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Typical Dimension of the Graph 
of Certain Functions 

J org Schmeling Reinhard Winkler 

Abstract 

Most functions from the unit interval to itself have a graph with. Haus-
dorff and lower entropy dimension 1 and upper entropy dimension 2. The 
same holds for several other Baire spaces of functions. In this paper it 
will be proved that this is the case also in the spaces of all mappings that 
are Lebesque measurable, Borel measurable, integrable in the Riemann 
sense, continuous, uniform distribution preserving (and continuous). 

1 Introduction 
A result of P. M. Gruber (vgl. [G]) says that in the Baire space of all continuous 
functions f : [O, 1] 1-+ R with the metric 

d(f, g) =If - gl = sup lf(x) - g(x)I 
:z:E[0,1) 

for the graph 
r(f) = {(x, f(x))lx E [O, 1]} ~ R 2 

the typical situation is 

This means the following: We say that a property is typical for an f E F if those 
f that do not have the property form a meager subset of the topological space 
F. This statement is interesting if F is a Baire space (i.e. a space where every 
nonempty open subset is of second category), for instance a complete metric 
space. A subset G ~ X is called residual if its complement in Fis meager. 

The symbols dimH (A), dimE (A) and dimE (A) are denoting Hausdorff, lower 
and upper entropy dimension of a subset A of a metric space (X, d). (We will 
have X = R 2 and take the maximum metric, since balls then are squares in 
the plane and more convenient to handle.) First we recall the definition of the 
Hausdorff dimension of A. We are using the following notations: {Ui Ii E I} is 
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called an 7]-covering of A if A is contained in the union of all U;. and each Ui 
has diameter 

diam(Ui) = sup{d(x, Y)lx, y E Ui} ~ 1J· 

For open balls (squares) we will use the notation 

B(x, TJ) = {y E Xld(x, y) < TJ}. 

Call a real function cp admissible if it is non-decreasing, continuous and satisfies 
cp(O) = O, cp(TJ) > 0 for 1J > 0. For an admissible cp consider 

00 

µ(<p,TJ)(A) =inf L cp(diam(Ui)), 
i=l 

where the infimum is taken over all countable 1}-coverings of A. 

defines an outer measure on X. For cp(t) =ta., a> O, we also write µa instead 
of µ<p. The unique number 8 E [O, oo] such that µa (A) = oo for all a < 8 and 
µa.(A) = 0 for all a > 8 is the Hausdorff dimension dimH (A) of A. 

Upper and lower entropy dimension are quite similar concepts. If there exists 
a finite 1}-covering for the set A we denote by N(TJ, A) the minimal cardinality of 
s{ich a covering. In the case A= r(f) we will use the shorter notation N(TJ, f) 
instead of N(TJ, r(f)). We say that A has upper entropy dimension dimE(A) = 6 
if 8 is the supremum of all a with the property that 1/a N(TJ, A) does not tend 
to 0 for 1J ~ O, i.e. 

lim sup 1/a. N(TJ, A) > 0. 
TJ-++O 

Similarly the lower entropy dimension dimE(A) is defined to be the supremum 
8 of all a such that 

For the statements 

1. li~-+o sup cp(TJ)N(TJ, A) = lim.,,-+o'P(TJ)N(TJ, A) = 0 

2. li~-+o inf cp(TJ)N(TJ, A) = 0 

3. µ<p(A) = li~-+o µ<p, 11 (A) = 0 

we have the implications 1.==>2. and 2.==>3. which gives the relation between 
upper entropy dimension, lower entropy dimension and. Hausdorff dimension. 
The first implication is trivial. The second one follows from the fact that in the 
definition of µ<p, 11 (A) the infimum also respects all finite coverings by 1]-squares, 
i.e. 
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The inequality 
dimH (A)~ dimE(A) ~ dimE(A) 

is an immediate consequence. 
To state our results in a stronger version we use the following notations. 

Consider (instead of the power functions rp(TJ) = T/a, a > 0) any admissible rp 
and define for JC ~ :F the sets 

{! E JC I µcp(r(f)) = o}, 
{! E JC I lim inf rp(TJ)N(TJ, !) = O} ~JC~ and r 

17-++0 

{f E JC I lim sup rp(TJ)N(TJ, f) > O}. 
17-++0 

For rp(TJ) = T/a we have dimH (r(f)) ~ a if f E JC[!, dimE(r(f)) ~ a if 
f E Kcp and dimE (r(f)) ~ a if f E JC</'. 

In this paper we are going to prove that P. M. Gruber's result holds in 
several Baire spaces of functions. We shall investigate the following spaces of 
transformations of the unit interval I = [O, 1] with the sup-metric. 
:F = {! I f: I-+ I}, the set of all maps from I to itself. 
£ ~ F, the set of all Lebesque measurable selfmaps of I. 
B ~ £, the set of all Borel measurable selfmaps of I. 
n ~ £, the set of all f E :F that are integrable in the Riemann sense. 
U ~ n, the set of all maps that preserve uniform distribution of sequences on I 
(u.d.p.-maps). 
C ~ n, the set of all continuous transformations of I. 
UC= Un C, the set of all continuous u.d.p.-maps. 

Note that a map f : I -+ I is called u.d.p. (! E U) if for every uniformly 
distributed sequence (:nn)nEN the induce.cl sequence (f(:nn))nEN is uniformly 
distributed too. From [PSS] it follows that f is u.d.p. if and only if it is Riemann 
integrable and preserves the Lebesque measure .A, i.e. 

for all intervals and hence for all measurable sets A. Therefore U (as all other 
considered classes) is closed under uniform limits, hence, beeing a complete 
metric space with respect to the uniform metric, indeed a Baire space. 

In [PSS] many results about piecewise linear or continuously differentiable 
u.d.p. maps are presented. Continuing investigations of [TW] our result on 
U and UC show in a more precise way that, in the sense of Baire categories, 
piecewise smooth functions f (fulfilling dimE(r(f)) = 1) do not represent the 
typical situation in these spaces of functions. 

2 The main results 
Lemma 1 Let f E :F and 0 < T/1 < T/2 be arbitrary. Then there ezists a 6 > 0 
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such that 

1. N(TJ2, g) ~ N(TJi, f) and 

2. N(TJi, g) ~ N(TJ2, f) 

for all g E :F with lg - f I < 8. 

Proof: 

1. The first statement is trivial with 81 = ?, since for every TJ1-covering 
Ui, i = 1, ... , N, of r(f) we find Pi such that Ui ~ B(pi, !lf-) to get an 
TJ2-covering B(pi, ~ ), i = 1, ... , N, for all g close to f. 

2. For the second statement we assume, by contradiction, that for every 82 > 
0 there is a g E :F such that lg-fl < 62 and N(TJi, g) < N(TJ2, f) = N. We 
are going to construct an TJ2-covering Ui, ... , UN-1 of r(f), contradicting 
N(TJ2, f) = N. For every n E N we get a Yn with lgn - JI < ~ and an 
111-covering of r(gn) by balls 

B (n) _ B( (n) 171) (n) _ ( (n) (n)) . _ N i - Pi '2 ' Pi - xi , Y;. , i - 1, · · ·, - 1. 

W.l.o.g. we may assume Bln) n r(gn) -=J:. ¢>. The sequence (Pln), ... , p}.;~ 1 ) 
of points in the compact set [O, 1]2CN- l) has a subsequence converging to 
an (p1, ... ,PN-1), Pi= (x;., y;.), for n ~ oo. For some large n we have for 
every z E [O, 1], p = (x,f(x )) and some i E {1, ... , N - 1} 

d(p,p;.) ~ d(p, (x, gn(x))) + d((x, Yn(x)),p~n)) + d(p~n),p;.) 
~If - Ynl + !lf- + d(p~n),p;.) < ~' 

proving· that Ui = B (Pi, ~), i = 1, ... , N - 1, is the desired covering of 
r(f). Hence there is a 82 as stated in the assertion. 

Now take 8 = min(81, 82) to complete the proof. q.e.d. 

Theorem 1 Let JC be any subclass of :F. 

1. Let cp and 'r/J be admissible functions satisfying 

-rf;(17) = o(cp(TJ)) for TJ ~ 0. 

Furthermore assume that for every f E JC, e > 0 and c > 0 there is a 
g E JC and a positive 17 < c such that lg - fl < e and N(17, g)cp(17) < 1. 
Then /(,1/J and IC:J are residual. Therefore, if this assumption is satisfied 
for every cp of the form cp(TJ) = 17a, a> 1, 

dimH (r(f)) = dimE(r(f)) = 1 

for a typical f E JC. 
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2. Let 'P be an admissible function. Furthermore assume the ezistence of an 
a > 0 such that for every f E JC, c > 0 and c > 0 there is a g E JC and 
a positive TJ < c such that lg-fl< c and N(TJ,Y)'P(TJ) >a. Then JC'P is 
residual. Therefore, if this assumption is satisfied for every 'P of the form 
1.p(c) =ca, a < 2, 

dimE(r(f)) = 2 

for a typical f E IC. 

Proof: 

1. Since 

with 

IC,µ = n n IC,p,n,1c ~ K:{ 

IC,p,n,lc = 

nEN 1ceN 

1 u {f E /(, I N(TJ, !)1/;(TJ) < k} 
11<!; 

we have to prove that every IC,p,n,lc, n, k EN, is a) dense and b) open in 
JC, yielding that IC,µ and IC:{ are residual. 

ad a): For arbitrary f E JC and c > 0 we have to find a g E IC,p,n,k with 
lg - fl < c. By 1f; = 0(1.p) there is an no EN such that 1/J(TJ) < f'P(TJ) for 
all TJ < ...L. Put c = min(.!., ...L) and take g and TJ as in the assumption; no n no 
By 

1 1 
N(TJ,g)1/J(TJ) < kN(TJ,g)1.p(TJ) < k 

this g does the job. 

ad b): Pick f E /C,p,n,lc 1 i.e. 

1 
N(TJ, f)1/J(TJ) < k 

for some TJ < ~· By contiunuity of 1f; there is an T}1 satisfying TJ < T}
1 < ~ 

and 
N(TJ, f)1/J(TJ') < ~· 

By Lemma 1.1 there is a 8 > 0 such that lg - fl < 8 implies N(TJ', g) :::; 
N(TJ, f), hence 

N(TJ', g)1/J(TJ') < ~, i.e. g .E IC1/J,n,1c, 

proving that IC't/J,n,lc is open in JC. 
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The second assertion of the first part of the Theorem now is an easy 
consequence: By the first assertion every K,cp.,,,, 'Pn ( TJ) = TJ1+-:-, is residual, 
hence the countable intersection 

is residual too. Since every f E K,(l) satisfies dimE(r(f)) ~ 1 everything 
follows from 1 ~ dimH (r(f)) ~ dimE(r(f)). 

2. Since 

with 

K,C/' = u n K,~,a 
a>OnEN 

K,~,a = LJ {f EK, I N(TJ, f)cp(TJ) >a} 
11<-:-

it suffices to prove that every K,~,a' n EN, is a) dense and b) open in K,, 
yielding that K,C/' is residual. 

ad a): For arbitrary f E K, and e > 0 we have to find a g E K,~ a with 
lg - fl < e. Put c = ~ and take g and TJ as in the assumption. By

1 

N(TJ, g)cp(TJ) >a 

this g does the job. 

ad b ): Pick f E K,~,a' i.e. 

N(TJ, f)cp(TJ) >a 
for some TJ < ~. By the continuity of cp there is an TJ1 < TJ such that 
N(TJ, f)cp(rl) > a. Hence Lemma 1.2 guarantees the existence of some 
6 > 0 with 

N(TJ', g)cp(TJ') ~ N(TJ, f)cp(TJ') >a, i.e. g E K,':_ ai 
I 

for all g E K, with lg - fl < 6. This proves that K,~ a is open. 
I 

The second assertion of the second part of the Theorem follows as in the 
first part: By the first assertion every x:,cp .... , 'Pn ( TJ) = 112--:-, is residual, 
hence the countable intersection 

is residual too. Since every f E K,( 2) satisfies dimE (r(f)) = 2 the proof is 
complete. q.e.d. 
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Theorem 2 For IC= F, £, B, 'R, U, C or UC the following holds: 

1. For every admissible r.p satisfying r.p( TJ) = o( T/) (for T/ -+ 0) ICrp and IC-: are 
residual. Hence 

for a typical f E IC. 

2. For every admissible r.p satisfying 112 = o( r.p( T/)) (for T/ -+ 0) IC'P is residual. 
Hence 

for a typical f E IC. 

Proof: 

1. Pick f E IC, e > 0, c > 0 and an arbitrary admissible r.p(TJ) = 0(11) for 
TJ -+ 0. Theorem 1.1 implies the assertion when we find a g E IC and a 
positive TJ < c satisfying lg - fl < e and N(TJ, g)r.p(TJ) < 1. We are going 
to treat the different cases for IC. 

(a) IC = F, £, B: Take an n E N with n > : and define g(x) = ~' 
k E {1, ... ,n}, for k~l ~ f(-;n) <~'hence g E IC and lg-fl< e. 
Since 

k 
r(g) ~ {(-;n, -) I -;n E J, k EN, 1 ~ k ~ n} 

n 
we get 

1 
N(TJ, g) ~ n(- + 1). 

T/ 
Furthermore r.p(TJ) < ~ for sufficiently small T/ < c (w.l.o.g T/ < 1), 
hence i:n,deed 

1 
N(TJ, g)r.p(TJ) < 2(1+11) < 1. 

(b) IC= 'R: Again fix an n E N with n > :. Call an interval J ~ [O, 1] 
regular if the following conditions hold: 

i. J = [2!,., 1#-J for some nonnegative integers l and m. 
ii. sup:i:EJ f(-;n) - inf:i:eJ f(x) < e. 

iii. J is maximal with the properties (i) and (ii). 
Every J satisfying i. and ii. is contained in a unique regular one. On 
each regular J define g to be constant taking a value~' k E {1, ... , n} 
such that lf(x) - ~I < e for all z E J. Note that this is possible by 
property ii. If x is not contained in a regular J define g( z) = ~ such 
that lf(-;n) - ~I< e, hence If - gl < e. As in the case (a) we get 

1 1 N(11,g) ~ n(- + 1) = 0(-), 
T/ T/ 
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hence N(TJ, g)<P(TJ) < 1 for sufficiently small T/ > 0. It remains to 
prove that g E 'R. Consider the sets DJ and D 9 of all x E I such 
that f resp. g is not continuous in x. If x rl. D1, x is contained in 
a regular J = [ 21.,,., 1#-]. If such an x is not an end point of J then 
x rl. D9 • This reasoning proves D9 ~ D1 U D, 

l 
D = { 2m I l, m E No}. 

f E 'R, hence D1 has Lebesque measure A(D1) = 0, Dis countable, 
hence A(D) = 0 and therefore A(D9 ) = O, proving g E 'R. 

(c) K, = U: Again fix an n EN with n > ~· Modifying the construction 
of (b) we now call an interval J ~ [O, 1] regular if the following 
conditions hold: 

i. J = [21.,,., -W] for some nonnegative integers l and m. 
ii. f(J) ~ (i~ 1 , *)for some i E {1, ... , n}. 

iii. J is maximal with the properties (i) and (ii). 
Again every J satisfying i. and ii. is contained in a unique regular 
one. We are going to prove 

A(M) = 1 for M = u{J I J regular}. 

We have I\ M ~ DJ U DU 1- 1(S) where DJ and D are defined as 
in (b) and 

S = { ~ I i E {O, ... , n }}. 
n 

Since f E U ~ 'R we have A(f- 1(S)) = A(S) = 0 and A(D1) = 0. 
This implies 

A(l \ M) ~ A(D1) + A(D) + A(r 1 (S)) :;:: O, A(M) = 1. 

Now define the functions Yi, i = 1, ... , n, by 

Observe that Yi is monotonous non-decreasing, Yi(O) = i~l, Yi(l) = 
i and n 

In particular Yi is continuous. Now define g( x) = Yi ( x) for i~ 1 < 
f(x) < * or g(x) = f(x) = *· By construction we have lg - fl ~ 
.!. < e. n 
The set D9 of discontinuities of g is contained in I\M, hence A(D9 ) = 
0 and g E 'R. To prove ·g EU it remains to show that g preserves 
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the Lebesque measure. Consider an arbitrary regular J =(a, b), say 
f(J) ~ (i~ 1 ,*)· g is linear on J with constant derivative g' = 1, 
hence th_e restriction 

gli : (a, b)-+ g(J) = (c, d) 

preserves the Lebesque measure. By construction g is injective on 
M. Thus we conclude that 

YIM : M -+ g(M) 

is a measure preserving injection. Since 

>.(I\ M) = >.(I\ g(M)) = 0 

also g is measure preserving, hence g E U. 
The last step is to show N(TJ, g)cp(TJ) < 1 for small TJ > 0. For every 
f(gi) we find an T}-covering 

by taking 

1 
Uj, j = 1, ... , _K, K = [ -] + 1, 

TJ 

TJ 2j - 1 
Uj = B(pj, 2), Pi= (xj,gi(xj)), Xj = 21(• 

Here we use the Lipschitz condition lg(y) - g(x)I ~ IY - xi. By 
construction 

n n 

r(g) ~ LJ r(gi) u LJ r(ci) 
i=l i=O 

where Ci = *are constant functions, trivially admitting an T}-covering 
of cardinality K. Thus we get 

1 1 
N(TJ,g) ~ (2n+ l)K = (2n+ 1)([-] + 1) = 0(-) 

TJ TJ 
for TJ-+ O, hence N(TJ, g)cp(TJ) < 1 for sufficiently small TJ > 0. 

( d) /(, = C: Take any continuous and piecewise linear approximation g of 
f with jg- fl < e. Since g satisfies a Lipschitz condition we conclude 
N(TJ, g) = O(~) and hence N(TJ, g)cp(TJ) < 1 for sufficiently small TJ· 

(e) /(,=UC: By [TW], Theorem 3.2, there is a piecewise linear g E UC 
with jg - fl < e. Therefore the same argument works as for/(,= C. 

2. Pick f E /(,, e > O, c > 0 and an arbitrary admissible cp with TJ 2 = o(cp(TJ)). 
Theorem 1.2 implies the assertion when we find a g E /(, and a positive 
TJ < c satisfying jg - fl < e and N(TJ, g)cp(TJ) > 1. We are going to treat 
the different cases for /(,. 
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(a) K, = :F, £, B: For irrational x t/. Q define g(x) = f(x). To construct 
g( x) for x E Q fix an integer n > : . Consider the factor groups 
Q/(k) and Q/ D, 

1 k k 
(~) = {~lk E Z} £; D = {2znll,k E Z,l 2'.: O}. 

In a natural sense D + ( k) may be considered as a dense subgroup 
of Q/(k)· 
The factor group 

1 1 
(Q/(-))/(D + (-)) ~ Q/ D 

n n 

is infinite: Consider two odd primes p > q > n. The hypothesis 
!. + D = 1 + D leads to !. = !. + -L21 , k odd, l > 0 integer, hence p q p q n -

n21(q - p) = kpq. 

The right hand side is odd, hence l = O, Ii - i I 2'.: k, contradicting 
0 < i < i < k. Therefore all classes i + D, p > n prime, are 
distinct, Q/ D is indeed infinite. 
Since all involved sets are countable there is a bijection 

1 
{3: Q/D ___. Q/(-). 

n 

Let K,: Q-. Q/ D, x 1--+ x + D, denote the canonical map. For x E Q 
we define g( x) in such a way that 

( 
. 1 g(x) E{3(/'i, x)) =a+(-) 

n 

and lg(x) - f(x)I < e. 
Now g is defined on the whole interval I and satisfies lg - fl < e. 
g and f differ only on a subset of Q, i.e. on a countable set, hence 
f E K, implies g E K, for all cases /(, = :F, £, B. Thus it remains to 
find a positive TJ < c such that N(TJ, g)cp(TJ) > 1. We are going to 
deduce N(TJ, g) 2'.: n~~ for all TJ > 0. Then cp(TJ) > n112 for small 1J 
yields the assertion. 
Consider an arbitrary finite covering of f(g) by squares Ui, ... , UN 
of length T/, i.e. 

for u = U~1 ui (.>i = two-dimensional Lebesque measure). We are 
going to consider the topological closure f (g) of the graph of g. Since 
f(g) £; U we have 
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Claim:"For every point (x, y) EI x [O, ~]there is a k E {O, ... , n-1} 
with 

k -
(x, y + -) E r(g). 

n 
To prove this claim we construct a sequence (xz, yz) E r(g), l E N, 
with lxz-xl < f and IYz-y-!f!ll < f for some k(l) E {O, ... , n-1}. 
First take any rational yf E [O, ~] with the property IYf - YI < f· 
There is an x~ +DE Q/ D and a k(l) E {O, ... , n - 1} with g(x1) = 
YI = yf + !f!l. Since D is dense there is an x1 E x~ + D satisfying 
lx1 - xi < t· Among the k(l), l EN, there is at least one k occuring 
infinitely many times. Hence the sequence (xz, g(x1) = yz = yf + !f!l) 
has the cluster point (x, y + ~) E r(g). 
We now consider the sets 

k k+ 1 rA: = r(g) n Ix [-, -], 
n n 

their outer Lebesque measures >. * (r .1:) and the translations 

k r.1: : (x, y) ~ (x, y - -), 
n 

k = 0, ... , n - 1. By the claime proved above 

n-1 n-1 u TA:(r.1:) = u r.1:(r.1:) = [O, 1] x [O, .!.]. 
n 

k=l k=l 

>. * is subadditive and translation invariant, hence 

~ = ).* (u~:i r.1:(r.1:)) ~ L:~·=~ >.*(r.1:(r.1:)) = 
= >.*(r(g)) = >.(r(g)) ~ NTJ 2 , 

Yielding N > ~. - n71 

(b) }(, = 'R, C: Since f is integrable in the Riemann sense there is an 
interval J = [a, b] ~I of length >. = b - a> 0 and an Yo such that 

For x fl. J define g( x) = f ( x). To define g on J let K be an integer 
determined later and o: = 21f+i · Let r(g) on J be a zigzag line 
connecting the points po 1 ••• ,p2K+i1 where Po= (a,f(a)), Pi= (a+ 
io:,y0 + e:) for odd i = 1, ... ,2K-1, p;. =(a+ io:,yo) for even 
i = 2, ... , 2K and P2K+1 = (b, f(b)). 
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We will show N(ry, g)cp(ry) > 1 for appropriate Kand small ry > 0. To 
cover the line segment g; connecting p2;-1 and p2; one needs at least 
~ squares of length 'fl· For Tl < 2.i"+i none of these squares intersects 
with any other g;1, hence N(ry, g) ~ K ~ in this case. Now take any 
positive 'fl< c, w.l.o.g. Tl< ~ ~ *' such that 

and the unique integer K E [iB - 1, ,B), ,B = t( ~ - 1), then indeed 

c 4ry2 
N(ry, g)cp('fl) > (,B - 1)---"\ > 1. 

Tl c/\ 

(c) }(, = U: U ~ 'R, hence we may define J =[a, b], Yo and g(z) = f(z) 
for z rt_ J as in the case }(, = 'R. On J we have to give a construction 
for g such that g E U, i.e. such that g is integrable in the Riemann 
sense and satisfies 

for all measurable M. This can be done by using the unique non-
decreasing function h: I~ (Yo, Yo+ c) defined by the relation 

for all intervals M ~ (y0 , y0 + c) (and hence for all measurable M). 
For any integer K we may define 

. z - a - ka b- a 
g( z) = h( ), a = -, 

a K 

if a+ ka ~ z <a+ (k + l)a, k E {O, ... , K - 1}, and get a g that is 
integrable in the Riemann sense, measure preserving, i.e. g E U, and 
satisfying lg - fl < c. 
Let Yk denote the restriction of g to the interval Jk = [a+ ka, a+ 
(k + l)a], k = o, ... ' K - 1. Suppose there is an 'fl-Covering ui = 
(ui, Ui +Tl) x (vi, Vi+ Tl), i = 1, ... ' l of r(gk) with l < b~a.. Consider 
the set 

l 

V = LJ(vi, Vi+ 'fl), 
i=l 

satisfying .\(V) ~ lry < b - a. The contradiction 

b - a= .\(J) ~ .\(g- 1 (V)) = .\(V) ~ lry < b - a 
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q.e.d. 

proves N(TJ, g1e) 2:: b~a fork= O, •.. , K - 1. Now a reasoning similar 
as in the case IC = n shows that indeed 

N(TJ, g)cp(TJ) > 1 

for appropriate K and TJ < c. 

(d) IC= UC: By [TW], Theorem 3.2, there is a piecewise linear f' E UC 
satisfying If - f' I < ~. Now apply the construction of the case K, = C 
on f' instead of f, ~ instead of e and an interval [a, b] where f' is 
linear. Note that the resulting g satisfies 

for each measurable set M ~ I, hence g E U. Obviously g is contin-
uous, therefore g E UC. Furthermore 

lg - fl ~ lg - f' I + If' - fl < e 

and N(TJ, g)cp(n) > 1 for some TJ < c. 

Remark: Inspecting the proof of Theorem 2.2 one sees that it holds also for 
the restriction off to any nontrivial subinterval J ~ I. Since each J contains 
at least one of the countably many nontrivial intervals with rational end points 
we even get the stronger result that the local upper entropy dimension which is 
defined by 

dimfoc(r(f)) = i~f dimE (I'(!IJ )) 

equals 2 for a typical f E IC, IC= :F,£;B, 'R.,U,C,UC. (The infimum in the 
definition is taken over all nontrivial subintervals J ~ I.) 

3 Some additional remarks 
The results of section 2 said, for instance, that for several Baire spaces K, ~ :F 
and every admissible cp, TJ2 = o( cp( TJ)) for TJ -+ O, the set IC<f' is residual. The 
following question arises: How big is the set of all f E K, lying in all K,<f'. Since 
all admissible sequences form a set that is not countable we are not allowed to 
conclude that 

<p <p 

is residual. (The intersection is taken over all admissible cp satisfying TJ2 

o(cp(TJ)) resp. cp(TJ) = o(TJ) for TJ-+ 0.) The following Theorem shows that, in 
general, this is indeed wrong. 

13 



Theorem 3 Let f E n arbitrary. Then there is an admissible rp, T/2 = o( rp( T/)), 
such that f ~ 1?,f{J. Thus 

JC* = n }(,f{J = </> 

rp 

for}(,= n,u, c,uc. 
Proof: The assertion follows if, for arbitrary c > 0, we can find an T/ E (0, c) 

such that TJ2 N(TJ, f) ~ c for all positive TJ < T/O· This relation would give rise to 
an admissible rp with the desired properties. 

For any N E N consider 

for j = O, ... , N - 1. We have 

. N-1 1 fl(j) 
T/2 N(TJ, !) ~ T/2 L ( N + 1)( _Ji_+ 1) ~ 

j=O T/ T/ 
N-1 N-1 

~ ~ Ltl~)+11+11L:tl~)+N172 • 
j=O j=O 

Since f E n the first term is < i for sufficiently large N. For such an N 

TJ < TJo =min (:., :_ (I=1 tl~))-l, Jc) 
. 4 4 j=O v 4jj 

implies TJ2 N(TJ, !) < c. q.e.d. 
For }(, = :F, .C, B Theorem 3 is wrong. This follows from the construction in 

the proof of Theorem 2.2. There, for arbitrary f EK, e > 0, a function g E }(, 
was constructed satisfying jg - f I < .e and 

limsup172 N(17,g) > 0. 
17-+0 

This proves that }(,* is dense in K, i.e. }(,* = }(, for }(, = :F, .C, B. The construc-
tions in the proof of Theorem 2.1 show that the analogous result }(,* = }(, holds 
for K = :F,.C,B, R,U,C and UC. 

The question whether there are nontrivial Baire subspaces }(, ~ :F for which 
Theorem 2 does not hold can be answered in the affirmative easily by examples: 

dimE (r(f)) = 1 for all f E }(, holds if }(, consists of all constant functions or 
all functions that are linear in every intervall (0, z1), (zi, z2), ... , (zn, 1), where 
0 ~ z1, ~ ... ~Zn ~ 1 are fixed. 

14 



dimH (I'(!)) = 2 for all f E IC holds if 

IC= {cf I c E [e:, 1]}, 

e: > 0 and f E :F arbitrary but fixed with dimH (I'(!)) = 2 (such f do exist). 
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