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Abstract: We study the Hop�eld model with pure p-spin interactions with even p � 4, and

a number of patterns, M(N) growing with the system size, N , as M(N) = �N
p�1. We prove

the existence of a critical temperature �
p
characterized as the �rst time quenched and annealed

free energy di�er. We prove that as p " 1, �
p
!

p
�2 ln 2. Moreover, we show that for any

� > 0 and for all inverse temperatures �, the free energy converges to that of the REM at inverse

temperature �=
p
�. Moreover, above the critical temperature the distribution of the replica overlap

is concentrated at zero. We show that for large enough �, there exists a non-empty interval of in

the low temperature regime where the distribution has mass both near zero and near �1. As was
�rst shown by M. Talagrand in the case of the p-spin SK model, this implies the the Gibbs measure

at low temperatures is concentrated, asymptotically for large N , on a countable union of disjoint

sets, no �nite subset of which has full mass. Finally, we show that there is �
p
� 1=p! such that for

� > �
p
the set carrying almost all mass does not contain the original patterns. In this sense we

describe a genuine spin glass transition.

Our approach follows that of Talagrand's analysis of the p-spin SK-model. The more complex

structure of the random interactions necessitates, however, considerable technical modi�cations. In

particular, various results that follow easily in the Gaussian case from integration by parts formulas

have to be derived by expansion techniques.
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1. Introduction and Results

In a recent paper [T4] (see also [T6] for a more pedagogical exposition) Talagrand has presented for

the �rst time a rigorous analysis of a phase transition from a high temperature phase to what could

be called a "spin glass phase". This was done in the context of the so called p-spin Sherrington-

Kirkpatrick (SK) model [SK] for p � 3. From the heuristic analysis on the basis of the replica

method (see [MPV]), it is known that this model should have a spin glass phase that is much

simpler than in the case p = 2, the standard SK model, and this fact is to be expected to be related

to the success of Talagrand's approach. In any event, this important new result has highlighted the

p-spin interaction model as an important playground to develop new techniques and to gain more

insight into the fascinating world of spin glasses.

The Hamiltonian of the p-spin SK model can most simply be described as a Gaussian process

X
�
on the hypercube S

N
� f�1; 1gN with mean zero and covariance function

EX
�
X
�
0 = NR

N
(�; �0)p (1:1)

where R
N
(�; �0) � 1

N

P
N

i=1 = 1�dist
Ham

(�; �0) where d
Ham

denotes the Hamming distance. Seen

from this point of view, the distinction between di�erent values of p is in the speed of decrease of

the correlation of the process X
�
with distance.

Talagrand's methods use heavily the Gaussian nature of the SK model, and in particular the

fact the X
�
can be represented in the form

X
�
=

X
1�i1<i2<���<ip�N

J1i;:::;ip�i1 ; : : : �ip (1:2)

where J1i;:::;ip is a family of i.i.d. standard Gaussian random variables. It is therefore natural to

ask whether and to what extent his approach can be generalized to other models that have similar

correlation decay properties as processes on S
N
, but that are not Gaussian and do not have the

simple structure as (1.2). A natural candidate to test this question on and whose investigation has

considerable interest in its own right, is the so-called p-spin Hop�eld model which we shall describe

below. These models have been introduced in the context of neural networks by Peretto and Niez

[PN] and Lee et al. [Lee] as generalizations of the standard Hop�eld model [Ho] which corresponds

to the case p = 2. This latter case has been studied heavily and since its �rst introduction by

Figotin and Pastur [FP1,FP2] has become, on the rigorous level, one of the best understood mean

�eld spin glass models [N1,ST,Ko,BGP1,BGP2,BG1,BG2,BG3,BG4,T3,T7]. It should be noted,

however, that all the results obtained for this model so far concern the high-temperatures phase

and the so-called retrieval phase, while next to nothing is known about the supposedly existing spin

glass phase. The investigation of this phase in the p � 4 version of the model is the main concern

of the present paper.

We now give a precise de�nition of the models we will study. Let (
;F ;P) be an abstract

probability space and f��
i
g
i;�2N a family of i.i.d. Bernoulli variables, taking values 1 and �1 with

equal probability.
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De�ne for each N 2 N a (�nite) random Hamiltonian, that is, a function H
N
: 
� S

N
! R by

H
N
[!](�) � �

�
p!

N2p�2

� 1
2
M(N)X
�=1

X
i1<:::<ip

pY
l=1

�
�

il
�
il
: (1:3)

The value of p is considered a �xed parameter of the model, and will in the following be even and at

least be 4. While this model can be analyzed rather easily along the lines of the standard Hop�eld

model if M � N (see [BG1]), the results of Newman [N1] on the storage capacity suggest that the

model should have a good behavior even if M(N) scales as Np�1, i.e.5

lim
N"1

M(N)

Np�1 = � <1: (1:4)

In this paper we will always be concerned with this case. The limit � will also turn out to be

a crucial parameter for the behavior of the system. In the standard Hop�eld model, it has been

proven that for small values of �, the model at low temperatures is in a retrieval phase, where

there are Gibbs measures that are concentrated on small neighborhoods of the stored patterns. It

is believed that for large values of � (or smaller values of �) this property fails and that in fact

the model should then be very similar to the Sherrington-Kirkpatrick model; however, there exist

no rigorous results to that e�ect. While in the present paper we do not present results concerning

the retrieval phase in the p � 4 case, the results we shall present show that for reasonably large

values of � a phase transition occurs from the high-temperature phase to a "spin glass phase" that

is strikingly similar to those of the corresponding SK models.

We will use the following multi-index notation. For �nite subsets I of the natural numbers,

and real numbers (x
n
)
n2N, let by xI =

Q
l2I xl. Let furthermore P

N
be the set of subsets of

N = f1; : : : ; Ng of cardinality p. The Hamiltonian (1.3) can then be written as

H
N
[!](�) = �

�
p!

N2p�2

� 1
2
M(N)X
�=1

X
I2P

�
�

I�I : (1:5)

These Hamiltonians de�ne random, �nite volume Gibbs measures G
N;�

[!] by assigning each con-

�guration � 2 S
N
a weight proportional to its Boltzmann factor, that is

G
N;�

[!](�) = 2�N
e
��HN [!](�)

Z
N;�

[!]
: (1:6)

Consider now the Hamiltonian as a random process indexed by � 2 S
N
. Simple calculations allow

to verify that the mean of H
N
with respect to P vanishes for all �, that is E H

N
(�) = 0; 8� 2 S

N
;

whereas the variance satis�es (for some number C depending on p only)

�N(1� CN
�1) � E H

N
(�)2 =

p!

N2p�2

M(N)X
�=1

X
I2PN

� �N; (1:7)

5In the sequel, we will write with slight abuse of notation M(N) = �Np�1 even for �nite N .
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which motivates our choice of normalization in the de�nition of H
N
. The covariance is given as

E H
N
(�)H

N
(�0) =

p!

N2p�2

M(N)X
�=1

X
I2PN

�I�
0
I = �NR

p(�; �0)(1 +O(N�1)); (1:8)

where R
N
(�; �0) � 1

N

P
N

i=1 �i�
0
i
is the (normalized) replica overlap. Note that this covariance is in

leading order and up to the factor � the same as the covariance for the p-spin SK-model ([T4]).

The normalizing factor Z
N;�

in (1.6) is called partition function and it is given by

Z
N;�

[!] = E
�
e
��HN [!](s)

; (1:9)

where E
�
is the expectation with respect to the uniform distribution on S

N
. We will call the mean

of Z
N;�

under P the annealed partition function.

We de�ne the free energy F
N;�

[!] by F
N;�

[!] � 1
N

lnZ
N;�

[!].6 Customarily one calls the mean

of the free energy, EF
N;�

, the quenched free energy, while the normalized logarithm of the annealed

partition function is called the annealed free energy F an
N;�

� 1
N

lnE Z
N;�

. Observe that by H�older's

inequality, both the quenched free energy and the annealed free energy are convex functions of �.

Let us brie
y mention a variant of the above model. On the same con�guration space and with

the same random variables �, we de�ne macroscopic random order parameters

m
�[!](�) � 1

N

NX
i=1

�
�

i
�
i
: (1:10)

These parameters are considered as components of a vector in R
M(N) with M(N) as in (1.4). New

Hamiltonians are now de�ned through

�H
N
[!](�) � N

s
p

�
km[!](�)kp

p
� E km[!](�)kp

p

�
; (1:11)

where s = s
p
> 0 is de�ned such that the covariance of �H is in leading order in N equal to �N .

The interaction �H is a straightforward generalization of the usual p = 2 case. However, computing

the resulting covariance function one sees that it decreases only quadratically with the Hamming

distance. Therefore it will not share the special features of the p-spin SK model. An analysis of

the high-temperature phase for �H has been presented in [Ni1].

We will now state our results. They will always concern the model with Hamiltonian (1.3) and

p � 4.

The �rst result we prove for both choices of the Hamiltonian is that for high enough temperatures

(that is, low values of �), the limit of the annealed free energy exists.

Theorem 1.1: If � < e
�2(p!)

1
2 � �

0
p
, then the annealed free energy corresponding to H satis�es

F
an
N;�

=
��

2

2
(1 +O(N�1)): (1:12)

6Note that physicists often use a di�erent normalization, FN;� = �
1

�N
lnZN;� . We use Talagrand's choice

convention to facilitate comparison with [T4].
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Note that for larger values of �, the annealed free energy diverges. Our analysis will be limited

to the case when � < �
0
p
where a comparison to the SK model is still possible. It is nice to see

that this value tends to in�nity with p very rapidly. Moreover, we shall see that this value becomes

much larger than the critical temperature, as � gets large.

Jensen's inequality implies that the quenched free energy is less then or equal to the annealed

free energy,

E F
N;�

=
1

N
E lnZ

N;�
� 1

N
ln E Z

N;�
= F

an
N;�

: (1:13)

We de�ne the critical temperature to be the in�mum of values for which equality holds in (1.13),

i.e. in terms of �,

�
p
� sup

�
� � 0 : lim sup

N"1
E F

N;�
= lim sup

N"1
F
an
N;�

	
: (1:14)

Observe that in general lim
N
E F

N;�
need not exist.

By (1.8), as a random process on S
N
, H

N
(�) has (up to an overall factor) essentially the same

covariance structure as the p-spin SK Hamiltonian. This suggest that as in that case, for p large

the model should be similar to Derrida's random energy model (REM) [D1,D2]s Recall that in this

model, H
N
(�) �

p
NX

�
, where fX

�
g
�2SN are i.i.d. standard normal random variables). De�ning

the corresponding partition function Z
REM
N;�

= E
�
e
�

p
NX� , one easily sees that the free energy

satis�es [D2]

f
REM

�
= lim

N!1

1

N
E lnZREM

N;�
=

(
�
2
=2; if � �

p
2 ln 2

�
p
2 ln 2� ln 2; if � �

p
2 ln 2

(1:15)

We will show that as p tends to in�nity,
p
��

p
tends to the critical value

p
2 ln 2 of the REM.

Moreover, pointwise in �; �,

1

�
lim
p!1

lim
N!1

1

N
E lnZ

N;

p
��

=
1

�
f
REM

�
: (1:16)

in analogy to the situation in the p-spin SK model [T6]. While this may not be very surprising, it

is also not totally obvious and will require some non-trivial computations.

Our next two theorems make these relations precise. We will denote by I(t) the Cram�er entropy

function,

I(t) =
1

2
(1� t) ln(1� t) +

1

2
(1 + t) ln(1 + t); (1:17)

Theorem 1.2: The critical value �
p
= �

p
(�) satis�es

�
p
(�)2 � min

 
�
0
p

2

4
; inf
t2[0;1]

I(t)
1 + t

p

�tp

!
� ��

p
(�)2: (1:18)

Furthermore, if � � e
42 ln 2
p!

� �
p
then

�
p
(�)2 � 2 ln 2

�
� �̂(�)2: (1:19)
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Remarks: (i) One can show that the inequality (1.19) actually strict. In [B2] it is shown that

for the SK case, �
p
�
p
2 ln 2(1 � c

p
) with c

p
= 2�p(4+O(1=p)) . This follows from a corresponding

upper bound on the supremum of H
N
(�) which can be obtained using standard techniques. These

estimates can without doubt be carried over to our case.

(ii) The bounds on the critical temperature are essentially (up to a factor
p
�) the same as for

the p-spin SK-model ([T4], Theorem 1.1).7

By elementary analysis one �nds that, as p tends to in�nity,

inf
0�t�1

((1 + t
�1
p)I(t))1=2 =

p
2 ln 2

�
1� 2�p�1

ln 2

�
+O(p32�2p): (1:20)

This, together with the convexity of the free energy in �, will allow us to prove the following

statement.

Theorem 1.3: As p!1, the lower bound ��
p
" �̂. Moreover, for all � � 0 and � > 0,

lim
p"1

lim
N"1

1

N
E F

N;�
= f

REM

��
�1=2 : (1:21)

The basic strategy used to prove these results are rather general. In Chapter 2, we will explain

them by means of the analogous calculations in the REM. For now, we just mention that the hard

part is to prove the lower bound (1.18), whereas the upper bound (1.19) is comparatively easy and

will follow from an estimate on the ground state energy.

An important point in the study of disordered models is the question of self-averaging of the free

energy. While in many cases this follows from general principles [MS,T1] of mass concentration,

due to the failure of certain convexity properties, it turns out to be surprisingly diÆcult to prove

the following result8

Theorem 1.4: For all �; n; �; " > 0 there exists C
n
< 1 (depending only on n and �), and

�N <1 such that the free energy satis�es

P

h
jF

N;�
� E F

N;�
j � ��N

� 1
2
+"
i
� CN

�n (1:22)

for all N � �N . In particular,

lim
N"1

jF
N;�

� E F
N;�

j = 0; P� a:s: (1:23)

7Observe that in [T4], the normalization of the Hamiltonian contains an extra factor 2�1=2.
8A sharper estimate can be proven with much less e�ort for the interaction �HN , see [Ni1].
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Remark: From recent results in the p-spin SK-model and the REM [BKL], one actually expects

that the 
uctuations in the small � region are of much lower order.

While the critical temperature is de�ned in terms of the behavior of the free energy, it turns

out that this phase transition goes along with a change in the behavior of the replica overlap

parameter, R
N
(�; �0). This will eventually lead to rather detailed insight into the properties of the

Gibbs measures at low temperatures.

The crucial link between the two will be provided by the next theorem.

Theorem 1.5: Assume that � <
1
2
�
0
p
. Then the replica overlap R

N
(�; �0) satis�es

E
@F

N;�

@�
= �� (1� E G

N;�

 G

N;�
[R

N
(�; �0)p]) (1 +O(N�1)); (1:24)

Note that in the case of the Gaussian SK models, this relation is a trivial consequence of the

integration by parts formula

E [gf(g)] = E [g2 ]E [f 0(g)]; (1:25)

which holds for any centered Gaussian random variable g and any function f not growing faster

than some polynomial at in�nity. To establish this result without the help of this formula turns

out to require a considerable e�ort. Similar tools are also instrumental in the proof of Theorem

1.4.

We then have the following consequence to Theorem 1.2 and Theorem 1.5.

Theorem 1.6: Assume that � � �
p
. If � < �

p
, then

lim sup
N"1

E G
N;�


 G
N;�

[R
N
(�; �0)p] = 0: (1:26)

Conversely, if lim sup
N
E

@FN;�

@�

< ��, then

lim inf
N"1

E G
N;�


 G
N;�

[R
N
(�; �0)p] > 0: (1:27)

In particular, (1.27) holds for all � 2 [�̂; 1
2
�
0
p
).

Remark: It seems reasonable that (1.27) should hold for all � above the critical �
p
, but there

seems to be no general principal that would prohibit a reentrant phase transition.

Inequality (1.27) expresses in a weak way that below the critical temperature, the Gibbs measure

gives some mass to a a small subset of the con�guration space. This result can be strengthened.

As in [T4], we show that the overlap between replicas is either very close to one, or to zero:

Theorem 1.7: For any � > 0 there exists p0 < 1 such that for all p � p0, � > �
p
, and for all

0 � � < �
0
p

lim
N"1

EG
2
N;�

(jR
N
(�; �0)j 2 [�; 1 � �]) = 0 (1:28)
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If, moreover, � < ��
p
, then for any � > 0 there exists p0 <1 such that for all p � p0, such that for

some Æ > 0, for all large enough N ,

EG
2
N

(jR
N
(�; �0)j 2 [�; 1]) � e

�ÆN (1:29)

Remark: Note that we prove this result without any restriction on the temperature, while Tala-

grand requires some upper bound on � both in [T4] and in the announcement [T5] even though

the bound in [T5] is greatly improved. We stress that the our result is also valid for the p-spin

SK-model. The same applies for all subsequent results.

The information provided by Theorem's 1.6 and 1.7 allow gain considerable insight into the

nature of the Gibbs measures in the low temperature phase. This observation is due to Talagrand.

In [T4] he showed that whenever (1.27) and (1.28) hold, it is possible to decompose the state

space S
N
into a collection of disjoint subsets C

k
such that

(i)

lim
N"1

EG
2
N

��
(�; �0)j jR

N
(�; �0)j > �

	
n [

k
C
k
� C

k

�
= 0 (1:30)

(where the C
k
depend both on N and on the random parameter!), and

(ii) If �; �0 2 C
k
, then R

N
(�; �0) � 1� �.

Note that because of the global spin 
ip symmetry of our models with p even, these lumps

necessarily appear in symmetric pairs.

In [T4] Talgrand analyzed the properties of these lumps further using the cavity method. He

showed that, under a certain hypothesis that we shall discuss shortly, for � not too large this lumps

correspond to what is known as \pure states". While it is very likely that this analysis can also

be carried over to our models, we will leave this question open to further investigation. We �nd

it however interesting to discuss the situation of the general hypothesis. Talgrand's hypothesis in

[T4] concern the distribution of mass on the lumps. Roughly, they can be states as

Theorem 1.8: Assume that 1
2
�
0
p
> � > �

p
. Let C

k
be ordered such that for all k, G

N;�
(C

k
) �

G
N;�

(C
k+1). Then for all k 2 N, there exists p

k
<1 such that for all p � p

k
,

lim
N"1

EG
N;�

�
[k
l=1Cl

�
< 1 (1:31)

except possibly for an exceptional set of �'s of zero Lebesgue measure. Moreover, for k large,

p
k
� 2

3
ln k
ln 2

.

In [T5] Talagrand has announced a proof of an even stronger theorem in the p-spin SK model

that makes use of general identities between replica overlaps proven by Ghirlanda and Guerra [GG].

We show that at least Theorem 1.8 also holds in our model.

A �nal result is particular to the Hop�eld model and concerns the storage properties of the

model. Newman has proven in [N1] that for small �, the Hamiltonian has deep local minima in
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the vicinity of each pattern. Here we show a somewhat converse result, stating that if � is not too

small, then small neighborhoods of the patterns have asymptotically mass zero. In other words,

none of the patterns falls into one of the 'lumps'. This gives the �nal justi�cation to call the phase

transition we have observed a transition to a genuine spin glass phase.

Theorem 1.9: Suppose that � satis�es ��
p
(�) > (p!)�1=2. Then there exists a Æ 2 (0; 1

p

) and

�N 2 N such that for all N � �N ,

P[arg sup jH
N
(�)j 2

M(N)[
�=1

B
Æ
(��)] � N

�m
; (1:32)

where B
Æ
(��) is the NÆ-ball around �

� in the space R
N with respect to the Hamming metric. In

particular, there exists an �
sp

= �
sp
(p) such that (1.32) holds for all � > �

sp
. Furthermore,

arg sup jH
N
(�)j =2

M(N)[
�=1

B
Æ
(��)] eventually P� a:s: (1:33)

The proof of this result is based on the comparison between the ground state energy of the system

and an estimate on the values of the Hamiltonian in the balls around the patterns. While the former

increases as N
p
�, the latter is almost constant and with high probability close to N(p!)�1=2.

The remainder of this paper is organized as follows. In Chapter 2, we explain the ideas behind

the proof of the bounds on the critical temperature by calculating the corresponding quantities in

the REM. In Chapter 3, Theorem 1.1 is proved. Chapter 4 is devoted to the lower and the upper

bound on the critical � (as well as the proof of Corollary 1.3). In Chapter 5 we prove Theorem 1.4

In Chapter 6 we prove the results on the distribution of the replica overlap, Theorems 1.5 to 1.8.

In Chapter 8 we prove Theorem 1.9.

2. Second Moment Method: The REM

This section is meant to give a pedagogical exposition of Talagrand's truncated second moment

method [T3,T4] in the context of the simplest possible setting, the random energy model. A more

detailed exposition can also be found in [B2] and [T6]. Since the application of this method in our

case will become rapidly somewhat technical in our case, we still �nd it useful to give the reader

an outline in a non-technical context9. Moreover, the REM provides important bounds for the real

model.

We will now show how this method works by using it to compute the free energy of the REM.

Note �rst that in general,

@F
N;�

@�
= � 1

N
G
N;�

[H
N
] � 1

N
E [sup

�

jH
N
(�)j]: (2:1)

9Note that of course much sharper results than those presented here can be obtained in the REM when making

use of its special features. See e.g. [BKL] for a full analysis of the 
uctuations of the free energy.
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Moreover, since

P [sup
�

jH
N
(�)j > tN ] � 2NP [jH

N
(�)j > tN ] � 2N+1

e
� t

2
N

2 : (2:2)

from this it follows easily that

1

N
E [sup

�

H
N
(�)] �

p
2 ln 2 + 2

1Z
p
2 ln 2

e
�N( t

2

2
�ln 2)

dt

�
p
2 ln 2 +N

�1

r
2

ln 2
:

(2:3)

This is the upper bound on the derivative of the expectation of the free energy. Suppose now that

� >
p
2 ln 2 = �

0. Convexity of the free energy then implies that

E F
N;�

� E F
N;�

0 + (� � �
0)�0 (2:4)

and in the limit

lim sup
N"1

E F
N;�

� ��
02

2
+ ��

0 =
�
2

2
� (� � �

0)2 <
�
2

2
; (2:5)

which by de�nition means that �0 � �REM. In the case of the p-spin Hop�eld model, the corre-

sponding calculations will be identical to those above, except for the bounds on the extrema of the

Hamiltonian, where the non Gaussian character induces somewhat more involved calculations.

The basic idea behind Talagrand's approach to prove the lower bound (which he did for the

p-spin SK-model in [T4]), is to obtain a variance estimate on the partition function. This will

imply that the expectation of the logarithm behaves like the logarithm of the expectation of this

quantity. In the REM, one would naively compute

E [ZREM

N;�

2] = E
�;�

0 E e
�

p
N(X�+X�0)

= 2�2N

0@X
� 6=�0

e
N�

2

+
X
�

e
2N�

2

1A
= e

N�
2
h
(1� 2�N ) + 2�NeN�

2
i
:

(2:6)

The second term in the brackets is exponentially small if and only if �2 < ln 2, and this cannot

be the critical value since it violates the upper bound �
0 above.10 The point is that while in the

computation of E e2�
p
NX� , the dominant contribution comes from the part of the distribution of

X
�
around X

�
= 2�

p
N , whereas in E Z

REM

N;�
the main part is contributed by X

�
around �

p
N .

One is thus led to consider the second moment of a suitably truncated version of ZREM

N;�
. Namely,

for c > 0,

~ZREM

N;�
(c) = E

�
e
�

p
NX�1IfX�<c

p
Ng: (2:7)

10This is already contained in [D2]
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One then �nds that (modulo irrelevant prefactors)

E ~ZREM

N;�
(c) =

8<: e
�
2
N

2 ; if � < c;

1p
N(��c)

e
N�c�Nc

2

2 ; if � > c:

(2:8)

Moreover, for � < c,

E ~Z
N;�

(c) = E Z
N;�

 
1� e

� 1
2
(c��)2N

p
N(c� �)

!
(2:9)

On the other hand,

E ~Z
N;�

(c)2 = (1� 2�N )
�
E ~Z

N;�
(c)
�2

+ 2�NE e2�
p
NX�1IfX�<c

p
Ng; (2:10)

where the second term satis�es

2�NE e2�
p
NX� �

8<: 2�Ne2�
2
N

; if 2� < c

2�N
(2��c)

p
N

e

2c�N� c2N
2

; otherwise;
(2:11)

and thus

2�NE e2�
p
NX�1IfX�<(1+")�

p
Ng

� (E ~Z
N;�

)2 �

8>>><>>>:
e
�N(ln 2��2)

; if� <
c

2
;

e

�N(c��)2�N(ln 2� c
2

2
)

(2��c)
p
N

; if c
2
< � < c;

e
(c2=2�ln 2)N

p
N

(��c)2

2��c ; if� > c

(2:12)

Hence, for all c <
p
2 ln 2, and all � 6= c

E
( ~Z

N;�
(c)� E ~Z

N;�
(c))2

E [ ~Z
N;�

(c)2]
� e

�Ng(c;�)
; (2:13)

where g(c; �) > 0. Thus, by Chebyshev's inequality, it is immediate that

lim
N"1

1

N
E ln ~Z

N;�
(c) = lim

N"1

1

N
ln E ~Z

N;�
(c); 8c <

p
2 ln 2: (2:14)

Since this gives a lower bound of the free energy that is as close to the upper bound as desired, we

see that the upper bound gives in fact the true value.

This is a remarkable feature of the REM: the expectation of the logarithm of the partition

function coincides with the log of the expectation of a suitably truncated partition function. While

this is rather special to the REM, the method is general enough to provide lower bounds in the far

more complicated situations, as we will see.

3. The Annealed Free Energy.

In this Section we compute the anneled free energy. Apart from the intrinsic interest this can be

seen as the computation of the log-moment generating function of the Hamiltonian and this will
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be a basic input in the sequel. While in the SK models this is a two line computation, here even

this will require a considerable e�ort. The idea is to use Taylor expansions and to exploit the fact

that the Hamiltonian is a sum of a very large number of independent random variables. Namely

E Z
N;�

= E e
��HN [!](�) = E exp

0@� � p!

N2p�2

� 1
2
M(N)X
�=1

X
I2PN

�
�

I

1A
=

M(N)Y
�=1

"
E exp

 
�

�
p!

N2p�2

� 1
2 X
I2PN

�
�

I

!#

=

"
E exp

 
�

�
p!

Np�2

� 1
2

Y

!#
M(N)

;

(3:1)

where we introduced the abbreviation Y � N
� p

2

P
I2PN �

1
I . We now expand the exponential

function according to the bound
���ex � 1� x� x

2

2

��� < jxj3ejxj. Thus,�����E
"
exp

 
�

�
p!

Np�2

� 1
2

Y

!#
� 1� �

2
N

2�p

2

�����
� E

"
�
3

�
p!

Np�2

� 3
2

jY j3 exp
 
�

�
p!

Np�2

� 1
2

jY j
!#

+O(N1�p):

(3:2)

Observe that the quadratic term is in fact just Np�1 times the variance of H
N
. We will show in a

moment that the expectation on the right-hand side of (3.2) is bounded by a constant times N3� 3p

2 .

Assuming this and recalling that p � 4, it is evident that

ln E Z
N

=M(N) ln

�
1 +

�
2
N

2�p

2
(1 +O(N�1)

�
=

��
2
N

2
(1 +O(N�1)):

(3:3)

which is what we want to prove. We now turn to the non-trivial part of the proof, the estimate

of the remainder on the right-hand side of (3.2). To to this, we decompose the exponent into two

factors, and use on one the obvious bound jY j � (p!)�1Np=2. This yields

E

h
jY j3 exp

�
�(p!)

1
2N

2�p

2 jY j
�i

= E

h
jY j3 exp

�
�(p!)

1
2N

2�p

2 jY j 2p jY j p�2p
�i

� E

h
jY j3 exp

�
�(p!)

2
p
� 1

2 jY j 2p
�i

:

(3:4)

The point is that the term jY j2=p should behave almost like the square of a Gaussian. More

precisely, we have the following bound.

Lemma 3.1: Let fX
i
g
i=1;::: ;N be a sequence of i.i.d. Bernoulli variables, taking values +1, �1

with equal probability. Then 8C 2 (0; e�1), there exists an "
0
C
< 1 (depending also on p) and an

�N 2 N such that for all " > "
0
C

P

"�����N�p=2
X
I2PN

Y
l2I

X
l

����� > "

#
� 2 exp

 
�C2 (p!)

2
p "

2
p

2

!
: (3:5)
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Proof: The proof is surprisingly more involved than what one might at �rst suspect (at least, if

optimal constants are desired). We shall show that
P
I2PN XI is a function of

P
N

i=1Xi
only. Since

the distribution of this latter random variable is well known, all we have to do is to �nd an accurate

upper bound for the function relating the two quantities. And since we are only interested in the

tail behavior, we can restrict our attention to large values of the sum (large meaning at least of the

order of
p
N).

Suppose that
P

N

i=1Xi
= N � 2l. Then the quantity

P
I2PN XI is given by

X
I2PN

XI =

pX
k=0

(�1)k
�
l

k

��
N � l

p� k

�
= bzpc

�
(1 + z)N�l(1� z)l

�
; (3:6)

where bzpc(�) � 1
p!

@
p

@z
p �
���
z=0

is the operator which extracts the coeÆcient of the term z
p from a

formal power series. Note that it will be important to take into account that the sum in (3.6) is

oscillating to get a useful estimate. To do this, we consider the polynomial on the right-hand side

of (3.6) as an analytic function C ! C and use Cauchy's integral formula to write

bzpc
�
(1 + z)N�l(1� z)l

�
=

1

2�i

I
C
z
�p�1(1 + z)N�l(1� z)l dz; (3:7)

for any closed path C surrounding the origin counterclockwise. To evaluate this integral, we apply

the well known saddle point method (see for instance [CH]). We choose C to be a circle around the

origin with radius

r =
N � 2l

2(N � p)

 
1�

s
1� 4p(N � p)

(N � 2l)2

!
: (3:8)

Suppose that
4p(N�p)
(N�2l)2 < � < 1. Then the argument of the square root is positive. Moreover, the

following bounds for r hold,

p

N � 2l
� r � p

N � 2l
(1 +C1(�)); (3:9)

where C1 increases from zero to some �nite constant as � varies from zero to 1.

Indeed,
p
1� x is C1 for all jxj < 1. Therefore, for all � < 1, we can �nd a C > 0 such that

p
1� x � 1� x

2
�Cx

2, for all jxj < �. Obviously, C tends to 1
8
as � tends to zero. This implies the

upper bound. On the other hand,
p
1� x � 1� x

2
, for all x � �1, which yields the lower bound.

The contour integral in (3.7) then becomes

I � 1

2�i

I
C

z
�p�1(1 + z)N�l(1� z)l dz

=
1

2�

�Z
��

exp
�
�ip# ln r + (N � l) ln(1 + re

i#) + l ln(1� re
i#)
�
d# � 1

2�

�Z
��

e
g(#)

d#:

(3:10)
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As usual, we expand the function g around its maximum (which happens to lie at # = 0) and try

to control the error. This yields

I = exp

 
g(0) +

(2�)3

3!
sup

�2[��;�)
g
(3)(�)

!
�Z

��

e
#
2

2
g
(2)(0)

d#

= r
�p(1 + r)N�l(1� r)l exp

 
(2�)3

3!
sup

�2[��;�)
g
(3)(�)

!
�Z

��

e
#
2

2
g
(2)(0)

d#

(3:11)

The main contribution comes from the term r
�p(1+ r)N�l(1� r)l. Using (3.9), this is bounded by

r
�p(1 + r)N�l(1� r)l = exp (�p ln r + (N � l) ln(1 + r) + l ln(1� r))

� exp (�p lnp+ p ln(N � 2l) + (N � l)r � lr)

� exp (�p lnp+ p ln(N � 2l) + (N � 2l)r)

� (N � 2l)p

p!

p
pe

C1(�)p:

(3:12)

The integral in (3.11) is explicitly

�Z
��

e
#
2

2
g
(2)(0)

d# �
Z
R

exp

�
#
2

2

�
lr

(1� r)2
� (N � l)r

(1 + r)2

��
d# =

0@ �

(N�l)r
(1+r)2

� lr

(1�r)2

1A1=2

; (3:13)

and can be bounded by (for all N large enough)�
(N � l)

r

(1 + r)2
� l

r

(1� r)2

�� 1
2

� p
� 1

2

�
1� p

2

(N � 2l)2

��
1� 2�

3

�
: (3:14)

Finally, we estimate the error due to the remainder in the Taylor expansion in (3.11). One shows

by a straightforward computation that for all �; Æ > 0 there exists an �N
�;Æ

2 N such that

jg(3)(#)j � p(1 + C1(�)) (1 + �(1 + C1(�)) + Æ) = pC3(�; Æ); (3:15)

where C3 = 1 for � = Æ = 0. Hence, the error committed can be bounded as (if N > �N
�;Æ

)

exp

 
(2�)3

3!
sup

�2[��;�)
g
(3)(�)

!
� exp

�
2�

3!
p(1 + C1(�))

�
1 + �(1 + C1(�)) +

C2

N � 2l

��
: (3:16)

This follows from the exact expression for g(3),

g
(3)(#) = ire

i#

�
(N � l)

re
i# � 1

(1 + rei#)3
� l

1 + re
i#

(rei# � 1)3

�
; (3:17)

which one gets through straightforward derivation.

Inserting the bounds (3.12), (3.14), and (3.15) into the estimate (3.11) then gives

I � (N � 2l)p

p!
e
(C1(�)+C3(�;Æ))p; (3:18)
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and thus

f

 X
i2N

X
i

!
� 1

p!
e
p(C1(�)+C3(�;Æ))

 X
i2I

X
i

!
p

; N � �N
�;Æ

(3:19)

Let �(�; Æ) = e
(C1(�)+C3(�;Æ))p, for � 2 (0; 1) and Æ > 0. Then � is increasing in � and bounded

below by e
p. Thus, for all C 2 (0; e�p), we can �nd ~� 2 (0; 1) and ~Æ > 0 such that C � �(~�; ~Æ)�1.

Let now

"
�;Æ

�
�
4p

�

�
p=2

�(�; Æ)

p!
: (3:20)

Suppose that " > "~�;~Æ and N � �N~�;~Æ. Then, we have that

P

"
N
�1=2

X
i2N

X
i
>

�
"p! �(~�; ~Æ)�1

�1=p#
� exp

�
�1

2

�
"p! �(~�; ~Æ)�1

�2=p�
; (3:21)

by the standard bound on sums of Bernoulli variables. On the other hand, since

N
�1=2

X
i2N

X
i
>

�
"p! �(~�; ~Æ)�1

�1=p
>

�
"~�;~Æp! �(~�;

~Æ)�1
�1=p

=

�
4p

~�

�1=2

(3:22)

implies that
4pN

(N � 2l)2
< ~� < 1; (3:23)

the condition following (3.8) is satis�ed and hence the above bound on f(
P

i2N X
i
) is valid. Thus

P

�
N
�1=2

X
i2N

X
i
>

�
"p! �(~�; ~Æ)�1

�1=p �
= P

"
N
�p=2 �(~�;

~Æ)

p!

 X
i2N

X
i

!
p

> "

#

� P

"
N
�p=2

f

 X
i2N

X
i

!
> "

#
:

(3:24)

Hence, by (3.21) and (3.24),

P

"
N
�p=2

f(
X
i2I

X
i
) > "

#
� exp

�
�1

2

�
"p! �(~�; ~Æ)�1

�2=p�
� exp

�
�C

2=p

2
("p! )2=p

�
: (3:25)

Thus, we have shown that for all C 2 (0; e�p), there exists ~"
C
= "~�;~Æ such that (3.25) holds for

all " > ~"
C
and all N large enough. Together with the analogue bound for the negative tails, this

proves the lemma. �

To �nish the proof of the theorem, let us go back to (3.4). To get the claimed bound, it is enough to

show that the integral on the right-hand side is bounded uniformly in N . Indeed, since the variable

Y satis�es the bound (3.5) of the lemma, we get for any C
0
< e

�p

E
�
jY j3 exp

�
�(p!)

2
p
� 1

2 jY j 2p
��
�
X
l�1

E
�
jY j31IfjY j2[l;l+1)g exp

�
�(p!)

2
p
� 1

2 jY j 2p
��

� (l + 1)3P[jY j � l] exp
�
�(p!)

2
p
� 1

2 (l + 1)
2
p

�
�

1Z
0

(x+ 1)3 exp
�
�(p!)

2
p
� 1

2 (x+ 1)
2
p � C

02=p(p!)
2
p x

2
p

�
dx

+ (~"
p;C

0 + 1)3:

(3:26)
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By the preceding lemma, for any � � e
�2(p!)

1
2 , we can �nd C 0 < e

�p and a corresponding "0
C
0 such

that the above integral is �nite. Setting Cp = C
0, this proves the theorem. �

We observe that we could have equally well replaced H
N
by in �H

N
in the proof of Theorem 1.1,

without changing the result (since only the square of the Hamiltonian does enter). We therefore

have readily the following result, which we state for further use.

Corollary 3.2: If j�j < �
0
p
, then

E E
�
e
�HN = e

��
2
N

2
(1+O(N�1))

: (3:27)

Proof: Completely analogous to the proof of Theorem 1.1. �

We also put a result here, that will be used in the next chapter, but whose proof is very similar

to the above.

Lemma 3.3: If j�j < 1
2
�
0
p
, then there exists a constant C > 0 such that

E

h
e
��HN (�)��HN (�0)

i
� e

�N�
2(1+R(�;�0)p+C)

; (3:28)

for all N large enough.

Proof: The proof is actually almost identical to the proof of Theorem 1.1. We start by expanding

the exponential up to order two, with the same error as in the proof of Theorem 1.1 (inequality

(3.2)). This error term is then treated similarly, by �rst decoupling the terms in � and �
0 with

Cauchy-Schwarz. This already shows why � has to be less than half the bound of Theorem 1.1.

The linear term in the expansion vanishes, whereas the quadratic term gives us the covariance term

R(�; �0)p. Indeed, if we set Y �(�) = N
�p=2P

I�N �
�

I�I , we get

ln E
h
exp(��H

N
(�)� �H

N
(�0))

�
�

M(N)X
�=1

ln

�
1 +

�
2
p!

2
N

2�p
E
��
Y
�(�) + Y

�(�0)
�2�

+
�
3(p!)

3
2

3
N

3� 3p

2 E

h
jY �(�) + Y

�(�0)j3 exp
�
�(p!)

1
2N

1� p

2 jY �(�) + Y
�(�0)j

� i�
:

(3:29)

We now apply the triangle inequality and Cauchy-Schwarz to the error term, which yields

N
3� 3p

2 E

h
jY �(�) + Y

�(�0)j3e�(p!)1=2N1�p=2jY �(�)+Y �(�0)j
i

� N
3� 3p

2

3X
i=1

�
E

h
jY �(�)j2j exp

�
2�(p!)

1
2N

1� p

2 jY �(�)j
�i� 1

2

�
�
E

h
jY �(�0)j6�2j exp

�
2�(p!)

1
2N

1� p

2 jY �(�0)j
�i� 1

2

� C1N
3� 3p

2 ;

(3:30)
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if � <
1
2
�
0
p
and N large enough, by the result in the proof of Theorem 1.1 (cf. the remark after

(3.2)).

The quadratic term in (3.29) is evaluated easily. One obtains (observing that the covariance of

H
N
appears)

E

h
(�Y �(�)� Y

�(�0))2
�
= 2E [Y �(�)2] + 2E [Y �(�)Y �(�0)]

= 2N�p
�
N

p

�
+ 2N�p

X
I�N

�I�
0
I

=
2

p!
(1 +R(�; �0)p) +O(N�1):

(3:31)

Hence,

ln E e��(HN (�)+HN (�0)) �
M(N)X
�=1

ln
�
1 +

�
2

Np�2 (1 +R(�; �0)p) +
C2

Np�1 +
C1

N
3p

2
�3

�
�M(N)(�2N2�p(1 +R(�; �0)p) + C3N

1�p);

(3:32)

that is,

E e
��HN (�)��HN (�0) � e

��
2
N(1+R(�;�0)p)+C4 : (3:33)

This proves the lemma. �

Finally, we have as an application of Corollary 3.2.

Lemma 3.4: The Hamiltonian satis�es

P

�
sup
�

jH
N
(�)j > tN

�
� C

8><>:
exp

�
�N( t

2

2�
� ln 2)

�
; if t � �(p!)

1
2

e
2 ;

exp

�
�N(

(p!)
1
2

e
2 t� �p!

2e4
� ln 2)

�
; otherwise.

(3:34)

Proof: We start with a crude bound to extract the supremum. Standard arguments and Cheby-

shev's inequality in its exponential form yield

P[sup
�

jH
N
(�)j > tN ] � 2N inf

q>0
e
�qtN

E e
qHN (�) + 2N inf

q>0
e
�qtN

E e
�qHN (�)

: (3:35)

We now use Theorem 1.1, respectively Corollary 3.2 to bound the two integrals and obtain

P

�
sup
�

jH
N
(�)j > tN

�
� C12

N+1 inf
q2(0;�0

p
)
e
�qtN

e
�q

2
N

2

= C2

8><>:
exp

�
�N( t

2

2�
� ln 2)

�
; if t � �(p!)

1
2

e
2 ;

exp

�
�N(

(p!)
1
2

2e2
t� �p!

2e4
� ln 2)

�
; otherwise.

(3:36)

This proves the lemma. �

4. Critical � and Convergence to the REM
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4.1. Estimates on the Truncated Partition Function.

To get the lower bound for the critical temperature, we would like to compare E Z2
N;�

and (E Z
N;�

)2.

However, as mentioned in the introduction and explained in Chapter 2 it is essential to do this

comparison for a truncated partition function. De�ne therefore

eZ
N;�

(c) � E
�

h
e
��HN [!](�)1If�HN (�)�c��Ng

i
; (4:1)

for c > 1. The key observation is that the truncation has no in
uence on the expectation of the

partition function if c is chosen appropriately. This is the content of the following lemma.

Lemma 4.1: For all � > 0, c > 1 such that �c < �
0
p
there exist K;K

0
> 0 such that

E eZ
N;�

(c)
�
1�Ke

�K0(c�1)2N
�
E Z

N;�
: (4:2)

Proof: Let us set q = q(N) � ��
2
N . Note that E Z

N;�
� E eZ

N;�
= E

�
e
��HN (�)1If��HN (�)>cqg

�
and thus by the exponential Chebyshev inequality

E Z
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� E eZ
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� E
�
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t>0

e
�tcq

E

h
e
��(1+t)HN (�)

i
: (4:3)

We now use Theorem 1.1 with � replaced by (1 + t)� to estimate the expectation to get

inf
t>0

e
�tcq

E

h
e
��(1+t)HN (�)

i
� inf

0<t��=�0
p
�1

e
�tcq+ (1+t)2q

2
+qCN�1

: (4:4)

The exponent is minimized for t = c� 1. By assumption, �c < �
0
p
, so that this value falls into the

interval over which the inf on the right is taken. Thus,

inf
t>0

e
�tcq

E

h
e
��(1+t)HN (�)

i
� e

� q

2
(c�1)2+CqN�1

e
q

2 � e
� q

2
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E Z
N;�

; (4:5)

This implies the statement of the lemma. �

We now turn to the square of the truncated partition function. We bound

E eZ2
N;�

E e
��H(�)��H(�0 )1If�HN (�)�c��Ng1If�HN (�0)�c��Ng (4:6)

by two di�erent functions. When calculating the expectation with respect to � and �
0, we use one

bound for small values of the replica overlap R(�; �0), and the other for the rest. De�ne therefore

S(b) � E
�;�

0

h
e
��(HN (�)+HN (�0))1IfjR(�;�0)j<bg

i
(4:7)

and

T (c; b; b0) � E
�;�

0

h
e
��(HN (�)+HN (�0))1IfjR(�;�0)j2[b;b0]g1If��(HN (�)+HN (�0))<2c��2Ng

i
: (4:8)



Critical � and Convergence to the REM 19

Then eZ
N;�

(c)2 � S(b) + T (c; b; 1); (4:9)

for all b 2 (0; 1). We now control each of the terms separately. We start with S(b).

Lemma 4.2: Suppose � <
�
0

p

2
, and b is such that


 � ��
2
b
p�2

<
1

2
: (4:10))

Then for all " 2 (0; 1
2
� 
) there exists N

"
2 N such that for all N > N

"
,

E S(b) � 1p
1� 2(
 + ")

e
��

2
N

: (4:11)

Proof: If � satis�es the above condition, we can apply Lemma 3.3 to the integrand of the right-

hand side of (4.7). One obtains

E

�
e
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�
� 1IfjR(�;�0)j<bge

��
2
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: (4:12)

Thus,
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:

(4:13)

by assumption (4.10), for any � > 0, if N is large enough. Standard estimates then yield (4.11).�

The next result concerns the term T (c; b; 1) in (4.9).

Lemma 4.3: Let I(t) be the Cram�er Entropy as de�ned in (1.17). Suppose that there exist

c > 1, d > 0, such that

8t 2 [b; b0]; 2��2c
�
1� c

2(1 + tp)

�
� ��

2 + I(t)� d: (4:14)

Then, if

c < min
� 1

2�
�
0
p
; 1 + b

p

�
; (4:15)

there exists �N 2 N such that for all N � �N ,

E T (c; b; 1) � e
��

2
N

e
�Nd

2 : (4:16)
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Proof: By de�nition,

E T (c; b; b0) = E
�;�

0 E

�
e
��(H(�)+H(�0))1IfjR(�;�0)j2[b;b0]g1If��(HN (�)+HN (�0))�2c��2Ng

�
: (4:17)

In a �rst step, we bound the expectation over the disorder for �xed �; �
0. Similar to the proof of

Lemma 4.1 we get (again q � ��
2
N), yields

E
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We now use Lemma 3.3, with � replaced by �(1� t) to obtain
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e
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e
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The in�mum is attained for t = 1� c

(1+Rp)
> 1� �

0
p

2�
(by assumption (4.15). Thus

E

�
e
��HN (�)��HN (�0)1If��HN (�)��HN (�0)�2c��Ng

�
� C3 exp

�
2c��2N

�
1� c

2(1 +R(�; �0)p)

��
:
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Finally, we integrate over all con�gurations �, �0 satisfying jR(�; �0)j 2 [b; b0]. We observe that

R(�; �0) has the same distribution as S(�) = N
�1PN

i=1 �i. Hence,

E

h
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(4:21)

The second to last inequality follows from the hypothesis of the lemma, and the observation that

we sum over at most 2N values of S(�). The last inequality holds for all N larger than a certain

�N 2 N. Since this estimate is uniform in b
0, we may choose b0 = 1. �

From the preceding results, we now get a variance estimate for the truncated partition function.

Proposition 4.4: Suppose that � < ��
p
. Then there exist constants C > 0 and c > 1 such that

E [ eZ
N;�

(c)2] � C(E eZ
N;�

(c))2: (4:22)

and,
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N;�

(c) >
1

2
E eZ

N;�
(c)] � 3

4C
: (4:23)
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Proof: We �rst prove that the hypothesis implies that the assumptions of Lemmas 4.1{4.3 are

satis�ed. Consider therefore � <
1
2
�
0
p
such that

�
2
< inf

0�t�1
I(t)

1 + t
p

�tp
: (4:24)

Then it is immediate that

2��2
�
1� 1

2(1 + tp)

�
= 2��2

1 + 2tp

2(1 + tp)
< ��

2 + I(t); (4:25)

for all t 2 [0; 1]. By continuity, there exist c� > 1 and d
�
> 0 such that 8c 2 (1; c�) and d 2 (0; d�)

2c��2
�
1� c

2(1 + tp)

�
< ��

2 + I(t)� d; 8t 2 [0; 1]: (4:26)

This implies the hypothesis of Lemma 4.3.

We now show that (E [ eZ
N
])2 is of the order of E [ eZ

N

2]. We start by �xing the free parameters

b, b0, and c. Choose �rst b such that 
(b) = 1
4
(or any other constant less than one half). Then

choose c such that

c < min

�
c
�
;
�
0
p

2�
; 1 + b

p

�
: (4:27)

Then the hypotheses of all preceding lemmas are ful�lled. Finally, choose b0 = 1. By Lemmas 4.2

and 4.3, we then have

E
� eZ

N

2
�
� E [S(b) + T (c; b; 1)] � (C1 + e

�Nd=2)e��
2
N

: (4:28)

The right-hand side is by Theorem 1.1 bounded by

(C1 + e
�Nd=2)e��

2
N � 2C2

�
E [Z

N
]
�2
; (4:29)

which in turn is of the order of (E [ eZ
N
])2 by Lemma 4.1, so that

(C1 + e
�Nd=2)e��

2
N � C3

�
E [ eZ

N
]
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: (4:30)

This implies (4.22). The second assertion of the proposition follows from the Paley-Zygmund

inequality, which states that for a positive random variable Y and any positive constant g,

P

h
Y � gE Y

i
� (1� g)2

(E Y )2

E [Y 2]
: (4:31)

This relation gives us a lower bound on the probability that eZ
N
� gE [ eZ

N
], which is strictly greater

than zero and uniform in N . Indeed, if we set g = 1
2
in (4.31), then, by (4.22), we get

P
� eZ

N
� 1

2
E eZ

N

�
� 1

2C3

: (4:32)

This concludes the proof of the proposition. �
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4.2. Proof of the Lower Bound.

We will now proof the lower bound assuming that Theorem 1.4 holds. This is by now quite standard

[T1,T2,T3], but we repeat the argument for the reader's convenience. Note that by Lemma 4.1 for

N large enough, for any Æ > 0,

P
� eZ

N
� 1

2
E eZ

N

�
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�
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� 1

2
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: (4:33)

But
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But Theorem 1.4 implies that this quantity is smaller than B
�n, if

N
�1(ln EZ

N
� E ln Z

N
) � N

�1=2+� (4:35)

in contradiction to the lower bound (4.32). This proves that for � < ��,

lim
N"1

N
�1(ln EZ

N
� E ln Z

N
) = 0 (4:36)

proving the lower bound on �
p
. �

Remark: It should be noted that the above argument requires only an upper deviation inequality

for the free energy. Such an inequality can be obtained in a much simpler way than Theorem 1.4 (in

that it does not require the results of Section 5) on the basis of a result of Ledoux [Le]. The reason

is that while the free energy is not a convex function of all the disorder variables, it is separately

convex in each �
�

i
. This suÆces to apply Ledoux's theorem. A proof of the corresponding one-sided

inequality can be found in [Ni].

4.3. Upper Bound on the Critical �.

The proof of the upper bound in Theorem 1.2 is considerably simpler than the lower bound. By

(2.1), E @FN

@�

� N
�1
E sup

�
jH

N
(�)j, while Lemma 3.4 yields immediately (see the argument leading

to (2.3)) that:

Lemma 4.5: There exists C <1, such that: If � � 8 ln 2
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, then
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Let �1 � B
�
=� and assume that � � �

p
. Now assume that �

p
> �1. Then for �1 < � < �

p
,

we have that
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in contradiction to the assumption that � < �
p
. Thus �

p
� �1 which proves the upper bound

(1.19). �

4.4. Convergence to the REM: Proof of Theorem 1.3.

The convergence of the free energy as p " 1 follows now from a simple convexity argument. Note

that for all � < ��
p
, lim

N"1 EF
N;�

= f
REM

b
, while for all � > �̂

p
, by convexity of F

N;�
,
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while on the other hand
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provided p is large enough such that � > �
p
. But since lim

p"1 ��
p
= lim

p"1 �̂
p
, the two bounds

above both converge to fREM
�

, as p " 1, for any a > 0. This proves Theorem 1.2.�

5. Fluctuations: Proof of Theorem 1.4

The main line of reasoning of the proof of the 
uctuation theorem is as follows. First, for each N

we de�ne a set whose complement has a very small probability (of the order of N�n). On this set,

we prove the estimates on the deviation with the so-called Yurinskii martingale method [Yu]. On

the complement, we simply use that the free energy is bounded by a polynomial function. This

approach was �rst used in the context of the mean �eld model in [PS,ST] for variance estimates and

in [BGP2,B1] for exponential inequalities, but has later been made obsolete by new concentration

of measure inequalities provided by Talagrand in [T1]. Unfortunately, these require convexity of

the level sets of the random functions considered which in the current situation do not appear to

hold. Although, as remarked at the end of Section 4, the hypotheses of Ledoux's inequalities from

[Le] do hold, these provide only one-sided deviation estimates which will not be suÆcient for our

later purposes. In this situation the return to Yurinskii's method appears to be the only way out.

De�ne the decreasing sequence of �-algebras F
k
= �(f��

i
g�2N
i�k . Furthermore, for c; 
 > 0 and

k 2 N , let

A
k
= A

k;c;
;N
�
�
! 2 
 : jG

N;�
[H

�

k
(�)]j < cN

�1+

�

(5:1)
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where
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X
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I�I : (5:2)

We put and A � A
c;
;N

� T
N

k=1Ak
. The set A will be our `good' set. We �rst show that its

measure is large.

Lemma 5.1: For all 
; c;m > 0, there exists C > 0, such that

P[A
c;
;N

] � 1� CN
�m

: (5:3)

Proof: Since P[Ac] � PN

k=1 P[Ak

c] we only need to show that for each k, P[A
k

c] � CN
�m, for

any m. By the de�nition of the sets A
k
, Chebyshev's inequality and Jensen's inequality, we have,

for any l 2 N,
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(5:4)

If we can show that the expectation on the right-hand side is bounded by some N -independent

constant, (5.4) will prove the lemma.

Expanding the power in the integrand yields, with the usual multi-index notation,
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where r is a multi-index and the numbers c2l;r are the multinomial coeÆcients. The main point

in what follows is the realisation that the diÆcult terms are those which have at least one � with

r
�
= 1. This is due to the following observation, which is a simple consequence of a result proven

in [Ni2].

Lemma 5.2: There exist constants c;K > 0 such that for all N large enough,
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with probability at least 1� e
�KN
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.

Proof: We write the left-hand side of (5.6) as
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Consider � as a vector in an
�
N�1
p�1

�
dimensional space, and �

�1
N

1�pP
�
�
�

I�
�

J as the coeÆcients

of a matrix P representing a map from this space onto itself. Then, denoting by �
max

the operator

norm of P , uniformly in �,
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In [Ni2, Theorem 2] it is shown that �
max

is bounded by a constant with probability at least

1� e
�KN

l

with l 2 (0; 1
3
). This proves the lemma. �

Returning to (5.5), we will try to get only terms of the form bounded by the lemma above, the idea

being that we do not really want to integrate, but rather use a uniform bound for the integrands.

We therefore single out those �'s for which r
�
= 1. We obtain
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where the compatibility relation r / J means that for all � 2 J , r
�
= 1. Since the � 2 M n J

will not enter in any of the calculations that follow, we write (the relation r � J now denotes the

condition that 8� 2 J , r
�
= 0)
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At this point, we expand recursively the Boltzmann weights with respect to the terms H
�

k
, � 2 J .

This will generate new terms which are slightly more complicated than the term we started with.

The procedure stops when no H
�

k
is left to expand in. In particular, since jJ j does not depend on

N , this will ensure that none of the appearing factors will depend on N .11

We use the following notation. We order the set J in the canonical way, i.e. J = f�1; : : : ; �ng,
with i < j ) �

i
< �

j
. Then, we de�ne interpolating Hamiltonians (they will reappear later)

H
�1;::: ;�n
u1;::: ;un

(�) = H(�) �
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(1� u
i
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k
(�): (5:11)

In particular, H = H
�1;::: ;�n

1;::: ;1 , and if u
j
= 0, then H

�1;::: ;�n
u1;::: ;un

is independent of �
�j

k
. The associated

Gibbs measures and partition functions will be denoted by G�1;::: ;�n
u1;::: ;un

, respectively Z
�1;::: ;�n
u1;::: ;un

.

11One may ask why we do not expand jointly in all the patterns � 2 J at once. It turns out that one needs a

similar recursive scheme since there will always be error terms which cannot be treated by Lemma 5.2.
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The terms that will appear are of the form

E G�1 ;::: ;�n0
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where q � n
0, and the �

j
, j = 1; : : : ; n are functions from f1; : : : ; n0g to f1; : : : ; n0g. They appear

because the expansion of the denominator (the partition function) will introduce new copies of the

measure (hence the power q).

The �rst product in the integrand above contains the H
�

k
with respect to which the expansion

has not yet been done. The second corresponds to those which have been used.

The initial expressions on the right of (5.10) correspond to the case q = 1, n0 = 0, u
i
= 1;8i,

that is,
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The following provides the basic recursion relation.

Lemma 5.3: For all numbers n0 2 f0; : : : ; n � 1g, q 2 N, and u1; : : : ; un0 , and functions �
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there exist functions (�
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The functions (�
j

n
0+1)j=1;::: ;q+1 satisfy

�
j

n
0+1(i) =

�
�
n
0(i); if i � n

0;

j; if i = n
0 + 1:

(5:15)

Proof: We expand the Boltzmann weight of the Gibbs measure on the left-hand side of (5.14)

in the pattern �
n
0+1. Since H

�1;::: ;�n0

u1;::: ;un0
= H

�1;::: ;�n0 ;�n0+1
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j
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n0+1=1, expanding in the variable u
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about 0 to zero order with remainder of order 1 yields
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for some u
n
0+1 2 [0; 1].

The �rst term on the right does not depend on �
�
n0+1

k
(see the remark after (5.11)). Hence,

when multiplied by the products of the H
�

k
, this disorder variable appears exactly once, so that

integration with respect to it yields zero.

The second and third term above give the new terms on the right in (5.14). The relations for

the functions �
j

n
0+1 are easily veri�ed. �

Applying this recursion relation n times yields the following decomposition.

Lemma 5.4: Let J = f�1; : : : ; �ng, n � 2l. Then there exist numbers u1; : : : ; un 2 [0; 1] such
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where the functions � permute the indices i 2 f1; : : : ; ng, and the relation � � q describes the

condition that jfi 2 f1; : : : ; ng : �(i) 6= 1gj = q. The number of such functions � is thus independent

of N .

Proof: The proof follows by applying the recursion relation from Lemma 5.3 n times. Observing

that each step adds at most one other replica implies that q � n. �

We �nally sum over the sets J �M on the right of (5.10). We obtain
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X
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First, we observe that since jH�
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where Æ
a;b

= 1, if a � b and zero otherwise.

For any multi-index r, denote by #r the number of r
�
which are not zero. Hence, the products

on the right-hand side of the above inequality are just the completely o�-diagonal terms of the form�P
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. Then, adding the terms which have at least two indices equal (and which
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on a set B of measure at least 1 � e
�KN

1=4

by Lemma 5.2. Using this in (5.18), we bound I
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Since the integrand is non-negative and jH�

k
j < 1, we can change the Boltzmann weights back to

the original ones (that is, setting all u
i
= 1), and committing at most an error of e�n. Furthermore,

the functions � depend only on the size of J . Hence, adding again positive terms in the third step

below (and observing that jJ j is even),

jI 0j � C

2lX
n=0

even

X
J�M:

jJj=n

X
��q

nX
q=1

c
�;q;�

E1IBG
q
h nY
i=1

���H�i

k
(�1)H

�i

k
(��(i))

���i

� C

2lX
n=0

even

X
��q

X
J�M:

jJj=n

nX
q=1

c
�;q;�

E1IBG
q
h nY
i=1

���H�i

k
(�1)H

�i

k
(��(i))

���i

� C

2lX
n=0

even

X
��q

1

n!

MX
�1;::: ;�n=1

nX
q=1

c
�;q;�

E1IBG
q
h nY
i=1

���H�i

k
(�1)H

�i

k
(��(i))

���i

� C

2lX
n=0

even

X
��q

1

n!

nX
q=1

c
�;q;�

E1IBG
q
h nY
i=1

� MX
�i=1

jH�i

k
(�1)H

�i

k
(��(i))j

�i
:

(5:22)

Finally, we apply Cauchy-Schwarz to get rid of the absolute value in the sum over �
i
,
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on B by Lemma 5.2. Inserting the above in (5.22) shows that E1IBG[
P

�
H

�

k
] is bounded by a

number independent of N , since all the remaining sums are over �nite sets whose sizes do not

depend on N .

Since (
P

�
H

�

k
)2l is polynomially bounded in N , uniformly in !, the remaining part I� I

0, (that

is, the integral on the set Bc), is obviously bounded by an exponentially small number in N
1=5

(e.g.), and is thus also smaller than a constant.
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We use this in (5.4) which shows that
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l
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N
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Thus for all 
;m > 0, there exist l and C
l;m

such that
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N
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Summing over all k = 1; : : : ; N shows that indeed P[Ac] � C
l;m

N
�m. �

We now bound the 
uctuations of the free energy on the set A.

Proposition 5.5: Let ~F
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Proof: In the sequel, N;�; 
; c will be �xed, and we will therefore frequently drop the corresponding

indices. The approach to the proof follows the general idea of [BGP2,B1]. De�ne a decreasing

sequence of �-algebras fF̂
k
g
k2N by

F̂
k
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i
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�
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;N
: (5:27)

This allows to introduce a martingale di�erence sequence (see [Yu])
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By the de�nition of conditional expectations
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The factor P[A] tends to one as N " 1 by Lemma 5.1 (even polynomially as fast as we want). It

is therefore enough to control the sum
P
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~F k. We observe that
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(5:30)

To make use of this inequality, we need bounds on the conditional Laplace transforms, that is, we

want to show that for some Lk(t),

ln E [et
~
F
k jF̂

k+1] � Lk(t); (5:31)



30 Chapter 5

uniformly in F̂
k+1. Using a standard second order bound for the exponential function, we get
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2
E [( ~F k )2ejt

~
F
kjjF̂

k+1]: (5:32)

To make use of this we need to bound j ~F kj. A conventional strategy is to introduce a family of

Hamiltonians ~Hk(�; u), de�ned by

~Hk(�; u) = H(�) + (1� u)
(p!)1=2

Np�1

M(N)X
�=1

X
I3k
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I�I : (5:33)

This new Hamiltonian is equal to the original one for u = 1, and independent of f��
k
g�=1;::: ;M

for u = 0. Denote by ~Zk(u) and Gk(u) the partition function, respectively the Gibbs measure

associated to this Hamiltonian. Observe that the condition on being on the set A is stable against

the change in parameter u 2 [0; 1], that is

Gk(u)
h
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i
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on the set A. Indeed, the derivative of the left-hand side with respect to u is non-negative, since

it is the variance of the integrand with respect to the measure G(u). Moreover, for u = 0, the

Boltzmann weight does not contain �
k
, whence the left is zero for u = 0. The absolute value of the

left-hand side thus assumes its maximal value for u = 1.
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g
k(u) =

1

N
1IA ln ~Zk(u)� 1

N
1IA ln ~Zk(0): (5:35)

Since ~Zk(0) is independent of �
k
, this quantity relates to ~F k via

~F k = E [gk (1)jF̂
k
]� E [gk (1)jF̂

k+1] (5:36)

Observe that gk(u) is convex in u, since its derivative is equal to the expectation of the left-hand

side of (5.34), whose derivative is the variance of a random variable with respect to the measure

G. Since by its de�nition g
k(0) = 0, and therefore jgk(1)j � max(j(gk)0(1)j; j(gk)0(0)j), where the

prime denotes the derivative with respect to u. Moreover, since ~Hk(�; u = 0) does not depend on
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, it follows that (gk)0(0) = 0, and hence we can use jgk(1)j � j(gk)0(1)j. Explicitly, this is
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Inserting this bound into the exponent on the right-hand side of (5.32) gives
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To treat the quadratic term, we observe that by (5.36), the properties of conditional expectations,

and Jensen's inequality (see also [B] and [BGP]),

E [( ~F k )2jF̂
k+1] = E

�
(E [gk (1)jF̂

k
]� E [gk (1)jF̂

k+1])
2

����F̂k+1

�
= E

�
(E [gk (1)� E [gk (1)jF̂

k+1]jF̂k])2
����F̂k+1

�
� E

�
E [(gk (1)� E [gk (1)jF̂

k+1])
2jF̂

k
]

����F̂k+1

�
= E

�
(gk(1)� E [gk (1)jF̂

k+1])
2

����F̂k+1

�
= E [(gk (1))2jF̂

k+1]�
�
E [gk (1)jF̂

k+1]
�2

� E [(gk (1))2jF̂
k+1] � E [(gk (1))02jF̂

k+1]:

(5:39)

The last term is bounded since we are in the set A
k
. Indeed,
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Thus, using the bound (5.40) in (5.38),
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Inserting this in (5.30) yields
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We choose z = ��N
�1=2+", and t = 1

z
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Choose 
 < "=2. Then for any � > 0, and N large enough, the right hand side of (5.43) is bounded

by 3e�N
�=2

. Since P[A] tends to 1 as 1�N
�m, the claimed estimate follows. �

Proof of Theorem 4: The assertion is now an immediate consequence of Lemma 5.1 and

Proposition 5.5. Indeed,
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The �rst term is non zero only on Ac. Also, the last summand is bounded by P[Ac] supF
N
�

CN
p

P[Ac]. If we choose m in Lemma 5.1 larger than p + n + 1, then this term is eventually less
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than N
�2, and thus also less than z = �N

�1=2+". Thus, for all n; �; " > 0, and N large enough,
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This concludes the proof of the theorem. �

6. Results on the Replica Overlap.

In this section, we prove the results on the replica overlap, Theorems 1.5, 1.9, and 1.7.

6.1. Proof of Theorem 1.5.

By the de�nition of the free energy,

E
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is the contribution to the Hamiltonian from pattern �. We introduce the following notation. For

any u 2 [0; 1], we let �H�

u
be an interpolating Hamiltonian of the form

�H�

u
= H � (1� u)H�

: (6:3)

Observe that for u = 0, this quantity is independent of the pattern �, and for u = 1, is equal to

the original Hamiltonian. The notations �G�
u
and �Z�

u
refer to the corresponding Gibbs measures and

partition functions (dropping reference to N and � for sake of clarity). We now write the Gibbs

ectation on the right of (6.1) as
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Developping the Boltzmann weights in u about 0 with second order remainder, we obtain for each
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term in the sum on the right-hand side of (6.1) (for some u 2 [0; 1])

G
N;�

[H�] = E
�

"
e
�� �

H

�

0
(�)

�Z
�

0

H
�

0 (�)

#
� �E

�

"
e
�� �

H

�

0
(�)

�Z
�

0

H
�(�)2

#

+ �E
�;�

0

"
e
�� �

H
�

0
(�)�� �

H
�

0
(�0)

�Z
�

0
2

H
�(�)H�(�0)

#
+
�
2

2
E
�

"
e
�� �

H
�

u
(�)

E
�
[e��

�
H
�

u (�)]
H

�(�)3

#
| {z }

R1

� 3�2

2
E
�;�

0

"
e
�� �

H
�

u
(�)�� �

H
�

u
(�0)

(E
�
[e�� �

H

�

u (�)])2
H

�(�)2H�(�0)

#
| {z }

R2

+
�
2

2
E
�;�

0
;�
00

"
e
�� �

H
�

u
(�)�� �

H
�

u
(�0)�� �

H
�

u
(�00)

(E
�
[e�� �

H

�

u (�)])3
H

�(�)H�(�0)H�(�00)

#
| {z }

R3

:

(6:5)

As remarked above, neither �H
�

0 nor �Z
�

0 contain any of the variables f��
i
g
i2N . Integration with

respect to them (denoted by E
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) thus yields for the linear term,
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and for the second order contribution
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respectively,
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The latter sum is
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whence,
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We now show that the remainder terms in (6.5) are at least one order (in N) less than the two

leading contributions above. We start with a result that shows that the perturbed partition function

�Z�

u
= E

�
[e��

�
H
�

u ] is bounded from below by a constant times the partition function �Z = �Z
�

0 (that

is, the one not containing any of the f��
i
g
i
).

Lemma 6.1: For all � � 0 there exists a constant c > 0 such that for all u 2 [0; 1],

�Z�

u
� c �Z

�

0 = c E
�
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�
H

�

0 ]: (6:11)

Proof: The proof is an immediate consequence of the following result.

Lemma 6.2: Let fX
i
g
i=1;::: ;N be a familiy of variables taking values �1 and 1. Let �
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N
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i
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c
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Moreover, c
p;p

is positive for all p.

Proof: By induction. For p = 2, we have

�2;N = N
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which is of the form claimed in (6.12).

Suppose the result is true for all even values q � p. Then,
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(6:14)

By the induction hypothesis, the �rst term on the right-hand side is
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Replica Overlap 35

The remaining term in (6.14) isX
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X
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and hence
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Applying the induction hypothesis to (6.17) shows the decomposition (6.12). Positivity of c
p;p

follows from (6.14). �

From this one concludes that uniformly in �, �, and for all N large enough,
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Indeed, by the preceding result (setting X
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We distinguish two cases. If m� is large, we show that �H�(�) is positive. Suppose therefore that

jm�(�)j > N
�1=2+Æ for some Æ > 0. Then,
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which is obviously positive for all N large enough and Æ less than 1
2
.

On the other hand, if m� is less than N
�1=2+Æ, then,
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Thus, if Æ < 1
2
� 1

p

, then jH�j = o(1), so that the bound (6.18) is in fact a gross underestimate.

To prove Lemma 6.1, we observe that
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This proves the (6.11). �

We apply this result to the error terms in the development (6.5). We start with R1. By Jensen's

inequality,
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Since the integrand is a positive function, we may bound the expectation using Lemma 6.2 in the

denominator. We obtain, noting that �H�

u
= �H

�

0 + uH
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We observe that the last Gibbs measure does not depend on the pattern �. We may therefore

integrate with respect to f��
i
g
i
\inside". In complete analogy with Chapter 3 (the result about the

error term), we get

E
�
[e��uH

� jH�j3] � E
�
[e�ujH

�jjH�j3] � cN
3� 3p

2 ; (6:25)

whenever �u < �
0
p
. Since u 2 [0; 1], this condition is satis�ed if � < �

0
p
.

The remainder R3 gets essentially the same treatment. By Jensen's inequality,
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Hence,
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Finally, the term R2. By Lemma 6.1,
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Thus, by Cauchy-Schwarz and Jensen,
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Both factors are now treated as R1. Since the integrability of R1 did not depend on the power of

H
�, but merely on the exponential factor (this is apparent from the estimate (3.26)), we get that

whenever 2�u < �
0
p
,

E jR2 j � (cN4�2p)
1
2 (cN2�p)

1
2 = c

0
N

3� 3p

2 : (6:29)

The above condition is always satis�ed if � <
1
2
�
0
p
.

The results above almost prove the theorem. What remains to show is that in the leading terms,

we can replace without harm the Gibbs measure �G�0 by G. More precisely, we claim that��E �G�0 
2[Rp]� E G
2 [Rp]
�� � cN

1� p

2 ; (6:30)

for some constant c.

The proof of this claim is done exactly as before, namely by expanding the Boltzmann factors,

this time, however, only to zero order. We get

G
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u
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Since Rp 2 [0; 1], the second term on the right is bounded by
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Proceding as above we get,
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The third term on the right of (6.31) is bounded by the same order. Indeed,

j �G�
u


3[R(�; �0)pH�(�00)]j � �G�
u
[jH�(�)j]; (6:34)

from which the bound follows again by integration. This proves the claim (6.30).

To �nish the proof of the Theorem, we sum the contributions we have obtained. Relation (6.1)
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Using the decomposition (6.5), and the results (6.6), (6.7) and (6.10) in the �rst term, and the

bound (6.31) in the second, we get
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We �nally insert the bounds (6.25), (6.26) and (6.29) on the errors R
i
, which are valid if � <

1
2
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p
.

This yields �����E @F
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This proves Theorem 1.5. �

6.2. Condensation: Proof of Theorem 1.6.

Theorem 1.6 follows now just as the analogous result in [T3] from the convexity of the free energy.

Suppose that � < �
p
. Since we always assume that � � �

p
, then
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=
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2
(6:38)

by the de�nition of �
p
. As remarked after their de�nition in Chapter 2, E F

N
is convex for all N .

It then follows from a standard result in convex analysis ([Ro], Theorem 25.7) that
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Hence, from Theorem 1.5,
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and thus, passing to the limit,
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Suppose now that
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Then it follows immediately from Theorem 1.5 that
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This proves (1.27). To see where the condition (6.43) actually holds, we observe �rst that by

Lemma 4.5, it is satis�ed for all

1

2
�
0
p
� > �̂

p
=

r
2 ln 2

�
: (6:45)

This concludes the proof of the Theorem. �

Remark: Of course one would expect (6.43) starts to hold right after the critical temperature. In

fact, a weak version of this can be proven. Namely, Theorem 5.5 in [Ro] implies that the function

f(�) = lim sup
N"1

E F
N

(6:46)

is a convex, bounded function on U = [0; �0
p
). By Theorem 25.3 in [Ro] it is thus di�erentiable on

an open set D � U which contains all but perhaps countably many points of U , and its derivative

f
0 is bounded on D. Lebesgue's integrability criterion then implies that

f(�) = f(�
p
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f
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: (6:47)

Now it is immediate that for all � > �
p
there must exist a set I � (�

p
; �) with strictly positive

Lebesgue measure, on which f
0 is strictly less than ��. Indeed, were this not the case, then

f � ��
2

2
, which contradicts the de�nition of �

p
. Since � was arbitrary, the relevant condition

(6.43) is satis�ed on sets of positive Lebesgue measure arbitrarily close to �
p
.

6.3 Proof of Theorem 1.7.

We have shown that in the low temperature phase, the replica overlap is not concentrated on zero.

We will now show that its distribution is concentrated on a neighborhood of zero and 1.

Proof of Theorem 1.7: Let C+
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The numerator has been estimated in (4.21). Using this, we get
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Let us note �rst that from (6.50) it is obvious that if we can choose jC+
N
�C�

N
j � N

��, then the result

cannot depend on �. An obvious candidate for these numbers is thus N�1
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Indeed we have
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By Proposition 6.2,
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from which the claimed result follows by choosing e.g. � = �
�14 ln 2. �

Using this result, and setting C
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Since � can be chosen as small as we like, e.g. Æ��1, we already see that our result will be uniform

in �.

It remains to estimate E 1
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where Æ
N
# 0, as N " 1. But Theorem 1.2 and the estimate (1.20) show that
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Therefore we have that for any Æ > 0, and for p large,
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The function 2 ln 2tp

(1+tp)
� I(t) vanishes at zero and at one, and is negative everywhere in the interval

(0; 1�z
p
), where z

p
� 2�p. This implies the main conclusion of Theorem 1.7, (6.48). Note that since

I(t) � t
2 for small t, we can chose the interval I more precisely of the form I

p
= (C2�p=2; 1�C2p),

with C a constant of order 1.

To proof the estimate (1.29) in the high-temperature case is considerably simpler. Since we

already have the estimate ET (c; b; 1) � e
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N�dN=2 for some positive d, it remains to show that
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Given that by Lemma 4.1 and Theorem 1.1 E ~Z
N
� Ce

N��
2
=2, (1.29) follows immediately. This

completes the proof of Theorem 1.7. �

6.4. Ghirlanda-Guerra identities and lump masses.

The techniques used to prove Theorem 1.5 can also be used to derive the Ghirlanda-Guerra identities

[GG] (see also [AC]) that provide relations between distributions of overlaps of a larger number of

replicas. This observation is due to Talagrand [T5]. Note that he annopunced more far-reaching

results than those we will prove here.

The basic input is the following slight generalization of Theorem 1.5.
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Proof: The proof of this proposition is an exact rerun of the inequalities (6.36), except for the

computation of the leading terms which is however straightforward. We will not repeat the details.
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As in [GG] it then follows from the concentration result Theorem 1.4 and standard arguments

that for any bounded function f ,
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for any �
0
< �

00. Combining (6.62) and (6.63) with the bounds (6.62), we arrive at the identity
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which is the analogue of (16) of [GG]. Note that this can be written as
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and choosing f to be the indicator function

f(�1; : : : ; �n) = 1I8k 6=lRN (�k ;�l)=qkl (6:66)

This implies that
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which is the relation (17) of [GG].

Remark: While [GG] claim to obtain the same relations also for all other moments of the replica

overlaps, it needs to be said that they tacitly assume the continuity of the Gibbs measures with

respect to certain random perturbations of the Hamiltonian that is not only not proven but is

certain to be false in the generality they are announced. Otherwise, the argument below could be

considerably sharpened and simpli�ed.

The main use of the identities (6.67) is that they allow to draw conclusions about the distribution

of the masses of the Gibbs measures on the so-called ' `Talagrand-lumps'.
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Proof of Theorem 1.8: The starting point of the argument is that Theorem 1.5 together with

Theorem 1.9 in fact imply that the distribution of the replica overlaps has positive mass both near

zero and near one. Let us set
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Since by convexity (see (6.39)) for all � � �
p
, except possibly for a countable number of exceptional
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we have on the one hand that
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Since we know that lim
N
(p0 + p1) = 1, and this implies what we want for � somewhat larger than

�
p
. Recall that �0 � 2�p=2 and �1 � 2�p.

This result shows �rst of all that it is not possible that the mass of one single (pair of) lump(s)

can be almost equal to one, since in that case p0 would be close to zero (which is impossible by

(6.71)).

Now assume that the assertion of Theorem 1.8 fails. Then there exists a �rst instance k� such
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The important obervation is that if fR
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where we used the symmetry betwen replicas in the terms j 6= k to exchange �k
�+1 with �

j . Note

that for the �rst term we have the obvious (though not very good) bound
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where we used the obvious permutation symmetry among the �rst k� replicas. Let us now use

(6.65) with f the indicator function of the event Q(k�)
�0 . clearly we get

lim
N"1

Z
b
00

�
0

d�EG
k�+1
N;�

h
R
p

N
(�k; �k

�+1)1IfRN (�l;�m)g1�l<�k�2Q
(k�)
�0

i
� 1

k�
lim
N"1

Z
b
00

�
0

d�EG
k�+1
N;�

h
1IfRN (�l;�m)g1�l<�k�2Q

(k�)
�0

i �
(k� � 1)�

p

0 + EG
2
N;�

R
p(�; �0)

�
(6:78)

Comparing (6.76), (6.77) to (6.78) we see that
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This implies the lower bound
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Quantitatively, this estimate can be re�ned to

k
� � C

�123p=2((1� C2�p)p � p1) = 2pp0(1�O(2�2p) (6:81)

This proves the theorem. �

8. Spin Glass Phase: Proof of Theorem 1.9

Having established the existence of an in�nity of lumps that carry the Gibbs measure in the low

temperature phase, one would like to know whether these are in any way related to the original

patterns. Recall that in the standard Hop�eld model at small � the Gibbs measure concentrates on

small balls around the patterns ��. Of course the reader will expect that this will not be the case

here. To prove this fact, we �rst obtain two estimate the value of the Hamiltonian in the vicinity

of each pattern.

Lemma 8.1: The Hamiltonian evaluated at the patterns satis�es
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Proof: The Hamiltonian at the pattern �
� is given by
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which implies that
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We estimate the random part in (8.3) by the same method used in the proof of Theorem 1.1. By
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The error term can be written as
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This latter term is exactly the same as in (3.2) (with � replaced by t). Hence, we get (compare

(3.3))
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Minimizing the exponent yields
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This proves the claim. �

The next result shows that the Hamiltonian does not 
uctuate much around a pattern. This result

was already proven by Newman [N1] for the Hamiltonian �H. In our case this is even simpler. De�ne

B
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(�) to be the (NÆ)-ball around the con�guration � in the Hamming distance. Then we have the

following
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Proof: By standard arguments (see also [N1], in particular inequality (2.3) and surrounding

comments),
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We start by calculating the di�erence jH(�q)�H(��)j. Let J = J
q
= f1; : : : ; qg. One obtains

H(�q)�H(��) = � (p!)
1
2

Np�1

M(N)X
�=1

X
I

(�
q

I�
�

I � �
�

I�
�

I)

= � (p!)
1
2

Np�1

M(N)X
�=1

X
I:jI\J j odd

(�
q

I�
�

I � �
�

I�
�

I)

= 2
(p!)

1
2

Np�1

M(N)X
�=1

X
I:jI\J j odd

�
�

I�
�

I

= 2
(p!)

1
2

Np�1

X
I:jI\J jodd

1 + 2
(p!)

1
2

Np�1

X
� 6=�

X
I:jI\J j odd

�
�

I�
�

I

(8:12)

Explicitly, this is
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Let us treat the random term in (8.13) �rst. By the usual procedure, we get
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The last line follows from the usual bound on the error term (see the proof of Theorem 1.1 in

Chapter 3; in fact, t can even be chosen somewhat larger than �
0
p
, since the sum over sets I

contains fewer terms than we had there).
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Using (8.15) in (8.14) yields
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The deterministic term in (8.13) is given by (again using (8.15))
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If Æ < 1
p

, then the last line is bounded by the term for the maximum q. That is
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Collecting (8.16) and (8.18), we get
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Plugging this into (8.10) gives
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It is straightforward to check that under our assumptions on Æ and for �xed t, the ratio between

two consecutive terms in the above sum is larger than 2, and therefore the whole sum is at most

twice the maximum term,
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Minimizing with respect to t and using Stirling's formula for the binomial factor concludes the

proof of Lemma 8.2. �

Proof of Theorem 1.9: We observe the following elementary fact. By the de�nition of the free

energy
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The second inequality follows from the convexity of F
N
(�) and the de�nition of �

p
. But then we

can �nd Æ 2 (0; 1
p

) and z > 0 such that (for all N suÆciently large)

2p�1

(p!)
1
2

Æ + 3z <
1

�
E F

N
(�)� 1

(p!)
1
2

; (8:26)

and (with the de�nition of f
Æ
from Lemma 8.2)
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(z) + Æ ln Æ + (1� Æ) ln(1� Æ) > 0: (8:27)

By Lemma 8.1, resp. 8.2, for any m > 0, we can �nd an �N 2 N such that for all N � �N
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(8:28)

On the other hand, the inequality (8.23) implies that

P[sup
�

jH
N
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(�)

�
� zN ] � N

�m
; (8:29)

for all N large enough, so that �nally, by standard arguments,
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;

(8:30)

for all N larger than some �N 2 N.
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To show the existence of an �
sp
, we observe that the bounds (1.18) and (1.19) on the critical �

imply that the quantity ��
p
(�) � p

� and is thus eventually larger than any �xed number. This

concludes the proof of Theorem 1.9. �
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