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Abstract

Parabolic di�erential inclusions with convex constraints in a �nite-dimensional

space are considered with a small �di�usion� coe�cient " in the elliptic term.

This problem arises for instance in multicomponent phase-�eld systems. We

prove the strong convergence of solutions as "! 0 to the solution of the singu-

lar limit equation and show the connection to elementary hysteresis operators.

1 Introduction

This paper is motivated by problems arising in phase transition models described

by systems of equations involving parabolic inclusions of the form

wt � "�w + @IK(w) 3 
(w; u") for (x; t) 2 QT := 
� ]0; T [ (1.1)

with appropriate initial and boundary conditions, where 
 � R
n is a Lipschitzian

domain, � is the Laplace operator in 
 , @IK is the subdi�erential of the indicator

function IK of a convex closed set K � R
N , w : QT ! R

N is the unknown func-

tion, u" : QT ! R
` is a control variable, 
 : K � R

` ! R
N is a given Lipschitz

continuous mapping, and " > 0 is a small constant. This `di�usion' parameter " is

often physically controversial, and its value cannot be identi�ed in a straightforward

way. A natural question therefore concerns the stability of the model with respect to

the transition "! 0+ . The case N = 1 and K = [0; 1] was solved in [2], where w

played the role of order parameter (phase fraction) and u" was the inverse tempera-

ture in a phase-�eld system of Penrose-Fife type. The well-posedness of phase-�eld

systems with a vector order parameter in the limit case " = 0 in a hysteresis setting

has been established in [6, 7]. The idea consists in reformulating the inclusion (1.1)

as an equation involving the so-called stop operator with characteristic K with a

possible extension to more general hysteresis operators.

This is also our strategy here. We propose a `hysteresis' framework for the transition

"! 0+ , and show that solutions of Eq. (1.1) converge strongly in the L2 -norm to

the solution of the formal limit equation provided fu"g converges strongly to u0 .

The paper is divided into Sections 2 � 5. In Section 2 we state Theorem 2.2 as our

main result. Section 3 is devoted to a short survey of basic concepts from convex

analysis, in Section 4 we give an overview of results on the stop operator, and using

a suitable penalty approximation of @IK , we justify a formal integration-by-parts

formula in Lemma 4.2 which constitutes a substantial step in our argument. This

result is of independent interest for applications in the theory of partial di�erential

equations with hysteresis. The proof of Theorem 2.2 is given in Section 5.
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2 Statement of the problem

Throughout the paper, we make the following hypotheses with �xed integers n;N; ` 2
N .

Hypothesis 2.1

(i) 
 � R
n
is a bounded open domain with a Lipschitzian boundary, T > 0 is a

given �nal time, and we set QT := 
� ]0; T [ ;

(ii) 0 2 K � R
N

is a given convex closed (not necessarily bounded) set;

(iii) ' 2 W 1;2(
;RN) ; '(x) 2 K for a. e. x 2 
;

(iv) u
" 2 L2(QT ;R

`) for all " � 0, u" ! u
0
strongly in L

2(QT ;R
`) as "! 0+;

(v) There exists a constant L > 0 such that the function 
 : K � R
` ! R

N

satis�es the inequality

j
(w; u)� 
( ~w; ~u)j � L(jw � ~wj+ ju� ~uj) 8w; ~w 2 K ; u; ~u 2 R
`
: (2.1)

Under the above hypotheses, we consider the system

wt � "�w + @IK(w) 3 
(w; u") for a. e. (x; t) 2 QT ; (2.2)

@w

@�
= 0 for a. e. (x; t) 2 @
� ]0; T [ ; (2.3)

w(x; 0) = '(x) for a. e. x 2 
 : (2.4)

We rewrite Eq. (2.2) in the form

w(x; t) 2 K for a. e. (x; t) 2 QT ; (2.5)

hwt � "�w � 
(w; u"); z � wi � 0 a. e. 8z 2 K ; (2.6)

where h�; �i is the Euclidean scalar product in R
N .

The main result of this paper can be stated as follows.

Theorem 2.2 Let Hypothesis 2.1 hold. Then Problem (2.3) � (2.6) has for every

" > 0 a unique solution w = w
" 2 L

2(QT ;R
N ) such that w

"
t ;�w

" 2 L
2(QT ;R

N ),

Problem (2.4) � (2.6) has a unique solution w = w
0 2 L

2(QT ;R
N ) such that w

0
t 2

L
2(QT ;R

N ) for " = 0, and we have

lim
"!0+

"

Z T

0

Z


krw"k2 dx dt = 0 ; (2.7)

lim
"!0+

sup
s2[0;T ]

Z


jw" � w

0j2(x; s) dx = 0 ; (2.8)

where k � k denotes the norm in R
nN

.
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3 Convex sets

In this section, we recall some elements of convex analysis which are needed in the

sequel. We use the notation from Part II of [3].

For any r > 0 we denote by Br(z0) the ball in R
N centered in z0 2 R

N with radius

r . By P;Q : RN ! R
N we denote the projection pair associated with K according

to the formula

z = Pz +Qz ; Qz 2 K ; jPzj = dist (z;K) 8z 2 R
N
: (3.1)

We then have

hPz;Qz � �i � 0 8z 2 R
N
; 8� 2 K ; (3.2)

in particular

hPz1 � Pz2; Qz1 �Qz2i � 0 8z1; z2 2 R
N
: (3.3)

We further introduce the Minkowski functional (or gauge) of the set K by the

formula

M(z) := inf

�
s > 0;

1

s
z 2 K

�
for z 2 R

N
: (3.4)

The subdi�erential @M(z) of M at a point z 2 Dom (M) := fz 2 R
N ; M(z) <1g

is de�ned in a usual way as the set of all y 2 R
N such that

hy; z � ~zi �M(z)�M(~z) 8~z 2 R
N
: (3.5)

We list the following straightforward consequences of (3.4), (3.5).

Lemma 3.1 The mapping M : RN ! [0;1] is convex, and we have

jM(z1)�M(z2)j � �M(z1 � z2) 8z1; z2 2 R
N
; (3.6)

M(�z) = �M(z) 8z 2 R
N 8� > 0 ; (3.7)

@M(�z) = @M(z) 8z 2 Dom (M) 8� > 0 ; (3.8)

hy; zi =M(z) 8z 2 Dom (M) 8y 2 @M(z) ; (3.9)

where we set �M(z) := maxfM(z);M(�z)g for z 2 R
N
. If moreover Br(0) � K �

BR(0) for some R > r > 0, then

jzj
R
� M(z) �

jzj
r

8z 2 R
N
: (3.10)

The following result is on approximation of the domain K by smooth bounded

convex sets.
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Lemma 3.2 For Æ > 0 put ~KÆ := K \B1=Æ2(0) , KÆ := ~KÆ +BÆ(0). Let MÆ be the

Minkowski functional associated with KÆ . Then @MÆ(z) contains for every z 6= 0

a single point denoted again by @MÆ(z), and we have

j@MÆ(z)j � 1=Æ 8z 6= 0 ; (3.11)

j@MÆ(z1)� @MÆ(z2)j � Æ
�8(1 + 2Æ3)2jz1 � z2j 8z1; z2 2 R

N n IntKÆ : (3.12)

Proof. Let us �rst note that BÆ(0) � KÆ � BÆ+(1=Æ2)(0) , and (3.10) yields that

Æ
2

1 + Æ3
jzj �MÆ(z) �

1

Æ
jzj 8z 2 R

N
: (3.13)

Let PÆ; QÆ be the projections associated with ~KÆ according to (3.1), and let z 2
@KÆ , � 2 KÆ be arbitrary. We then have jPÆzj = Æ , jPÆ�j � Æ , and from (3.2) we

obtain that

hPÆz; z � �i = hPÆz; QÆz �QÆ�i+ hPÆz; PÆz � PÆ�i � 0 : (3.14)

Assume that a unit vector � 2 R
N belongs to the outward normal cone to KÆ at

the point z , that is, h�; z � �i � 0 for every � 2 KÆ . Then putting � := QÆz + Æ�

we obtain that Æ � hPÆz; �i , hence � = (1=Æ)PÆz . We thus conclude that �Æ(z) =

(1=Æ)PÆz is the uniquely determined unit outward normal to KÆ at the point z , and

by (3.3) we have

j�Æ(z1)� �Æ(z2)j �
1

Æ
jz1 � z2j 8z1; z2 2 @KÆ : (3.15)

By (3.5), (3.9) we have

@MÆ(z) =
�Æ(z)

h�Æ(z); zi
8z 2 @KÆ ; (3.16)

where (3.14) with � = PÆz implies that h�Æ(z); zi � Æ . From (3.8) we thus obtain

that for z 6= 0 we have j@MÆ(z)j = j@MÆ(z=MÆ(z))j � 1=Æ , and (3.11) follows.

To prove (3.12), consider z1; z2 2 R
N n IntKÆ , and put ẑ1 := z1=MÆ(z1) 2 @KÆ ,

ẑ2 := z2=MÆ(z2) 2 @KÆ . Then jẑij � (1 + Æ
3)=Æ2 , MÆ(zi) � 1 for i = 1; 2 . By (3.8)

we have that

j@MÆ(z1) � @MÆ(z2)j = j@MÆ(ẑ1)� @MÆ(ẑ2)j

�
1

Æ2
j�Æ(ẑ1) h�Æ(ẑ2); ẑ2i � �Æ(ẑ2) h�Æ(ẑ1); ẑ1ij

�
1

Æ2
(jh�Æ(ẑ2); ẑ1 � ẑ2ij+ j�Æ(ẑ1) h�Æ(ẑ2); ẑ1i � �Æ(ẑ2) h�Æ(ẑ1); ẑ1ij)

�
1

Æ2
(jẑ1 � ẑ2j+ jẑ1jj�Æ(ẑ1)� �Æ(ẑ2)j) �

1

Æ5
(1 + 2Æ3)jẑ1 � ẑ2j ; (3.17)
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where we used (3.15) and the elementary inequality

j hb; ci a� ha; ci bj �
1

2
ja� bj ja+ bj

for every a; b; c 2 R
N , jaj = jbj = jcj = 1 . Furthermore, (3.6) and (3.10) yield that

jẑ1 � ẑ2j �
1

MÆ(z2)

�
jz1 � z2j+ jẑ1j �MÆ(z1 � z2)

�
�
�
2 +

1

Æ3

�
jz1 � z2j ; (3.18)

and the proof follows easily. �

In the next section we apply the penalty argument based on the following Lemma.

Lemma 3.3 For any Æ > 0 we de�ne the functional 	Æ : RN ! [0;1[ by the

formula

	Æ(z) :=

8><
>:

(MÆ(z)� 1)2

MÆ(z)
for z 2 R

N nKÆ ;

0 for z 2 KÆ :

(3.19)

Then 	Æ is a convex functional of class C
1
, and its derivative

 Æ(z) = @	Æ(z) =

8><
>:
@MÆ(z)

 
1�

1

M2
Æ (z)

!
for z 2 R

N nKÆ ;

0 for z 2 KÆ

(3.20)

is a bounded monotone Lipschitz continuous mapping from R
N

into R
N
.

Proof. We only have to check that  Æ is Lipschitz continuous, that is, �nd a

constant LÆ > 0 such that

j Æ(z1)�  Æ(z2)j � LÆjz1 � z2j 8z1; z2 2 R
N
: (3.21)

Let z1; z2 2 R
N be arbitrary. Inequality (3.21) is trivial if both z1; z2 belong to KÆ .

If both z1; z2 2 R
N n KÆ , then MÆ(zi) > 1 for i = 1; 2 , and using Lemma 3.2 we

obtain that

j Æ(z1)�  Æ(z2)j �
 
1�

1

MÆ(z2)2

!
j@MÆ(z1)� @MÆ(z2)j

+j@MÆ(z1)j
MÆ(z1)

2 �MÆ(z2)
2

MÆ(z1)2MÆ(z2)2

� j@MÆ(z1)� @MÆ(z2)j+
2

Æ

�MÆ(z1 � z2)

�
�
2Æ�2 + Æ

�8(1 + 2Æ3)2
�
jz1 � z2j ; (3.22)
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hence (3.21) holds. Finally, if z1 =2 KÆ , z2 2 KÆ , then

j Æ(z1)�  Æ(z2)j � j@MÆ(z1)j
MÆ(z1)

2 � 1

MÆ(z1)2
�

2

Æ
(MÆ(z1)� 1)

�
2

Æ
(MÆ(z1)�MÆ(z2)) �

2

Æ

�MÆ(z1 � z2) �
2

Æ2
jz1 � z2j; (3.23)

and Lemma 3.3 is proved. �

4 The stop operator

Let us �rst consider the variational inequality

w(t) 2 K 8t 2 [0; T ] ; (4.1)

w(0) = ' ; (4.2)

h _w(t)� _v(t); z � w(t)i � 0 a. e. 8z 2 K ; (4.3)

independently of the space variable x , assuming that v 2 W 1;1(0; T ;RN) and ' 2 K
are given, and denoting by a dot the derivative with respect to t .

The solution operator

SK : K �W
1;1(0; T ;RN) !W

1;1(0; T ;RN)

de�ned by the formula SK['; v](t) := w(t) for t 2 [0; T ] constitutes one of the main

building blocks in the theory of hysteresis operators, and its analytical properties

have been studied in detail in [4, 8, 1, 5] in connection with complex hysteresis

models.

We list here only a few results which are needed in the sequel. In particular, if

v; v1; v2 2 W
1;1(0; T ;RN ) are input functions, '; '1; '2 2 K are initial conditions,

and w;w1; w2 2 W
1;1(0; T ;RN ) are the corresponding solutions to (4.1) � (4.3),

w(t) = SK ['; v](t) , wi(t) = SK ['i; vi](t) , i = 1; 2 , then we have

j _w(t)j � j _v(t)j a. e. ; (4.4)

h _v1(t)� _v2(t); w1(t)� w2(t)i �
1

2

d

dt
jw1(t)� w2(t)j2 a. e. (4.5)

From (4.5) it follows in particular that SK maps the set K�W 1;1(0; T ;RN) Lipschitz

continuously into C([0; T ];RN ) . This rough property will be su�cient here due

to the regularizing e�ect of the parabolic equation. In other applications, �ner

continuity results are required, and we refer the reader e. g. to [5].

We now de�ne the output of the stop for input functions '(x) , v(x; t) depending

also on x , using the same symbol SK for the mapping

SK['; v](x; t) := SK['(x); v(x; �)](t)
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whenever '(x) 2 K and v(x; �) 2 W 1;1(0; T ;RN) .

Especially, if ' 2 C(�
;K) , and v 2 C(�
;W 1;1(0; T ;RN)) , then (4.5) yields that

w = SK ['; v] 2 C( �QT ) . If v 2 L
q(
;W 1;1(0; T ;RN)) for some 1 � q < 1 and

' 2 Lq(
;K) , then by density of C( �QT ) in L
q(0; 1;C([0; T ];RN) we conclude that

w as a mapping 
 ! C([0; T ];RN) is strongly measurable, and (4.5) entails that the

operator SK : Lq(
;K) � L
q(
;W 1;1(0; T ;RN)) ! L

q(
;C([0; T ];K)) is Lipschitz

continuous.

We are now ready to solve Problem (2.4) � (2.6) for " = 0 .

Lemma 4.1 Let Hypothesis 2.1 hold. Then there exists a unique w
0 2 L

2(
;

C([0; T ];RN)) such that w
0
t 2 L2(QT ;R

N), and

w
0(x; 0) = '(x) for a. e. x 2 
; (4.6)

w
0(x; t) 2 K for a. e. (x; t) 2 QT ; (4.7)

hw0
t � 
(w0

; u
0); z � w

0i � 0 a. e. 8z 2 K : (4.8)

Proof. We de�ne the set U := fx 2 
 ; u0(x; �) 2 L2(0; T ;RN)g � 
 , meas (
nU) =

0 . For �xed x 2 U we consider the equation

v
0
t (x; t) = 
(SK ['(x); v0(x; �)](t); u0(x; t)) ; v

0(x; 0) = 0 : (4.9)

We de�ne a mapping Gx : L1(0; T ;RN ) ! L
1(0; T ;RN) in the following way. For

an arbitrary � 2 L1(0; T ;RN) and t 2 [0; T ] put

v(t) :=
Z t

0
�(�) d� ; (4.10)

Gx[�](t) := 
(SK ['(x); v](t); u0(x; t)) : (4.11)

Then v
0(x; t) := v(t) given by (4.10) is a solution of (4.9) if and only if � is a �xed

point of the mapping Gx . For each �1; �2 2 L1(0; T ;RN) we have by Hypothesis 2.1

(v) and inequality (4.5) that

2ee7jGx[�1](t)�Gx[�2](t)j � L jSK ['(x); v1](t)� SK ['(x); v2](t)j

� 2L
Z t

0
j�1(�)� �2(�)j d� : (4.12)

Denoting by G
k
x the k -th iteration of Gx , that is, G

1
x = Gx , G

k+1
x = Gx[G

k
x] for

k = 1; 2; : : :, we easily obtain by induction that

jGk
x[�1](t)�G

k
x[�2](t)j �

(2L)ktk�1

(k � 1)!

Z T

0
j�1(�)� �2(�)j d� ; (4.13)

hence G
k
x is a contraction for su�ciently large k . By the Banach Contraction

Principle, Gx admits a unique �xed point � 2 L
1(0; T ;RN) , hence Eq. (4.9) has a

unique solution, and the function

w
0 := SK ['; v0] (4.14)
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has the properties (4.6) � (4.8). The uniqueness is obtained in a standard way:

let w0
; ŵ

0 be two solutions. Putting z := (1=2)(w0 + ŵ
0) in the inequality (4.8)

successively for w0 and ŵ
0 and summing the resulting inequalities up, we obtain

the assertion from the Gronwall argument. Using (4.9), (4.4), and again Gronwall's

inequality, we easily check that v
0
; v

0
t ; w

0
; w

0
t 2 L

2(QT ;R
N) , and Lemma 4.1 is

proved. �

The main result of this section which will play a crucial role in the proof of Theorem

2.2 reads as follows.

Lemma 4.2 Let Hypothesis 2.1 (i) � (iii) hold, and let v; w 2 L2(QT ;R
N) be such

that

(i) vt;�w 2 L2(QT ;R
N),

(ii) w = SK['; v],

(iii) @w=@�(x; t) = 0 for a. e. (x; t) 2 @
� ]0; T [.

Then for every s 2 [0; T ] we have that

�
Z s

0

Z


hvt;�wi (x; t) dx dt �

1

2

�Z


krwk2(x; s) dx�

Z


kr'k2(x) dx

�
: (4.15)

Proof. We introduce the function f := vt � �w 2 L
2(QT ;R

N) . Inequality (4.15)

can be written equivalently in the form

Z s

0

Z


jvtj2 dx dt+

1

2

Z


krwk2(x; s) dx �

1

2

Z


kr'k2(x) dx+

Z s

0

Z


hvt; fi dx dt

(4.16)

for every s 2 [0; T ] .

Using Lemma 3.3, we consider the penalized problem

8>>>>>><
>>>>>>:

w
(Æ)
t ��w(Æ) + 1

Æ
 Æ(w

(Æ)) = f in QT ;

@w
(Æ)

@�
= 0 on @
� ]0; T [ ;

w
(Æ)(x; 0) = '(x) in 


(4.17)

with the intention to let Æ tend to 0+ . The mapping  Æ is for every �xed Æ >

0 bounded, monotone, and Lipschitz continuous, hence Problem (4.17) admits a

unique solution w
(Æ) 2 L

2(QT ;R
N) such that w

(Æ)
t ;�w(Æ) 2 L

2(QT ;R
N) . In order

to derive suitable a priori estimates, we denote by C1; C2; : : : any positive constant

independent of Æ .
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Testing Eq. (4.17) by w
(Æ)
t we see that the identity

Z s

0

Z


jw(Æ)

t j2(x; t) dx dt +
Z



�
1

2
krw(Æ)k2 +

1

Æ
	Æ(w

(Æ))

�
(x; s) dx (4.18)

=
Z



1

Æ
	Æ('(x)) dx +

1

2

Z


kr'(x)k2 dx +

Z s

0

Z



D
w

(Æ)
t ; f

E
(x; t) dx dt ;

holds for every Æ > 0 and s 2 [0; T ] . Let us check that

lim
Æ!0+

Z



1

Æ
	Æ('(x)) dx = 0 : (4.19)

Indeed, for Æ > 0 we de�ne the sets

FÆ := fx 2 
 ; j'(x)j > Æ
�2g : (4.20)

By the Sobolev Embedding Theorem, ' 2 L
p(
) for some p > 2 (more precisely,

p = 2n=(n� 2) if n � 3 , p > 2 arbitrary if n � 2). This yields that

C1 �
Z
FÆ

j'(x)jp dx � Æ
�2pmeas (FÆ) ;

hence meas (FÆ) � C1 Æ
2p . By de�nition of 	Æ , we have 	Æ('(x)) = 0 whenever

'(x) � Æ
�2 . This yields that

Z



1

Æ
	Æ('(x)) dx =

Z
FÆ

1

Æ
	Æ('(x)) dx �

1

Æ

Z
FÆ

MÆ('(x)) dx �
1

Æ2

Z
FÆ

j'(x)j dx

� Æ
�2

�Z
FÆ

j'(x)jp dx
�1=p

(meas (FÆ))
(p�1)=p � C2 Æ

2(p�2) (4.21)

and (4.19) follows. Using the Cauchy-Schwarz inequality we thus obtain for every

s 2 [0; T ] the estimate

Z s

0

Z


jw(Æ)

t j2(x; t) dx dt+
Z



�
krw(Æ)k2 +

1

Æ
	Æ(w

(Æ))

�
(x; s) dx � C3 : (4.22)

We further test Eq. (4.17) by ��w(Æ) . Then we have

1

2

Z


krw(Æ)k2(x; s) dx +

Z s

0

Z



�
j�w(Æ)j2 +

1

Æ

DD
r Æ(w

(Æ));rw(Æ)
EE�

(x; t) dx dt

�
1

2

Z


kr'(x)k2 dx +

Z s

0

Z



D
�w(Æ)

; f

E
(x; t) dx dt ; (4.23)

where hh�; �ii denotes the scalar product in R
nN . The monotonicity and Lipschitz

continuity of  Æ entails that

Z s

0

Z



DD
r Æ(w

(Æ));rw(Æ)
EE

(x; t) dx dt � 0 ;

9



and we obtain the estimateZ s

0

Z



�
jw(Æ)

t j2 + j�w(Æ)j2
�
(x; t) dx dt+

Z


krw(Æ)k2(x; s) dx � C4 : (4.24)

We �nally test Eq. (4.17) by w
(Æ)
t + 1

Æ
 Æ(w

(Æ)) and obtain analogously as above that

Z s

0

Z



����w(Æ)
t +

1

Æ
 Æ(w

(Æ))

����
2

(x; t) dx dt +
1

2

Z


krw(Æ)k2(x; s) dx (4.25)

�
1

2

Z


kr'(x)k2 dx +

Z s

0

Z



�
w

(Æ)
t +

1

Æ
 Æ(w

(Æ)); f

�
(x; t) dx dt :

Combining the above estimates we conclude that for every s 2 [0; T ] we have

Z



�
krw(Æ)k2 +

1

Æ
	Æ(w

(Æ))

�
(x; s) dx � C5 ; (4.26)

Z s

0

Z



 ���w(Æ)
t

���2 + ����w(Æ)
���2 +

����1
Æ
 Æ(w

(Æ))

����
2
!
(x; t) dx dt � C6 : (4.27)

We now let Æ tend to 0+ . Passing to a subsequence, if necessary, we �nd functions
� ; �w 2 L

2(QT ;R
N) such that �wt;� �w 2 L2(QT ;R

N ) , and

w
(Æ)
t ! �wt; �w(Æ) ! � �w;

1

Æ
 Æ(w

(Æ)) ! � weakly in L2(QT ;R
N); (4.28)

w
(Æ) ! �w strongly in L

2(QT ;R
N) : (4.29)

Consequently, the function �w satis�es the same initial and boundary conditions as

w . We now use (4.26) to check that �w(x; t) 2 K a. e. To this end, assume that

there exists a set A � QT , meas (A) > 0 , such that �w(x; t) =2 K for (x; t) 2 A .

Putting for k 2 N

Ak := f(x; t) 2 A ; j �w(x; t)j � k ; dist ( �w(x; t); K) � 1=kg ;

we have A = [1k=1Ak , hence there exist � > 0 and k0 2 N such that meas (Ak0) =

� > 0 . Put

�(Æ) :=
Z T

0

Z


jw(Æ) � �wj2(x; t) dx dt :

Then limÆ!0+ �(Æ) = 0 , and we may �nd Æ0 > 0 such that

�(Æ) <
�

8k20
for Æ � Æ0 : (4.30)

Put BÆ := f(x; t) 2 QT ; jw(Æ)(x; t)� �w(x; t)j > 1=(2k0)g . Then

meas (BÆ) � 4k20�(Æ) <
�

2
for Æ � Æ0 ; (4.31)

10



and there exists a set �A � Ak0 , meas ( �A) � �=2 , such that

jw(Æ)(x; t)� �w(x; t)j �
1

2k0
8(x; t) 2 �A 8Æ � Æ0 ; (4.32)

hence

dist (w(Æ)(x; t); K) �
1

2k0
8(x; t) 2 �A 8Æ � Æ0 ; (4.33)

and

dist (w(Æ)(x; t); KÆ) �
1

4k0
8(x; t) 2 �A 8Æ � Æ1 := minfÆ0; 1=(4k0)g : (4.34)

We have jw(Æ)(x; t)j � k0 + 1=(2k0) for (x; t) 2 �A and Æ � Æ1 , hence 
1�

1

4k20 + 2

!
w

(Æ)(x; t) =2 IntKÆ 8(x; t) 2 �A 8Æ � Æ1 : (4.35)

This yields for every (x; t) 2 �A and Æ � Æ1 that

MÆ(w
(Æ)(x; t)) � 1+

1

4k20 + 1
; 	Æ(w

(Æ)(x; t)) �
1

(4k20 + 1)(4k20 + 2)
; (4.36)

which contradicts (4.26), and we thus checked that �w(x; t) 2 K a. e.

We continue by putting

�v(x; t) := v(x; 0) + �w(x; t) +
Z t

0

� (x; �) d�: (4.37)

We see that

w
(Æ)
t +

1

Æ
 Æ(w

(Æ)) ! �vt weakly in L
2(QT ;R

N) ; (4.38)

and passing to the limit in (4.17), (4.25) we obtain that

�vt �� �w = f ; (4.39)Z s

0

Z


j�vtj

2
dx dt+

1

2

Z


kr �wk2(x; s) dx

�
1

2

Z


kr'k2(x) dx +

Z s

0

Z


h�vt; fi dx dt : (4.40)

We now claim that�
1

Æ
 Æ(w

(Æ)); w(Æ) � ~w

�
� 0 a. e. 8 ~w 2 ~KÆ : (4.41)

Indeed, if w(Æ)(x; t) 2 KÆ , then  Æ(w
(Æ)(x; t)) = 0 , and if w(Æ)(x; t) =2 KÆ , then we

have that MÆ(w
(Æ)(x; t)) > 1 . The de�nition of the subdi�erential yields that

D
@MÆ(w

(Æ)(x; t)); w(Æ)(x; t)� ~w
E
�MÆ(w

(Æ)(x; t))�MÆ( ~w) > 0 ; (4.42)
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and (4.41) follows. Passing to the limit in (4.41) we obtain that

h�vt � �wt; �w � ~wi � 0 a. e. 8 ~w 2 K ; (4.43)

that is, �w = SK ['; �v] . Testing the identity

vt � �vt = �(w � �w) (4.44)

by w � �w and using the inequality (4.5) we conclude that w = �w , v = �v , and the

assertion follows from (4.40) and (4.16). �

5 Proof of Theorem 2.2

The existence and uniqueness result for " = 0 has been established in Lemma 4.1.

For each �xed " > 0 , the unique solution can be constructed by the penalty method

with the same penalty function  Æ as in the proof of Lemma 4.2 and we do not

repeat the standard argument here. Instead, we derive a priori estimates which will

enable us to pass to the limit as "! 0+ . We continue to denote by Ci any positive

constant independent of " .

Put v"(x; t) :=
R t
0("�w

"+
(w"
; u

"))(x; �) d� for (x; t) 2 QT . By (2.6) we then have

w
" = SK ['; v"] according to the notation introduced in Section 2, and we obtain

that

v
"
t � "�w" = 
(w"

; u
") a. e. for all " � 0 (5.1)

analogously as in the proof of Lemma 4.1 for " = 0 .

Lemma 4.2 enables us to test Eq. (5.1) for " > 0 by v
"
t , and obtain for every

s 2 [0; T ] that

Z s

0

Z


jv"t j

2(x; t) dx dt + "

Z


krw"k2(x; s) dx (5.2)

� "

Z


kr'k2(x) dx+

Z s

0

Z


j
(w"

; u
"))j2(x; t) dx dt

� C7

�
1 +

Z s

0

Z


jw"j2(x; t) dx dt

�
:

From (4.4) and the Gronwall argument we thus obtain for every s 2 [0; T ] the

estimateZ s

0

Z



�
jw"j2 + jw"

t j
2 + jv"t j

2
�
(x; t) dx dt+ "

Z


krw"k2(x; s) dx � C8 : (5.3)

From (5.1) and (5.3) it further follows that

"
2
Z T

0

Z


j�w"j2(x; t) dx dt � C9 : (5.4)
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Let � : �QT ! R
N be any smooth test function. We have by (5.2) that

�����
Z T

0

Z


" h�w"

; �i dx dt
����� �

p
"

Z T

0

Z



p
"krw"k kr�k dx dt (5.5)

�
p
"C10

Z T

0

�Z


kr�k2 dx

�1=2

dt :

Together with (5.4), (5.2) this yields that

"�w" ! 0 weakly in L
2(QT ;R

N) as "! 0 + : (5.6)

The last step of the proof consists in testing Eq. (5.1) by w
" � w

0 with w
0 as in

Lemma 4.1. We then obtain for s 2 [0; T ] that

Z s

0

Z



D
v
"
t � v

0
t ; w

" � w
0
E
(x; t) dx dt+ "

Z s

0

Z


krw"k2(x; t) dx dt

= �
Z s

0

Z


"

D
�w"

; w
0
E
(x; t) dx dt

+
Z s

0

Z



D

(w"

; u
")� 
(w0

; u
0); w" � w

0
E
(x; t) dx dt : (5.7)

Using (4.5) and Hypothesis 2.1 (v) we conclude that

1

2

Z


jw" � w

0j2(x; s) dx + "

Z s

0

Z


krw"k2(x; t) dx dt

� �
Z s

0

Z


"

D
�w"

; w
0
E
(x; t) dx dt

+C11

�Z s

0

Z


jw" � w

0j2(x; t) dx dt +
Z s

0

Z


ju" � u

0j2(x; t) dx dt
�

(5.8)

for every s 2 [0; T ] . In order to pass to the limit in (5.8) as " ! 0+ , it su�ces to

use (5.6), Hypothesis 2.1 (iv), and Gronwall's argument. The proof of Theorem 2.2

is thus complete. �
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