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Abstract. We investigate the low temperature phases of lattice spin systems with interactions

of Kac type, that is interactions that are weak but long range in such a way that the total

interaction of one spin with all the others is of order unity. In particular we develop a systematic

approach to convergent low temperature expansions in situations where interactions are weak

but long range. This leads to a reformulation of the model in in terms of a generalized abstract

Pirogov{Sinai model, that is a representation in terms of contours interacting through cluster

�elds. The main point of our approach is that all quantities in the contour representation

satisfy estimates that are uniform in the range of the interaction and depend only on the overall

interaction strength. The extension of the Pirogov{Sinai theory to such models developed in

[Z3] allows then the investigation of the low-temperature phase diagram of these models.

1. Introduction

The theory of Pirogov and Sinai, introduced in their seminal paper in 1976 [PS], has become

through the years the standard tool for the investigation of the low-temperature phases of

classical spin systems. We mention the standard references [Z1,DZ,BKL1,BKL2,BS] and

refer in particular to the lecture notes by one of us [Z2] for a good introduction. This theory

covers a broad range of situations, including continuous spins [DZ]. However, in the spirits

of its time, the theory has been developed primarily in view of short range interactions, with

a focus of a predominance of the interactions between nearest neighbors. This does not

mean that the existing theory is restricted to �nite range models; it can easily accommodate

in�nite range but quickly decaying interactions. However, it always assumes that interactions

between close neighbors is strong.

On the other hand over the last years there has been a growing interest in a class of models

introduced long ago by M. Kac et al. [KUH]. These models serve as interpolations between

short range and mean-�eld models. Here spins interact via so called Kac-potentials, i.e. spins
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at distance r interact with a strength J
(r) � 

d
J(
r), where J(x) is some function of bound-

ed support or rapid decay on a scale 1, and 
 is a scaling parameter that is allowed to tend to

zero. In the limit 
 # 0 a number of simpli�cations occur, and in particular it becomes possible

to compute the exact form of thermodynamic potentials which are seen to be related to those

of mean �eld theory. More recently there has been an increasing interest in these models in

the context of phase-coexistence [CMP,CP], interface dynamics [DOPT], mesoscopic pro�les

[COP], but also in disordered versions of Kac models [BGP1,BGP2,BGP3,Bo1,B1]. A basic

ingredient in the understanding of these models, in particular in more than one dimension,

is clearly the nature of the low temperature phase diagram.

It is natural to expect that the critical temperature in these models converges to that of

the corresponding mean-�eld theories. However, the nature of the Kac-potentials is such that

the basic assumptions of the Pirogov-Sinai theory in its standard form are not satis�ed, since

the interaction between any two spins will tend to zero as 
 tends to zero! Thus all standard

results do not apply in this model, and only very recently a version of the Peierls argument

was developed that allows to give reasonable estimates on the critical temperature in the case

of the Kac-Ising model [BZ,CP]. However, in these papers, as in the original work of Peierls

[P], the exact spin 
ip symmetry of the Ising model was used in a crucial way.

To go beyond the symmetric situation and to develop the full Pirogov-Sinai theory, the

crucial tool that has to be developed are convergent (low-temperature) cluster expansions.

The fundamental importance of the concept of expansions in the Pirogov-Sinai theory is

stressed in particular in the latest version of the theory that can be found in [HZ,Z2].

The main thrust of the present paper is therefore the development of such expansions. In

this �rst paper we will not focus on more speci�c features of Kac models, like the possibility to

prove the existence of �rst order transition up to the critical temperature (of a corresponding

mean-�eld model, if 
 ! 0). In particular, unlike in [BZ1], we will not use any block-

spin techniques. Rather, our purpose here is to treat a rather broad class of predominantly

\ferromagnetic" models and to develop convergent expansions for a range of temperatures

that is independent of the range of the interactions, but depends only on the \total strength"

of the dominant part of the attractive interaction (in a sense that will have to be made

precise later). In our view, this will provide a very natural and desirable extension of the

Pirogov-Sinai theory to a reasonable set of interactions and provides natural criteria for when

to expect a phase transition. It should be observed that as far as the high-temperature phases

are concerned, the class of interactions for which uniqueness properties can be proven is very

general and qualitatively optimal. For low temperatures, so far, the existing results concern

very restricted classes of interactions.

As a �rst exploration into this direction, however, we did not strive for full generality. In-

deed, it will require more insight and re
ection to formulate a general class of interactions for

which our program should succeed. Thus we have restricted our attention to pair-interactions

and �nite state spaces. Some natural extensions could be accommodated without too much

e�ort, but we feel that it is better to leave this for future publications while explaining our

ideas in the simplest context that reveals the main features which we address. The same

applies to the issue of pushing the estimates for the critical temperatures to the optimal

values in Kac limits.
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Let us mention the related results by Lebowitz, Mazel, and Presutti [LMP] that treat a

particular Kac-type model in continuous space. While in principle this paper deals with rather

similar problems, there are substantial di�erences that will not allow the direct application

of their methods in our situation. It will be interesting to compare both approaches, also in

other applications.

The remainder of this paper is organized as follows. In Section 2 we give a precise de�nition

of the class of models we are studying and we formulate the main results. In Section 3

we explain how to de�ne the crucial notion of contours and regular regions. Here we will

encounter the main di�erence from standard Pirogov-Sinai theory: the con�gurations in

regular regions will not simply look like ground states, but they will be characterized only

by some carefully chosen nonlocal condition. The next two chapters will show that this

de�nition was reasonable: In Section 4 we prove that contours satisfy the Peierls estimate,

while in Section 5 we show how to perform high-temperature expansions in the \regular

regions", i.e. outside of the contours. This requires to develop expansion techniques for spin

ensembles satisfying non-local constraints. This will require a two-stage procedure: First we

perform a high-temperature expansion and,using the constraints, partially resum it, mapping

'graphs' to 'trees'. Then we expand the contraints, which now have become unnecessary for

ensuring convergence. In this way we arrive at a representation of our model in the form

of an \abstract Pirogov Sinai model with additional cluster �eld". While this form of the

abstract model di�ers slightly from the standard form of abstract Pirogov{Sinai models, it

is not diÆcult to apply the machinery of Pirogov{Sinai theory to this setting and to obtain

all the standard results of this theory. This is done in a separate paper [Z3].

2. The models

We now de�ne the class of models we will treat. Let S be a �nite set. The con�guration

space of our model will be X � S
Z
d

. We will equip S with the discrete topology and the

counting measure �. Correspondingly, X will be equipped with the product topology and the

product measure �Z
d

. For any �nite subset � � Z
d we will denote write X� � S

�.

To de�ne the interacting model, we introduce now a one-body potential U : S ! R and a

two body interaction �, i.e. for any i; j 2 Zd we de�ne a symmetric function �i;j : S�S ! R

with the following properties:

(i) For all i; j; k 2 Zd, �i;j = �j;i = �i+k;j+k.

(ii) For any i; j 2 Zd, and any s; s0 2 S, �i;j(s; s
0) = �i;j(s

0
; s) and �i;i(s; s) � 0.

The Hamiltonian of our model is for any �nite volumeM � Z
� and any boundary condition

xMc given as follows (where we denote by x = xM [ xMc)

HM (x) � HM (xM jxMc) =
X

fi;jg\M 6=;

�i;jfxi; xjg+
X
i2M

U(xi): (2:1)

Below, we will systematically consider the periodic boundary conditions i.e. the case when

we have a �nite, d-dimensional torus �. In that case the summation in the above equation
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is over all fi; jg � � and we will write

H�(x�) =
X

fi;jg��

�i;jfxi; xjg+
X
i2�

U(xi): (2:2)

We will formulate speci�c assumptions on the interaction that will allow us to control the

model via cluster expansion methods developed below.

Assumption 0 (positivity of �): We assume that �i;jfxi; xjg � 0.

Note. Actually, this requirement can be greatly relaxed. We make this assumption only to

get a simpler proof for the Peierls condition for the contours (de�ned below).The positivity

of the interaction (together with some continuity - see below) assures the validity of such a

condition, but it is of course not necessary. We keep the condition of positivity throughout this

paper for simplicity. A more systematic investigation of the validity of the Peierls condition

for long range, Kac type, models deserves a separate paper.

Our �rst assumption states that the interaction has �nite range1 R (where R may be a

very large number).

Assumption 1 (�nite range R anf �nite variance): Denote by

�i � maxs;s02S�S j�0;ifs; s
0
gj and 	i � mins;s02S�S j�0;ifs; s

0
gj :

We assume that there exists 0 < R <1 such that �i = 0, if jij > R. Moreover, we assume

that there exists a �nite positive constant 0 < D � 1 such that for all jij � R,

(�i �) 	i � D�i: (2:3)

Our second assumption assures a suÆciently attractive interaction: Again, we do not strive

here for a maximal generality. We select now a subset Q � S containing all the \approximate

minima" of U . Often (e.g. in our main example we have in mind here i.e. in the Kac Ising

model with a rather small external �eld), this set of \reference colours" will be taken simply

as Q � S).

Assumption 2 (strong attraction): For q 2 Q and s 2 S; s 6= q we de�ne by

Vq(s) = U(s)� U(q) +
X
i2�

�0;ifs; qg and Vq = mins2Snfqg Vq(s): (2:4)

We assume that there exists � > 0 such that for each q 2 Q

minq2Q Vq � V � �: (2:5)

1Again this assumption is not strictly neessary, and as in the usual short-range situations, one may admitt

an additional weak interaction that is rapidly decaying.

29=august=2001; 13:52 4



We will choose Q in such a way that the one-body potential varies not too much over Q

compared to the strength of the interaction2,

Q � fq 2 S : U(q) � mins2S U(s) + �=4g : (2:6)

The third assumption expresses some smoothness of the interaction:

Assumption 3 (continuity): For x 2 X set (compare with the quantity Vq(xi) for U � 0)

Vx(i; q) =
X
j 6=i

�i;jfq; xjg: (2:7)

We assume that there exists a constant C > 0, such that for any vector k 2 �, any q 2 Q,

and any x 2 X,

jVx(i+ k; q)� Vx(i; q)j �
C� jkj

R
: (2:8)

It is both natural and important that the continuity assumption is related to the fact that

the individual interactions have to be rather small. In fact we have

Lemma 2.1.If � satis�es the assumptions above, then

maxq;q02S maxj2Zd j�i;jfq; q
0
g � C=R (2:9)

Proof. Note that by translation invariance, for any i; k 2 Zd,

Vx(i; q) � Vx(i+ k; q) =
X
j 6=i

�i;jfq; xjg �

X
j 6=i+k

�i+k;jfq; xjg

=
X
j 6=i

(�i;jfq; xjg � �i;jfq; xj+kg)
(2:10)

Now choose the con�guration x
` to be

x
`

j
=

�
q
0
; if j = `� nk; for somen 2 N0

q; else
(2:11)

Then by (2.10),

Vx(i; q)� Vx(i+ k; q) =

1X
n=0

�
�i;`�nkfq; q

0
g � �i;`�(n+1)kfq; q

0
g
�

= �i;`fq; q
0
g

(2:12)

2The precise choice is of course to a large extent arbitrary
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where we used that the last sum is telescopic and that (�i;`�nkfq; q
0g tends to zero as n

tends to in�nity. Choosing k to be a unit vector, (2.12) together with the upper bound on

the left-hand side given by (2.8) yields the statement of the lemma. }

Our aim is to develop the Pirogov-Sinai theory in this setting under suitable requirements

on the values of the three constants D; �; C, and the temperature T . Following the traditions

of one of us (M.Z.), we will, however, always set

T = 1 (2:13)

and thus incorporate the temperature in the interactions. We could just as well set � = 1 in

Assumption 2 and express our conditions in terms of large enough � � 1=T only.

Note. Assumption 2 assures that the constant con�gurations with value q 2 Q give a strong

energetic penalty against changing of a single spin. However, this energy is not enough to

compensate the entropic loss occuring when �xing all spins in an R-neighborhood of one site,

if R is large (and the temperature not too small). Thus the usual de�nition of Peierls contours

(calling any spin part of a contour if at least one of its R-neighbors do not agree with him)

would not allow us to obtain an R-independent constant in the Peierls condition. In other

words, it is not reasonable to think of performing a low-temperature expansion around a single

"ground state" con�guration3, but rather about some more relaxed, nontrivial measures that

are in some speci�c way concentrated in some neighborhoods of these constant con�gurations.

To make this precise will be somewhat technical, and requires the Assumption 3.

Basic examples.

1) In the classical Kac-Ising model, where S = Q = f�1; 1g, �i;j(x; y) �
�

2
J
(i � j)(x �

y)2 and J
(k) = 

d
J(
k) with J e.g. being the indicator function of the unit cube, the

assumptions above are satis�ed with R = 

�1, D = 1, � = �=2, C = 2�d.

2) Analogously, in the ferromagnetic Blume Capel model with positive interactions �i;jfxi; xjg,

ji � jj � R of the above Kac type and with potentials U(s); s 2 S = f�1; 0; 1g the above

assumptions are also satis�ed at small enough temperatures, if we choose suitably the subset

Q � S: If all U(s) are roughly the same and if all interactions �i;jfxi; xjg are roughly of the

same order (for any xi 6= xj) then it is natural to choose Q = S.

3) However, interpreting sites occupied by 0 as \empty" and those occupied by �1 as

particles having a strong fugacity (U(1)
:
= U(�1)

:
= 0);U(0) > U(�1)), if we have a strong

Kac repulsion resp. attraction between the particles of di�erent resp. same type and no

interaction between the particles and the empty sites, then the only appropriate choice of the

set of \reference colors" may be Q = f1;�1g if U(0)� U(�1).

We now announce the central result on the low temperature phases for the class of models

introduced above.

3Except for very large � , corresponding to very small temperatures of order R�d.
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Theorem 2.2. Take a class of model satisfying the assumptions 0��3 above. Then there

exists a constant �c < 1, depending on the constants C and D from Assumptions 1 and 3,

but not on R, such that the following is true. There exist Lipshitz continuous functions (of

�, resp. �, and U(q0)) hq, q 2 Q, such that

(i) If for some q
�
2 Q, hq� > maxq2Qnq� hq, then there exists a unique in�nite volume Gibbs

state �
q
�

.

(ii) If there is a subset Q
�
� Q such that for all p; p

0
2 Q

�
, hp = hp0 , and for all other

q 2 QnQ
�
, hp > hq, then there exist exactly one distinct extremal translation invariant

Gibbs state for each value p 2 Q
�
.

(iii) There is a �nite positive constant c such that jhq � U(q)j � ce
��=c

. The functions hq are

given in terms of rapidly converging series.

Remark. Theorem 2.2 is the key statement of the Pirogov-Sinai theory. It implies in particular

that in the jQj-dimensional space of the parameters U(q), the sets where the Gibbs measure

is unique are open sets, and the sets where k Gibbs measures co-exists are closed, Lipshitz

contnuous submanifolds of co-dimension k�1. Furthermore, all expectations of local functions

with respect to the pure states mentionened in the theorem can be computed in terms of

convergent expansions. Note on the other hand that when more than one Gibbs state co-

exists, it is in general possible that there exist further, non-translation invariant extremal

state.

Note. The statements of the theorem are the standard consequences of the Pirogov-Sinai

theory once a model can be formulated in terms of what it called a \abstract Pirogov Sinai"

model. In this paper we will show that this can be done in the sense of a slightly generalized

sense compared to the standard formulation, namely where additional, quickly decaying,

\cluster �elds" produce a weak interaction between contours. The reformulation of Pirogov{

Sinai theory in that class is done in a companion paper [Z3]. The proof of the uniqueness

result (i) will be given in [BZ3].

The aim of this paper is to prepare the ground for the application of methods of [Z3], i.e.

to reformulate our model such that its partition functions are expressed in a way to allow

to apply the results of [Z3]. Emphasis is put on showing that all estimates in the resulting

abstrat model are uniform in the range of the interaction, R.

Moreover, we devote a great care to the construction of cluster expansions. These expan-

sions are absolutely crucial and give in fact much more information than just the condensed

statement of the theorem. Rather, they allow, in principle and even in practice, to compute

all physical quantities in terms of rapidly converging series. We emphasize this point also

in view of applications to disordered models where renormalization group methode will rely

heavily on the availability of convergent expansions.

3. q{points, contours and stars. Reformulation of the Hamiltonian.

This section introduces the crucial notions of q-correct points and contours. At the same
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time we will reformulate the Hamiltonian in a way that is adapted to these new notions and

that will be used systematically below.

3.1. The cleaning of a con�guration.

The basic notion of the Pirogov-Sinai theory is that of a contour. Countours (of a con�gu-

ration) are connected regions in space where the con�guaration has locally a "high" energy

density so that one would expect that at low temperatures the appearence of large contours

should be "unlikely" with repect to the Gibbs measure. The rest of � is then occupied, for

any given con�guration, restricted ensembles of almost q con�gurations. The the energy of a

con�guration is expressed as a sum of the energies of contours (the \energy barrier" terms)

and energies of the (almost constant) con�gurations around them.

The aim is to show that under suitable conditions the Gibbs measures is concentrated on

con�gurations that are \mostly constant" and moreover such that the contours form only

small and rare islands in such a { predominantly constant { con�guration.

In the standard Pirogov Sinai theory developed for short range models, contours are con-

nected components of the set of \incorrect" points. A point i is called q correct, for some

q 2 Q, if the con�guration has value q anywhere at the distance � R from i, and often the

choice of Q � S is made corresponding only to the minima of U .

The q{like con�gurations on the whole � are thus simply constant (or in a suitably more

general setting periodic) con�gurations that correspond to the local grounds states of the

Hamiltonian. Regions where the con�gurations are everywhere non-constant (when looking

up to a distance R) are then included into contours. The important point is that q-like regions

with di�erent values of q must be separated by contours, so that if one can show that large

contours are indead higly unlikely, one can establish the desired result that Gibbs measure

are concentrated on essentilly constant con�gurations. A suÆcient condition for this to hold

is a so-called Peirls estimate that relates the energy of a contour to the geometric size of the

volume of its support. In short range model like the Ising models such an estimate is readily

proven with a proportinality constant (the "Peierls constant") of order of the strength of the

nearest neighbor interaction.

However in the situation of Kac type models that we are interested in, a direct application

of the above procedure would lead to estimates for the Peierls constant of the order of �R�d

and whence our estimate on the critical temperature would get arbitrarily bad as the range

R of the interaction increases. The point here is that the interactions are locally too weak

to enforce constant con�gurations as \most likely" ones, and that it is necessary in the the

de�nition of the restricted ensembles (in the complements of contours)to take also the local

entropy into account.

This will imply that the collection of the allowed con�gurations in the \restricted ensem-

bles" will be much larger, characterized by some non-local condition to be \q-like" in an

averaged sense. Contours will correspondingly have to be de�ned in a rather complicated

way, as will be detailed below.

Thus, while the general philosophy of the Pirogov-Sinai theory will be unchanged, the
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details of the implementation, and in particular the expansion techniques used will have to

be adopted to this more complicated situation.

The de�nition of the q-like con�gurations begins with a necessary criterion that establishes

whether a con�guration x could be considered q-like at a point i:

De�nition of a q { point. For s; s
0
2 S and q 2 S and i; j 2 � denote by

W
q

i;j
fs; s

0
g = �i;jfs; s

0
g ��i;jfs; qg � �i;jfq; s

0
g: (3:1)

Let x 2 X be some con�guration. Then i is called a q { point of x and we write
4
cx(i) = q,

if for any s 6= q X
j

jW
q

i;j
fs; xjgj � Æ Vq ; (3:2)

where 0 < Æ < 1 will be chosen later. If for no value q 2 S, cx(i) = q, or if cx(i) 62 Q, then

we call i an incorrect point and write cx(i) = �.

Remark. Notice that we do not assume that xi 6= q; it is important to realize that the fact

whether i will be called a q{point will be independent of the value of the spin at site i. It

is determined by the fact that the spin con�guration outside i, in an R-neighborhood of i is

favours the color q at site i.

Notice that W q is de�ned in such a way that it vanishes if one of its arguments equals q.

In the sequal it will be much more convenient to work with this function rather than with

the original interaction �i;jfxi; xjg when investigating regions where the predominant color

is q.

For a given choice of Æ, once all q-points of a con�guration have been determined, it is

useful to associate to any x 2 X(�) = S
� the \cleaned", con�guration �x(x) by putting

�xi(x) =

�
q; if cx(i) = q 2 Q

xi; if cx(i) = �
(3:3)

Let us denote by S� the extended spin set S� = S [ f�g.

Notation. Denote by �q = �Æ
q
= �Æ

q
(x) the collection of all q { points of x. Denote by

��(x) = � n [q2S�q : (3:4)

\Stars" of a con�guration. This name will be used for spins xi in q-points i of x� having

a value xi 6= q. In the reformulation of the Hamiltonian we will give below, it will become

evident that to each star there will be associated with a large \fugacity" Vq(xi)+U(xi) term

which will help to suppress their appearance in the q{correct region.

The �rst thing we need to clarify is whether the value of q is uniquely determined in the

de�nition of a q-point above. To prove this, we will rewrite the assumption 1 (see (2.3)) in

the following way, with new constants Dq and Dq
0:

4We will show later that this de�nition makes sense for suitable choices of Æ that will guarantee that the

map cx is single valued.
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Assumption 1'. There are constants Dq ;D
0
q0
such that5 for any s 6= q; s

0 6= q

Dq maxs j�i;jfs; qgj � jW
q

i;j
fs; s

0
gj � D

0
q
mins 6=q j�i;jfs; qgj: (3:5)

Note. The assumptions (2.3) and (3.5) are easily shown to be valid e.g. in the important

special case when �i;jfxi; xjg is decoupled like

�i;jfxi; xjg = �i�j �fxi; xjg (3:6)

where � is a �nite interaction on S � S and �i is some numerical, Kac \kernel", like that

mentioned above for the Kac Ising model. (Then, obviously, D+ = D� = 2.) Notice also

that W
q

i;j
fxi; xjg � 2max j�i;jfs; s

0
gj.

Uniqueness of the value �xi(x) is implied by the following two lemmata:

Lemma 3.1. If i 2 �q and s 6= q then

X
j:xj=q

�i;jfs; qg > Vq(1�
Æ

Dq

): (3:7)

Proof. The l.h.s of the relation (3.7) is obviously bigger, by (3.2) and (3.5), than

Vq �

X
j:xj 6=q

�i;jfs; qg > Vq �
1

Dq

X
j:xj 6=q

Wi;jfs; qg � Vq (1�
Æ

Dq

): (3:8)

Lemma 3.2. If i 2 �~q, ~q 6= q then for any s 6= q we have the bound

X
j:xj=q

�i;jfs; qg <
Æ

Dq

Vq: (3:9)

Proof. The l.h.s of the relation (3.9) is obviously smaller, by (3.2) and (3.5), than

X
j:xj=q

�i;jfs; qg <
1

D~q

X
j:xj=q

W
~q
i;j
fxj ; sg �

1

D~q

X
j:xj 6=~q

W
~q
i;j
fxj ; sg <

Vq Æ

Deq : (3:10)

Corollary 3.3.

5In the following, the constants D;D
0 will be always taken from (3.1) rather then from (2.3). Actually

here (and only here!) it would be more convenient to have �i;jfxi; xjg in the de�nition above. Notice that

we do not exclude s = s
0 in Assumption 1'.
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(i) If 2Æ < D � minDq then for any q 6= eq we have �Æ
q
\ �Æ~q = ;.

(ii) If in addition
2Æ
D
minq Vq < minq Vq �

Ck

R
, then, for any q 6= ~q, dist(�Æ

q
;�Æ~q) > k.

Proof. The �rst statement follows immediately from (3.7) and (3.10) (used for the value

xi = q), the second uses in addition the continuity relation (2.5) in order to estimate the

change of the l.h.s of (3.9) when evaluated at a point j at distance k from i. }

The reader may notice that that with �i;jfxi; xjg instead of W
q

i;j
fxi; xjg in (3.2) the

above argument would be even simpler, using no constants Dq. However, the de�nition of

correctedness based on W
q

i;j
fxi; xjg will be crucial later.

Agreement on the choice of Æ. In the following we will choose Æ such that part (i) of

Corollary 3, (ii) holds, with k = R.

3.2. Contours of a con�guration x�.

For the given value of Æ, we have now achieved a decomposition of Zd into a union of

disjoints sets �Æ
q
(x), q 2 S and the remainder which we will denote by BÆ(x). Naively

one might think that the connected components of BÆ should represent the contours of x.

However, it will be necessary to enlarge this set somewhat in order to reduce the interaction

of contours with their surroundings. To do so we introduce are led to introduce another,

smaller threshold value ~Æ < Æ.

We start with the set BÆ(x) that will form the \cores" of the contours. For any set M � �

de�ne MR
� fi 2 � : dist(i;M) � Rg.Then set, for ~Æ < Æ,eB(x) � eB

Æ;~Æ(x) � argmin
�
M � (BÆ(x))

R : B~Æ(xM [ �xMc) = ;
	
: (3:11)

The crucial point is that the set eB has an outer layer of points that are eÆ-correct while none
of its points is a distance farther than R away from a ~Æ-correct point. This construction will

look at �rst glance rather surprising. In particular, the reader may wonder what the role

of Æ and ~Æ in the construction is. This will only become clear once the expansions in the

complements of this set are discussed.

Now we can �nally give the de�nition of contours.

De�nition of a contour. Let � be a connected component of the set eB(x). Then the pair

� = (�; x� [ �x�c) is called a contour of x.

The set � is usually called the support of the contour �. It will be useful to distinguish

between the core �� � � \ BÆ(x), the extended core (�)�R � � \ B
R

Æ
(x), and the belts of �

of color q, e�q � (�n��) \ �q(x). The restriction of � to e�q resp. to �� will be denoted ase�q resp. ��.6
6The notation e�

q (the use of the tilde sign is logical, because the choice of ~Æ a�ects e�
q substantially)

should not be confused with another notation � = �
q marking contours � having the external colour q.
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Finally, it will be useful to introduce the q-regular regions (the decomposition, according

to \colours", of the set ([�)c )

e�q � e�q(x) � �q(x)n eB(x) (3:12)

whose complement will be occasionally denoted also by

e�� = � n [qe�q (= eB(x)): (3:13)

3.3. Reformulation of the Hamiltonian.

Now that we have de�ned contours, some simple algebraic manipulations provide a very

useful reformuation of the Hamiltonian that allow to distinguish betwen contributions that

are to be interpreted as energies of contours, energies of restricted ensembles, and interactions

terms, respectively. For simplicity we formulate this statement, as always in this article, for

a �nite system on a torus �.

Proposition 3.4. Using the notations (3.1) we have the relation

H�(x�) = HeB(xeB [ �x
(eB)c

) +
X
q

�
H
e�q
q
(x�) + U(q)je�q j� (3:14)

where � denotes the symmetric di�erence of sets and q = qfi; jg is such that fi; jg \ e�q 6= ;.

The funtions H
M

q
, M � Z

d
, are de�ned by

H
M

q
(x) =

X
i2M

(Vq(xi) + U(xi)� U(q)) +
X

fi;jg\M 6=;

W
q

i;j
fxi; xjg: (3:15)

Proof. The proof is simple bookkeeping. Recall de�nitions (2.4) and (3.1) and notice that

the cleaned con�guration �x� has a constant value q in each e�q . Notice the arithmetical

rearrangements we made for those �i;jfxi; xjg with fi; jg \ eB = ; and also with fi; jg \ eB =

fjg. Namely, in the latter case the third term from the r.h.s of the expression

�i;jfxi; xjg =W
q

i;j
fxi; xjg+�i;jfq; xjg+�i;jfxi; qg i 2 eB; j 2 eLq

still contributes to Vq(xi), while the second term already contributes to H(xeB j�x(eB)c
). }

4. The Peierls estimates of the energy of contours

The representation of the Hamiltonian given in Proposition 3.4 allows to identify the �rst

term as the energy of the contours. Indeed, the value of this term depends entirely on the

con�gurations on eB, and can be expressed as a sum of terms depending only on the individual
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contours (since the color of the cleaned con�guration outside of � can be read o� from the

colors on its boundary). In this sense,

HeB(xeB [ �x
(eB)c

) =
X
�

(E(�) � U j�j) (4:1)

where for any single contour � we have, in analogy to (4.1),

E(�) = H�(x� [ �x�c)� U j�j (4:2)

where U = minq2S U(q) is the minimum of the potential and could be normalized to zero, if

desired. In this section we will prove a Peierl's estimate for the contour energies, i.e. we will

prove:

Theorem 4.1.Under the assumptions 0 { 3, we have for any contour � the bound

E(�) � �
�
j�j (4:3)

where �
�
is given as

�
� = Cd

~Æ V

 
~Æ

CD0

!d

(4:4)

with D
0 = maxD0

q
, the constant C being taken from Assumption 3 and with Cd is a numerical

constant depending only on the dimension.

Proof. Note that by de�nition of the contours, there can be no point i within � whose R-

neighborhood is free of points j that are ~Æ-incorrect with respect to the con�guration x�[�x�c .

For, otherwise, the R-neighborhood of i could be removed from � and it would still be true

that all point in (�nfigR)R were ~Æ correct with respect to (x�nfigR [ �x(�c[figR)) (by the

positivity of the interaction). Therefore we can �nd a R-connected set eG � � such that all

points i 2 eG are ~Æ-incorrect points of the con�guration x� [ �x�c .

Lemma 4.2. Set R
Æ =

~Æ
D0C

R. Let eG � � be a set of ~Æ-incorrect points of x� [ �x(�c and

assume for simplicity that for any i 6= j 2 eG, ji� jj > R
Æ
. Then

E(�) �
1

2

R
ÆX

K=1

(
~ÆV

D0
�
CK�

R
)j eG(K)

j (4:5)

where eG(K)
denotes the set of points i that have distance K from the set eG.

Proof. By de�nition,

E(�) =
X
i2�

Vx�[�x�c (i; xi) +
X
i2�

(U(xi)� U)
(4:6)
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where Vx(i; q) was de�ned in (2.7). Let us assume that all points i in eG are actually incorrect

w.r.t. all colors in S. Then it is enough to bound the right hand side of (4.6) from below by

�

X
i2�

Vx�[�x�c (i; xi) (4:7)

Using the upper bound of Assumption 1', together with the de�nition of eG one sees readily

that for all i 2 eG for any q 2 S,

Vx�[�x�c (i; q) �
V Æ

D0
(4:8)

Note that this estimate uses in a crucial way the fact that correctness of a point does not

depend on the values of the spin at this point.

Next note that by the continuity Assumption 3,

Vx�[�x�c (i; xi) � Vx�[�x�c (i+ k; xi)�
Cjkj�

R
(4:9)

But for any point i at distance K � R
Æ from eG one can �nd a vector k of length K such that

i+ k 2 eG, and therefore for such points,

Vx�[�x�c (i; xi) � Vx�[�x�c (i+ k; xi)�
CK�

R
�

ÆV

D0
�
CK�

R
(4:10)

From here the lemma follows immediately under the above assumption. Now, if some of the

points i are incorrect because ci(x) 2 SnQ, then this implies that there is a large fraction of

points in the R-neighborhood of these points that have U(xi) � U + �=4. But this implies

an even stronger excess energy as was obtained above. }

We are now ready to conclude the proof of the theorem. Note �rst that Lemma 4.2 implies

by a simple geometric consideration (see [BZ1]), that

E(�) � Cd

~ÆV

D0

 
~Æ

CD0

!d

j�j (4:11)

with Cd > 0 depending only on the dimension. This gives the claimed estimate of the

Theorem. }

5. Cluster expansion of restricted \low density" ensembles.

In the previous sections we de�ned the notion of contours and established a Peierls estimate

for the contour energies. In terms of these objects we can now express the partition function

on the torus � as follows

Z� =
X

�1;:::;�n

e
�
Pn

i=1
E(�i)�U j�ij

Y
q2S

Ze�q(�1; : : : ;�n) e
U(q)je�qj (5:1)
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where the sum is over all families of compatible contours (that is to say the components �
i

are mutually disconnected and the colors on the components of the boundaries of the nested

arrangement of contours match), the sets e�q make the decomposition

[q
e�q = � n ([i�i) (� ([i�i)

c)

of the complement of the union of the supports of the contours �i of colour q, and the

restricted partition function Ze�q (�1; : : : ;�n) = Z
Æe�q(�1; : : : ;�n) in the volume e�q equals to

Z
Æe�q(�1; : : : ;�n) =

X
xe�q2Se�q

Y
i2e�q 1I

Æ

i
(x) exp(�

X
i2e�q(Vq(i)+U(xi)�U(q))�

X
fi;jg\e�q 6=;W

q

i;j
(xi; xj))

(5:2)

where for notational simplicity we set x = [qxe�q [ x�
1
[ � � � [ x�n

(the con�guration that

equals xe�q within e�q and the one imposed by the �xed contours on their support) and 1IÆ
i
(x)

is the indicator of the event that i is a Æ correct point of x.7

In the present chapter we will expand the restricted partition functions. Our approach

will be based on the following observations. The energy of a con�guration on e�q is expressed
in such a way that the pair interactions are non-zero only between spins xi for which xi 6= q.

Moreover, any such spin xi has a \potential" or \activity" term Vq(xi) + U(xi)� U > 0.

It is thus reasonable to think of the con�guration as a set of (colored) stars interacting

through a pair interaction. What is important is that the constraint of Æ-correctness imposes

a constraint on the density of these stars. Under this constraint, we will see that the pair

interaction is e�ectively weak (a fact that would fail in the absence of such a constraint) and

can be dealt with by high-temperature expansion techniques. It should be noted that the

stars interact with the boundary condition also only by pair interactions between stars, and

that by construction, the boundary layer of contours (of thickness R) carries con�gurations

that are even ~Æ-correct if \looked from the point of view of the cleaned con�guration outside"

and thus have an even lower density of stars then otherwise allowed in e�q.
The only obstacle we will encounter is the presence of the density constraint. This con-

straint in crucial on the one hand since it ensures that the interaction is weak and that thus

a high-temperature expansion may converge. On the other hand, this constraint imposes a

non-local interaction between the high-temperature polymers, which is somewhat unconven-

tional. The way we will deal with this is that �rst, under the presence of the constraint, we

will perform a partial resummation of the original high-temperature expansion based on the

expansion of the parentheses in (5.4). This yields as usual a sum over certain graphs. We

then associate to each graph a spanning tree, and re-sum over all graphs corresponding to

the same tree. Taking advantage of the presence of the density constraint one can show that

the resulting activities of the trees are suÆciently small to ensure convergence of the Mayer

expansion of this tree ensemble even if there were no density constraints (i.e. in this ensemble

7Emphasise that while ~Æ played a crucial role in the de�nition of contours the de�nition of the ensemble

over which we sum in (5.2) is actually taken does not depend on ~Æ once the collection of contours f�ig is

�xed,
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the low density constraint would be automatically respected with overwhelming probability).

At this point the constraint is thus a pure nuisance, and we would like to get rid of it. To do

so we actually treat it as a perturbation and again expand it in the "F.K. way". This will

produce a new class of objects (high density graphs) which we will call \galaxies" and which

in many ways share the properties of the original contours.

After these preparations the partition function is reformulated in the form of a standard

polymer model and conventional techniques can be used to deal with it.

To simplify notation from the somewhat gruesome looking (5.2), let M be any set and

let xMc be a boundary condition of the type that can arise in our situation, i.e. such that

M \B~Æ(qM [xMc) = ;. Using Proposition 3.4, we can write the partition function of interest

is (up to an overall factor exp(U(q)jM j))

Z
q

M
(xMc) =

X
xM2SM

1IM�Bc
Æ
(x) exp(�H

q

M
(x))

=
X

xM2SM

1IM�Bc
Æ
(x)

Y
i2M

e
�(Vq(xi)+U(xi)�U(q))

Y
fi;jg\M 6=;

e
�W

q
i;j

(xi;xj)
:

(5:3)

where Bc

Æ
(x) � � n BÆ(x) and it is understood that x = xM [ qMc .

5.1. Construction of the polymer representation in the volume M .

We begin the program outlined above with the �rst step, the high-temperature expansion

of the interaction between stars.

For i 6= j write the term e
�W

q
i;jfxi;xjg as

exp(�W
q

i;j
fxi; xjg) = 1 + w

q

i;j
fxi; xjg � 1 + wb where b = fxi; xjg: (5:4)

We also write

v(xi) = exp(�U(xi) + U(q)� Vq(xi)): (5:5)

Note that if xi = q, then w
q

i;j
fxi; xjg = 0 and v(xi) = 1. Recall that we assumed in

Assumption 2 and 3 ((2.6) and (2.5)) that we have both the bound for the \oscillation of

U"as well as a lower bound for Vq(xi). We may summarize these two bounds by assuming

that for any xi 6= q

Vq(xi) + U(xi)� U(q) > 3=4 Vq(xi) (5:6)

Already at this point it is reasonable to formulate our later requirements on the fugacities

Vq(xi) { which will have to \beat" both the repulsive energies of the bond terms W
q

i;j
fxi; xjg

(whose sum over j may substantially lower Vq(xi)) as well as the entropy.

In order to simplify the notation let us introduce the modi�ed potential

eVq(xi) = (1=2 � Æ) Vq(xi) + U(xi)� U(q) > 0: (5:7)
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Lemma 5.1.There exists �
�
> 0 such that for each i and each xi 2 SX

j

X
xj2S

w
q

i;j
fxi; xjg e

�eVq(xi) � e
��

�

: (5:8)

Moreover, for large enough � , �
�
> �=3.

Proof. By Lemma 2.1 we have that jw
q

i;j
fxi; xjgj � W

q

i;j
(xi; xj)e

2C=R. Then, taking into

account Assumption 1', we see that

X
j

X
xj2S

w
q

i;j
fxi; xjg e

�eVq(xi) � e
�eVq(xi) �e2C=R

D0
�

�e
2C=R

D0
e
��(1=2�Æ)

� e
��

�

(5:9)

From this the lemma is obvious. }

In the following we keep in mind that the reference color is q and we do not make this

explicit in notations anymore in this paragraph. Let us associate with a con�guration x =

xM [ xMc the set of stars

A(x) � fi 2M [M
R : xi 6= qg (5:10)

Then

exp (�H
q

M
(x)) =

Y
i2A(x)\M

v(xi)
Y

b�A(x);b\M 6=;

(1 + wb) (5:11)

In a standard way the product over bonds can be expanded as a sum over (unoriented, simple)

graphs G on A(x), whose connected components may be also single points. We denote by G

the set of vertices of G. The graphs G that occur have the properties that

(i) A(x) � G �M \A(x).

(ii) Every bond and (in case of jGj = 1) every connected component of G contains at least one

point of M . Denote the set of such graphs G(M;x), x = xM [ xMc . ThenX
G2G(M;x)

Y
i2G

v(xi)
Y
b2G

wb =
Y

i2A(x)\M

v(xi)
Y

b�A(x);b\M 6=;

(1 + wb): (5:12)

Inserting this expression into the formula (5.2) for the partition function, one observes that

the summation over the con�gurations xM and the graphs G 2 G(M;x) can be interchanged:

Consider the class set Gq(M;xMc) of (\colored by q") graphs that are of the same type

as those speci�ed above, except that the vertex set fxi 6= qg within M is now arbitrary

and while each point outside of M carries the prescribed vertex xi given by (xMc)i. For

Gq 2 G(M;xMc) we set

wG =
Y
i2G

vi(xi)
Y

b=fxi;xjg2G

wb where xb = w
q

i;j
fxi; xjg: (5:13)
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Then the partition function (5.3) can be written, using (5.4), (5.5) and (5.13) as

Z
q

M
(xMc) =

X
G2G(M;xMc )

1IBÆ(x)�Mc wG =
X

G2G(M;xMc )

wG

Y
i2M

�Æ(i) (5:14)

where �Æ(i) is an indicator of the event that i a Æ correct q-point of x� = xMc [ xM and

xM � xM (G) is de�ned as a con�guration on M having the value q outside the vertices of G

and the value xi in the vertices xi 2 suppG.

5.2. From graphs to forests (and trees).

Consider some mapping, de�ned in a translational invariant way, denoted by fG ! TGg

which assigns to any graph G a forest TG � G such that T
G
= G, all connected components of

TG are trees8, and, for all points i 2 G, the values of the spins (vertices of G resp. TG) are the

same: xi(TG) = xi(G). It is important to note that by this mapping the spin con�guration

associated to G is entirely determined by TG. In particular, a graph G occurs in the partition

sum Z
q

M
(xMc) if and only if TG occurs.

For any forest T , denote by ewT the quantity

ewT =
X

G:TG=T

wG: (5:15)

Note that if the forest T = ft1; : : : ; tng where tl are connected trees, then

ewT =

nY
l=1

ew(tl) (5:16)

Lemma 5.2.For any forest T which is Æ correct
9
we have the following bound:

j ewT j � Y
b2T

jw
q

i;j
fxi; xjgj

Y
i2T

e
�eVq(xi): (5:17)

Proof. Recall that since only such forests can contribute in the partition function for which

all points i are Æ-correct, we have that for any i 2 T ,X
j:fi;jg2G

jW
q

i;j
(xi; xj)j � ÆVq(xi) (5:18)

8We consider a single point also as a tree.
9In other words, which occurs as a subgraph of some graph index in the sum (5.3),(5.4) over the restricted

ensembles of graphs in the partition functions Z
q
M
.

29=august=2001; 13:52 18



Next observe that since for any z 2 R, 1 + jez � 1j � e
jzj

ewT � X
G:TG=T

jwGj �

Y
i2T

vi(xi)
Y
b2T

jw
q

i;j
fxi; xjgj

Y
i;j2T

(1 + jw
q

i;j
fxi; xjgj)

�

Y
i2T

vi(xi)
Y
b2T

jw
q

i;j
fxi; xjgj

Y
i;j2T

e
jWijj

�

Y
i2T

vi(xi)
Y
b2T

jw
q

i;j
fxi; xjgj

Y
i2T

e
ÆVq(xi)

(5:19)

Using (5.6), this yields the Lemma.
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Contours are depicted as black regions
A collection of  contours in a model with 4 colors

5.3. A new representation of the partition function (5.3).

We can now represent the partition function (5.3)as

Z
q

M
(xMc) =

X
T2G(M;xMc)

1IBÆ(xM[xMc )�Mc ewT =
X

T2G(M;xMc)

ewT Y
i2M

�Æ(i): (5:20)

The point is that due to Lemma 5.1 for large enough � the estimates (5.17) above on the tree

activities ewT suÆce to guarantee the convergence of the Mayer expansion for the logarithm

of the partition function, now even in the absence of the density constraints. Thus, at this

point, the constraint has become a nuisance rather than a help, and we would rather get rid

of it.
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The problem is that the test functions �(i) in (5.20) act on the whole con�guration x� thus

imposing multi-body compatibility relation between components of the forest T . WritingY
i2M

�(i) =
Y
i2M

(1� (1� �(i))) =
X

M1�M

(�1)jM1j
Y
i2M1

(1� �(i)) (5:21)

we replace the ensemble of forests T = [jtj obeying the \low density" tests �(i) by an

ensemble of all forests; the constraint being now re
ected by a creation of arti�cial new

polymer formed by conglomerates of those i where the low density test of G is violated . Note

that nothing prevents us to maintain the fact that we sum only over forests made of trees

satisfying individually the low density constraint, and in particular the estimate (5.17). We

will denote the subset of forests in G(M;xMc) whose elements ti satisfy the bounds (5.17) by

T (M;xMc).

Now we can write the partition function above as

Z
q

M
(xMc) =

X
T2T (M;xMc )

Y
i2M

�
1� (1� �Æ(i))

� ewT
=

X
T�T (M;xMc )

X
M1�M

Y
i2M1

(��c
Æ
(i)) ewT

�

X
T�T (M;xMc )

X
M1�M

ew(M1; T )

(5:22)

where we introduce the provisional notation

ew(M1; T ) =
Y
i2M1

(��c
Æ
(i)) ewT : (5:23)

Since the indicator functions �Æ depend only on the forest in an R-neighborhood of i, it is

natural to lump all objects that intersect connected components of the R-neighborhoods of

the set M1 together and to treat them as single objects; the connected components of the

agglomerates obtained in this way will be called galaxies.

We will now make this notion precise.

5.4. Constellations and galaxies in a volume M .

We note that while the de�nitions below will be given for any volume M � � and any

boundary condition xMc , they will be used only in the situation when M is a component of

the union of all contours of some x�, i.e. in the situation when the boundary condition xMc

is such that any point i 2M is a ~Æ{correct point of the con�guration xMc [ qM .

Let P denote the set

P � P(M1; T ) =M
R

1 [ T : (5:24)

We say that that a subset P of P is R; T{connected, if any two points in P can be joined

by a path made either of bonds of T or nearest neighbor bonds on the set MR

1 [ @RM . An

R;T{connected component P of P together with the restriction TP of T to P will be called

29=august=2001; 13:52 20



(i) A constellation, t , if P \MR

1 = ;, and

(ii) a pre-galaxy P , more precisely M1 pre-galaxy if P \M
R

1 6= ;.

Constellations and pre-galaxies will be treated quite di�erently. Indeed, the constraint-free

constellations are ready for being Mayer-expanded. This will be done later.

On the other hand, the pre-galaxies will be re-summed to form \galaxies" by summing

over all possible arrangements of the sets M1 � P giving the same MR

1 and also over the

\body" of the forest TP . We will sum neither over the vertices xi =2M
R

1 nor over the bonds

fxi; xjg; fi; jg nM
R

1 6= ; of the trees of the pre-galaxy.

The remaining trees of such a pre-galaxy will be called the legs of the pre-galaxy.10 On

the other hand the set MR

1 resp. P \M
R

1 (the latter is the complement of the union of the

\outer" points of the legs of the pre-galaxy) will be called the \body" resp. the \skeleton"

of a given pre-galaxy (P; TP :M1) and denoted by P Æ resp. P �.

A galaxy P
� is then de�ned as a pair P � = (P Æ

; fLig) where the set P
Æ (the \body"of the

galaxy P �) is a body of some pre-galaxy (P; TP :M1) and the \legs" Li of P
� are some trees

intersecting P Æ such that fLig is the collection of all legs of a suitable pre-galaxy (P; TP ;M1)

above.11

We may say that constellation is a galaxy with an empty body. In the following we will

reserve the name of a galaxy only for the objects having a nonempty body.

A pre  -  galaxy The corresponding galaxy

5.5. Restricted ensemble as a gas of constellations and galaxies.

For any M1- pre-galaxy Q = (P; TP ) de�ne the quantity (5.23) now denoted as

ewQ = ew(M1; P; TP ) =
Y
i2M1

(��c
Æ
(i)) ewT : (5:25)

10Both the constellations and the "legs" of a galaxy are connected trees.
11The legs have at least one link fxi; xjg intersecting the core P 0 of the galaxy - but not belonging to it.
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Given a galaxy P � denote by P(P �) the collection of all possible pre-galaxies corresponding

to the given P
� (for a suitable M1). De�ne the weight of a galaxy P �

ew(P �) =
X

Q2P(P �)

ewQ: (5:26)

Using these notation we can write the expression (5.22) as follows

Z
q

M
(xMc) =

X
fP �

k
;tlgc

Y
k

ew(P �
k
)
Y
l

ew(tl) (5:27)

where the summation is over all collections fP �
k
; tlgc of mutually disconnected galaxies and

constellations in a given volume M , under a boundary condition xMc . Note that by con-

struction, the weights em(P �) may depend on xMc , however only if P �
\M c 6= ;.

5.6. Peierls bounds for pre-galaxies.

We will show that due to the high density constraints in MR

1 , the `weight" ( '`activity") of

a galaxy is exponentially small. A technical problem arises here from points in the vicinity

of M c, since there the Æ-incorrectness of a point may be provoked partly also by the presence

of stars outside M which do not contribute an activity factor of the galaxy. To avoid this

problem we had de�ned contours with the R-belt of points (forming now the R belt of M

in M
c) that are ~Æ correct if looked from outside M c (and if the con�guration outside the

contours i.e. in M is replaced by the cleaned con�guration). This will make sure that the

presence of nearby contours cannot be mainly responsible for Æ-incorrectness inside M . In

other words, the protection belts we imposed around contours make sure that contours cannot

trigger the nucleation of galaxies in their vicinity.

Lemma 5.3.Let the boundary condition xMc be such that each point i 2 M is a ~Æ - correct

point of the con�guration xMc [ qM . Let P
�
be a galaxy of a con�guration x� = xM [ xMc

with a body P
0
(not necessarily P

0 �M). Assume that ~Æ was chosen such that ~Æ < Æ. Then

we have the bound, using the same constants D
0
and Cq as in (4.3)

X
i2M\P 0

Vq(xi) � �
0
q
jP

0
j where �

0
q
= Cd Vq

 
Æ � ~Æ

CD0
q

!d

: (5:28)

Note. Notice that we have the constants D0
q
and Vq instead of D0 and V here, and that we

have P 0 on the right hand side and notM \P 0 (even if P 0\M c 6= ;). It should be also noted

that for small Æ the quantity in (5.28) is proportional to the energy of the core of a\contour"

P
0 and the constant � circ is essentially the same as �� in the proof of Peierls condition (4.3)

(if we consider there the special case of a contour � having an empty core �� = ;).

Proof. The idea is very similar to that of the proof of Peierls condition. By de�nition,X
i2P 0

Vq(xi) =
X

i2P 0;j2�;j 6=i

�fi;jgfxi; qg: (5:29)
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Using the symmetry of � with respect to the interchange of the two arguments and inter-

changing the order of summation we get thatX
i2P 0\M

Vq(xi) =
X

i2P 0\M;j2�;j 6=i

�fj;igfq; xig: (5:30)

But if xi = q, �ij(xi; q) = 0 = W
q

ij
(xi; xj), while if xi 6= q, by Assumption 1', �i;j(q; xi) =

�i;j(xi; q) �
1
D0

q
W

q

i;j
(xi; sj) for any choice of sj 6= q. It is important to note here that

the de�nition of a galaxy depends on a boundary condition xMc , but xM will be mostly

responsible for a possible Æ incorrectness of any i 2M ! Namely if i is not a Æ{ correct point

of x� then i is (Æ � ~Æ)- incorrect point of the con�guration xM \ qMc . So we have the lower

bound X
i2�;i6=j

�i:jfq; xig �
1

D0
q

X
i2�

jW
q

j;i
(sj ; xi)j �

(Æ � eÆ)Vq
D0
q

: (5:31)

Since Æ-incorrect points of the galaxy P
� are guaranteed only in the possibly very sparse

subset M1 of P
0, we will have to use the continuity Assumption 3, just as in the proof of the

Peierls condition. Let us �x a point j 2 M1 \ P
�, and consider, for jkj � R

�
q
�

(Æ�~Æ)
D0

qC
(it is

de�ned analogously as in Lemma 4.2, the contribution from a point j+k. We have the lower

bound X
i2�

�j+k;i(q; xi) �
X
i2�

�j;ifq; xig �
Cjkj

R
: (5:32)

for it. As in the derivation of (4.11), it follows now that the sum over the R� neighborhood

of such a (Æ � ~Æ) incorrect point j of xM [ qMc is not smaller than

X
k

 X
i2�

�j;ifq; xig �
Cjkj

R

!
: (5:33)

Summing over the union J � M of all such incorrect j 2 M and noticing that JR � P
0 we

�nally have X
j2�

X
i2P 0\M

�j;ifq; xig � Vq jP
0
jCd

 
Æ � ~Æ

D0
q
C

!d
: (5:34)

This proves the lemma.}

5.7. Summing over pre-galaxies. Peierls bounds for galaxies.

Based on the previous lemma, we can now estimate rather easily also the activities of

galaxies, by �xing the legs and summing over all possible skeletons of a given galaxy. One

should remark that inside the body of a galaxy, a slightly di�erent type of estimateof the

bond weights forming the skeleton of this body) will be used than for the legs.

Let us denote by L the union of all legs of the galaxy P �. Recall that P 0 denotes the body

of P � and that the weights ew(P �) is given by the sum (5.26),(5.25) where ewT satis�es the

bound (5.17).
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Recall that by re-summing over graphs G corresponding to the same trees TG we were

left in the situation where the tree weights can be imagined (5.17) as products of bond

weights w
q

i;j
fxi; xjg and \remaining" vertex weights e�eVq(xi). Let us decompose the remaining

fugacity on the vertices of trees as follows

eVq(xi) = V
Æ
q
(xi) + V

�
q
(xi) (5:35)

where we make the somewhat non-optimal choice V Æ
q
(xi) = V

�
q
(xi) =

1
2
eVq(xi).

X
j

w
q

i;j
fxi; xjg e

�V
�

q (xj) � � (5:36)

with � � e
��=4 for � large enough, which is easy to see from (5.9).

In the sequel it will turn out convenient to forget that the summations are only over forests,

and to retain only the bound (5.36).

For the bonds outside the body of a galaxy we will not need any decomposition (5.35);

in these cases we incorporate the whole remaining fugacity eVq(xi) into wq

i;j
fxi; xjg; this case

deserves a new notation in which the bound (5.17) will be written in the following form:

j ewT j �Y
b

j ewbj (5:37)

where the newly de�ned bond activities ewb; b = fxi; xjg (smaller than that of (5.36))

ewb = wb e
�eVq(xi) (5:38)

satisfy a bound, with " small enough of the order " = e
�K� where K = K(Æ)X

b3xi

ewb � ": (5:39)

Then we have the following result.

�
Æ
q
= Cd V

Æ
q

 
Æ � ~Æ

CD0
q

!d

: (5:40)

Proposition 5.4.The galaxy activities can be estimated as follows (L denotes the union of

all legs of P
�
)

j ew(P �)j � e
��

�

q jP
0
j
Y
b2L

j ewbj (5:41)

where ewb are bond weights from (5.38) and the constant �
�
q
satis�es the bound

e
��

�

q = 4 (e��
Æ

q+� jSj)� (5:42)
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where (see (5.28)) � = Cd

�
Æ�~Æ
CD0

q

�d
.

Note. Let us emphasise that the estimate (5.37), used below for the constellations, is now

just a special case of the estimate (5.41), for an empty body P 0 = ;.

Proof. We noted already that our new formulation (5.37) with (5.39) of the bounds for tree

weights will allow to forget the restriction that our summation was over trees rather than

general graphs. Let us consider a �xed set P Æ (the body of P 0) together with a �xed set

(skeleton) P � = Y of cardinality n of stars xi. We want �rst to perform the sum over all

forests (more generally, graphs) having Y as their support and then to sum over all possible

Y . Denote by

�(Y ) �
X

T :T=Y

ewT : (5:43)

To estimate �(Y ), we note that from each point i 2 Y , links may emanate to points at

distance less than R. However, the sum of weights of these links satis�es (5.36) (if the V Æ
q
(xi)

part of the fugacity is \assigned to vertices only") and so

j�(Y )j � e
�V

Æ

q jY j e
�jY j where V

Æ
q
= mins 6=q V

Æ
q
(s): (5:44)

The exponential factor e�jY j = 1 + � + �
2

2
: : : (compare (5.36) ) appears here for similar

reasons as in (5.19)); to estimate (when taking product over all xi 2 Y ) the contribution of

all possible graphs (not only trees) on Y . We actually use slightly less precise bounds here

than in (5.19) and the relative smallness of � w.r. to V Æ
q
is important.

To �nish our estimate the weight of galaxies, it remains to sum over all possible choices

of the set Y , of stars, and over the sets M1 such that MR

1 = P
0. In the latter sum we are

generous and bound it by 2jP
0
j, even though this can clearly be improved. In the sum over

the sets Y we must of course retain the fact, established in Lemma 5.3 that the number of

stars it proportional to the volume of P 0. Thus , with � = Cd(
Æ�~Æ)
CD0

q
)d (see (5.28)) and with

n
0 = �jP 0j we have the bound12

j ew(P �)j � 2jP
0
j

X
Y�P 0:jY j�n0

�(Y )
Y
b2L

j ewbj � 2jP
0
j
X
n�n0

�
jP 0j

n

�
(jSj � 1)nen(��V

Æ

q )
Y
b2L

j ewbj:
Using a simple bound

P
n�k

�
N

n

�
x
n � 2Nxk, x� 1 this gives the �nal estimate

j ew(P �)j � 4jP
0
j

�
e
(��V Æ

q )(jSj � 1)
��jP 0

j Y
b2L

j ewbj (5:45)

and this proves (5.41). }

12For a large continuity constant C in Assumption 3 this gives a rather poor estimate for ��q , thus requiring

correspondingly large value of � .
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At this stage we have reformulated the restricted partition function in terms of a polymer

model where polymers are either constellations or galaxies, that are mutually disjoint, not

interacting except for the volume exclusion, and whose activities satisfy exponential bounds

that will be seen to ensure the convergence of the Mayer expansions, as we will explain shortly.

The following picture depicts a typical con�guration of such objects.

A set M with galaxies and constellations

M

5.8. Expression of the \restricted ensemble" through a polymer model..

Let us recall the form in which the partition function in a volume M (a connected com-

ponent of the union of supports of all contours of x�) may now be re-written:

Z
q

M
(xMc) =

X
fP �

1
;:::;P �

k
;t1;:::;tlgc

nY
i=1

ew(P �
i
)

mY
j=1

ewtj (5:46)

where the sum is over all compatible collections13 of galaxies and constellations in M . Com-

patibility of a collection fP �
i
g [ ftjg \in M" means that

P
�
i
\M 6= ;; t

j
\M 6= ; and (5:47)

P
�
i
\ (P �

1 : : : P
�
k
[ t1 � � � [ tl) = ;; t

�
j
\ (P 1 : : : P k

[ t1 � � � [ tl) = ;: (5:48)

The following Corollary summarizes what we have done until now, in the reformulation of

our original spin model.

Corollary 5.5.For any torus � we have the expression

Z(�) =
X

f�1;:::�m;P
�

1
;:::;P

�

k
;t1;:::;tlgc

mY
i=1

e
�E(�i)

Y
q

exp(�U(q)�q)

kY
i=1

ew�(P �
i
)

lY
j=1

ewtj (5:49)

13The symbol fPigc will be used throughout to denote a compatible collection of polymers Pi.
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where �q is the set of all q{ correct points of the system f�1; : : :�ng of contours and the

sum is taken over all compatible collections as de�ned by (5.47), (5.48). We normalized the

potential such that minU(q) = 0. The weights ew�(P �
i
) and ewt satisfy the bounds stated in

Lemma 5.2 and Proposition 5.4, respectively, and E(�) satisfy the Peierls condition (4.3).

Moreover, the weights of galaxies ew�(P �) � ~w(P �) depend on the collection of contours

� � f�1; : : :�ng only through the value of q if their support lies in e�q, except if P� intersects
the support of �, when it also may depend on the spin con�guration on the R-boundary of �.

5.9. Mayer expansion of the polymers.

The main step now is to perform a Mayer expansion for the sum over the constellations and

galaxies. To simplify the language, we will call galaxies and constellations indiscriminately

polymers and denote them by P . The purpose of the Mayer expansion is to write the sum

over these polymers in the presence of a �xed collection of contours as an exponential of a

sum of new objects, called 'clusters'. This sum over clusters can then be interpreted as a

'free energy' (depending on the colour of the set in which the polymers used to live), plus a

correction to the contour energies. In this form the partition function is very similar to that

of what is called an 'abstract Pirogov-Sinai model', the only di�erence being that the ground

state energies of the di�erent colors are replaced by free energy functions and that there

are some non-local interactions between contours due to the interactions of clusters with

the contours. In [Z3] it is shown that the Pirogov-Sinai theory can be developed without

problems in this general context.

Performing the Mayer expansion as indicated above is actually a very standard exercise

and it is well-known that this expansions converges under the conditions we have for the

polymer activities, provided � is large enough. The possibly simplest way of seeing this is

by using a version of the Koteck�y-Preiss-Dobrushin [KP,Do] method as given in [BZ2] (see

also [NOZ]). In fact all we need is part of the Theorem 2.2 of that article, that we rephrased

slightly for our purposes.

Let P be a collection of polymers, and let � be a binary relation on P (called 'incompati-

bility'), and let c denote its logical converse (i.e. P cP
0 unless P �P ). The relation � induces

a natural graph structure on any set made of elements of P. We will always assume that

P �P , for all P 2 P.

Say that a set of elements of P (with multiplicity) is compatible, if the corresponding

graph has no edges, and call it a cluster if its graph is connected. Let C(P) denote the set of

clusters (all connected graphs on PN), and F(P) denote the set of all compatible subsets of

P.

Let w : P ! R be some function on P.

Theorem 5.6. [BZ2]Assume that for some function a : P ! R
+
, for some 0 < Æ < 1, for

all P 2 P

jw(P )jea(P ) � Æ (5:50)
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and for any Q 2 P, X
P2PnQ;P �Q

jw(P )jea(P )+d(P ) �
a(Q)

L(Æ)
(5:51)

where L(Æ) =
� ln(1�Æ)

Æ
and where d : P ! R

+
is another function of P . Then

ln
X

F2F(P)

Y
P2F

w(P ) =
X

C2C(P)

bw(C) (5:52)

where bw(C) satis�es for all Q 2 P the bound

X
C2C(P); C �Q

j bw(C)jed(C) � a(Q) (5:53)

where d(C) =
P

P2C
d(P ) measures the decay of bw(C).

We will use this theorem with P be the collection of all trees and galaxies that can exist

in the presence of a given con�guration of contours �, and with w(P ) the corresponding

activities ewt and ew�(P �) depending on whether P is a tree or a galaxy. As the function

a(P ) we will simply use ajtj resp. bjP
�
j with suitable constants a and b. Since activities

are decaying exponentially in these same quantities with a rate controllable by � , and the

number of these objects of given size is at most exponentially increasing with a rate that is

independent of both � and R, it is an elementary exercise that the hypothesis of Theorem

5.6 are satis�ed if � is large enough.

Next we need to understand a little more about the geometric structure of the clusters

obtained by computing the logarithm of the sum over all polymers existing in the presence

of �. Recall the the only possible polymers are whose whose support is in the regions e�R
q
.

Therefore it is geometrically impossible that polymers whose support intersects di�erent

connected components of the complement of � are incompatible, implying that the sum over

all clusters can be split into a sum over contributions from clusters whose support intersects

di�erent connected components of the complement of �. Next we observe that if a cluster

does not intersect the support of �, then its weight is independent of the the contours �

except that it depends on the color of the region it is supported in. Since in all other respects

cluster weights are translationally invariant, we can introduce translation invariant cluster

weights wq(C) which are simply equal to the weight of a translate of the cluster C that

has support in e�q and does not touch any contour. We may also consider the ensemble Fq

of all polymers that may exist in an in�nite volume restricted ensemble of color q and the

corresponding set of all cluster Cq. Let us also de�ne

fq � U(q)�
X

C2Cq ; C30

bwq(C)

jCj
(5:54)

Then Theorem 5.6 allows us to express the partition function as follows.

29=august=2001; 13:52 28



Theorem 5.7.There exist �0 <1, independent of R such that the following holds if � > �0:

Z� =
X

f�1;:::�mg

mY
i=1

e
�E(�i) exp

0@�X
q2Q

U(q)j�q j+
X

C2C(�)

bw�(C))
1A

=
X

f�1;:::�mg

mY
i=1

e
�E(�i) exp

0B@�X
q2Q

fqj�q j+
X

C2eC:C\� 6=; ew(C)
1CA

(5:55)

where � � fgb1; : : : ;�?ng, C � C(�) is the collection of clusters constructed by Theorem 5.6

and in the second formula we use the resummation (5.54). Then the sum is only over clusters

intersecting �. The values ew(C) are then de�ned, for any C 2 eC such that C \ � 6= ; as

ew(C) = bw�(C)�X
q

bwq(C)
jC n �j

jCj
(5:56)

where we set bw� = 0 if C 62 C(�).

The quantities fq are analytic functions of the parameters of the Hamiltonian, and the

cluster weights ew(C) satisfy an estimateX
C:C3i

j ew(C)jec� jCj � e
�c

0
� (5:57)

for c; c
0
> 0 independent of R.

Proof. This theorem is a straightforward consequence of Corollary 5.5 and Theorem 5.6, as

explained above. }

With Theorem 5.7 we have achieved the goal of this paper: we have formulated the

partition function to our models in the form of an abstract Pirogov{Sinai model in the sense

of [Z3], with bounds on the Peierls constant and the cluster weights that do not depend on

the range of the interaction R but only on the overall strength expressed by � . Theorem 2.2

now follows from the general results of [Z3].
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