 Rd; Xt;x(t) = x; t0 � t � s � T , of (1.1), smoothness of

the transition density p(t; x; s; y) of the Markov process X, and existence of all the

moments of p(�; �; �; y):

The aim of this paper is the construction of a Monte Carlo estimator of the unknown

transition density p(t; x; T; y) for �xed t; x; T; y; which improves upon classical ker-

nel or projection estimators based on realisations of Xt;x(T ) directly.

Classical Monte-Carlo methods allow for e�ective estimation of functionals of the

form

I(f) =

Z
p(t; x; T; y)f(y)dy: (1.2)
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These methods exploit the probabilistic representation I(f) = E f(Xt;x(T )) . Let

�Xt;x be an approximation of the process Xt;x and let �X
(n)
t;x (T ) for n = 1; : : : ; N be

independent realizations of �Xt;x(T ): Then I(f) may be estimated by

bI =
1

N

NX
n=1

f
�
�X
(n)
t;x (T )

�
with a statistical error of order N�1=2; provided the accuracy of approximating Xt;x

by �Xt;x is su�ciently good.

The problem of estimating the transition density of a di�usion process is more in-

volved, see [1], [6], [7]. For an approximation �Xt;x; it is natural to expect that

its transition density �p(t; x; T; y) is an approximation of p(t; x; T; y). Indeed, if

�Xt;x(T; h) is the approximation of Xt;x(T ) obtained via numerical integration by the

Euler scheme with time step h, then the density �p(t; x; T; y) converges to p(t; x; T; y)

uniformly in y when the step size h tends to zero, see Bally and Talay [2]. Further,

in [6] and [7] it is shown that the quantity

�ph(t; x; T; y) = E �h( �Xt;x(T; h)� y)

with �h(x) = (2�h2)�d=2 exp f�jxj2=(2h2)g converges to p(t; x; T; y) as h ! 0 .

In [6] strong schemes of numerical integration were used, while [7] applied weak

schemes. Combining these result with the classical Monte Carlo methods leads to

the following estimator of the transition density

ep(t; x; T; y) = 1

N

NX
n=1

�h

�
�X
(n)
t;x (T; h)� y

�
; (1.3)

where �X
(n)
t;x (T; h) , n = 1; : : : ; N , are independent realizations of �Xt;x(T; h) . More

generally, since the random variables Xn = �X
(n)
t;x (T; h) of independent realizations

of �Xt;x(T; h) for n = 1; : : : ; N are i.i.d. with the distribution that approximates the

distribution of Xt;x(T ) , one may estimate the transition density p(t; x; T; y) from

this sample by using standard methods of nonparametric statistics. For example,

the kernel (Parzen-Rosenblatt) density estimator with a kernel K and a bandwidth

Æ is given by

bp(t; x; T; y) = 1

NÆd

NX
n=1

K

�
Xn � y

Æ

�
; (1.4)

see e.g. [4]. Clearly, proposal (1.3) is a special case of this estimator with kernel K

being the standard normal density and bandwidth Æ equal to the step of numerical

integration h:
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The estimation loss bp(t; x; T; y) � p(t; x; T; y) can be split up into an error due to

a numerical approximation of the process X by �X and an error due to the kernel

estimation which depends on the sample size N , the bandwidth Æ and the kernel

K. The loss of the �rst kind can be reduced considerably by properly selecting a

scheme of numerical integration and choosing a small step h. The most important

loss, however, is caused by the kernel estimation. It is well known that the quality

of density estimation strongly depends on the bandwidth Æ and the choice of a

suitable bandwidth is a delicate issue (see e.g. [4]). Even an optimal choice of the

bandwidth Æ leads to quite poor estimation quality, in particular for large dimension

d. More speci�cally, if the underlying density is known to be two times continuously

di�erentiable then the optimal bandwidth Æ is of order N�1=(4+d) leading to the

accuracy of order N�2=(4+d) , see [4]. For d > 2, this would require a huge sample

size N for providing a reasonable accuracy of estimation. In the statistical literature

this problem is referred to as �curse of dimensionality�.

Note that the �curse of dimensionality� problem doesn't encounter by the estimation

of functionals I(f) in (1.2). Similarly, via probabilistic representations based on

reverse di�usion, Monte Carlo estimation of functionals of the form

I�(g) =

Z
g(x)p(t; x; T; y)dx (1.5)

goes with root-N accuracy also, see Section 3. In this paper we aim to propose a

method for estimating the transition density p(t; x; T; y) of a di�usion process which

allows for root-N consistent estimation for particular values of t; x; T; and y. In this

method both the forward and reverse di�usion process are involved.

In Section 2, we discuss some probabilistic representations for the functionals I(f)

in (1.2), which thus lead to di�erent Monte-Carlo methods for the evaluating of

I(f) . Also we show how the error of the Monte Carlo estimation can be reduced by

the choice of a suitable probabilistic representation. In Section 3, we introduce the

reverse di�usion system in connection with probabilistic representations for func-

tionals of the form (1.5). In Section 4, we explain how the combination of forward

and reverse di�usion can be used for e�cient Monte Carlo estimation of the transi-

tion density. We introduce two di�erent estimators which we refer to as kernel and

projection estimators. General properties of these estimators are studied in Sec-

tions 6 and 7. In Section 5 we demonstrate the advantages of combining the forward

and reverse di�usion for transition density estimation at a simple one dimensional

example. We show by an explicit analysis of an Ornstein-Uhlenbeck type process
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that root-N accuracy can be achieved. In Section 8 we compare the computational

complexity of the forward-reverse kernel estimator with the usual forward kernel

estimator and give some numerical results for the example in Section 5. We con-

clude that, in general, for the problem of estimating the transition density between

two particular states the forward reverse estimator outperforms the usual estimator

based on only forward di�usion.

2 Probabilistic representations based on forward dif-

fusion

In this section we present a general probabilistic representation and the correspond-

ing Monte Carlo estimator for a functional of the form (1.2). We also show that the

variance of the Monte Carlo method can be reduced by choosing a proper represen-

tation.

For a given function f , the function

u(t; x) = E f(Xt;x(T )) =

Z
p(t; x; T; y)f(y)dy (2.1)

is the solution of the Cauchy problem for the parabolic equation

Lu :=
@u

@t
+

1

2

dX
i;j=1

bij(t; x)
@2u

@xi@xj
+

dX
i=1

ai(t; x)
@u

@xi
= 0; u(T; x) = f(x):

Via the probabilistic representation (2.1), u(t; x) may be computed by Monte-Carlo

simulation using weak methods for numerical integration of SDE (1.1). Let �X be

an approximation of the process X in (1.1), obtained by some numerical integration

scheme. With �X
(n)
t;x (T ) being independent realizations of �Xt;x(T ) , the value u(t; x)

can be estimated by

bu =
1

N

NX
n=1

f
�
�X
(n)
t;x (T )

�
: (2.2)

Moreover, by taking a random initial value X(t) = � ; where the random variable

� has a density g ; we get a probabilistic representation for integrals of the form

I(f; g) =

ZZ
g(x)p(t; x; T; y)f(y) dx dy:
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The estimation error jbu � uj of the estimator bu in (2.2) is due to the Monte-

Carlo method and to the numerical integration of SDE (1.1). The second er-

ror can be reduced by selecting a suitable method and step of numerical integra-

tion. The �rst one, the Monte Carlo error, is of order fN�1
Var f( �Xt;x(T ))g1=2 '

fN�1
Var f(Xt;x(T ))g1=2 and can, in general, be reduced by using variance reduction

methods. Variance reduction methods can be derived from the following generalized

probabilistic representation for u(t; x) :

u(t; x) = E [f(Xt;x(T ))Xt;x(T ) + Xt;x(T )]; (2.3)

where Xt;x(s); Xt;x(s); Xt;x(s); s � t, is the solution of the system of SDEs given

by

dX = (a(s;X)� �(s;X)h(s;X))ds+ �(s;X)dW (s); X(t) = x;

dX = h>(s;X)XdW (s); X (t) = 1;

dX = F>(s;X)XdW (s); X(t) = 0:

(2.4)

In (2.4), X and X are scalars, and h(t; x) = (h1(t; x); :::; hm(t; x))> 2 IRm; F (t; x) =

(F 1(t; x); :::; Fm(t; x))> 2 IRm are vector functions satisfying some regularity con-

ditions (for example, they are su�ciently smooth and have bounded derivatives).

The usual probabilistic representation (2.1) is a particular case of (2.3)�(2.4) with

h = 0; F = 0, see, e.g., [5]. The representation for h 6= 0; F = 0 follows from

Girsanov's theorem and then we get (2.3) since E X = 0.

Consider the random variable � := f(Xt;x(T ))Xt;x(T ) + Xt;x(T ). While the math-

ematical expectation E � does not depend on h and F , the variance Var � =

E �2 � (E �)2 does. The Monte Carlo error in (2.2) is of order
p
N�1Var � and

so by reduction of the variance Var � the Monte Carlo error may be reduced. Two

variance reduction methods are well known: the method of importance sampling

where F = 0, see [10], [12], [15], and the method of control variates where h = 0,

see [12]. For both methods it is shown that for su�ciently smooth function f the

variance can be reduced to zero. A more general statement is given in Theorem 2.1

below, see also [11]. Introduce the process

�(s) = u(s;Xt;x(s))Xt;x(s) + Xt;x(s); t � s � T:

Clearly �(t) = u(t; x) and �(T ) = f(Xt;x(T ))Xt;x(T ) + Xt;x(T ).
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Theorem 2.1. Let h and F be such that for any x 2 IRm there is a solution of the

system (2.4) on the interval [t; T ]. Then the variance Var �(T ) is equal to

Var �(T ) = E

Z T

t

X 2
t;x(s)

mX
j=1

 
dX
i=1

�ij
@u

@xi
+ uhj + F j

!2

ds (2.5)

provided that the mathematical expectation in (2.5) exists.

In particular, if h and F satisfy

dX
i=1

�ij
@u

@xi
+ uhj + F j = 0; j = 1; :::; m;

then Var �(T ) = 0 and so �(s) is deterministic and independent of s 2 [t; T ].

Proof. The Ito formula implies

d�(s) = Xt;x(s)(Lu)ds+ Xt;x(s)

mX
j=1

 
dX
i=1

�ij
@u

@xi
+ uhj + F j

!
dW j(s)

and then by Lu = 0 we have

�(s) = �(t) +

Z s

t

Xt;x(s
0)

mX
j=1

 
dX
i=1

�ij
@u

@xi
+ uhj + F j

!
dW j(s0):

Hence, (2.5) follows and the last assertion is obvious.

Remark 2.1. Clearly, h and F from Theorem 2.1 cannot be constructed without

knowing u(s; x). Nevertheless, the theorem claims a general possibility of variance

reduction by properly choosing the functions hj; and F j; j = 1; :::; m.

3 Representations relying on reverse di�usion

In the previous section a broad class of probabilistic representations for the integral

functionals I(f) =
R
f(y)p(t; x; T; y)dy ; and more generally, for the functionals

I(f; g) =
RR

g(x)p(t; y; T; y)f(y)dx dy is described. Another approach is based on

the so called reverse di�usion and has been introduced by Thomson [14] (see also

[8], [9]). We here derive the reverse di�usion system in a more transparent and more

rigorous way. The method of reverse di�usion provides a probabilistic representation

(hence a Monte Carlo method) for functionals of the form

I�(g) =

Z
g(x)p(t; x; T; y)dx; (3.1)
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where g is a given function. This representation may be easily extended to the

functionals I(f; g) :

For a given function g and �xed t > 0 we de�ne

v(s; y) :=

Z
g(x0)p(t; x0; s; y)dx0; s > t;

and consider the Fokker-Planck equation (forward Kolmogorov equation) for p(t; x; s; y);

@p

@s
=

1

2

dX
i;j=1

@2

@yi@yj
(bij(s; y)p)�

dX
i=1

@

@yi
(ai(s; y)p):

Then, multiplying this equation by g(x) and integrating with respect to x yields the

following Cauchy problem for the function v(s; y):

@v

@s
=

1

2

dX
i;j=1

@2

@yi@yj
(bij(s; y)v)�

dX
i=1

@

@yi
(ai(s; y)v); s > t;

v(t; y) = g(y):

We introduce the reversed time variable es = T + t� s and de�ne

ev(es; y) = v(T + t� es; y);eai(es; y) = ai(T + t� es; y);ebij(es; y) = bij(T + t� es; y):
Clearly, v(T; y) = ev(t; y) and

@ev
@es +

1

2

dX
i;j=1

@2

@yi@yj
(ebij(es; y)ev)� dX

i=1

@

@yi
(eai(es; y)ev) = 0; es < T;

ev(T; y) = v(t; y) = g(y):

(3.2)

Since bij = bji and so ebij = ebji; the PDE in (3.2) may be written in the form (with

s instead of es)
eLev :=

@ev
@s

+
1

2

dX
i;j=1

ebij(s; y) @2ev
@yi@yj

+

dX
i=1

�i(s; y)
@ev
@yi

+ c(s; y)ev = 0; s < T; (3.3)

where

�i(s; y) =

dX
j=1

@ebij
@yj

� eai; c(s; y) =
1

2

dX
i;j=1

@2ebij
@yi@yj

�
dX
i=1

@eai
@yi

:

So we obtain a Cauchy problem in reverse time and may state the following result.
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Theorem 3.1. I�(g) has a probabilistic representation,

I�(g) = v(T; y) = ev(t; y) = E [g(Yt;y(T ))Yt;y(T )]; (3.4)

where the vector process Yt;y(s) 2 IRd and the scalar process Yt;y(s) solve the stochas-

tic system

dY = �(s; Y )ds+ e�(s; Y )dfW (s); Y (t) = y;

dY = c(s; Y )Yds; Y(t) = 1;
(3.5)

with e�(s; y) = �(T + t � s; y) and fW being an m-dimensional standard Wiener

process.

It is natural to call (3.5) the reverse system of (1.1). The probabilistic representation

(3.4)�(3.5) for the integral (3.1) leads naturally to the Monte Carlo estimator bv for

v(T; y) ;

bv =
1

M

MX
m=1

g
�
�Y
(m)
t;y (T )

�
�Y(m)
t;y (T ); (3.6)

where ( �Y
(m)
t;y ; �Y(m)

t;y ); m = 1; : : : ;M; are independent realizations of the process

( �Yt;y; �Yt;y) that approximates the process (Yt;y;Yt;y) from (3.5).

Similar to (2.3)�(2.4), the representation (3.4)�(3.5) may be extended to

v(T; y) = E [g(Yt;y(T ))Yt;y(T ) + Yt;y(T )]; (3.7)

where Yt;y(s); Yt;y(s); Yt;y(s); s � t, solves the following system of SDEs,

dY = (�(s; Y )� e�(s; Y )eh(s; Y ))ds+ e�(s; Y )dfW (s); Y (t) = y;

dY = c(s; Y )Yds+ eh>(s; Y )YdfW (s); Y(t) = 1;

dY = eF>(s; Y )YdfW (s); Y(t) = 0:

(3.8)

In (3.8), Y and Y are scalars, eh(t; x) 2 IRm; and eF (t; x) 2 IRm are arbitrary vector

functions which satisfy some regularity conditions.

Remark 3.1. If system (1.1) is autonomous, then ebij; eai; �i; e�; and c depend on

y only, ebij(y) = bij(y); eai(y) = ai(y), and so e�(y) can be taken equal to �(y).

Remark 3.2. By constructing the reverse system of reverse system (3.5), we get

the original system (1.1) accompanied by a scalar equation with coe�cient �c. By
then taking the reverse of this system we get (3.5) again.
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Remark 3.3. If the original stochastic system (1.1) is linear, then the system (3.5)

is linear as well and c depends on t only.

Remark 3.4. Variance reduction methods discussed in Section 2 may be applied to

the reverse system as well. In particular, for the reverse system a theorem analogue

to Theorem 2.1 applies.

4 Transition density estimation based on forward-

reverse

representations

In this section we present a probabilistic representation for the target probability

density p(t; x; T; y); which utilizes both the forward and the reverse di�usion system.

Next, we give two di�erent Monte Carlo estimators for p(t; x; T; y) based on this

representation: a kernel estimator and a projection estimator. A detailed analysis

of the performance of these estimators is postponed to Sections 6 and 7.

We start with a heuristic discussion. Let t1 be an internal point of the interval

[t; T ] . By the Kolmogorov-Chapman equation for the transition density we have

p(t; x; T; y) =

Z
p(t; x; t1; x

0)p(t1; x
0; T; y)dx0: (4.1)

By applying Theorem 3.1 with g(x0) = p(t; x; t1; x
0) , it follows that this equation

has a probabilistic representation,

p(t; x; T; y) = E p(t; x; t1; Yt1;y(T ))Yt1;y(T ): (4.2)

Since in general the density function x0 ! p(t; x; t1; x
0) is unknown also, we can-

not apply the Monte Carlo estimator bu in (2.2) to representation (4.2) directly.

However, the key idea is now to estimate this density function from a sample of

independent realizations of X on the interval [t; t1] by standard methods of non-

parametric statistics and then to replace in the r.h.s. of (4.2) the unknown density

function by its estimator, say x0 ! bp(t; x; t1; x0): This idea suggests the following

procedure. Generate by numerical integration of the forward system (1.1) and the

reverse system (3.5) (or (3.8)) independent samples �X
(n)
t;x (t1) , n = 1; : : : ; N and

( �Y
(m)
t1;y

(T ) , �Y(m)
t1;y

(T )), m = 1; : : : ;M; respectively (in general di�erent step sizes may

9



be used for �X and �Y ). Let bp(t; x; t1; x0) be, for instance, the kernel estimator of

p(t; x; t1; x
0) from (1.4), that is,

bp(t; x; t1; x0) = 1

NÆd

NX
n=1

K

 
�X
(n)
t;x (t1)� x0

Æ

!
:

Thus, replacing p by this kernel estimator in the r.h.s. of (4.2) yields a forward

representation of the form (2.1) which in turn may be estimated by

bp(t; x; T; y) = 1

M

"
1

NÆdN

MX
m=1

NX
n=1

K

 
�X
(n)
t;x (t1)� �Y

(m)
t1;y (T )

ÆN

!
�Y(m)
t1;y

(T )

#
: (4.3)

We will show that this heuristic idea really works and leads to estimators which

have superior properties in comparison with usual density estimators based on

pure forward or pure reverse representations. Of course, the kernel estimation of

p(t; x; t1; x
0) in the �rst step will be crude as usual for a particular x0. But, due to a

good overall property of kernel estimators, namely, the fact that any kernel estima-

tor is a density, the impact of these point-wise errors will be reduced in the second

step, the estimation of (4.2). In fact, by the Kolmogorov-Chapman equation (4.1)

the estimation of the density at one point is done via the estimation of a functional

of the form (4.2). It can be seen that the latter estimation problem has smaller

degree of ill-posedness and therefore, the achievable accuracy for a given amount of

computational e�ort will be improved.

Now we proceed with a formal description which essentially utilizes the next general

result naturally extending Theorem 3.1.

Theorem 4.1. For a bivariate function f we have

J(f) :=

ZZ
p(t; x; t1; x

0)p(t1; y
0; T; y)f(x0; y0)dx0dy0

= E [f(Xt;x(t1); Yt1;y(T ))Yt1;y(T )]; (4.4)

where Xt;x(s) obeys the forward equation (1.1) and (Yt1;y(s);Yt1;y(s)), s � t1, is the

solution of the reverse system (3.5).

Proof. Conditioning on Xt;x(t1) and applying Theorem 3.1 with g(�) = f(x0; �) for

every x0 yields

E
�
f(Xt;x(t1); Yt1;y(T ))Yt1;y(T )

�
= EE

�
f(Xt;x(t1); Yt1;y(T ))Yt1;y(T ) j Xt;x(t1)

�
=

Z
p(t; x; t1; x

0)

�Z
f(x0; y0)p(t1; y

0; T; y)dy0
�
dx0:
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Let �X
(n)
t;x (t1); n = 1; : : : ; N; be a sample of independent realizations of an approx-

imation �X of X; obtained by numerical integration of (1.1) on the interval [t; t1] .

Similarly, let ( �Y
(m)
t1;y

(T ) �Y(m)
t1;y

(T )); m = 1; : : : ;M be independent realizations of a

numerical solution of (3.5) on the interval [t1; T ]: Then the representation (4.4)

leads to the following Monte Carlo estimator for J(f);

bJ =
1

MN

NX
n=1

MX
m=1

f
�
�X
(n)
t;x (t1);

�Y
(m)
t1;y

(T )
�

�Y(m)
t1;y

(T ): (4.5)

Formally, J(f) ! p(t; x; T; y) as f ! Ædiag (in distribution sense), where Ædiag(x
0; y0) :=

Æ0(x
0� y0) and Æ0 is the Dirac function concentrated at zero. So, aiming to estimate

the density p(t; x; T; y); two families of functions f naturally arise. Let us take

functions f of the form

f(x0; y0) =: fK;Æ(x
0; y0) = Æ�dK(

x0 � y0

Æ
)

where Æ�dK(u=Æ) converge to Æ0(u) (in distribution sense) as Æ # 0: Then the

corresponding expression for bJ coincides with the kernel estimator bp in (4.3). As

an alternative, consider functions f of the form

f(x0; y0) =: f';L(x
0; y0) =

LX
`=1

'`(x
0)'`(y

0);

where f'` ; ` � 1g is a total orthonormal system in the function space L2(IR
d) and

L is a natural number. It is known that f';L ! Ædiag (in distribution sense) as

L!1: This leads to the projection estimator,

bppr = 1

MN

NX
n=1

MX
m=1

LX
`=1

'`

�
�X
(n)
t;x (t1)

�
'`

�
�Y
(m)
t1;y (T )

�
�Y(m)
t1;y (T ) =

LX
`=1

b�` b
`; (4.6)

with

b�` = 1

N

NX
n=1

'`

�
�X
(n)
t;x (t1)

�
; b
` = 1

M

MX
m=1

'`

�
�Y
(m)
t1;y (T )

�
�Y(m)
t1;y (T ):

The general properties of the kernel estimator are studied in Section 6 and the

projection estimator is studied in Section 7. As mentioned previously, by selecting

properly a weak scheme and step size h; approximate solutions of systems of SDEs

can be simulated su�ciently close to exact solutions. Therefore, in what follows we

do not distinguish between the process Xt;x(s); respectively (Yt1;y(s);Yt1;y(s)); and

their approximation �Xt;x(s); respectively ( �Yt1;y(s);
�Yt1;y(s)): Moreover, by skipping

these not really essential technicalities we may keep our exposition more transparent.
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Remark 4.1. In general it is possible to apply variance reduction methods to the

estimator bJ in (4.5), based on the extended representations (2.3)�(2.4) and (3.7)�

(3.8).

5 The explicit analysis of the forward-reverse kernel

estimator in a one dimensional example

We consider an example of a one dimensional di�usion for which all characteris-

tics of the forward-reverse kernel estimator introduced in Section 4 can be derived

analytically. For constant a; b; the one dimensional di�usion is given by the SDE

dX = aXdt+ bdW (t); X(0) = x; (5.1)

which is known for a < 0 as the Ornstein-Uhlenbeck process. By (3.5), the reverse

system belonging to (5.1) is given by

dY = �aY ds+ bdfW (s); Y (t) = y; s > t; (5.2)

dY = �aYds; Y(t) = 1: (5.3)

Both systems (5.1) and (5.2) can be solved explicitly. Their solutions are given by

X(t) = eat(x + b

Z t

0

e�audW (u))

and

Y (s) = e�a(s�t)(y + b

Z s

t

ea(u�t)dfW (u));

Y(s) = e�a(s�t);

respectively. It follows that

EX(t) = eatx; VarX(t) = b2e2at
Z t

0

e�2audu = b2
e2at � 1

2a
:= �2(t)

and, since the probability density of a Gaussian process is determined by its expec-

tation and variance process, we have X(t) � N (eatx; �2(t)). The transition density

of X is thus given by,

pX(t; x; s; z) =
1p

2��2(s� t)
exp[�(ea(s�t)x� z)2

2�2(s� t)
]: (5.4)

12



Similarly, for the reverse process Y we have Y (s) � N (e�a(s�t)y; e�2a(s�t)�2(s� t))

and so

pY (t; y; s; z) =
1p

2�e�2a(s�t)�2(s� t)
exp[� (e�a(s�t)y � z)2

2e�2a(s�t)�2(s� t)
]

is the transition density of Y .

We now consider the forward-reverse estimator (4.3) for the transition density (5.4),

where we take t = 0 and 0 � t1 � T . For simplicity, we don't deal with variance

reduction, i.e, we take h � 0 and F � 0. It follows that

pX(0; x; T; y) ' �N;M :=
e�a(T�t1)

MNÆ

MX
m=1

NX
n=1

Knm; (5.5)

where

Knm := K((eat1(x + b

Z t1

0

e�audW (n)(u))� e�a(T�t1)(y + b

Z T

t1

ea(u�t1)dfW (m)(u)))Æ�1)

= K((eat1x� e�a(T�t1)y + �(t1)U
(n) � e�a(T�t1)�(T � t1)V

(m))Æ�1) (5.6)

with U (n) and V (m) being i.i.d. standard normally distributed random variables.

Note that in general Æ in (5.5) and (5.6) may be chosen in dependence of both N

and M; so Æ = ÆN;M in fact. It is clear that (5.5) collapses to a classical (pure)

forward estimator or (pure) reverse estimator if t1 = 0; or t1 = T; respectively.

By choosing the Gaussian kernel

K(z) =
1p
2�

exp(�z
2

2
); (5.7)

it is possible to derive explicit expressions for the �rst and second moment of �N;M

in (5.5). In particular, for the expected value we have

E �N;M =
1p

2� (Æ2e2a(T�t1) + �2(T ))
exp[� (eaTx� y)2

2(Æ2e2a(T�t1) + �2(T ))
] (5.8)

and for the variance it follows that

Var (�N;M) = �N�M+1
2�MN(B+�2(T ))

exp[� A
B+�2(T )

]

+ M�1

2�MN
p
B+�2(T�t1)

p
B+2�2(T )��2(T�t1)

exp[� A
B+2�2(T )��2(T�t1)

]

+ N�1

2�MN
p
B+�2(T )��2(T�t1)

p
B+�2(T )+�2(T�t1)

exp[� A
B+�2(T )+�2(T�t1)

]

+ e�a(T�t1)

2�MNÆ
p
B+2�2(T )

exp[� A
B+2�2(T )

]: (5.9)
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with the abbreviations A := (eaTx � y)2; B := Æ2e2a(T�t1). Since in Sections 6

the forward reverse kernel estimator will be analysed quite general, we here sketch

the derivation of (5.8) and (5.9) just brie�y. It is convenient to use the following

standard lemma which we state without proof.

Lemma 5.1. Let U be a standard normally distributed random variable and let the

kernel K be given by (5.7). Then,

EK(p+ qU) =
exp[� p2

2+2q2
]p

2�(1 + q2)
:

In (5.5) the Knm are identically distributed and so (5.8) follows straightforwardly

by application of Lemma 5.1. The variance expression can be derived as follows.

We consider the second moment

E �2N;M =
e�2a(T�t1)

M2N2Æ2

MX
m=1

NX
n=1

MX
m0=1

NX
n0=1

EKnmKn0m0 (5.10)

and split the sum into four parts: n 6= n0 and m 6= m0; n = n0 and m 6= m0;

n 6= n0 and m = m0; n = n0 and m = m0. Then, to each part we apply Lemma 5.1

with appropriate substitutes for p and q: After collecting the results, (5.9) follows

by Var (�N;M) = E �2N;M � (E �N;M)2.

We now compare the bias and variance of (5.5) for 0 < t1 < T with the classical

cases t1 = 0 and t1 = T . The bias in (5.8) converges to zero for Æ # 0; since we have

E �N;M =
exp[� (eaT x�y )2

2�2(T )
]p

2��2(T )
(1 +O(Æ2)) = pX(0; x; T; y)(1 +O(Æ2)):

So, the bias is of order O(Æ2) and thus the same as in the classical situation for a

kernel given by (5.7). For t1 = T we obtain the classical pure forward estimator and

by substituting t1 = T in (5.9) we get the variance of the classical forward estimator,

Var (�t1=TN;M ) =
1

2�N

exp[�(eaTx�y)
2

Æ2+2�2(T )
]

Æ
p
Æ2 + 2�2(T )

� 1

2�N

exp[�(eaTx�y)
2

Æ2+�2(T )
]

Æ2 + �2(T )
; (5.11)

where M has dropped out since there is no reverse simulation in fact. Similarly, for

t1 = 0 we obtain the classical reverse estimator with variance

Var (�t1=0N;M ) =
e�aT

2�M

exp[� (eaTx�y)
2

Æ2e2aT+2�2(T )
]

Æ
p
Æ2e2aT + 2�2(T )

� 1

2�M

exp[� (eaTx�y)
2

Æ2e2aT+�2(T )
]

Æ2e2aT + �2(T )
; (5.12)

where now N has dropped out since we have only backward simulation. Now,

comparison of (5.9) with (5.11) or (5.12) leads to the following interesting conclusion.
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Conclusion 5.1. We consider the case M = N and denote the estimator for

pX(0; x; T; y) by �N . The width Æ will thus be chosen in relation to N; hence Æ

= ÆN . We observe that

E(�N � pX(0; x; T; y))
2

= E(�N �E �N)
2
+ (E �N � pX(0; x; T; y))

2; (5.13)

where "N :=
p
E(�N � pX(0; x; T; y))2 is usually referred to as the accuracy of the

estimation. From (5.13), (5.11) and (5.12) it is clear that for both pure forward

and pure reverse simulation (t1 = T or t1 = 0; respectively) we have "N # 0 when

N ! 1; if and only if ÆN ! 0 and NÆN ! 1. So, by (5.11) and (5.12) again we

have for the classical (forward or reverse) estimator

"2N = (
c1

NÆN
+ c2Æ

4
N )(1 + o(1)); NÆN!1 and ÆN # 0;

for some positive constants c1; c2. It thus follows that the best achievable accuracy

rate for the classical estimators is "N � N�2=5; which is attained by taking ÆN �
N�1=5.

We next consider the forward-reverse estimator which is obtained for 0 < t1 < T:

From (5.9) and (5.13) it follows by similar arguments that

"2N = (
d1

N
+

d2

N2ÆN
+ d3Æ

4
N)(1 + o(1)); NÆ2N!1 and ÆN # 0; (5.14)

for some positive constants d1; d2 and d3. So, from (5.14) we conclude that by using

the forward-reverse estimator the accuracy rate is improved to "N � N�1=2 and this

rate may be achieved by ÆN � N�p for any p 2 [1
4
; 1]!

6 Accuracy analysis of the forward-reverse kernel

estimator in general

In this section we study the properties of the kernel estimator (4.3) for the transition

density p = p(t; x; T; y) in general. Let r(u) be the density of the random variable

Xt;x(t1) , that is, r(u) = p(t; x; t1; u): Similarly, let q(u) be the density of Yt1;y(T )

and further denote by �(u) the conditional mean of Yt1;y(T ) given Yt1;y(T ) = u:

By the following lemma we may reformulate the representation for p in (4.2) and

J(f) in (4.4).
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Lemma 6.1.

p =

Z
r(u)�(u)q(u)du; (6.1)

J(f) =

Z
f(u; v)r(u)q(v)�(v) du dv: (6.2)

Proof. (6.1) follows from (4.2) by

p = E r (Yt1;y(T ))Yt1;y(T ) = E [r (Yt1;y(T ))E (Yt1;y(T ) j Yt1;y(T ))]
= E r (Yt1;y(T ))�(Yt1;y(T )) =

Z
r(u)�(u)q(u)du (6.3)

and (6.2) follows from (4.4) in a similar way.

For a kernel function K(z) in IRd and a bandwidth Æ , we put f(u; v) = fK;Æ(u; v) :=

Æ�dK((u� v)=Æ) and thus have by Lemma 6.1,

J(fK;Æ) =

Z Z
Æ�dK(

u� v

Æ
)r(u)q(v)�(v) du dv;

which formally converges to the target density p in (6.1) as Æ # 0: Following Sec-

tion 4, this leads to the Monte Carlo kernel estimator

bp =
1

ÆdMN

NX
n=1

MX
m=1

YmK

�
Xn � Ym

Æ

�
=

1

MN

NX
n=1

MX
m=1

Znm (6.4)

with

Znm := Æ�dYmK

�
Xn � Ym

Æ

�
;

where Xn := X
(n)
t;x (t1) 2 IRd , n = 1; : : : ; N , may be regarded as an i.i.d. sample

from the distribution with density r; the sequence Ym = Y
(m)
t1;y (T ) 2 IRd; m =

1; : : : ;M , as an i.i.d. sample from the distribution with the density q; and the

weights Ym = Y(m)
t1;y (T ); m = 1; : : : ;M; may be seen as independent samples from

a distribution conditional on Ym; with conditional mean �(y) given Ym = u: Below

we derive some properties of this estimator.

Lemma 6.2. We have

E bp = pÆ :=

Z Z
r(u+ Æv)q(u)�(u)K(v) du dv =

Z
rÆ(u)�(u)du

with

�(u) := q(u)�(u)
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and

rÆ(u) := Æ�d
Z

r(v)K
�
Æ�1(v � u)

�
dv =

Z
r(u+ Æv)K(v)dv:

Moreover, if the kernel K ful�lls
R
K(u)du = 1 , K(u) � 0 , K(u) = K(�u) for

all u 2 IRd ; and K(u) = 0 for juj > 1 , then the bias jp�E bpj satis�es
jp�E bpj = jp� pÆj � CKkr00kÆ2 (6.5)

with CK =
1

2

R
jvj2K(v)dv �

R
�(u)du and kr00k = supv kr00(v)k; where kr00(v)k is

the Euclidean norm of the matrix r00(v) =

�
@2r

@vi@vj

�
.

Proof. Since all Znm are i.i.d., by (4.4) it holds E bp = J(fK;Æ) = E Znm for every

n = 1; : : : ; N , and m = 1; : : : ;M . Hence, by Lemma 6.1,

E Znm = Æ�d
Z Z

r(u)q(v)�(v)K
�
Æ�1(u� v)

�
du dv

=

Z Z
r(u+ Æv)q(u)�(u)K(v) du dv = pÆ :

For the second assertion it is su�cient to note that the properties
R
K(v)dv = 1 ,R

K(v) v dv = 0; and K(v) = 0 for jvj > 1; imply

rÆ(u)� r(u) =

Z
r(u+ Æv)K(v) dv � r(u) =

Z �
r(u+ Æv)� r(u)� Æv>r0(u)

�
K(v)dv

=

Z
1

2
Æ2v>r00(u+ �(v)Æv)v K(v)dv

� 1

2
Æ2kr00k

Z
jvj2K(v)dv;

where j�(v)j � 1; and so

jpÆ � pj �
Z
jrÆ(u)� r(u)j�(u)du � CKÆ

2kr00k
Z

�(u)du:

Remark 6.1. The order of the bias jpÆ� pj can be improved by using higher-order

kernels for K . We say that K is of order � if it holds
R
uj11 : : : ujdd K(u)du = 0

for all nonnegative integer numbers j1; : : : ; jd satisfying 0 < j1 + : : : + jd � � .

Similar to the proof of Lemma 6.2 one can show that the application of a kernel K

of order � satisfying
R
K(u)du = 1; K(u) = 0 for juj � 1; leads to a bias with

jpÆ � pj � CÆ�+1; where C is some constant depending on r; q and K.
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Concerning the variance Var bp = E (bp�E bp)2 of the estimator (6.4) we obtain the

next result.

Lemma 6.3. It holds

Var bp =
1

NM
Æ�dBÆ +

M � 1

NM

Z
r(u)�2Æ(u)du+

N � 1

NM

Z
r2Æ(u)�2(u)q(u) du

�N +M � 1

NM
p2Æ ;

where

BÆ =

Z
rÆ;2(u)�2(u)q(u)du

with

�Æ(u) = Æ�d
Z

�(v)K
�
Æ�1(v � u)

�
dv =

Z
�(u+ Æv)K(v)dv;

rÆ;2(u) = Æ�d
Z

r(v)K2
�
Æ�1(v � u)

�
dv =

Z
r(u+ Æv)K2(v)dv;

�2(v) = E (Y2
1 j Y1 = v):

Proof. Since Znm and Zn0m0 are independent if both n 6= n0 and m 6= m0 , it

follows that

M2N2
Var bp = E

 
NX
n=1

MX
m=1

(Znm � pÆ)

!2

(6.6)

=

NX
n=1

MX
m=1

E (Znm � pÆ)
2 +

NX
n=1

MX
m=1

X
m0 6=m

(E ZnmZnm0 � p2Æ)

+

NX
n=1

X
n0 6=n

MX
m=1

(E ZnmZn0m � p2Æ):

Note that for m 6= m0 we have

E ZnmZnm0 = Æ�2d
Z Z Z

K
�
Æ�1(u� v)

�
K
�
Æ�1(u� v0)

�
r(u)�(v)�(v0)du dv dv0

= Æ�d
Z Z

K
�
Æ�1(u� v)

�
r(u)�Æ(u)�(v) du dv

=

Z
r(u)�2Æ(u) du

and, similarly, for n 6= n0 it follows

E ZnmZn0m =

Z
r2Æ (u)�2(u)q(u) du:
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Further,

E Z2
nm = Æ�2dE Y2

mK
2
�
Æ�1 (Xn � Ym)

�
= Æ�2dE

�
K2
�
Æ�1 (Xn � Ym)

�
E
�
Y2
m j Ym

��
= Æ�2d

Z Z
K2
�
Æ�1(u� v)

�
r(u)q(v)�2(v) du dv

= Æ�d
Z

�2(v)q(v)rÆ;2(v)dv

and so we get

Var bp =
Æ�dvÆ � p2Æ

NM
+
M � 1

NM

�Z
r(u)�2Æ(u)du� p2Æ

�
+
N � 1

NM

�Z
r2Æ (u)�2(u) q(u)du� p2Æ

�
from which the assertion follows.

Let us de�ne

B =

Z
K2(u)du �

Z
r(u)�2(u) q(u)du:

By the Taylor expansion

r(u+ Æv) = r(u) + Æv>r0(u) +
1

2
Æ2v>r00(u+ �(v)Æv)v;

one can show in a way similar to the proof of Lemma 6.1 that

jBÆ � Bj = O(Æ2); Æ # 0:

In the same way we get����Z r(u)�2Æ(u)du�
Z

r(u)�2(u)du

���� = O(Æ2); Æ # 0;����Z r2Æ(u)�2(u) q(u) du�
Z

r2(u)�2(u) q(u) du

���� = O(Æ2); Æ # 0:

Further, introduce the constant D by

D :=

Z
r(u)�2(u)du+

Z
r2(u)�2(u) q(u) du� 2p2:

Then, from Lemmas 6.1 and 6.3 the next lemma follows.

Lemma 6.4. For N = M we have����Var bp� D

N
� Æ�dB

N2

���� � C

�
Æ�d+2

N2
+
Æ2

N
+

1

N2

�
: (6.7)

In particular, if Æ =: ÆN depends on N such that Æ�dN N�1 = o(1) and ÆN = o(1) as

N !1, then ����Var bp� D

N

���� = o(1)

N
; N !1:
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Now, by combining Lemmas 6.1 and 6.4 we have the following theorem.

Theorem 6.1. Let N = M and Æ = ÆN depend on N: The following statements

hold:

1) If d < 4 and ÆN is such that

1

NÆdN
= o(1) and Æ4NN = o(1); N !1;

then the estimate bp (see (4.3) or (6.4)) of the transition density p = p(t; x; T; y)

satis�es

E (bp� p)2 = (pÆ � p)2 +Var bp =
D

N
+
o(1)

N
; N !1: (6.8)

Hence, a root-N accuracy rate is achieved (we recall that
p
E (bp� p)2 is the accu-

racy of the estimator). Besides in this case the variance is of order N�1 and the

squared bias is o(N�1).

2) If d = 4 and ÆN = CN�1=4, where C is a positive constant, then the accuracy rate

is again N�1=2 but now both the squared bias and the variance are of order N�1.

3) If d > 4 and ÆN = CN�2=(4+d), then the accuracy rate is N�4=(4+d) and both the

squared bias and the variance are of the same order N�8=(4+d).

Proof. Clearly, (6.5) and (6.7) imply (6.8). The conditions Æ�dN N�1 = o(1) and

NÆ4N = o(1) can be ful�lled simultaneously only when d < 4 . In this case one may

take, for instance, ÆN = N�1=d log
1=dN yielding Æ�dN N�1 = 1= logN = o(1) and

NÆ4N = N1�4=d log
4=dN = o(1) . By (6.5) the squared bias is then of order O(Æ4N) =

O(N�4=d log
4=dN) = o(N�1) for d < 4 . The statements for d = 4 and d > 4 follow

in a similar way.

Remark 6.2. We conclude that, by combining forward and reverse di�usion, it is

really possible to achieve an estimation accuracy of rate N�1=2 for d � 4 . Moreover,

for d > 4 an accuracy rate of root-N may be achieved as well by applying a higher

order kernel K .

In section 8 we will see that with the proposed choice of the bandwidth ÆN =

N�1=d log
1=dN for d � 3 and ÆN = N�2=(4+d) for d � 4 , the kernel estimator bp

can be computed at a cost of order N logN operations.
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7 The forward reverse projection estimator

In this section we discuss statistical properties of the projection estimator bppr from

(4.6) for the transition density p(t; x; T; y) . First we sketch the main idea.

Let f'`(x); ` = 1; 2; : : :g be a total orthonormal system in the Hilbert space L2(IR
d) .

For example, in the case d = 1 one could take

'l+1(u) =
1p

2ll! 4
p
�
Hl(u)e

�u2=2;

where Hl(u); l � 0; are the Hermite polynomials. In the d-dimensional case it is

possible to construct a similar basis by using Hermite functions as well. Consider

formally for r(u) = p(t; x; t1; u) (see Section 6) and h(u) := p(t1; u; T; y) the Fourier

expansions

r(u) =

1X
`=1

�`'`(u); h(u) =

1X
`=1


`'`(u); with

�` :=

Z
r(u)'`(u)du; 
` :=

Z
h(u)'`(u)du:

By (2.1), (3.1), and (3.4) it follows that

�` = E '`(Xt;x(t1)); (7.1)


` = E '`(Yt1;y(T ))Yt1;y(T ); (7.2)

respectively. Since by the Kolmogorov-Chapman equation (4.1) the transition den-

sity p = p(t; x; T; y) may be written as a scalar product p =
R
r(u)h(u)du we thus

formally obtain

p =

1X
`=1

�`
`: (7.3)

Therefore, it is natural to consider the estimator

bppr = LX
`=1

b�`b
`; (7.4)

where L is a natural number and

b�` := 1

N

NX
n=1

'`(Xn); b
` := 1

M

MX
m=1

'`(Ym)Ym (7.5)
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are estimators for the Fourier coe�cients �`; 
`; respectively. For the de�nition of

Xn; Ym and Ym; see Section 6. Note that (7.4)�(7.5) coincides with the projection

estimator introduced in (4.6).

We now study the accuracy of the projection estimator. In the subsequent analysis

we assume that the originating di�usion coe�cients a and � in (1.1) are su�ciently

good in analytical sense such that, in particular, the functions y0 ! p(t; x; t1; y
0)

and y0 ! p(t1; y
0; T; y) are squared integrable. Hence, we assume that the Fourier

expansions used in this section are valid in L2(IR
d): The notation introduced in

Section 6 is maintained below. We have the following lemma.

Lemma 7.1. It holds for every ` � 1

E b�` = �` =

Z
r(u)'`(u)du;

Var b�` = N�1
Var'`(X1) = N�1

�Z
'2
`(u)r(u)du� �2

`

�
=: N�1�`;2:

Similarly,

E b
` = 
` =

Z
'`(u)�(u)q(u)du;

Var b
` = M�1
VarY1'`(Y1) = M�1

�Z
�2(u)'

2
`(u)q(u)du� 
2`

�
=: M�1
`;2;

where �2(u) := E (Y2
1 jY1 = u).

Proof. The �rst part is obvious and the second part follows by a conditioning argu-

ment similar to (6.3) in the proof of Lemma 6.1.

Since the b�` and the b
`'s are independent, it follows by Lemma 7.1 that

E bppr = E LX
`=1

b�`b
` = LX
`=1

�`
`:

So, by (7.3) and the Cauchy-Schwarz inequality we obtain the next lemma for the

bias E bppr � p of the estimator bppr:
Lemma 7.2. It holds

(E bppr � p)
2
=

 
1X

`=L+1

�`
`

!2

�
1X

`=L+1

�2
`

1X
`=L+1


2` :
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By the following result we may estimate the variance of bppr . For convenience, we

restrict ourselves to the case N = M .

Lemma 7.3. Let (L+ 1)2 � N and the Fourier coe�cients �` and 
` satisfy the

conditions

1X
`=1

j�`j � C1;� ;

1X
`=1

j
`j � C1;
 (7.6)

max
`

�`;2 � C2;� ; max
`


`;2 � C2;
 : (7.7)

Then we have

N Var bppr � C

with C depending on C1;� ; C2;� and C1;
; C2;
 only.

Proof. Let us write

LX
`=1

b�`b
` � LX
`=1

�`
` =

LX
`=1

(b�` � �`)(b
` � 
`) +

LX
`=1

�`(b
` � 
`) +

LX
`=1

(b�` � �`)
`

=: I1 + I2 + I3:

The Cauchy-Schwarz inequality implies

E (I2)
2 = E

 
LX
`=1

�`(b
` � 
`)

!2

� E

 
LX
`=1

j�`j
LX
`=1

j�`j(b
` � 
`)
2

!

� C1;�

LX
`=1

j�`jE (b
` � 
`)
2 � C2

1;�C2;
N
�1

and similarly

E (I3)
2 = E

 
LX
`=1


`(b�` � �`)

!2

� C2
1;
C2;�N

�1:

The Cauchy-Schwarz inequality and independence of the b�`'s and the b
`'s imply

E (I1)
2
= E

 
LX
`=1

(b�` � �`)(b
` � 
`)

!2

� E

LX
`=1

(b�` � �`)
2
E

LX
`=1

(b
` � 
`)
2

� C2;�C2;
(L+ 1)2N�2 � C2;�C2;
N
�1:

Hence,

Var bppr = E (I1 + I2 + I3)
2 � (

p
E(I1)2 +

p
E(I2)2 +

p
E(I3)2)

2 � C

N

with C := 3(C2
1;�C2;
 + C2

1;
C2;� + C2;�C2;
):
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Application of lemmas 7.2 and 7.3 yields the following theorem.

Theorem 7.1. Let the Fourier coe�cients �` and 
` satisfy the condition

1X
`=1

�2
``

2�=d � C2
�;

1X
`=1


2` `
2�=d � C2


 (7.8)

with � > d=2 and let condition (7.7) hold true. Let also L = LN ful�ll L2
N=N =

o(1) , NL
�4�=d
N = o(1) as N ! 1. Then, for the accuracy of the estimator bppr

with N = M we have

E (bppr � p)
2 � CN�1:

Proof. Clearly,

1X
`=L+1

�2
` � (L+ 1)�2�=d

1X
`=L+1

�2
``

2�=d � C2
�L

�2�=d:

Similarly,
P1

`=L+1 

2
` � C2


L
�2�=d and so

N

 
1X

`=L+1

�`
`

!2

� C2
�C

2

NL�4�=d = o(1):

Next,  
LX
`=1

j�`j
!2

�
LX
`=1

�2
``

2�=d

LX
`=1

`�2�=d � C2
�

LX
`=1

`�2�=d � C2
�C�

with C� =
PL

`=1 `
�2�=d <1. Similarly 

LX
`=1

j
`j
!2

� C2

C�

and thus condition (7.6) holds with C1;� = C�C
1=2

� and C1;
 = C
C
1=2

� . Now the

assertion follows from Lemma 7.3.

Remark 7.1. In Theorem 7.1, � plays the role of a smoothness parameter. In-

deed, for a usual functional basis such as the Hermite bases, condition (7.8) is

ful�lled if the underlying densities p(t; x; t1; x
0) and p(t1; x

0; T; y) have square in-

tegrable derivatives up to order �. For � = 2 , the conditions L2
N=N = o(1) and

NL
�4�=d
N = o(1) can be ful�lled simultaneously only if d < 4; so we then have a

similar situation as for the kernel estimator in Section 6. In general, if (7.8) holds

for � > d=2; one may take LN = (N logN)d=(4�) in Theorem 7.1 thus yielding
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L2
N=N = N�1+d=(2�) log

d=(2�)N = o(1) and NL
�4�=d
N = log

�1N = o(1): However,

with respect to su�ciently regular basis functions (e.g. Hermite basis functions)

condition (7.8) is ful�lled for any � > d=2 when the densities p(t; x; t1; x
0) and

p(t1; x
0; T; y) have square integrable derivatives up to any order. So, according to

Theorem 7.1, one could take LN = O(N � ) for any 0 < � < 1=2 to get the desirable

root-N consistency. If, moreover, these densities are analytical one can proof that

even LN = O(logN) leads to root-N consistency. Generally it is clear that properly

choosing LN is essential for reducing the numerical complexity of the procedure, see

Section 8.

Remark 7.2. The conditions of Theorem 7.1 are given in terms of the Fourier

coe�cients �` and 
` . We do not investigate in a rigorous way how these conditions

can be transferred into conditions on the coe�cients of the original di�usion model

(1.1) and the chosen orthonormal basis. Note, however, that in the case of e.g. the

Hermite basis, both (7.7) and (7.8) follow from standard regularity conditions. For

instance, when the coe�cients of (1.1) are smooth and bounded, their derivatives

are smooth and bounded, and the matrix �(s; x)�>(s; x) is of full rank for all s; x .

8 Implementation of the forward-reverse estimators,

complexity of the estimation algorithms, numeri-

cal examples

In the previous sections we have shown that, both, the forward-reverse kernel and

projection estimator have superior convergence properties compared with the classi-

cal Parzen-Rosenblatt estimator. However, while the implementation of the classical

estimator is rather straightforward one has to be more careful with implementing

the forward-reverse estimation algorithms. This especially concerns the evaluation

of the double sum in (4.3) for the kernel estimation. Indeed, straightforward compu-

tation would require the cost ofMN kernel evaluations which would be tremendous,

for example, when M = N = 105! But, fortunately, by using kernels with an in some

sense small support we can get around this di�culty as outlined below.
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Implementation of the kernel estimator and its numerical com-

plexity

We here assume that the kernel K(x) used in (4.3) has a small support contained

in jxjmax � �=2 for some � > 0; where jxjmax := max1�i�d jxij: This assump-

tion is easily ful�lled in practice. For instance, for the Gaussian kernel, K(x) =

(2�)�d=2 exp(�jxj2=2); which has strictly speaking unbounded support, in practice

K(x) is negligible if for some i; 1 � i � d; jxij > 6 and so we could take for this

kernel � = 12: Then, due to the small support of K; the following Monte Carlo al-

gorithm for the kernel estimator is possible. For simplicity we take t = 0; t1 = T=2

and assume N = M . For both forward and reverse trajectory simulation we use

the Euler scheme with time discretization step h = T=(2L); with 2L being the total

number of steps between 0 and T:

Monte Carlo algorithm for the forward-reverse kernel estimator (FRE simulation)

� Simulate N trajectories on the interval [0; t1]; with end points

fX(n)(t1) : n = 1; : : : ; Ng; at a cost of O(NLd) elementary computations;

� Simulate N reverse trajectories on the interval [t1; T ]; with end points

f(Y (m)(T );Y(m)(T )) : m = 1; : : : ; Ng at a cost of O(NLd) elementary compu-

tations;

� Search for each m the subsample

fX(n
k
)(t1) : k = 1; : : : ; lmg := fX(n)(t1) : n = 1; : : : ; Ng

\ fx : jx� Y (m)(T )jmax � �ÆNg:

The size lm of this intersection is, on average, approximately NÆdN�{density
of X(t1) at Y

(m)(T )}. It is not di�cult to show that this search procedure can

be done at cost of order O(dN logN);

� Finally, evaluate (4.3) by

1

N2ÆdN

NX
m=1

lmX
k=1

K((X(n
k
)(t1)� Y (m)(T ))Æ�1N )Y(m)(T );

at an estimated cost of O(N2ÆdN ).
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For the study of complexity we use the results in Section 6. We distinguish between

d < 4 and d � 4: For 1 � d < 4 we achieve root-N accuracy by choosing ÆN =

(N= logN)�1=d. In practice, the number of discretization steps 2L (typically 100-

1000) is much smaller than the Monte Carlo number N; which is typically 105 -

106. Therefore, as we see from the FRE algorithm, with ÆN = (N= logN)�1=d the

FRE simulation requires a total cost of O(N logN): Hence, the aggregated costs

for achieving "N � 1=
p
N amounts O(N logN) which comes down to a complexity

Ckern
" � j log "j="2. For d � 4 we achieve an accuracy rate "N � N� 4

4+d by taking

ÆN = N� 2

4+d ; again at a cost of O(N logN). So the complexity Ckern
" is then of order

O(j log "j=" 4+d4 ). For comparison we now consider the classical estimator. It is known

that for N trajectories the optimal bandwidth choice is ÆN � N� 1

4+d ; which yields

an accuracy of "N � N� 2

4+d . The costs of the classical estimator amounts O(N)

and thus its complexity Cclass
" is of order O(1="

4+d

2 ). By comparing the complexities

C" and Cclass
" it is clear that the forward-reverse kernel estimator is superior to the

classical Parzen-Rosenblatt kernel estimator for any d.

Complexity of the projection estimator

From its construction in Section 7 it is clear that the evaluation of the projection

estimator (4.6) requires a cost of order O(LNN) elementary computations. Just as

for the kernel estimator, we now consider the complexity of the projection estimator.

In Remark 7.1 we saw that if condition (7.8) is ful�lled for a smoothness � with � >

d=2; we may choose LN = (N logN)d=(4�) which yields a complexity Cproj(") of order

O(log
d=(4�) j"j="2+d=(2�)): If, moreover, the densities p(t; x; t1; x

0) and p(t1; x
0; T; y) are

analytical and the basis functions are su�ciently regular then, (see Remark 7.1) we

get root-N accuracy by taking LN = logN and so we obtain a complexity of order

Cproj(") = j log "j="2 for any d: Obviously, compared to the classical estimator, the

projection estimator has in any case a better order of complexity when there exists

some � > 1 with � satisfying condition (7.8).

Numerical experiments

We have implemented the classical and forward-reverse kernel estimator for the one

dimensional example of Section 5. We �x a = �1; b = 1 and choose �xed initial

data t = 0; x = 1; T = 1; y = 0; for which p = 0:518831; see Figure 1.
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Figure 1: y ! p(t; x; T; y) for t = 0; x = 1; T = 1.

Let us aim to approximate the �true� value p = 0:518831 with both the forward-

reverse estimator (FRE for short) and the classical forward estimator (FE for short).

Throughout this experiment we choose t1 = 0:5 and M = N for the FRE and the

FE is simply obtained by taking t1 = 1. For the bandwidth we take ÆFEN = N�1=5 and

ÆFREN = N�1; yielding variances �2FE � C1N
�4=5 and �2FRE � C2N

�1; respectively.

It is clear that �FE may be estimated directly from the density estimation since the

classical estimator is proportional to a sum of N independent random variables. As

the forward-reverse estimator is proportional to a double sum of generally dependent

random variables it is, of course, strictly not correct to estimate its deviation in the

same way by just treating these random variables as independent. However, the

result of such an, in fact, incorrect estimation, below denoted by ��; turns out to be

roughly proportional to the correct deviation �FRE. To show this we estimate �FRE

for N = 102; 103; 104; respectively, by running 50 FRE simulations for each value of

N and then compute the ratios � := �FRE=�
�; see Table 1. The SDEs are simulated

by the Euler scheme with time step �t = 0:01.

N �FRE �� �

102 0.068 0.050 1.4

103 0.021 0.015 1.4

104 0.007 0.005 1.4

Table 1 : 50 FRE simulations

So, in general applications we recommend this procedure for determination of the

ratio � which may be carried out with relatively low sample sizes and allows for

simple estimation of the variance �2FRE. If, for instance, we de�ne the Monte Carlo
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simulation error to be two standard deviations, the Monte Carlo error of the forward-

reverse estimator may be approximated by 2���.

In this article we did not address the time discretization error due to the numerical

scheme used for the simulation of the SDEs. In fact, this is conceptually the same as

assuming that we have at our disposal a weak numerical scheme of su�ciently high

order. We note that if a relatively high accuracy is required in practice, the Euler

scheme turns out to be ine�cient, as it involves a high number of time steps which

yields in combination with a high number of paths a huge complexity. Fortunately,

in most cases it will be su�cient to use a weak second order scheme, for instance,

the Talay Tubaro method [13]. The application of this method comes down to

Richardson extrapolation of the results obtained by the Euler method for time step

2�t and �t; respectively. However, we have to take into account that the deviation

of this extrapolation, and so the Monte Carlo error, is
p
5 times higher. In the

experiments below we compare the forward-reverse estimator with the classical one

for di�erent sample sizes. For both estimators FRE and FE we use the weak order

O((�t)2) method of Talay-Tubaro with time discretization steps �t = 0:02 and

�t = 0:01:

N FRE 2�FRE �2FREN (sec.) FE 2�FE �2FEN
4=5 (sec.)

104 0.522 0.031 2.40 2 0.524 0.036 0.51 2

105 0.519 0.010 2.50 20 0.515 0.016 0.64 18

106 0.5194 0.0031 2.45 203 0.5164 0.0064 0.65 183

107 0.5193 0.0010 2.50 2085 0.5171 0.0026 0.68 1854

Table 2 : true p = 0:518831.

From Table 2 it is obvious that for larger N the forward-reverse estimator gives a

higher Monte Carlo error than the pure forward estimator while the computational

e�ort involved for the FRE is only a little bit larger. For example, the FRE gives

for N = 106 almost the same Monte Carlo error as the FE for N = 107: Moreover,

due to the choice ÆN = N�1 in the FRE, the bias of the FRE is O(N�2) and so

negligible with respect to its deviation being O(N�1=2): Unlike the FRE, with the

usual choice ÆN = N�1=5 the bias of the FE is of the same order as its deviation and

so its overall error is even larger than its Monte Carlo error displayed in Table 2.
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