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Abstract

A nonlocal model of non-isothermal phase separation in binary alloys is

presented. The model is deduced from a free energy with a nonconvex part

taking into account nonlocal particle interaction. The model consists of a sys-

tem of second order parabolic evolution equations for heat and mass, coupled

by nonlinear drift terms and a state equation which involves a nonlocal inter-

action potential. The negative entropy turns out to be Lyapunov functional

of the system and yields the key estimate for proving global existence and

uniqueness results and for analyzing the asymptotic behaviour as time goes to

in�nity.

1. Introduction

We consider a binary alloy with components A and B occupying a spatial domain


. We denote by u and 1 � u the (scaled) local concentrations of A and B,

respectively and by T the (non constant) temperature.

For describing phase separation processes in such systems local models, so-called

coupled Cahn-Hilliard equations, have been proposed in [20, 4]. These models extend

the classical Cahn-Hilliard approach [6] to non�isothermal situations and are based

on local free energy densities of Landau�Ginzburg type

f
LG

(u; T ) = (1 + T ) �(u)�  (T ) + k u (1� u) +
�

2

���ru���2 (1.1)

with convex functions � and  . Alt and Pavlov [4] proved the existence of weak

solutions to initial boundary value problems associated to coupled Cahn-Hilliard

equations. Uniqueness could be shown by Shen and Zheng [21] for one space dimen-

sion.

In this paper a nonlocal model of non�isothermal phase separation is proposed. We

replace the local free energy density (1.1) by a nonlocal expression

f(u; T ) = (1 + T ) �(u)�  (T ) + u
Z


K(jx� yj)(1� u(y)) dy; (1.2)

where again the functions � and  are convex and the kernel K of the integral

term describes nonlocal interaction. (1.2) may be written in the form [7, 14]

f(u; T ) = (1 + T ) �(u)�  (T ) + ku(1� u) +
1

2

Z


K(jx� yj)ju(x)� u(y)j2 dy
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with

k = k(x) =
Z


K(jx� yj)dy;

in order to make more transparent the relation to (1.1).

Nonlocal free energies seem to be reasonable, if one takes a closer look to Cahn�

Hilliard's arguments motivating (1.1), and have been rigorously derived in a stochas-

tical setting in [14] for the isothermal case. That case leads to a second order

parabolic equation with a nonlocal drift term such that global existence and unique-

ness of solutions can be proved [15, 13].

In this paper we extend these results to the non�isothermal case. Starting from

the free energy density (1.2), we derive in a thermodynamically consistent way a

non�isothermal nonlocal phase separation model. This model consists of a system

of second order parabolic equations for u and T , coupled by a nonlocal drift

term. According to thermodynamics, the energy is conserved and the entropy is

nondecreasing. These properties yield the key estimates for proving global existence

and uniqueness results and for analyzing the asymptotic behaviour as time tends to

in�nity.

In the next section we derive the model, formulate our assumptions and state the

initial boundary value problem to be solved. In Section 3 we prove existence and

uniqueness of a global solution in time. Finally, Section 4 is devoted to the asymp-

totic behaviour and the characterization of asymptotic states as maximizers of the

entropy functional under the constraints of energy and mass conservation.

2. The model, assumptions, problem formulation

Let be 
 � IRn ; 1 � n � 3; a bounded open domain with piecewise smooth

(comp. [8]) boundary � = @
 and � the outer unit normal on �. Denote by

Lp = Lp(
), Hs;p = Hs;p(
); 0 � s � 3
2
; 1 � p � 1, the usual function spaces on


, H1 = H1;2(
); k � kp; k � k2 = k � k, the norm in Lp and by (� ; �) the pairing

between H1 and its dual (H1)� [1, 11, 16]. For a time interval (0; �), � > 0;

and a Banach space X we denote by Lp(0; � ;X) the usual spaces of Bochner

integrable functions with values in X. We set IR1
+ = (0;1) and Q = (0; �)� 
,

� = (0; �) � �. �Generic� positive constants are denoted by C. For a function

u 2 L1 we set

u =
1

j
j

Z


u dx ; j
j = meas 
:

We consider a binary alloy with components A and B occupying 
. Let u and

1 � u be the (scaled) local concentrations of A and B, respectively and let T

denote the local (non constant) temperature.

We want to derive evolution equations for u and T and start from the free energy

F (u; T ) =
Z


f(u; T ) dx =

Z



n
(1 + T ) �(u)�  (T ) + uP(1� u)

o
dx; (2.1)
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where the operator P 2 (L2 7! L2) is de�ned by

(P%)(x) =
Z


K(jx� yj)(1� u(y)) dy 8% 2 L2 (2.2)

and the functions �;  ;K 2 (IR1
+ ! IR1) will be speci�ed later on. According to the

rules of thermodynamics, we introduce entropy

S = �
Z


@TF dx =

Z



�
 0(T )� �(u)

�
dx; (2.3)

and energy

E = F �
Z


T@TF dx =

Z



n
�(u) + T 0(T )�  (T ) + uP(1� u)

o
dx: (2.4)

To �nd equilibrium values for u and T , we maximize the entropy under the

constraints

u = u0; E = E0: (2.5)

Applying Lagrange's method, we maximize the augmented entropy

S� = S + �1

Z


u dx+ �2E:

By means of the corresponding Euler-Lagrange equations

@uS� = ��0(u) + �1 + �2@uE = 0; @TS� =  00(T )(1 + �2T ) = 0;

we identify the Lagrange multipliers �i as 'entropy variables'

�1 =
v

T
; �2 = �

1

T
; (2.6)

where the chemical potential v is given by

v = (1 + T )�0(u) + w (2.7)

with

w = @uE = P(1� 2 u): (2.8)

Assuming that �0�1 2 (IR1 ! (0; 1)) exists, we get from (2.7) the state equation

u = �0�1
�
v � w

1 + T

�
: (2.9)

Equation (2.8) together with (2.5) and (2.9) can be seen as a system of nonlinear

integral equations for determing equilibrium values of

w = w(x); v = const:; T = const:

For describing nonequilibrium situations we suppose (2.5), (2.8) and (2.9) to remain

true but with non constant

v = v(t; x); T = T (t; x); (t; x) 2 Q;
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and that the time evolution of v and T is governed by conservation equations for

mass and energy:

@u

@t
+r � Ju = 0 in Q; � � Ju = 0 on �; (2.10)

@uE ut + @TE Tt +r � Je = 0 in Q; � � Je = 0 on �: (2.11)

We postulate (comp. the semiconductor energy model in [2]), the gradients of the

entropy variables v

T
and � 1

T
to be driving forces for mass and energy �uxes such

that

Ju = ��
h
r
v

T
� (�0 + w)r

1

T

i
; (2.12)

Je = ��rT + (�0 + w)Ju: (2.13)

Here � and � are nonnegative mobility and heat conduction parameters, respec-

tively. Note that

Je = [�T 2 + �(�0 + w)2]r
1

T
+ �(�0 + w)r

v

T
;

such that Ju and Je satisfy Onsager's reciprocity relations with respect to v

T
and

� 1
T
. Moreover, it is easy to check (comp. Lemma 4.1), that, according to the

second law of thermodynamics, (2.10) - (2.13) together with (2.3) and (2.4) imply

a Clausius�Duhem inequality of the form

dS

dt
=
Z



n
�
���r v

T
� (�0 + w)r

1

T

���2 + �jr logT j2
o
dx � 0:

By (2.7), (2.10) and (2.13) we can replace (2.11) by the heat conduction equation

T 00(T )
@T

@t
�r � (�rT ) + Ju � rw = 0 in Q; � � (�rT ) = 0 on �: (2.14)

Thus our nonlocal, non�isothermal phase separation model consists in the equations

(2.7), (2.8), (2.10), (2.12) and (2.14) completed by initial conditions

u(0; x) = u0(x); T (0; x) = T0(x); x 2 
; (2.15)

and speci�cations of the parameter functions �;  ;K; �; � given by the following

assumptions:

(A1) �(u) = u logu+ (1� u) log(1� u);

(A2)  (T ) =
Z

T

1
b(r)(

T

r
� 1)dr; log b 2 L1

loc
(IR1

+); b(s) � b0 = const: > 0;

(A3) the kernel K 2 (IR1
+ 7! IR1) is such that the potential operator

% 7! P%; (P%)(x) =
Z


K(jx� yj)%(y) dy;

satis�es �P 2 (L2 7! L2) and
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kP%kp � k0;pk%kq; krP%k � k1;pk%kq; 1 � p � 1;
1

p
+

1

q
= 1;

(A4) the mobility � has the form � =
T �0(x)

(1 + T )�00(u)
; log�0 2 L1 \H1;

(A5) the heat conduction � has the form � = �0(x)b(T ); log �0 2 L1;

(A6) the initial values u0; T0 satisfy

u0 2 H1; �0(u0) 2 L1; 0 < u0 < 1; �0 :=
Z

T0

0
b(r) dr 2 H1;  0(T0) 2 L1:

Note that

� 2 C[0; 1] \ C3(0; 1); �0(u) = log
u

1� u
; �00(u) =

1

u (1� u)
� 4; 0 < u < 1;

0 � �0�1(r) = 1=(1 + e�r) � 1; 8r 2 IR1

and

j�(u1)� �(u2)j2 � c2
�
(u1 � u2)(�

0(u1)� �0(u2)) 8u1; u2 2 (0; 1); (2.16)

with c2
�
= 4u�(1�u�)

(2u��1)2
' 0:44, where u� solves the equation (2u� � 1)�0(u�) = 2.

Remark 2.1. In order to keep our paper as transparent as possible we put tech-

nically simple assumptions. The most of our results could be proved for more gen-

eral situations. That concerns especially the function �, which must only satisfy:

� 2 C[0; 1]\C3(0; 1) is strongly convex, �0�1 2 C(IR1 ! (0; 1)), 1=�00 is concave.

An estimate like (2.16) is only used in our last theorem (Theorem 4.4) concerning

uniqueness of equilibrium states.

Remark 2.2. Examples for kernels K satisfying A3 are Newton potentials [18]

K(jxj) = �njxj2�n; n 6= 2; K(jxj) = ��2 log jxj; n = 2; �n = const. > 0;

and usual molli�ers like

K(jxj) =

8<
:
C exp [�h2=(h2 � jxj2)] if jxj < h;

0 if jxj � h;

where h > 0 characterizes the range of the interaction. Note also that arbitrary

K 2 C2([0; diam 
]) satisfy (A3) with

k0;p = kKk
Lp(
�
)

; k1;p = kK0k
Lp(
�
)

:

Remark 2.3. It is a well-known fact of potential theory that for Newton potentials

K the potential w given by (2.8) satis�es Poisson's equation

��w = 1� 2 u;
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such that in this special case our nonlocal phase separation model turns out to

be local and, moreover, to be closely related to energy models of semiconductors

(comp. [2] and the literature quoted therein), where the role of w is played by the

electrostatic potential.

Remark 2.4. Mobilities of the form � = �0=f
00(u) seem to be natural and have

been considered e.g. in [9, 10, 14, 15].

It turns out to be convenient to introduce a new variable

� = B(T ); B(s) =
Z

s

0
b(r) dr: (2.17)

So we can express partial derivatives of the 'entropy' variables v

T
; 1
T
in terms of the

'dual' variables (u; �):

Ju = ��
�
r
v

T
� (�0 + w)r

1

T

�
= �

�

T

�
rv +

�0 + w � v

T
rT

�
= �

�

T

�
rv � �0rT

�
= �

�

T

�
(T + 1)r�0 +rw

�

= �
�0

�00

�
r�0 +

rw
1 + T

�
= ��0

�
ru+

rw
�00(u)[1 +B�1(�)]

�
;

T 00(T )
@T

@t
=

@�

@t
; �rT = �0r�:

Now we are ready to state (the weak form of) the initial boundary value problem

to be solved.

De�nition 2.1. A function triple fu; �; wg is called solution of Problem P, if for all

t 2 [0; � ], almost all x 2 
 and all h 2 L2(0; � ;H1) following relations hold:

u 2 C(0; � ;L2) \ L2(0; � ;H1); ut 2 L2(0; � ; (H1)�); 0 � u(t; x) � 1;

� 2 C(0; � ;L2) \ L2(0; � ;H1); �t 2 L2(0; � ; (H1)�); �(t; x) � 0;

w 2 C(0; � ;H1;1);Z
�

0

n
(ut; h)�

Z


Ju � rh dx

o
dt = 0; u(0; t) = u0(x); (2.18)Z

�

0

n
(�t; h)+

Z



h
�0r� �rh+Ju �r(�0(u)+w) h

i
dx
o
dt = 0; �(0; x) = �0(x); (2.19)

w(t) = P(1� 2u(t)); (2.20)

Ju = ��0
h
ru+ �(u)�(�)rw

i
; �(u) =

1

�00(u)
if u 2 [0; 1]; �(u) = 0 else, (2.21)

�(�) =
1

1 +B�1(�)
if � � 0; �(�) = 1 else. (2.22)

If fu; �; wg is a solution of Problem P, the associated entropy variables can be cal-

culated by

T = B�1(�); v = (1 + T )�0(u) + w: (2.23)

Our main results to be proved in the next sections can be summarized as follows:
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Theorem 2.2. Let the assumptions (A1)� (A6) be satis�ed. Then

(i) Problem P has a unique solution fu; �; wg for arbitrary � > 0;

(ii) there exists an equilibrium state fu�; v�; w�; T �g such that

w� = P(1� 2u�); u� =
1

1 + exp w��v�

1+T �

; v�; T � = const: in 
;

u� = u0; E(u�; T �) = E(u0; T0); lim
t!1

S(u(t); T (t)) = S(u�; T �); T = B�1(�);

(iii) fu�; T �g maximizes the entropy S under the constraints

u� = u0; E(u�; T �) = E(u0; T0);

(iv) the equilibrium state is unique, provided the additional assumption

(A7) 
 :=
k0;2 (b0 + c�)

2b0
< 1 or E(u0; T0) > B(
 � 1) j
j+ k0;1

is ful�lled.

3. Existence and uniqueness

In this section we prove existence and uniqueness of a solution to Problem P by

means of an iteration procedure. We start with two lemmas which allow us to solve

the equations (2.18) and (2.19) successively.

Lemma 3.1. Let U 2 L1(Q) and T be given such that log (1 + T ) 2 L2(0; � ;H1)

and T � 0 a. e. in Q . Then the problem

Z
�

0

n
(ut; h) +

Z


�0
h
ru+ �(u)�(#)rw

i
� rh dx

o
dt = 0; 8h 2 L2(0; � ;H1); (3.1)

u(0) = u0; w = P(1� 2 U); # = B(T );

has a unique solution u 2 C(0; � ;L2) \ L2(0; � ;H1) with ut 2 L2(0; � ; (H1)�) and

0 � u � 1 a. e. in Q. Moreover, there exists a constant C = C(�), independent of

U and T , such that:

(i) krukL2(Q) � C;

(ii) kutk
L2(0;� ;(H1)�)

� C;

(iii) k�0(u)k
L1(Q)

+ k�00(u)k
L1(Q)

+ kr�0(u)k
L2(Q)

� C;

(iv) jr�0(u)j 2 L2(0; � ;Lp); for p <
2n

n� 1
:

Proof. Since by (A3)

k�(#)rwk
L1(Q)

=



 rw
1 + T





L1(Q)

� k1;1j
j; (3.2)
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existence and uniqueness of a solution u with (i)�(ii) follow from standard results on

parabolic equations [11, 19]. Further, choosing h = min (u; 0), resp. h = max (u; 1)

in (3.1) and using that 0 � u0 � 1 and �(h) = 0 if h 62 [0; 1], we see that h = 0,

that means u � 0, resp. u � 1.

(iii) We test (3.1) with the functions

h =
%r+
�00(u)

; %+ = max [0; �0(u)]; r � 0;

g =
%r�
�00(u)

; %� = �min [0; �0(u)]; r � 0:

Then, using once more (3.2) and that

�000(u) � 0 if %+ > 0 and �000(u) � 0 if %� > 0;

we can (comp. the proof of Theorem 3.6 in [13]) apply Alikakos' [3] version of

Moser's iteration technique in order to prove k�0(u)k
L1(Q)

� C(�). This implies

k�00(u)k
L1(Q)

� C(�) (3.3)

and by (i)

kr�0(u)k
L2(Q)

= k�00(u)ruk
L2(Q)

� C(�):

(iv) By (A3); (A4) and (3.2) we have r � [�0�(u)�(#)rw] 2 L2(Q). This means

ut 2 L2(Q) by well-known results on parabolic equations (comp. [17], chapter III,

Theorem 6.1). Thus from a regularity result on elliptic equations ([8], Theorem

2.1) we can deduce that u 2 L2(0; � ;Hs) for s < 3
2
and consequently by Sobolew's

embedding theorem jruj 2 L2(0; � ;Lp); p < 2n
n�1

.

Lemma 3.2. Let U be given as in Lemma 3.1. Let u be the solution of (3.1). Then

the problemZ
�

0

n
(�t; h) +

Z



h
�0r� � rh� (�(�)g + f) h

i
dx
o
dt = 0; 8h 2 L2(0; � ;H1);

�(0) = �0; w = P(1� 2U); g = �0�(u)rw � r(�0(u) + w); (3.4)

f = �0ru � r(�0(u) + w)

has a unique solution � 2 C(0; � ;L2) \ L2(0; � ;H1) with �t 2 L2(0; � ; (H1)�) and

� � 0 a. e. in Q. Moreover, there exists a constant C = C(�), independent of U ,

such that

k�k
C(0;� ;L2)

+ kr�k
L2(Q)

� C: (3.5)

Proof. Since n

n�1
> 2n

n+2
for n � 3, Lemma 3.1(iv) guarantees that

g 2 L2(Q) and f 2 L2(0; � ;L
2n
n+2 ) � L2(0; � ; (H1)�):

8



Thus the existence and uniqueness assertion follows from standard results on para-

bolic equations [11, 19]. Moreover, testing (3.4) with h = min [0; �] and noting that

�(�) = 1 if � � 0, we get

1

2

d

dt
khk2 +

Z


�0jrhj2 dx =

Z


(�(�)g + f) h dx

=

Z



�0

�00(u)
jr�0 +rwj2 h dx � 0:

Since �0 2 L2 and �0 � 0 a. e. in Q by (A6), this means � � 0 a. e. in Q.

(ii) Using Lemma 3.1(iii), we obtain from (3.1) and (3.4)

d

dt

h
(�; �) +

1

2
k�k2

i
= (ut; �

0�) + (�t; �+ �)

=
Z



n
� �0[ru+ �(u)�(#)rw] � (�r�0 + �0r�)

� �0r� � r(�+ �) + (�(�)g + f) (�+ �)
o
dx

=
Z



n
� �0[�

0ru � r� + �(u)�(#)rw � (�r�0 + �0r�)]

� �0r� � r(�+ �) + �(�)g (�+ �) + f�+ �0ru � rw �
o
dx

� C(1 + k�k2 + kr�0k2) �
1

2
k
p
�0r�k2:

Hence Lemma 3.1(iii) and Gronwall's lemma imply (3.5).

Now we are ready to prove our existence and uniqueness result.

Theorem 3.3. Under the assumptions (A1) � (A6) there exists a unique solution

fu; �; wg to Problem P.

Proof. We de�ne an operator A 2
�
(C(0; � ;L2))2 7! (C(0; � ;L2))2

�
by

fU; #g 7! fu; �g =: AfU; #g;

where u(0) = u0; �(0) = �0 and 8h 2 L2(0; � ;H1),Z
�

0

n
(ut; h) +

Z


�0[ru+ �(u)�(#)rw] � rh dx

o
dt = 0; w = P(1� 2U); (3.6)

Z
�

0

n
(�t; h)+

Z



h
�0r��rh��0[ru+�(u)�(�)rw]�r(�0(u)+w) h

i
dx
o
dt = 0: (3.7)

The operator A is well de�ned by Lemma 3.1 and Lemma 3.2. Now we want to

prove that A satis�es the contraction condition

kAfU1; #1g � AfU2; #2gk
�
�

1

2
kfU1; #1g � fU2; #2gk

�
; (3.8)

where

kfU; #gk
�
= sup

t2[0;� ]

fe�� t(ku(t)k2 + k#(t)k2)g;

9



with a su�ciently large real number � > 0. For this purpose let fUi; #ig; i = 1; 2;

be given. Set

fui; �ig = AfUi; #ig; u = u1 � u2; U = U1 � U2; um =
u1 + u2

2
;

�j = �(uj); j = 1; 2; m; � = �1 � �2; K =
2

�00
m

�
1

�001
�

1

�002
=
u2

2
;

Ji = ��0[rui + �i�irwi]; �i = �(ui); w = w1 � w2;

�i = �(#i); � = �1 � �2; # = #1 � #2; � = �1 � �2:

By (3.6) we get

d

dt

X
i=1;2

Z


(�i � �m) dx =

X
i=1;2

[(uit; �
0

i
)� (umt

; �0
m
)]

=
X
i=1;2

Z


Ji � [r�0i � �00

m
rum] dx

=
X
i=1;2

Z



�00
m
Ji

2
�
h2r�0

i

�00
m

�
r�01
�001

�
r�02
�002

i
dx

=
Z



�00
m

2

n
K

X
i=1;2

Ji � r�0i + [�2J1 � �1J2] � r�0
o
dx

= �
Z



�00
m
�0

2

n
K

X
i=1;2

�i(r�0i + �irwi) � r�0i

+�1�2[jr�0j2 + (�1rw1 � �2rw2)r�0]
o
dx

� �
Z



�00
m
�0

2

nu2
4

X
i=1;2

�i(jr�0ij
2 � (k1;1j
j)2)

+�1�2[
jr�0j2

2
� jrwj2 � (k1;1j
j)2�2]

o
dx:

Integrating this inequality, applying the convexity of �, using Lemma 3.1(iii) and

j�(#1)� �(#2)j �
j#j

b0
, we obtain

ku(t)k2+
Z

t

0

Z



n
u2

X
i=1;2

jr�0
i
j2+jr�0j2

o
dx ds � C

Z
t

0

Z



n
u2+U2+#2]

o
dx ds: (3.9)

Further we get from (3.6), (3.7) and Lemma 3.1(iii)

d

dt

h
(�; �) +

1

2
k�k2

i
= (u1t; �

0

1�)� (u2t; �
0

2�) + (�t; �+ �)

=

Z



n
(J1�

0

1 � J2�
0

2) � r� + (J1 � r�01 � J2 � r�02) �

��0r� � r(�+ �) + [�(�1)g1 � �(�2)g2 + f1 � f2] (�+ �)
o
dx

=
Z



n
(J1�

0

1 � J2�
0

2) � r� � �0[�1�1rw1 � r�01 � �2�2rw2 � r�02]

��0r� � r(�+ �) + [�(�1)g1 � �(�2)g2] (�+ �) + (f1 � f2) �

10



+�0[ru1 � rw1 �ru2 � rw2] �
o
dx

� C
h
kuk2 + kUk2 + k#k2 + k�k2 +

Z



n
u2(jr�01j

2 + jr�02j
2) +rj�0j2

o
dx
i
:

This together with (3.9) yields

ku(t)k2 + k�(t)k2 � c
Z

t

0
ec(t�s)[kU(s)k2 + k#(s)k2] ds

� c sup
s2[0;t]

[e��s(kU(s)k2 + k#(s)k2)]
Z

t

0
e[ct+(��c)s] ds

� kfU; #gk
�

cect

�� c
[e(��c)t � 1] �

ce�t

�� c
kfU; #gk

�
:

Hence for � = 3c we obtain (3.8). Thus by Banach's �xed point theorem A has a

unique �xed point fu; �g. Now it is easy to check that fu; �; wg with w = P(1� 2u)

is the unique solution to Problem P.

4. Global behaviour

In this section we study the behaviour of the solution to Problem P as time t tends

to in�nity. The key for proving global a priori estimates are conservation of mass

and energy E (comp. (2.4) resp. (2.5)) and increasing of entropy S (2.3) along the

solution.

Lemma 4.1. Let fu; w; �g be the solution of Problem P and set

E(t) = E(u(t); T (t)); S(t) = S(u(t); T (t)); T = B�1(�):

Then for t 2 [0; � ] following relations hold:

(i) u(t) = u0;

(ii) E(t) = E(0);

(iii)
dS

dt
= D � 0; D :=

Z



n jJuj2
�

+ �jr logT j2
o
dx;

(iv)
Z

�

0
D dr � c0 := E(0)� S(0) + (B(1) + 2)j
j+ k0;1:

Proof. Choosing h = 1 in (2.18) we get (i).

(ii) Choosing h = �0 + w in (2.18) and h = 1 in (2.19), we obtain

dE

dt
= (�t; 1) + (ut; �

0 + w) = 0:

(iii) By (2.3), (A2), (2.22), (2.18),(2.19) and (A4) we �nd

dS

dt
= �(ut; �0(u)) + (�t;

1

T
) =

Z



n
� Ju � r�0 � �rT � r

1

T
� Ju �

r(�0 + w)

T

o
dx

=
Z



n
�
Ju

T
� [(1 + T )r�0 +rw] + �jr logT j2

o
dx

=
Z



n
�
Ju(1 + T )�00(u)

T
� [ru+ �(u)�(�)rw] + �jr logT j2

o
dx = D:

11



(iv) Using (ii); (iii) and the elementary estimate

�(u) = u logu+ (1� u) log (1� u) � u(1�
1

u
) + (1� u)(1�

1

1� u
) � �1; (4.1)

we get

S(0) +

Z
t

0
Dds = S(0) +

Z
t

0
dS = S(t) =

Z



n
 0(T )� �(u)

o
dx

=
Z



n Z T

1

b(r)

r
dr � �(u)

o
dx �

Z



n Z T�1

1

b(r)

r
dr � �(u)

o
dx

�
Z



n Z T�1

1
b(r)dr � �(u)

o
dx �

Z



n Z T

0
b(r)dr � �(u)

o
dx

=
Z



n
B(1) + T 0(T )�  (T )� �(u)

o
dx

= E(t) +
Z



n
B(1)� 2�(u)� uP(1� u)

o
dx

= E(0) +
Z



n
B(1)� 2�(u)� uP(1� u)

o
dx � c0 + S(0):

This lemma furnishes following global estimates:

Lemma 4.2. Let fu; �; wg be the solution of Problem P and

T = B�1(�); v = (1 + T )�0(u) + w:

Then

(i) sup
t2[0;1)

n
k�(t)k1; b0kT (t)k1

o
� c1 := E(0) + (B(1) + 1)j
j+ k0;1;

(ii) sup
t2[0;1)

n
k 0(T (t))k1; b0k logT (t)k1

o
� c0 + c1;

(iii)
Z
1

0

Z



n 1

�00(u)

���r� v

1 + T

����2 + jr logT j2
o
dx dt � C:

Proof. (i) By T (t) � 0, Lemma 4.1(ii), ku(t)k1 � 1 and (4.1) we �nd

b0kT (t)k1 � k�(t)k1 =
Z



Z
T (t)

0
b(r) dr dx =

Z



n
B(1) +

Z
T (t)

1
b(r) dr

o
dx

=
Z



n
B(1) + [T 0 �  ](t)

o
dx

= E(t) +
Z



n
B(1)� [�+ P(1� u)](t)

o
dx

= E(0) +B(1)j
j �
Z


[�+ P(1� u)](t) dx � c1:

(ii) We denote by  0(T )� = 1
2
(j 0(T )j �  0(T )) � 0 the positive resp. negative part

of  0(T ), such that

 0(T ) =  0(T )+ �  0(T )�: (4.2)
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Then the foregoing estimate implies

k 0(T )+k1 =

Z
fT (x)�1g

n Z T (x)

1

b(r)

r
dr
o
dx

�
Z
fT (x)�1g

n Z T (x)

1
b(r) dr

o
dx �

Z



n Z T (x)

1
b(r)dr +B(1)

o
dx � c1:

On the other hand, using (4.1) and (4.2), we infer from Lemma 4.1(iii; iv)

k 0(T )�k1 =

Z


( 0(T )+ �  0(T )) dx �

Z


( 0(T )+ �  0(T ) + �(u) + 1) dx

=
Z


( 0(T )+ + 1) dx� S(t) =

Z


( 0(T )+ + 1) dx�

Z
t

0
dS � S(0)

= k 0(T )+k1 + j
j �
Z

t

0
D dr � S(0) � c1 + j
j � S(0) = c0:

Thus (4.2) yields

k 0(T )k1 = k 0(T )+ �  0(T )�k1 � k 0(T )+k1 + k 0(T )�k1 � c1 + c0

and consequently

b0k logT (t)k1 = b0

Z


j logT jdx = b0

Z



��� Z T

1

dr

r

���dx � Z



��� Z T

1

b(r)

r
dr
���dx

= k 0(T (t))k1:

(iii) Letting � !1 we see from Lemma 4.1(iii); (iv) that

Z
1

0

Z



n jJuj2
�

+ �jr logT j2
o
dx dt � c0: (4.3)

By (2.12) we have

Ju = ��
h
r
v

T
� (�0 + w)r

1

T

i
= �

�0

�00

h
r
� v

1 + T

�
+
wTr logT

(1 + T )2

i
:

Since kw(t)k1 � k0;1j
j, �00 � 4 and � � �0 b0, this implies

1

�00

���r� v

1 + T

����2 + jr logT j2 � C
� jJuj2

�
+ �jr logT j2

�
:

Hence (4.3) yields (ii).

Now we can state our main result concerning the asymptotic behaviour of the solu-

tion.

Theorem 4.3. Let fu; �; wg be the solution to Problem P guaranteed by Theorem 3.3

and

T = B�1(�); v = (1 + T )�0(u) + w:

13



Then a sequence tk !1; k = 1; 2; : : : ; functions u�; w� and constants ��; v�; T �,

�� = �(��) exist, such that uk = u(tk); �k = �k(tk); wk = w(tk); vk = v(tk); Tk =

T (tk), �k = �(uk); �k = �(�k); �
0

k
= �0(uk) satisfy:

(i) uk ! u� and logTk ! logT � strongly in L2; weakly in H1

and a. e. in 
;

(ii) logTk ! logT � strongly in H1;

(iii) �k ! �� and  0(Tk)!  0(T �) weak � in L1 and a. e. in 
;

(iv) wk ! w� strongly in H1 and a. e. in 
;

(v) vk ! v� a. e. in 
;

(vi) u� = u0; E(u�; T �) = E(u0; T0); S(u�; T �) = lim
t!1

S(u(t); T (t));

(vii) w� = P(1� 2u�); u� =
1

1 + e��(w��v�)
;

(viii) (u�; T �) is (possibly local) solution of the constrained maximum problem

S(u; T )! max; u = u0; E(u; T ) = E(u0; T0):

Proof. (i) By Lemma 4.2(iii) there exists a sequence tj 2 [j; j + 1]; j = 1; 2 : : :,

such that Z



n
�j
���r(�jvj)

���2 + jr logTjj2
o
dx! 0: (4.4)

From this, krwjk1 � k1;1j
j, k�jk
L1

� 1
4
andh

ru+ �(u)�(�)rw
i
j

=
h
�(u)[r(�(�) v) + wT�2(�)r logT ]

i
j

we obtain krujk2 � C. Hence kujk
1

� 1, Lemma 4.2(ii), (4.4) and Poincare's

inequality imply

ku(tj)k
H1

+ k logT (tj)k
H1
� C:

Thus, because of the compactness of the embedding of H1 into L2, there exist

subsequences (uk) � (uj) and (Tk) � (Tj) satisfying (i).

(ii) follows from (i) and (4.4).

(iii) follows from (i), Lemma 4.2(i); (ii) and the weak� compactness of bounded

sets in L1.

(iv) is a consequence of (i) and assumption (A3).

(v) Let gk = arctan
h
exp ��kvk

2

i
. By 0 � gk(x) � 1, we can suppose that gk�*g� in

L2. Using that k�kwkk1 � k0;1j
j and (4.4), we �nd

lim
k!1

Z


jrgkj2 dx =

1

4
lim
k!1

Z



e��kvk jr(�kvk)j2

(1 + e��kvk)2
dx

�
1

4
lim
k!1

Z



e��kwk�kjr(�kvk)j2

min[1; e�2�kwk ]
dx � C lim

k!1

Z


�kjr(�k vk)j2 dx! 0 ;

and by Fatou's lemmaZ


jrg�j2 dx = 0; i. e. , g� = const: in 
:
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Now (i); (ii) and (iv) imply

g� = lim
k!1

gk = lim
k!1

arctan
hs1� uk

uk
e
�kwk

2

i

= arctan
hs1� u�

u�
e
��w�

2

i
a. e. in 
:

That is

u� =
1

1 + (tan g�)2e�
�w�

: (4.5)

Since kw�k1 � k0;1j
j =: c, we have

1

1 + (tan g�)2e�
�c
� u�(x) �

1

1 + (tan g�)2e��
�c
: (4.6)

From this and u� = u0 < 1 we infer 0 < g� <1. Thus by (4.6) an � > 0 exists such

that � < u�(x) < 1� � 8x 2 
. So we get

vk = (1 + Tk) log
uk

1� uk
+ wk ! (1 + T �) log

u�

1� u�
+w� =: v� a. e. in 
: (4.7)

By (4.5) this means

v� = �
2 log (tan g�)

��
= const:

(vi) By (i) and Lemma 4.1(i) we have u� = u0. From (2.4), (A2), Lemma 4.1 and

(ii) resp. (2.3) and Lemma 4.1(iii); (iv) we have

E(u0; T0) = lim
k!1

E(uk; Tk) = lim
k!1

Z


[�(uk) + �k � B(1) + ukP(1� uk)] dx

resp. lim
t!1

S(u(t); T (t)) = lim
k!1

Z


[ 0(uk)� �(uk)] dx:

Thus the remaining relations in (vi) are consequences of (i), (iii) and Lebesgue's

dominated convergence theorem.

(vii) By (i); (iv) we can take the limit k ! 1 in (2.20) to prove the �rst relation

in (iv). The second one follows from (4.7).

(viii) Following the arguments of the introduction leading to (2.7), (2.8), we see

that the equations (vii) coincide with the Euler-Lagrange equations associated to

the constrained maximum problem for the entropy functional S, i. e., (u�; T �) is

(possibly local) maximizer of S.

Theorem 4.4. Suppose that

(A7) 
 :=
k0;2 (b0 + c�)

2b0
< 1 or E(u0; T0) > B(
 � 1) j
j+ k0;1:

Then the equilibrium state fu�; v�; w�; T �g given by Theorem 4.3 is unique. More-

over, the assertions of Theorem 4.3 hold with tk !1 replaced by t!1.
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Proof. Let fui; vi; wi; Tig, i = 1; 2; be equilibrium states such that

wi = P(1� 2ui); vi = (1 + Ti)�
0(ui) + wi = const:; 0 � Ti = const:;

ui = u0; E(ui; Ti) = E(u0; T0); S(ui; Ti) = lim
t!1

S(ut); T (t)) =: S1:

From the energy equality we can estimate Ti from below as follows:

j
jB(Ti) = j
j
Z

Ti

0
b(r) dr = j
jB(1) +

Z



Z
Ti

1
b(r) dr dx

= j
jB(1) +
Z


[Ti 

0(Ti)�  (Ti)] dx

= E(u0; T0)�
Z


[�(ui)� uiP(1� ui)] dx � E(u0; T0)� k0;1 ; i. e.,

Ti � B�1
h
max [0;

E(u0; T0)� k0;1

j
j
]
i
:

Further, by (2.16), we have

j�(u1)� �(u2)j2 � (c�%)
2;

%2(u1; u2) := (u1 � u2)(�
0(u1)� �0(u2)) � 4ku1 � u2k2;

and thus by S(ui; Ti) = S1

b0
��� log T1

T2

��� = b0
��� Z T1

T2

dr

r

��� � ��� Z T1

T2

b(r)dr

r

��� = ��� 0(T1)�  0(T2)
���

=
1

j
j

��� Z


[�(u1)� �(u2)] dx

��� � c�k%k
j
j 12

:

Putting these inequalities together and using mass equality and that vi; Ti = const:,

we obtain with u = u1 � u2

k%k2 =
�
u;
v1 � w1

1 + T1
�
v2 � w2

1 + T2

�
=
�
u;

w2

1 + T2
�

w1

1 + T1

�

=
1

2

�
u;
h 1

1 + T1
+

1

1 + T2

i
(w2 � w1) +

h 1

1 + T1
�

1

1 + T2

i
(w1 + w2)

�

�
k0;2kuk

1 + min [T1; T2]

h
2kuk+

jT1 � T2jj
j
1
2

1 + max [T1; T2]

i

�
k0;2kuk

1 + min [T1; T2]

h
2kuk+

��� log T1
T2

���j
j 12 i

�



1 +B�1
h
min [0;

E(u0;T0)�k0;1
j
j

]
i k%k2:

Because of assumption (A7) this estimate implies %(u1; u2) = 0 and consequently

fu1; v1; w1; T1g = fu2; v2; w2; T2g = fu�; v�; w�; T �g:

Finally, this and the global a priori estimates and compactness arguments applied

in the proof of Theorem 4.3 ensure that

lim
t!1

fu(t); v(t); w(t); T (t)g = fu�; v�; w�; T �g

in the sense of Theorem 4.3, (i)� (v).
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