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Abstract

Parabolic differential inclusions with convex constraints in a finite-dimensional
space are considered with a small “diffusion” coefficient € in the elliptic term.
This problem arises for instance in multicomponent phase-field systems. We
prove the strong convergence of solutions as € — 0 to the solution of the singu-
lar limit equation and show the connection to elementary hysteresis operators.

1 Introduction

This paper is motivated by problems arising in phase transition models described
by systems of equations involving parabolic inclusions of the form

wy — e Aw + 0l g(w) > y(w,u’) for (z,t) € Qr :=Qx]0,T] (1.1)

with appropriate initial and boundary conditions, where Q C R" is a Lipschitzian
domain, A is the Laplace operator in 2, 0l is the subdifferential of the indicator
function Ix of a convex closed set K € RY, w: Qr — RY is the unknown func-
tion, u® : Qr — R’ is a control variable, v : K x R® — RY is a given Lipschitz
continuous mapping, and € > 0 is a small constant. This ‘diffusion’ parameter ¢ is
often physically controversial, and its value cannot be identified in a straightforward
way. A natural question therefore concerns the stability of the model with respect to
the transition € — 0+. The case N =1 and K = [0, 1] was solved in [2]|, where w
played the role of order parameter (phase fraction) and u® was the inverse tempera-
ture in a phase-field system of Penrose-Fife type. The well-posedness of phase-field
systems with a vector order parameter in the limit case € = 0 in a hysteresis setting
has been established in [6, 7|. The idea consists in reformulating the inclusion (1.1)
as an equation involving the so-called stop operator with characteristic K with a
possible extension to more general hysteresis operators.

This is also our strategy here. We propose a ‘hysteresis’ framework for the transition
e — 0+, and show that solutions of Eq. (1.1) converge strongly in the L?-norm to
the solution of the formal limit equation provided {u®} converges strongly to u°.

The paper is divided into Sections 2 — 5. In Section 2 we state Theorem 2.2 as our
main result. Section 3 is devoted to a short survey of basic concepts from convex
analysis, in Section 4 we give an overview of results on the stop operator, and using
a suitable penalty approximation of Olx, we justify a formal integration-by-parts
formula in Lemma 4.2 which constitutes a substantial step in our argument. This
result is of independent interest for applications in the theory of partial differential
equations with hysteresis. The proof of Theorem 2.2 is given in Section 5.
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2 Statement of the problem

Throughout the paper, we make the following hypotheses with fixed integers n, N, £ €
N.

Hypothesis 2.1

(i) 2 C R™ is a bounded open domain with a Lipschitzian boundary, T > 0 is a
given final time, and we set Qr := Qx 0,7 ;
(ii) 0 € K C RY is a given convex closed (not necessarily bounded) set;
(iii) o € WERH(RY), o(z) € K fora.e. z€Q;

(iv) u® € L*(Qr;RY) for all e > 0, u® — u® strongly in L*(Qr;RY) as e — 0+;

)
)
)
(v) There exists a constant L > O such that the function v : K x R® — RN
satisfies the inequality

y(w,w) — (w0, @) < L(lw—@|+|u—a|) YwbeK, u,i€R. (2.1)

Under the above hypotheses, we consider the system

wy —e Aw + 0Ig(w) 2 y(w,u®) for a.e. (z,t) € Qr, (2.2)
(;_1:) =0 for a.e. (z,t) € 90x]0,T], (2.3)
w(z,0) = p(z) for a.e. z€Q. (2.4)

We rewrite Eq. (2.2) in the form
w(z,t) € K for a.e. (z,t) € Qr, (2.5)
(wg — e Aw — y(w,u®),z—w) >0 a.e. Vze K, (2.6)
where (-,-) is the Euclidean scalar product in R .

The main result of this paper can be stated as follows.

Theorem 2.2 Let Hypothesis 2.1 hold. Then Problem (2.3) — (2.6) has for every
e > 0 a unique solution w = w® € L*(Qr;RY) such that we, Aw® € L?(Qp;RY),
Problem (2.4) — (2.6) has a unique solution w = w® € L%(Qr; RY) such that w? €
L2(Qr;RY) for e =0, and we have

T
lim g/ /||Vw5||2dxdt =0, (2.7)
e—0+ 0 Q

lim sup [ |w®—w’*(z,s)dz = 0, (2.8)

e—>0+ SE[O,T} 9]

where || - || denotes the norm in R™



3 Convex sets

In this section, we recall some elements of convex analysis which are needed in the
sequel. We use the notation from Part II of [3].

For any r > 0 we denote by B,(z) the ball in R" centered in z, € R" with radius
r. By P,Q : RY — RY we denote the projection pair associated with K according
to the formula

z2=Pz+Qz, Qze K, |Pz|=dist(z K) Vz e RN. (3.1)
We then have
(Pz,Qz—¢()>0 VzeRY, Y(eK, (3.2)
in particular
<P21 — PZQ, QZl — Q22> Z 0 Vzl,ZQ S RN . (33)

We further introduce the Minkowski functional (or gauge) of the set K by the
formula

1
M(z) := inf{s>0; —zEK} for z € RV, (3.4)
s

The subdifferential M (z) of M at a point z € Dom (M) := {z € RV ; M(2) < oo}
is defined in a usual way as the set of all y € RY such that

(y,z— %) > M(z) — M(3) VieRY. (3.5)

We list the following straightforward consequences of (3.4), (3.5).

Lemma 3.1 The mapping M : RY — [0, 00] is convez, and we have

|M(2) — M(25)| < M(21 — 25)  Vz1,20 € RY, (3.6)
M(Az) =AM(2) VzeRY vA>0, (3.7)
OM(\z) = OM(z)  Vz € Dom (M) VA >0, (3.8)
(y,2) = M(z) ¥z € Dom (M) Yy € dM(z), (3.9)

where we set M(z) := max{M(z), M(—z)} for z € RN . If moreover B,(0) C K C
Bg(0) for some R >r >0, then

|—;| < M(z) < |ri| Vz € RY. (3.10)

The following result is on approximation of the domain K by smooth bounded
convex sets.



Lemma 3.2 For § > 0 put Ks:= KN Bys(0), Ks:= K; + Bs(0). Let Ms be the
Minkowski functional associated with Ks. Then OMjs(z) contains for every z # 0
a single point denoted again by OMs(z), and we have

OM;(z)] < 1/6  Vz#0, (3.11)
|8M5(251) — 8M5(252)| < (578(1 + 2(53)2|21 — 22| VZl, 29 € RN \ Int K5 . (312)

Proof. Let us first note that Bs;(0) C K5 C Bsy(1/52)(0), and (3.10) yields that

62
— 312 < Ms(2) <

N
R || Vz e RY. (3.13)

| =

Let Ps,Qs be the projections associated with Kjs according to (3.1), and let z €
0Kj5, ¢ € K; be arbitrary. We then have |Psz| = §, |Ps¢| < 4, and from (3.2) we
obtain that

<P§Z, z — C> = <P52, Q(;Z - Q5C> + <P§Z, P(;Z - P,5<> Z 0. (314)

Assume that a unit vector 7 € RY belongs to the outward normal cone to Kj at
the point z, that is, (n,z — &) > 0 for every £ € Ks5. Then putting £ := Qsz + 07
we obtain that 6 < (Psz,n), hence n = (1/6)Psz. We thus conclude that vs(z) =
(1/0)Psz is the uniquely determined unit outward normal to K at the point z, and
by (3.3) we have

1
lvs(z1) — vs(22)] < 5 |21 — 22| V21,29 € 0K . (3.15)

By (3.5), (3.9) we have

1/5(2)
(v5(2), 2)

where (3.14) with ¢ = Psz implies that (v5(z),z) > 6. From (3.8) we thus obtain
that for z # 0 we have |0M;(z)| = |[0Ms(z/Ms(2))| < 1/6, and (3.11) follows.

To prove (3.12), consider z;,2, € RY \ Int K, and put 2, := 2z /M;s(z) € 0K,
%3 := 23/Mjs(22) € OK;. Then |2;| < (14 6%)/6%, Ms(z;) > 1 for i = 1,2. By (3.8)
we have that

8M5(Z) = Vz € 8K5, (316)

|OMs(z1) — OMs(z2)| = |0M5(21) — OMs(22)|

1 R JURR R JUNER
< 52 ws(21) (vs(22), 22) — vs(22) (vs(21), 21)]
1
< 2 ([(vs(22), 21 — 22)| + |vs(21) (Vs(22), 21) — vs(22) (vs(21), 21)|)
1 1
< 5 (|21 — 22| + |21||vs(21) — vs(22)]) < ﬁ(l + 263)|21 — %3], (3.17)
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where we used (3.15) and the elementary inequality
1
[(b.c)a— (a,c) bl < LJa—bl[a+ )

for every a,b,c € RY | |a| = |b| = |c| = 1. Furthermore, (3.6) and (3.10) yield that

. . R 1
131 — 2] < (121 — 2l + 21 My(21 — 22)) < (2 v —) -],  (3.18)

1
MJ(ZQ) (53

and the proof follows easily. [ |

In the next section we apply the penalty argument based on the following Lemma.

Lemma 3.3 For any 6 > 0 we define the functional s : RY — [0,00[ by the
formula

(M;s(2) — 1) N
— R™\ K,
\115(2) = M(;(Z) fOT Z€ \ > (319)
0 for z€ Ky.
Then VU5 is a conver functional of class C', and its derivative
M, 1- RY\ K,
Us(2) = Oy(2) = { OMol?) ( Mg(z)) for z€RT\K;, (3.20)
0 for z € K

is a bounded monotone Lipschitz continuous mapping from RY into RV .

Proof. We only have to check that s is Lipschitz continuous, that is, find a
constant Ls > 0 such that
s(21) — ¥s(22)| < Ls|lzs — 20| Va1, 22 € RV (3.21)

Let 21,2 € RY be arbitrary. Inequality (3.21) is trivial if both 2, z, belong to Kj.
If both 21,25 € RV \ Kj, then M;s(z;) > 1 for i = 1,2, and using Lemma 3.2 we
obtain that

[Vs(21) — ¥s(22)|

IN

(1 _ ﬁ) OMy(21) — OMy(22)

]\45(21)2 - M5(22)2
M5(21)2M5(22)2

+|0M;s(21)]

2
S |8M5(21) — 8M5(22)| + SM,;(Zl — 22)

< (2672406781 +20°?) |21 — 2l (3.22)



hence (3.21) holds. Finally, if z; ¢ Kj, 2o € K5, then

M, 21 2
) ~ (el < 10Ms(an)| T < S a(an) — 1)
2 2 _ 2
S S(Mg(zl) — MJ(ZQ)) S SMJ(ZI — 252) S ﬁ|Z1 — 252|, (323)

and Lemma 3.3 is proved. [ |
4 The stop operator
Let us first consider the variational inequality

w(t) € K vVt € [0,T], (4.1)

w(0) = ¢, (4.2)

(W(t) —o(t),z—w(t)) >0 ae VzEK, (4.3)

independently of the space variable z, assuming that v € W1(0, T; RN) and p € K
are given, and denoting by a dot the derivative with respect to ¢.

The solution operator
Sk : K x W0, T;RY) — W'(0,T; RY)

defined by the formula Sk[y, v](t) := w(t) for t € [0,T] constitutes one of the main
building blocks in the theory of hysteresis operators, and its analytical properties
have been studied in detail in [4, 8, 1, 5] in connection with complex hysteresis
models.

We list here only a few results which are needed in the sequel. In particular, if
v, 01,3 € WH(0,T; RY) are input functions, ¢, ¢, p; € K are initial conditions,
and w,wy, wy; € WH(0,T;R") are the corresponding solutions to (4.1) — (4.3),
w(t) = Sklp,v|(t), wi(t) = Sk[es,vi](t), i = 1,2, then we have

()] < [o(t)] ae. (4.4)
(01(t) — 9a(8), wi(t) — wa(t)) > %%|w1(t)—w2(t)|2 ae. (4.5)

From (4.5) it follows in particular that Sx maps the set K xW(0, T; RY) Lipschitz
continuously into C([0,7];RY). This rough property will be sufficient here due
to the regularizing effect of the parabolic equation. In other applications, finer
continuity results are required, and we refer the reader e.g. to [5].

We now define the output of the stop for input functions ¢(z), v(z,t) depending
also on z, using the same symbol Sk for the mapping

Skle,v)(z,t) = Skle(z), v(z,)](t)
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whenever ¢(z) € K and v(z,-) € W10, T;RY).

Especially, if ¢ € C(Q; K), and v € C(Q; W"1(0,T;RY)), then (4.5) yields that
w = Sklp,v] € C(Qr). If v € LI W(0,T;RY)) for some 1 < ¢ < oo and
¢ € L1(Q; K), then by density of C(Qr) in L%(0,1;C([0, T]; R"Y) we conclude that
w as a mapping Q — C([0, T]; RY) is strongly measurable, and (4.5) entails that the
operator Sk : L1(; K) x Li(Q;W(0,T;RY)) — L4(Q;C([0,T); K)) is Lipschitz
continuous.

We are now ready to solve Problem (2.4) — (2.6) for ¢ = 0.

Lemma 4.1 Let Hypothesis 2.1 hold. Then there exists a unique w® € L*(Q;
C ([0, T); RY)) such that w? € L*(Qr;RY), and

w(z,0) = ¢(z) for a.e zTE Q, (4.6)
w(z,t) € K for a.e. (z,t) € Qr, (4.7)
(w) —y(w®,u®),z —w’) >0 a.e. Vze K. (4.8)

Proof. We define theset U := {z € Q; u’(z,-) € L?(0, T;RY)} C Q, meas (Q\U) =
0. For fixed x € U we consider the equation

vy (2,t) = ¥(Sklp(z), v'(z,)](t), u"(z, 1)),  ©°(z,0) =0. (4.9)
We define a mapping G, : L'(0,T;RY) — L'(0,T;RY) in the following way. For
an arbitrary ¢ € L*(0,T;R"Y) and ¢ € [0,T] put

o(t) = Atg(f) dr. (4.10)

Go[C](t) = v(Skle(z),](t), v’ (z,1)). (4.11)

Then v°(z,t) := v(t) given by (4.10) is a solution of (4.9) if and only if ¢ is a fixed
point of the mapping G, . For each (i, ¢ € L*(0,T;R") we have by Hypothesis 2.1
(v) and inequality (4.5) that

2ee7|G,[G(¢) — Go[G]()] < L|Sk(e(z), v1](t) — Skle(z), va](¢)]
< 2L/0 C1(7) — Golr)| dr . (4.12)

Denoting by G¥ the k-th iteration of G,, that is, GL = G,, G*'! = G,[G*] for
k=1,2,..., we easily obtain by induction that

(2L)ktkfl

GHal - el < T [Mam —aldr, (@19

hence G* is a contraction for sufficiently large k. By the Banach Contraction
Principle, G, admits a unique fixed point ¢ € L'(0,T;R"), hence Eq. (4.9) has a
unique solution, and the function

w’ = Sk[p, v°] (4.14)
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has the properties (4.6) — (4.8). The uniqueness is obtained in a standard way:
let w® 1w be two solutions. Putting z := (1/2)(w’ + @w°) in the inequality (4.8)
successively for w® and w° and summing the resulting inequalities up, we obtain
the assertion from the Gronwall argument. Using (4.9), (4.4), and again Gronwall’s
inequality, we easily check that v°,v?,w® w? € L2(Qr;RY), and Lemma 4.1 is
proved. [ |

The main result of this section which will play a crucial role in the proof of Theorem
2.2 reads as follows.

Lemma 4.2 Let Hypothesis 2.1 (i) - (iii) hold, and let v,w € L*(Qp;RY) be such
that

(i) v, Aw € L*(Qp;RY),
(i) w = Sklp, ],
(iii) Ow/Ov(z,t) =0 for a.e. (z,t) € O0x]0,T].

Then for every s € [0,T] we have that

—/ / (ve, Aw) (z,t) dz dt > —(/ |Vwl|?(z, s dﬂ?—/ IVel|?(z dx) (4.15)

Proof. We introduce the function f := v, — Aw € L?(Qr;R"Y). Inequality (4.15)
can be written equivalently in the form

s 1
/ /|vt|2d:1:dt—|—§/||Vw||2(:z: s)dz < —/||w|| d:z:+/ / (v, f) dz dt
0 JQ Q

(4.16)
for every s € [0,T].
Using Lemma 3.3, we consider the penalized problem
w® = Aw® 4 L (w®) = in Qr,
Sw®
Yoo on 90x10,T7, (4.17)
Ov
w® (z,0) = p(z) in Q

with the intention to let  tend to 0+. The mapping s is for every fixed § >
0 bounded, monotone, and Lipschitz continuous, hence Problem (4.17) admits a
unique solution w® € L2(Qr;RY) such that 0! Aw® ¢ L*(Qr;RY). In order
to derive suitable a priori estimates, we denote by C4,Cs,... any positive constant
independent of §.



Testing Eq. (4.17) by wt(é) we see that the identity

/s/ |wt(5)|2(g;,t)dxdt + /<1||Vw(6)||2+1\p5(w(5))> (z,s) dz (4.18)

/6\1:,5 ) de + /||Vg0 )|[2dz + // (z,0) dz dt,

holds for every d > 0 and s € [0,T]. Let us check that

tim [ %\I!(;(go(x))dx _ 0. (4.19)

=0+ JQ

Indeed, for § > 0 we define the sets
Fs:={zcQ; |p(x)| >0 ?%}. (4.20)

By the Sobolev Embedding Theorem, ¢ € LP(Q2) for some p > 2 (more precisely,
p=2n/(n—2)if n >3, p> 2 arbitrary if n <2). This yields that

Ci > / lo(z)|P dz > 6§ *Pmeas (Fj) ,
Fs

hence meas (F5) < C;§%. By definition of ¥, we have Us(p(z)) = 0 whenever
o(z) < 672, This yields that

[ 3Uste@)ds = [ SUe@)de < 5 [ Mile@)ds < 5 [ lo(@)do

Fs5 0

1/
< 672 (/ |s0(a:)|”da:) p(meas(Fg))(p_l)/p < 0, 6%P72) (4.21)
Fs

and (4.19) follows. Using the Cauchy-Schwarz inequality we thus obtain for every
s € [0,T] the estimate

s 1
/ /|wt(5)|2(:z:,t)d:1:dt+/ (||Vw(5)||2+5\115(w(5))> (z,8)de < C3. (4.22)
0 Jo Q
We further test Eq. (4.17) by —Aw(®). Then we have
/||Vw (z,s)dz + //(|Aw 2 4 <<w5( ),Vw<5>>>) (2, ) de dt

< §/Q||Vg0(x)||2dx 4 /()S/Q<Aw(‘5),f>(x,t)dxdt, (4.23)

where ((-,-) denotes the scalar product in R™™. The monotonicity and Lipschitz
continuity of s entails that

/OS/Q«V@bg(w(‘s)),Vw(‘s)» (z,t)dzdt > 0,



and we obtain the estimate

// (1w + |Aw®2) (x,t)dxdt—l—/ Vo @ |2(z,8)dz < Cy.  (4.24)
0 JO Q

We finally test Eq. (4.17) by w'® + Lys(w®) and obtain analogously as above that

I

2

1 1
o + 50s(w?)| @) dzdt + 5 [ [Vu|P(e,s)do (4.25)

< %/QHVgo(x)H?dx + /05/9<w§5>+§¢5(w<6>),f> (2,1) dz dt .

Combining the above estimates we conclude that for every s € [0, 7] we have

/(||Vw<6>||2+§xp5(w<5>)) (z,5)dz < Cs,  (4.26)
Q

/O/Q (‘wﬁ‘”\er Aw®] + \%wa(w@”)

2) (z,t)dedt < Cs. (4.27)

We now let § tend to 0+. Passing to a subsequence, if necessary, we find functions
¥, w € L*(Qr; RY) such that w;, Aw € L*(Qr; RY), and

1 _
W = @, Aw® = A, S1ﬁ5(w(5))—>¢ weakly in L2(Qr; RY), (4.28)
w® — @ strongly in L*(Qpr;RY). (4.29)

Consequently, the function w satisfies the same initial and boundary conditions as
w. We now use (4.26) to check that w(z,t) € K a.e. To this end, assume that
there exists a set A C Qr, meas(A4) > 0, such that w(z,t) ¢ K for (z,t) € A.
Putting for £ € N

Ag = {(z,t) € A; |w(z,t)| <k, dist (0(z,t),K) > 1/k},

we have A = U2 Ay, hence there exist u > 0 and kg € N such that meas (4,) =
u>0. Put

T
K(5) ;:/0 /Q|w<5>—w|2(x,t)dxdt.

Then lims_ o, k(0) = 0, and we may find d, > 0 such that

k(6 < £ for 6<6,. (4.30)
82

Put Bs := {(z,t) € Qr; |w® (z,t) — w(z,t)] > 1/(2ko)}. Then
meas (Bs) < 4k2k(8) < g for § <y, (4.31)

10



and there exists a set A C Ay,, meas(A) > u/2, such that

1 i
w®(z,t) —w(z,t)] < —  V(z,t) €A V5 <6y,

2k,
hence .
dist (w® (z,t), K) > T V(z,t) € A V6 < 6,
0
and

1

dist (w® (z,t), K5) > T V(z,t) € A V8 <6 := min{dy, 1/(4ko)} .

0

We have [w® (z,t)| < ko + 1/(2ko) for (z,t) € A and & < 6;, hence

1 —
(1 — m) w(z,t) ¢ Int K5 Y(z,t) € A VY6 <6y.

This yields for every (z,t) € A and 6 < §; that

1
+ o
4k3 + 1

\Il,g(w(’s)(x, t)) > 1

Ms(w®(z. 1)) > 1
sz, 1)) = = U2+ 1)k 1 2)°

which contradicts (4.26), and we thus checked that @w(z,t) € K a.e.
We continue by putting

o(z,t) = v(x,O)—I—w(x,t)—i—/Ot@Z(x,T) dr.

We see that 1
w + Ss(w®) > 7 weakly in L*(Qr RY),

and passing to the limit in (4.17), (4.25) we obtain that
v —Aw = fa
s 1
/0 [l|ﬁt|2 dz dt + §L||Vw||2(x, s)dx

5 [IvelP@ e+ [* [ (o0, f) dwd.

IN

We now claim that
1 -
<5¢5(w(5))’w(a) — 12)> >0 a.e. Yw e Ky.

Indeed, if w®(z,

(0Ms(w) (z, ), w (z,t) — i) > My(w® (,t)) — Ms() >0,

11

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

t) € K5, then 95(w®(z,t)) = 0, and if w®(z,t) ¢ K, then we
have that M;(w®(z,t)) > 1. The definition of the subdifferential yields that

(4.42)



and (4.41) follows. Passing to the limit in (4.41) we obtain that
(0 — Wy, w —w) > 0 a.e. Yo e K, (4.43)
that is, W = Sk[p, 7]. Testing the identity
vy — U = A(w — W) (4.44)

by w — w and using the inequality (4.5) we conclude that w = w, v = 7, and the
assertion follows from (4.40) and (4.16). ]

5 Proof of Theorem 2.2

The existence and uniqueness result for € = 0 has been established in Lemma 4.1.
For each fixed € > 0, the unique solution can be constructed by the penalty method
with the same penalty function s as in the proof of Lemma 4.2 and we do not
repeat the standard argument here. Instead, we derive a priori estimates which will
enable us to pass to the limit as € — 04. We continue to denote by C; any positive
constant independent of €.

Put v*(z,t) := [j (e Aw® +~y(ws, uf))(z, 7) d7 for (z,t) € Qr. By (2.6) we then have
w® = Sk, v?] according to the notation introduced in Section 2, and we obtain
that

vy —e Aw® = y(w,u°) a.e. forall e>0 (5.1)

analogously as in the proof of Lemma 4.1 for € = 0.

Lemma 4.2 enables us to test Eq. (5.1) for ¢ > 0 by vf, and obtain for every
s €[0,T] that

// e 2, £) dz dt + a/ 1Vwd|2(z, ) dz (5.2)
0 JO Q

< e [IVel@)do+ [ [ ', u)P(e, 1) dedt

Ch <1+/05/9|w5|2(:1:,t)d:1:dt>.

From (4.4) and the Gronwall argument we thus obtain for every s € [0,7] the
estimate

IN

I [ (2 i+ o) (@, ) dodt + & [ [ Vuf|P(z,5)de < Cs. (5.3)
0 JQ Q
From (5.1) and (5.3) it further follows that

T
52/ /|Aw6|2(x,t)dxdt < Cy. (5.4)
0 Q
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Let 7: Qr — RY be any smooth test function. We have by (5.2) that

T T
/Qg<Awf,n> dmdt‘ < \/5/ /Q\/gnvwfn V|| dz dt (5.5)
0 0

Veau [ ([ 1enaz) "

Together with (5.4), (5.2) this yields that

IN

eAw® — 0 weakly in L*(Qr;RY) as ¢ =0+ . (5.6)

The last step of the proof consists in testing Eq. (5.1) by w® — w® with w°® as in
Lemma 4.1. We then obtain for s € [0,7] that

/OS/Q@? — o), w" — u°) (,1) dxdt—i—s/os/ﬂ Ve |*(z, ¢) da dt
= _/5/ 6<Aw5,w0> (z,t) dz dt
+/ / — y(w’,u), w — w°) (z,t) dz dt . (5.7)

Using (4.5) and Hypothesis 2.1 (v) we conclude that
1 s
5/Q|wf—w°|2(x,s) dz + 8/0 /Q||Vw5||2(:z:,t) dz dt
= /s/ £ <Aw6, w0> (z,t)dz dt
0

+Ciy (/ /|w >(z,t)dzdt + //|u xt)dmdt) (5.8)

for every s € [0,7]. In order to pass to the limit in (5.8) as ¢ — 0+, it suffices to
use (5.6), Hypothesis 2.1 (iv), and Gronwall’s argument. The proof of Theorem 2.2
is thus complete. [ |
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