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Abstract

A time discrete scheme is used to approximate the solution to a phase field system
of Penrose-Fife type with a non—conserved order parameter. An a posteriori error
estimate is presented that allows to estimate the difference between continuous and
semidiscrete solutions by quantities that can be calculated from the approximation and
given data.

1 Introduction

The dynamics of diffusive phase transitions can be described by the evolution of the absolute
temperature @ and of an order parameter x, which characterizes the different phases. In
[PF90], Penrose and Fife derived a class of phase field systems, where the evolution of these
quantities is determined by an energy balance coupled with a kinetic equation for the order
parameter. For a non—conserved order parameter, we consider the following system

1
el + N(X)xt +Vg=9g, q= nv<5>, (1.1a)
AI
nx: — eAx +5'(x) = ——(QX). (1.1b)

In the energy balance (1.1a), the positive constant ¢, represents the specific heat, the function
X (x) represents the phase transition latent heat, g represents the heat flux, and the datum
g represents heat sources or sinks.

In [PF90|, general heat flux laws of the form &, (#)V(1/6) have been considered. For &, (0) =
kof?, with ko > 0 constant, one gets the classical Fourier law. In this framework, we use a
constant positive thermal conductivity x and consider the heat flux law arising for &, := &,
similar to a number of paper where existence and uniqueness of the solution have been
investigated [Hor93, HLS96, HSZ96, Kle97, Lau93, Lau95, SZ93, Zhe95|. More general heat
flux laws have been considered in [CL98, CLS99, CS98, Kle, Lau98|] and [DK97, KK99,
KN94|.

In the kinetic equation (1.1b), n stands for a positive, space—dependent, kinetic relaxation
coefficient, the positive constant e represents the energy of the phase interfaces, and s’ is the
derivative of some potential on R.

In the context of a solid-liquid phase transition with a critical temperature 6, one typically
has a quadratic or linear function A and the potential s(r) is the sum of A(r)/fc and some
other non—convex potential, like, for example, the double well potential (r? —1)? or the double
obstacle potential I;_q 1)(r) + (1 —r?). With I;_; ;) being the indicator function of the interval
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[—1, 1], the latter ensures that the order parameter attains only values in the interval [—1, 1].
To deal with a general class of potentials, we consider s decomposed as s = ¢ — o, where ¢
is the convex, but maybe not differentiable, part the the potential, whereas o represents the
not—convex, but differentiable, part of the potential.

In [Hor93], Horn considers a time discrete scheme for a Penrose-Fife system in one space
dimension and derives an error estimate of order v/h, where h denotes the time—step size.
In [K1e97, Kl1e99], the first author of the present paper considers the three dimensional case
and prove an error estimate of order h for time discrete schemes. These a priori error
estimates allow to estimate the order of the error, but can not be used as local refinement
error indicators, because they involve non—computable quantities.

In the present paper we investigate a time discrete scheme proposed in [Kle99] and prove an
a posteriori error estimate. This estimate leads to an upper bound for the difference between
the solution to the Penrose-Fife system and its time discrete approximation, which can be
calculated using only the given data and the computed solution.

We refer to [NSaV00| and the references quoted therein for the discussion of a posteriori error
estimates for time evolution problems in a very general framework, which unfortunately does
not include our Penrose-Fife model. We refer also to [CNS00, NScV00| for a posteriori error
estimates and the implementation of adaptive strategies for simpler phase transition models.

The layout of this paper is as follows. In Section 2, the initial-boundary value problem for the
phase field system is presented and the time discrete scheme is introduced. The a posteriori
error estimates are presented in Section 3. Therein, the result for A convex is presented first,
because the a posteriori error estimate for this case is quite satisfying, whereas the one that
holds for general functions A is somehow weaker. These error estimates are proved in Section
4.

2 The Penrose-Fife system and the time discrete
scheme

2.1 The phase—field system

In the sequel, Q C RY with N = 2, 3 denotes a bounded open domain with smooth boundary
[' and unit outward normal n. Let Qr := Q x (0,7) and 't := T x (0,7T), where T > 0
stands for a final time.

We consider the following initial-boundary value problem for the Penrose—Fife system:



(PF): Find a quadruple (0, u, x, §) fulfilling

0 H'(0,T;L*(Q)), wue L*0,T;H*(Q)) N L>(0,T; H'(Q)),
x € HY(0,T; L*(Q)) N L>(0,T; H*(Q)),
€ L>(0,T; L*()),

1
6 >0, u= g, x € D(B), €¢€pB(x), ae in Qr,

00 0 .
Coa + X(X)a_zf +kAu =g, ae. in Qr,
0
778_1( —eAx+€&—0d'(x) =-N(x)u, ae in Qr,
ou Ox
’i% +yu = Ca %
0(-,00=0° x(-,0)=x" ae.in Q.

=0, a.e.on ['p,

As indicated in the first section, ¢y, «, and € are fixed positive constants, and also = is one.

For dealing with this system, the following assumptions will be used:

(A1) Let 8 be a maximal monotone graph on R, ¢ : R — [0, 00| be a proper lower semicon-

tinuous convex function, and ¢;, ¢ be positive constants satisfying

B=0¢, 0€D(B), 0€p(0), intD(B)#0,
¢(s) > ¢15” — ¢o, Vs € D(B).

(A2) There are positive constants A/, 07,07’ and constants A}, 0y € R, such that

Ae Wi (R), Aj < X'(s) <A, forae.se D(B),

loc

loc

1
oc W3’°o(|R), o(s) < Zgb(s) +o09, |o"(s)|<of, |0"(s)| <o}, fora.e.sec D).

(A3) There are positive constants 7y, 7, and (p such that

neL®(), n<n<m, aein Q,
¢ € HY(0,T; LX) n L=(I'r) N L*®(0,T; HY*(T)), ¢>{, ae.on TIp,
g€ H'(0,T; L=(Q)).

(A4) Let the initial data 6°, x°, u®, £° satisfy

0°,u’ € H'(Q) n L™(Q), 6°>0, u’= 20 e in €,
X' e HY(Q), € eL*(9Q), o(x") el (Q), x"eD(@), € ep(x), aein
a—XO =0, aeon T
5 = O .e. )



From Theorem 2.2 in [Kle99] it follows that, under the assumptions (A1)—(A4), there is a
unique solution (6, u, x, &) to the Penrose-Fife system (PF). For this solution it holds that

0 € L0, T; H'(Q)) N L=(Qr) N Wh(0,T; H'(Q)"), (2.2a)
u € HY(0,T; L*(Q)) N L®(Qr), (2.2b)
x € WH(0,T; L*(Q)) n H'(0,T; H'(R)) N L™(Qr). (2.2¢c)

2.2 The time discrete scheme

We introduce a time discrete scheme with variable time—steps. Let us consider a partition
of the time interval [0, T']

P2:{0:t0<t1<"'<tM:T}

with variable step
hm =tm —tm1, Ym=1,..., M,

that satisfies the following assumption:

(A5) There exist two positive constants ¢, < 1 < ¢* such that

c*hm,lghmgc*hm,l, Vm:2,...,M,

o < 00
307
Let h := max h., denote the maximum of the time step sizes. For m =1,..., M, let
tm tm
1 1
gm(") == . / g(-,t)dt, ae.in Q, (u():= o / ¢(-,t)dt, ae.on I, (2.3)
mtm,1 mtmfl

and let ,, denote the cylinder 2, := Q x (0, t,,).

Our Euler scheme in time for the Penrose—Fife systems is implicit, except for the treatment
of the nonlinearities A’ and ¢’, and reads as follows:

(D): Let
O =6, wy:=u’, x0:=x", & : =&, (2.4a)
and, form =1,..., M, find

O € LX), tm, Xom € H2(Q), &m € L2(9), (2.4b)



such that, given g,, and (,, as in (2.3),

1
Op >0, u,= g Xm € D(B), &m € B(Xm), ae.in Q, (2.4¢)
0, — O m — Xm— )
cohil + )\'(xm_l)% + kAUp = g, a.e.in (2.4d)
Xm — Xm—1 "
T —eA m + m — O m— m
L Xm + & (Xm—1)X (2.40)
= —XN(Xm-1)Um — 0" (Xm-1)Xm-1 + 0 (Xm-1), a.e.in €,
—ﬁ(a(;t—: = YUy, — Cm, 8(?—7;” =0, ae.on T. (2.4f)

The scheme (D) belongs to the class of schemes considered in [K1e99|. Hence, we get from the
Corollary 2.1 and Remark 2.2 therein that (D) has a unique solution, provided (A1)-(A5)
are satisfied.

Remark 2.1. The assumption (A5) is not used in the derivation of the a posteriori error
estimates, but to ensure the existence of a unique solution to (D). Hence, in the corollary
and the theorems in the next section, the assumption (A5) could be replaced by the
assumption that a solution to the scheme (D) is given. In this case, assumption (A5)
would have to be added in Remarks 3.4 and 3.10, since therein one is using the uniform
upper bounds for the approximations that are proved in [K1e99] under this assumption.

Remark 2.2. The approximation for ¢'(x) used in (2.4e) is linear in x,, and involves a trun-
cation error with respect to the implicit term o’(x,,) bounded by o} (Xm — Xm_1)?/2.
This approximation coincides with o’(x,,) if o is a quadratic function and o’ is therefore
an affine function. In this case, also the lower bound c,h,, 1 for hy, in (A5) could be
skipped, see Remark 2.9 in [Kle99].

We use the solution to (D) to construct approximations of the solution to the Penrose-Fife
system (PF). The piecewise linear in time function § € H'([0, T]; L?(2)) is defined by

0) = s + " O~ ) VEE (b ], m= 1, M5 (25)

the function ¥ € H'(0,T; H%(Q2)) is analogously defined. Moreover, the piecewise constant
in time functions X, x € L>(0,T; H*(2)) are defined by

(0) = x(0) :=x0, X(t):=Xm, X(t):=Xm-1, VtE (tmor,tm), m=1,...,M; (2.6)

x|

u, u € L*>(0,T; H*(Q)) and any piecewise constant function are defined analogously.

3 A posteriori error estimates

3.1 Preliminary notations
Before the a posteriori error estimates can be presented, some notations has to be fixed.
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We denote by V the Hilbert space H'(Q2) with the inner product (,-)y defined by

(w,v)y ::n/Vw-Vvdx +’)’/U)’Udl/, Vw,v e H'(Q), (3.1)
Q T

and the corresponding norm ||-||;,. Thanks to the trace theorem and Poincaré’s inequality,
we see that the norms [|-[|;, and [|-[| g1 (q) are equivalent. Hence, V* can be identified with

H(Q)" with equivalent norms. Identifying L?(Q) and L?(T") with their dual spaces, we can
therefore embed both spaces in V*. There is some positive constant C, such that

lw + 9|

1
ve < Cullwllee + 2 1l Vwe L*(Q), ¢ € L*(T). (3.2)

Following the definition of coercivity for angle bounded operators introduced in [NSaV0O0,
Chap. 4.2|, we define a : (0,00)® — [0, 00) by

1 1 1 1
a(v,r,w) := (r — v)(; — ;) + (v — w)(a — ;), Vou,r,w > 0. (3.3)
Using the piecewise linear function [ : [0, 7] — [0, 1] defined by
t— tm—l
[(0) :=0, I(t) .= 5 Vit € (tme1,tm], m=1,..., M, (3.4)

and recalling (2.6) and (2.5), one can rewrite the piecewise linear interpolants in the form

() = 1OX(E) + (1= 10)x(), 0(t) =1(1) vte[0,T].  (3.5)

Finally, for m =1,..., M, we set

OXm = Xm — Xm—1, OUm = Um — Um_1, 00m = ®(Xm) — ®(Xm—1)- (3.6)

3.2 A posteriori error estimates for A convex

For Penrose-Fife phase field systems with a convex function A, two a posteriori error esti-
mates are presented. The first one in the corollary below is a direct consequence of the one
in the theorem afterwards, but it is presented first because it is less technical than the one
in the theorem, whereas the one in the theorem is sharper.



Corollary 3.1. If (A1)—(A5) and A\j > 0 hold, we have for k=1,..., M:

rnax{

cd(t) + ACc(t)) = (eoB(ta) + ARE) | 37 (cltr) = Rt)) | ey

mmmmMEWM;@
k uu

0<m<

- 1/2
+ (1 = Da(w, %@)“Ll(%))
L)

o oy 1/2
+ \/5( IV (x = ) 2@y~ + 1V (x — X)||(L2(nk)>N> ]

- 2 2 1/2
< ( Z h'mgl,m maX(%,m—p wk,m))

m=1

k
+ Z hm(gZ,m + gS,m + g4,m) max(wk,mfla wk,m)a (37)

m=1

with
ot Xy

m:=exp|—(ty —tm) — — himinuix>, Vm=0,...,k, 3.8
1= 0xp (0 ) = 500 3 hemina) (38)

and error indicators i pm, ..., E4m € R, which, form =1,..., M, are defined by

2 U )2
Etym = 2[|€m0Xm — 5¢m||L1(Q) + 3 ||V5Xm||?L2(Q))N + 2¢o (Fuim) , (3.9a)
mUm—1 L1(Q)
1
Exm = 7—CX 6xm a0y (3.9b)
Eam 1= —— (07 18l + T 10 ey + N, im0 g2y ) (3.90)
3,m ‘= \/% 01 |10Xm L2(Q) 3 Xm L4(Q) 1 [|UmOXm L2(Q) )» e
tm
2 1
Eum= 5 [ (1190) = gmlly- + 1160 — Gallzagry ) . (3.9d)
tm—1
k
Remark 3.2. Using the notation ) --- =0 with [ > k, we note that ¢, =1 in (3.8).

i=l

The factor v ,, indicates in which way the error in the interval (¢x_1,x] is affected by
the approximation in the previous intervals (¢,,_1,¢,| for m =1,..., k. We see that this
contribution in increased by the non—convex part o of the potential, but also reduced by
the convexity of A.

While these factors depend on k and m, the error indicators & ,, . . ., €E4m are independent
of k. The error indicator &; ,, is related to the approximations of the nonlinearities 3(x)
and 1/6 and of the Ax—term in the order parameter equation. The indicator &, ,, measures
the effects of using the approximation X' (X.m—1)(Xm — Xm—1) in the discrete energy balance
(2.4d) instead of A(xm) — A(Xm—1), whereas &3 ,, consists of the contributions to the error
caused by the approximations of o'(x) and X (x)u in the order parameter equation (2.4e).
Finally, the error indicator &, ,,, is relates to data approximation.



Remark 3.3. Similarly to [K1e97, Kle99], one can use the L'(Qy)-norm of I(u — u)?/uw and
the generalized Holder’s inequality, to derive both L2(0,T; L*/2(2)) and L?(Qr) estimates
for I(u — @) and L'(Qr) and L2(Qy) estimates for [(§ — ). But, in addition to norms
of w, 8, and 6 — 1/u, one would also need in this estimates the L*°(0,T;L8(€2)) and
L>=(Q7) norms of u and the L?(Q7) and L*°(Qr) norms of §. Moreover, the linear factor
[ vanishing as ¢ | ¢,,, one would have to use the estimate for (1—1)a(w, u, ) in the interval

(tm,tm + 0) for § > 0 small, to get informations about the approximation error of w.
We note that o
u—u
OZ(E, u, E) = g)
ulu
but unfortunately a(w,u,u) is not equal to a(u, u, ) in general. Instead, we have to use
the following estimates from below for a(w,u,u). We get from definition (3.3) that, for

all r,v,w > 0,

(r—v)? (@W-w(r-w (r-—w? (w-w)(v-r)

a(v,r,w) = + = + : (3.10)
rv W rw ur
_ )2 _ 2 _ . 2 . 2
2a(v,r,w) = (r—v) + (r—w) + (v = w)(r —w)” + wlv - w) ) (3.11)
rv rw row

Arguing by contradiction, from identities (3.10) we infer that

u—@)° (u- 2)2)’

whereas, if u <@, (3.11) implies

Lu—u)?  1(u—u)?
- + = —. 3.12
2  uu 2  uu ( )

a(z,u,u) >

Considering for w > v > 0 and r > 0 the last term in (3.11), we see that it is non—negative
if and only if (r — w)? < w(w — v). Hence, we conclude that for u > % the inequality
(3.12) holds if and only if u — y/u(u — ) < u < u+ /u(u — ).

Remark 3.4. Using the a priori estimates for the semidiscrete solution derived in [Kle99,
Chap. 4] and (A3), we see that the |9y | are uniformly bounded from above and below
and that

(ihé’ )1/2+§:h (5 &+ E )<0h
2 m€1,m 2 m\| €2,m 3,m am ) < )

with some constant independent of the partition P of [0,7]. Applying also the regularity
results (2.1a)—(2.1c) and (2.2) of the solution, one can recover the a priori error estimate
derived in [Kle99, Theorem 2.3|, namely there exists a positive constant C, such that for
all partition P satisfying (A5), we have

160 — ‘9||L2(QT)mC([o,T};Hl(Q)*)+||ﬂ - u||L2(QT)
+IX = Xlleqor.2@)n 25 (@) < Ch. (3.13)



Now, the stronger version of the a posteriori error estimate for phase field systems with A
convex is presented.

Theorem 3.5. If (A1)-(A5) and A\j > 0 hold, we have fork =1,...,M:
max{ H\Ilk (009 + Ax) — (coé\—l- A(S{)))

—=\2
u—1u
ot

Hcm,tkw*) ¥/ (x = X)||C([o,tk];L2<m)’

1/2
+ (920 - Dal@, v, W) s, )
L1()

_ N 1/2
V(1Y 0= Doy + 1969 (= DllEzeanv ) }

k 1/2
S ( Z hmgl,m ma’x(@bi,mfl’ wi,m)>
m=1

k
+ Z h/m(g?,m + 53,m + g4,m) ma’X(wk,m—la wk,m)a (314)
m=1

With Yk m, E1m, - - -, E4m as in Corollary 3.1 and

" " k

o A
U, (t) := Lty —t) — =2 ((tp — t) minuy,(z) + h; min u; :
4(0) = exp (Tt — 1) = 50 (b — ) minun (@) i§m+:1 minu(z)) )
Vt € (tmt,tm], m=1,... k. (3.15)

Remark 3.6. For t < tg, Ui(t) indicates how much the error at the time ¢ is over— or under—
estimated by using the error estimate for the interval [0,%x]. We have Wi (tm) = Yrm
for all m = 0,...,k. Considering the definition (3.15) of Wy, we see that ¥, attains its
extrema in [¢,,_1,t,| at the boundary of this interval. Hence, we see that

min(@bk,m_l, wk,m) < \Ilk(t) < max(wk,m_l, wk,m); Vite [tm_l, tm], m=1,... k. (316)
Remark 3.7. Damlamian and Kenmochi derived in [DK97] a formulation for the Penrose—
Fife system with convex A that leads to an evolution equation with the subdifferential
of some convex, lower semicontinuous functional on V* x L?(2). In the light of this
formulation, one could also apply the abstract result in [NSaV00] directly. This result
leads to an a posteriori error estimates for a fully implicit time discrete scheme, whose
numerical solution would be quite more complicated to implement. Moreover, if A is not
convex, the abstract results of [NSaV00] can not be applied directly, at least not without
using quite strong additional assumptions on the solution.

3.3 A posteriori error estimates for general A

In the system originally considered by Penrose and Fife in [PF90], the function A was concave.
Hence, even if more general \’s are interesting in applications, we see that it is important
to have an a posteriori estimate also if A is not convex. The function Y appearing on the
left—hand side of the estimates is now bounded from below by 1. Therefore, in contrast to
the situation for the convex A, no separate corollary without this function is presented.
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Theorem 3.8. Assume that (A1)-(AS5) holds. Let C. > 0 be a constant, such that
||U||L3(Q) <+Ve ||VU||(L2(QT))N +Ce ||U||L2(Q)’ Vv e HY(Q). (3.17)

Hence, we have fork=1,...,M:

max{ i (00 + 200 = (el +A())) e/ (¢ = Dlloosupzaay

H C([0,tx];V*)

ey 1/2
\/ﬂ( Hﬁl% + |2 - l)a(ﬂ,u,g)HLl(Qk)>

L1(Q)

1/2
V(I 0= Dlsm + 5 1TV Dl ) |

k n

(Z hm&1 mUk mwkmexp (277_(tk o 1)>>1/2

m=1

k n

o1
+Zh' g4m+g5m+56m)vkmwkmexp<n0

(th — tm_ 1)) (3.18)

m=1

with, form =1,...,k,

n

o 1
Xi(t) = e (Tt 1) g 1G] b = ) sy 20+ Xl

+ o ) Zhnuznm (20 + Nl ogay) )s VEE (o, (3.19)

1= m+1
1
Uk,m := €XP (2—770 A ] Zhi [ill ooy (Ce + Xl |wil ooy )>, (3.20)
-
1
Wk,m = €XP (2—770 A ] / [u(T) | zs(ay (Ce + XS Hw(T) | 2oy ) dT>, (3.21)

error indicators €1 m,E4m as in Corollary 3.1, and error indicators s, Esm which, for
m=1,..., M, are defined by

1

Exam = ——Comnax (IN], A1) [l 210 (3.22a)
]‘ n a-i” n n

Eom = = (o1 19Xl + % 10l + max (X1, 20 mdml ey ) (3:220)

Remark 3.9. For t < tg, Y(t) gives a lower bound on the over—estimation of error at the
time ¢ by using the error estimate for the interval [0,¢;]. There is a function which would
estimate this over—estimation better, but this function would require to use informations
from the solution u. By the factor vg mwk,mexp((o]/mo)(tk — tm—1)) it is measured how
the error and the contributions to the error corresponding to the time—interval (¢, 1, ¢
are increasing the error in the time—interval (¢;_i,%x], because of the non—convex part

10



of the potential and the concavity of A. The error indicator & ,, coincides with & ., if
|Ay| < Al. Both indicators measure the same kind of contribution to the error. The error
indicators &5 ,,, and & ., are related likewise.

Remark 3.10. Similar as in Remark 3.4, we see that the |v | are uniformly bounded from
above and that

(ihé’ )1/2+§:h (E1m + Em + Esm) < Ch
2 mC1,m 2 m| Cam 5,m 6m | < )

with some constant independent of the partition P of [0, T']. Since the regulatity (2.2b) of
the solution to (PF) also yields that there is a uniform upper bound for wy, ., we conclude
that also for general A the error estimate (3.13) can be recovered from the a posteriori
error esimates.

Remark 3.11. A heuristic estimate of the L*(0,T’; L5(Q))—norm of u and therefore for wy,y,
can be derived from the fact that by [Kle99, (2.14)—(2.16), (6.3), and (6.8)] and a gener-
alized version of the Aubin Lemma (see [Sim87, Corollary 4]), @ tends to u strongly in
L*(0,T; H(R)), if h tends to 0. Thanks to the embedding of H*(€2) in L%(£2), we have
therefore for h sufficiently small:

Wem < 2Ukm, Ym=1,...,k. (3.23)

If this estimate holds, we can estimate the right—hand side of (3.18) by

k O_Il 1/2
2( E B €1 mU 1 €XD (2—1(tk — tm,1)>>
’ Mo
m=1

k n
o
+ 2 § hm(g4,m + g5,m + gﬁ,m)vi m €XP <_1(tk - tmfl)>a
f— ’ o

and get a computable a posteriori error estimate, which only involves the computed
approximation, some data, and the error in the approximation of the data.

Since one can not ensure that (3.23) holds for the computed approximation, one needs the
following lemma to derive an estimate which is valid for all decompositions.

Lemma 3.12. Assume that (A1)-(A4) are satisfied. Let A1, Ao, Cy, Cg be positive constants
such that

1
MA(S) < 2p(0) + M, Va e D(B), (3.24)
—Mr+Inr<C;, Vr>0, (3.25)
[v]lLey < Collvlly, VveW (3.26)

11



For the solution (0,u, x,§) to the Penrose—Fife system (PF) it holds

1 2
2—03 ||u||L2(0,t*;L6 H\/_ ot

ey T3 ITXE Nz 3 160N 510
< [ (ulat® +20) —cOlne°+¢(x°>—a<x°>) d

Q

€ 2 1
+ (COCI + )\0 + 00) |Q| + 5 HVXOH(Lz(Q))N + ? ||C +7>‘1||12(F><(0,t*))
+ A |9l Loxopy + C? ||9||i?(o,t*;v*) , Vi e[o,T]. (3.27)

Proof. From (A2) and 0 € D((3), we get by integration
1
A(s) > 5,\gs2 + X(0)s+ A(0), Vse D(B).

Using now Young’s inequality and (A1), we get some positive constants A\; and Ag such that
(3.24) holds. The left-hand side of (3.25) is a continuous differentiable function on (0, co),
which tends to —oo at the boundaries of this interval; this yields (3.25). The equivalence
of the norms ||-[|;, and ||-[| ;1 (g and the continuous embedding of H'(Q) into L°(Q2) gives a
constant Cg such that (3.26) holds.

Now, the main estimate (3.27) will be proved. Let ¢t* € (0, 7] be given. We multiply (2.1e) by
A1 — u and integrate the resulting equation over Q x (0,¢*). Since (2.1d) yields u2 = a(glto),
we get by applying (2.1g), (2.1h), (3.1), (3.2), (3.24), (3.25), (A3), and Young’s inequality

||u||iZ(0,t*;V) = /(— coMO(t*) + co In(0(t*)) + coAi8® — co In(6°) — AA(x(t*)) + MA(X")) d

// X —u—i—g()\l —u)) dz dt +]/ (C(u—)\l)—l—'y)\1u> dv dt

1
< / (Cgcl + coA18° — ¢y In(0°) + Z(ﬁ(x(t*)) + Ao + )\1)\()(0)> dz
Q

ox 2
+ [ [X005Kude dt 4 M lglmeqen + C2 ol
1 ) L, 2
+ 7 1€ + v A1l 20,0052(my) + 3 el 220,60 517) - (3.28)

Now, (2.1f) is tested by g’t‘ and the resulting equation is integrated over Q x (0,¢*). Using

12



that n > 0 in Q (see (A3)), (2.1g), (2.1h), and (A2), we get

t*
£ 1 (12 ox
0 Q

L2(0,t*;L2(Q))

// N(x u— dz dt +/ ) + 00— o(x 0)) dz +%HV><°H?L2(Q))N- (3.29)

Q

Since € € B(x) a.e. in Q7 (see (2.1d)), by applying (A1) and [Bré73, Lemma 3.3] we get

//& de dt = 160t e — 1600

Adding now (3.28) to (3.29), and using (3.26) afterwards, we see that (3.27) holds. O

Remark 3.13. Using (3.27), for each partition P of [0, T'] we can compute an upper bound for
||“||iZ(0,tk;L6(Q))- This can be used to estimate wy ., so that (3.18) reads as a computable
a posteriori error estimate. But, this error estimate will be quite pessimistic, as this
already holds for the upper bound for ||u||iz(0,tk;L6(Q)) stated in (3.27). Hence, for practical
computations one will to use the a posteriori error estimate derived in Remark 3.11, hoping
that (3.23) is satisfied for the considered approximation.

4 Proof of the a posteriori error estimates

4.1 Notations and properties

For preparing the proof of the error estimates, some additional notations are introduced and
some useful equalities and inequalities are presented.

In the sequel, we will use, for p > 1, the notation ||-||, for the L?(Q2)-norm and ||-[|, y for the
(L*(22))¥-norm.
Let F': V — V* be the duality mapping:

<Fwav>V*><V = (waU)Va VU),U ev. (41)

We see that V* is a Hilbert space with the inner product (-,-),

(@) = (U, Fl0) ., = (F', F o)y, Vi,pe V¥, (4.2)
satisfying
19l =V (@, ¥) = |[|F |, YeeV (4.3)

13



By embedding L?*(Q) and L?(T") into V*, we get

(f+o, )y = /fvdx +/govdu, VoeV, feL*Q), e L*T). (4.4)
Q T

Considering the definition (3.4) of [, we see that, forallm =1,..., M,

/ (1) dt = / (1 1) dt = %’” / (1) dt = / (1 1(1) dt :%’”. (4.5)

tm—1 tm—1 tm—1 tm—1

The following Gronwall-type inequality is a generalization of [NSaV00, Lemma 3.7|, where
a similar inequality with v being a constant is formulated.

Lemma 4.1 (Generalized Gronwall inequality). Let a,b,c,d : (0,t*) — [0, +o0], with
t* > 0, be measurable functions, a* also being absolutely continuous on [0,t*]. Let 1 :
(0,t*) — R be an integrable function such that the differential inequality holds

da?(t)
dt¢

Then we have:

+b2(t) < A(t) + 2d(t)a(t) + 21 (t)a®(t), a.e. in (0,t%). (4.6)

max{tlg[l(fgf]a(t)i’(t)’ (O/t*bQ(t)qﬂ(t) dt>l/2}

< (2(0)¥(0) + / cwinar)” + / d()B(t) dt, (4.7)
with

W (t) == exp (/1&(7’) dT), Vte|0,t"].

Proof. Let the functions v, w : [0,¢*] — R be defined by
t
v(t) == a2(t)2(t) + /b2(7')\1~12(’7') dr,

0

t t
2

w(t) = ((aZ(o)\iﬂ(o)Jr/c?(T)xiﬂ(T) dT)1/2+/d(T)\i:(T) ar)’,

for all t € [0,t*]. Following the proof of [NSaV00, Lemma 3.6|, one can use (4.6) to show
that

V(1) < E)T2(t) + 2d() T () v(t), w'(t) > () T2(t) + 2d()T(t)J/w(t), Vte0,t*].
Since v(0) = w(0) > 0, a comparison argument for differential inequalities yields v(t) < w(¢)

for all ¢ € [0,¢*]. By considering the maximum over ¢ € [0,t*] we see that (4.7) holds. O
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4.2 Preparation of the estimates

In this subsection it is assumed that (A1)—(A5) are satisfied. Hence, the time discrete
scheme (D) has a unique solution. Considering the corresponding piecewise linear and
piecewise constant approximations defined in (2.5) and (2.6) and using (A4), equation (2.4)
can be rewritten as

~ - 1

6>0 60>0, uw>0, u>0, EZ?’ a.e.in  Qr, (4.8a)
X, x € D(B), €€pB(x), ae in Qr, (4.8b)

8 ., 0% o .
Cogy + A (X)E + kAT =7, ae.in Qr, (4.8¢c)

50
778_>t< —eAX+E-0d"(X)x = - N(u—-d"(x)x +o'(x), ae in Qr, (4.8d)
ou - ox Oox O

ﬁ%—l—yﬂzg, %:%:5:0, a.e.on I'p, (4.8¢)
0(-,00=0° x(-,0)=x°, ae.in Q. (4.8f)

As abbreviations, we introduce the errors in the approximation of u and x
€ =U—T, € =X—X2 Ex=X—X a.e.in  Qp, (4.9)
and the error in the approximation of the internal energy cof + A(x)

er :=cof + A(x) — (CO§+ X)), ae.in Qr. (4.10)
Thanks to the initial conditions (2.1h) and (4.8f), we see that

er(-,0) =0, #&c(,0)=0, ae. in €. (4.11)

Also, for ¢t € [0,T], some combinations of norms of approximation errors will be used:

Bo(t) = Ier(0) - + Ve )2, (1.12)
Bi) = ) | 5 | et~ 1) fotal u )l (413)
Bt) = Vo0l + [8(0) 5y (4.14)
R(t) = —%Ag |(u(t) +a@)e )], (4.15)

Using the discrete Schwarz inequality, we see that

ler(®)lly- + v ex®)l, < V2v/Eo(t), Vte[o,T). (4.16)
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Moreover, for ¢ € [0,T], it is convenient to define the following quantities, which depend on
data and approximate solutions:

(o) = | (¥ ~ N (R(0) Fe0) + 50~ 500 ~ (€0 ~T)| | (4.17
L(t) = =o' (R(0) = 2 (0) + o () (8) = X0)

(X)) — XN e (1.18
L(t) = co(1 — (1)) % 1, (4.19)
(0 = O &) - %) + (K Ol + 5 IVED - X (420)

In the following, the errors Fy, F;, Es are going to be estimated by R, I, ..., I;. Afterwards
I, ..., I, will be estimated by error indicators defined in (3.9) and (3.22). Therein, techniques
derived in [NSaV00] are applied and adapted to the specific non-linearities of the Penrose—
Fife system.

Lemma 4.2. We have for a.e. t € (0,T):

1dEy(t)
2 dt

< v2max (I1(t), I(t)) v/ Eo(t) + I3(t) + Ly( )+;‘7—¥E0(t)+R(t). (4.21)

+ Ey(t) + %EQ(t)

Proof. By taking the difference of equations (2.1e) and (4.8c) and using notation (4.9) and
(4.10), we get

der _ X  0AX) _ :
— Ag, ") — —22 - .e. Qr.
T +K )\(X)at 5t +g—9, ae. in Qp

Testing this equation by a function v € H'((), integrating the resulting identity over (2,
using the boundary conditions in (2.1g) and (4.8e), and applying the definitions of the inner
product on V in (3.1), we observe that, for a.e. t € (0,7T),

/ % v da — @ult), )y = - [ cwr-cwyoar

Q r

+ [ (V) - NRE) B0+ 90~ 30)vie, Vo e @)

Combining this with (4.1)—(4.4) and the definition (4.17) of I, we get

Oe, o8
(Gr@.0) = @ el = [ GHOF W ds - (@), F79),
Q
< L@)||F |, = L) 19 lly., Y¢*eV*, foraete(0,T).
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We select ¢* = €;(t) and use (4.10) and (4.4), to arrive at

33t B = o [ (06) ~0(0)eutr) da

Q

< L) @)y + / (A(x(®)) = AR(®))eu(t) dz, for ae.t € (0,T).

Q

(4.22)

Using (3.5) and the compatibility conditions in (2.1d) and in (4.8a), and recalling the defi-
nitions of a, Ej, and I3, in (3.3), (4.13), and (4.18) respectively, we get

(u(t) —u(t))”

t
u(t)u(t)

— ¢ / (0(t) — 0(t))eu(t) dz = col(2)

1

o1 =1(0) [ (a(@e), u(0),u(0) - @0 - u0) (575~ =) d = F6) = B0)

IS
N
£

We use this equation to rewrite (4.22) as

1d
2dt

(@3- + Evn(t) < L) [[er (@)l + / (Ax(®) = A(X(®)eu(t) de + Is(t).  (4.23)

Q
Now we take the difference of the equations (2.1f) and (4.8d) and test by €, (¢). Applying the

boundary conditions (2.1g) and (4.8e), the definition (4.18) of I3, and Young’s inequality,
we obtain, for a.e. t € (0,7,

< v ||2+e/Vex VE(0)

:/(x(x( a(t) — N (x(6)ut) + E(t) — £(b)

Q

+ 0/ (x(8) = (x(1)) = o (D) (KO — X(0) ) (1) do
< [ €0 - c0)at e + vano &),

+ [ (MRENEO - XO)u(®) + 7 ((0) - o' (R0 )a®) do. (4.24)

Using (4.9), (4.14), and the equality 2(a — b)(a — ¢) = (a — b)?> + (a — ¢)? — (b — ¢)? (which
follows directly from the second binomial formula), we see that

[ Ve et ds = 3B - 519X - TROIE - (425)
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We invoke the compatibility conditions in (2.1d) and in (4.8b), and use (A1), to show that
(€-9e =R -x) +E(x-x+ (X -X)
< (%) — $(x) +6(x) — (%) +E(X — %)
=[x —X) +9o(x) —o()|, aein Qr. (4.26)

Combining (4.24)—(4.26), (A2), property n > ny in (A3), and (4.20), we get

VA + SEa(t) < () e, + (1)
- / (N (x@®)u(t) = N (R(E)a(0) 2 (1) do + j’,— Ivag@lly, forae.t € (0,7).

Q

Adding this inequality to (4.23), we arrive at

1 d 2 2 £
LB + Bu(0) + 5 T IVAEOIE + Ba()

< L) [l + L) |vae®)ll, + ‘;— IVAg O + Ts(t) + Ta()
+ [ ((G®) - AR@)e® - (N x)u®) - NRONO)E®) do, (427

for a.e. t € (0,7). Applying Taylor’s formula and (A2), we see that a.e. in Qr it holds

(Ax) = A®))ew — (N ()u — N(X)u) ey
= u()\( )+ X)X —x) — AX)) +a(AMx) + N (X)) (x — %) — Ax))

1 _ ~
< =X +B)(x - %)

Inserting this inequality in (4.27) and using the definition (4.15) of R(t), we conclude that

]_ d ~ 2 ~ 2 g

= SOl + IVag2) + Bu(o) + S B0

- - oy .
< max (1(0), B0) ([E(0)- + VA ) + 2 VSO + B(0) + 1) + R(0),

for a.e. t € (0,T). Recalling (4.12) and (4.16), we conclude that (4.21) is proved. O

Now we bound I;(%), ..., I4(t) in terms of the estimators & 1, Es.m, Es.m, E6.m-

Lemma 4.3. Form =1,..., M it holds

tm
i
/ (1) + 1o(6)) 6 < "2 (Eum + Exm + Eum). (4.28)

t



Proof. Let 1 < m < M be arbitrary. Consider first term I; defined in (4.17). Using (2.5),
(2.6), (3.2), and (3.6), we obtain that, for ¢t € (tm_1, tm),

C

m

Ii(t) <

(NRO) = X Otm-)) ml pay + 190) = gl + 2 1600) = Gy - (429)

>

Applying Taylor’s formula, by virtue of (A2), (3.5), and (3.6), we get, a.e. in Q X (tm_1, tm],
IN(X) = N (m—1)| = [N (tm + (1 = DXim—1) — A (xm—1)| < max (JAG], AY) {[dxm| . (4.30)

Hence, taking (4.29), (3.9d), (4.5), and (3.22a) into account, we deduce that

tm tm

C, Pm hm
/ L(t)dt < h—max(|)\g|,)\'1') / 1(t) ||(6xm)?|,, dt + 5 Eam = 7(f,‘4,m+55,m). (4.31)

m
tm—1 tm—1

Now we consider term I, defined in (4.18). Using (2.5), (2.6), and (3.5), we obtain that, for
t e (tm—latm]a

I(t) ( ||U,(l(t)Xm + (1 =1()xm-1) — U’(Xm—l) + U”(mel)(mel - Xm)||2

< 1
Vo
+ ([ (X Gtm-1) = X&) ), )- (4.32)
Applying Taylor’s formula and using (A2), (3.5), and (3.6), we can show that, a.e. in

1 x (tmfla tm]a

|U’(le + (1 - l)mel) - O-I(mel) + O-H(mel)(mel - Xm)|
1
<ol(1=1)|0xm| + 501"12(5xm)2.

Thanks to this estimate, (4.30), (4.5), and (3.22b), from (4.32) we see that

tm tm

1 n 1 n
[ s < (0= 1020 1wl + 500 18l

Mo 2
tm—1 tm—1
" " hm
+1(t) max (IN]], XY) Ol ) dt = g
Adding this estimate to (4.31), we conclude that (4.28) holds. O
Lemma 4.4. Form =1,...,M it holds
i h
/ (I(t) + Iu(t)) dt < ngl,m. (4.33)
tm—1
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Proof. Let 1 < m < M be arbitrary. Consider first term I, defined in (4.20). Using formula
(3.5) for ¥, (3.6), the compatibility condition (2.4c), and the convexity of ¢ in (A1), we
conclude that, a.e. in Q X (¢,,_1, tm),
€x %) + (%) — o(%)|
< & (Xm = (xm + (1 = Dxtm—1)) + (160xm) + (1 = D(Xm—1)) — &(Xim)
= (L= 1) (ém0Xm — 60m) = |(1 = 1) (€mOXm — 66m) | -

Therefore, on using again (3.5) and (3.6) in conjunction with (4.5), we see from (4.20) that

tm tm

[ 1@yde < [ (0= 10) [enxn = 86mll + 50— 1O IVoxnl ) dt

tm—1 tm—1
P €hm
e [V T R (4.34)
Now we consider term I3 defined in (4.19). In view of (2.6), (3.6), and (4.5), we can easily
get
7 7 (Sum)? cohm || (Stm)?
Um 0/tm m
I3(t)dt = 1-1IUt)) || ——|| dt = .
/ 3( ) “ / ( ( )) UmUm—1 1 2 UmUm—1 1

m—1 m—1

Adding this to (4.34), and recalling the definition (3.9a) of &; ,,,, we see that (4.33) holds. O

4.3 Proof of Theorem 3.5 and Corollary 3.1

In this subsection, Theorem 3.5 and Corollary 3.1 will be proved. It is assumed that (A1)-
(A5) and Aj > 0 are satisfied.

Let 1 < k < M be given. Because of (4.15), (2.1d), (4.8a), (A3), and (4.12), we see that

n
< ina(s, ) Ey(t), Ve [o,T].

1
R(t) < —=X/minu(z,t) ||e
() < 3N minie,0) 602 <~ min

I3

Defining
0_1 )\H
t) ;== — — — minu(x,t Vtel|0,T],
w(t) == 2= mina(a,t), Ve [0,T)

we get therefore from Lemma 4.2 that, for a.e. t € (0,7,

dE(t)

N F2B,(t) +eBy(t) < 2V2(11(8) + (1)) v/ Eo (t) +2(Is(t) + Lu(t)) + 20 () Eo (). (4.35)

Since w is piecewise constant, for all m = 1,...,k and all ¢t € (¢;,_1, ], we have
tm k

/¢ ydr = dt —%( min u,,(z) dt + Z /millui(x)dt>,
1 1=

zEN
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whence, from the definition (3.15) of Uy,
k
exp (/1#(7') dT) = Wg(t), Vte]l0,tk-
t

Since Fy(0) = 0 because of (4.11) and (4.12), applying to (4.35) the generalized Gronwall
inequality (4.7) for t* := t;, we get therefore

tg

I —max{tlgloat); (\/K\Ilk t)), (/(ZEl(t)—i-aEz(t))\I’Z(t) dt)l/z}

0
tg

< (/2(13(t) L)) d /\f L) + L)) Ue(t)dt = IL  (4.36)
Using now (4.16), (4.13), (4.14), and the discrete Schwarz inequality, we easily obtain
12 o maxd 93l 98 ooy
(2 / (o) u(t)(fzt) (1= 1(0) laGato) ), u(0)], ) W0 @)
+ (s / (17l + 19203 ¥ ae) (437

Applying the upper bound in (3.16), Lemma 4.3, and Lemma 4.4, we deduce that

tm

n< (2 Zmaxwkml,%m) [ @+ nwya)”

tm—1

tm

+meax¢km 1a¢km) /( ()—I-[z(t))dt

tm—1

—(Z h 51mmax(¢km N m)>1/2

g

\/’ Z him 54 m+ Em+ E m) rnax(zpk m—1, Yk m) (4.38)

Since (A2) and Aj > 0 yields that |Aj| < A], we conclude from Remark 3.9 that & ,, = &
and &3, = &,m. Combining this with inequalities (4.38), (4.37), and (4.36) and definitions
(4.9) and (4.10) leads to (3.14). This finishes the proof of Theorem 3.5. Moreover, taking
also (3.16) into account we get (3.7), so that Corollary 3.1 is proved too. O
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4.4 Proof of Theorem 3.8

We conclude the paper with the proof of Theorem 3.8. It is assumed that (A1)-(Ab) are
satisfied. Since convexity of A, i.e. A’(s) > Aj > 0 in (A2), was essential in treating term
R(t) in the proof of Theorem 3.5, we have to argue differently to cover also the general case,
where \{ may be negative. Applying the Gagliardo—Nirenberg inequality (see, e.g., [Zhe95,
Theorem 1.1.4]), there are two positive constants Cy, Cy such that

loll, < G VoIl 1ol + Co llvll,, Vo e HY(Q).

Thanks to Young’s inequality, there is a then constant C. such that (3.17) holds. Using this,
together with the generalized Holder’s inequality and Young’s inequality, from (4.15) we get

R(t)S%I/\Slllu(t)Jrﬂ(t)llLe B @)l 2y (VEIVE®) o, + Ce [Ex (1))

9 ~
< 7 IVe®llsw + 5 SN ) + T(t) 1 Zo(e 18 (8) 1720y

1 _ ~
+ 5 10l Ce [lut) +a()l] o o) @) 720y> VEe€[0,T]. (4.39)
Setting
1 n — " a7 0'1’
v(t) == I 0] () + Tl ooy (2Ce + AT [u(t) + ()| oy ) + e (4.40)

and using (4.39), (4.14), property n > 7y in (A3), and (4.12), from Lemma 4.2 we deduce

dE(t)
dt

+2F1(t) +eBy(t) < 2V2(11(t) + L () V Eo(t) +2(13(t) + I4(t)) +2v(t) Eo(t), (4.41)
for a.e. t € (0,T"), where

Eg(t) = Fy(t) — ||Vex( )

1o
= [Vex(®)lly  + 5 [VEx(®)ll5 -

Applying to (4.41) the generalized Gronwall inequality (4.7) for t* := t;, and taking into
account that Fy(0) = 0 because of (4.11) and (4.12), we see that

I —max{tren(?t)]i (\/EO Tk ) (/(ZEl(t)—i—aEE(t))Ti(t) dt)l/Z}
< ( / 2(1a(t) + 1,(0) Fi(0)d / VAL + L) T dt =1, (142

0
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where
t

Ti(t) == exp (/’U(T) dT). (4.43)

t

Now we argue as in the proof of Theorem 3.5 to estimate the two terms I and II in (4.42).
First, in view of the positivity of both u and @, we note that T4 (¢) can be bounded from
below by YT (¢) defined in (3.19). From (4.40) and (4.43) we have in fact, for all ¢ € [0, T,

"

-~ 1 _ _ o
1) > exp (-] | 1)Ly (20 + 1N ) sy ) dr + 2ot = 1)) = (o)
t

Therefore, arguing as in the proof of Theorem 3.5, we see that term /21 is bigger than the
left hand side of the desired estimate (3.18). For term II, we argue again as in the proof of
Theorem 3.5, that is we apply Lemma 4.3 and Lemma 4.4, to arrive at

k 3 1/2 k 5
V211 < ( > hmgl,m||rk||§m(tm_htm)) + O B (Eam + Esm + Es.m) || Tkl |0 (b1 )
m=1 m=1

Therefore, to conclude the proof of (3.18), it remains to estimate || Y1 ||zoo(s,._, 4,.) from above.
From (4.40) and Young’s inequality, we see that, for ¢ € (t,, 1,tm], m=1,...,k,

tg

/I
/ (r)dr < %(tk—tm 1 +— X’I (2C- (1)L oy + Nu (s )
t

] (2 1) s + 2 ||u(¢>||mm ))dr,

whence, in view of (4.43), (3.20), and (3.21),

"

T4 (t) < U mwim exXP (U—l(tk . tm,l)), VEE by, m=1,... .k O
Mo
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