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Abstract

We consider the wavelet Galerkin method for the solution of boundary integral equa-

tions of the �rst and second kind including integral operators of order r less than

zero. This is supposed to be based on an abstract wavelet basis which spans piece-

wise polynomials of order dT . For example, the bases can be chosen as the basis of

tensor product interval wavelets de�ned over a set of parametrization patches. We

de�ne and analyze a quadrature algorithm for the wavelet Galerkin method which

utilizes Smolyak quadrature rules of �nite order. In particular, we prove that quadra-

ture rules of an order larger than 2dT � r are su�cient to compose a quadrature

algorithm for the wavelet Galerkin scheme such that the compressed and quadrature

approximated method converges with the maximal order 2dT � r and such that the

number of necessary arithmetic operations is less than O(N logN) with N the num-

ber of degrees of freedom. For the estimates, a degree of smoothness greater or equal

to 2[2dT � r] + 1 is needed.

1 Introduction

It is well-known that boundary element discretizations of boundary integral equations lead

to systems with fully populated matrices. In order to cope with the resulting huge matrices

several algorithms have been proposed. In particular, the wavelet algorithm of Beylkin,

Coifman, and Rokhlin [5] has been thoroughly investigated by e.g: Dahmen, v.Petersdor�,

Pröÿdorf, Schneider, and Schwab [11, 12, 28, 29, 35] (cf: also the contributions by Alpert,

Ehrich, Harten, Hu, Micchelli, Rathsfeld, Xu, Yad-Shalom [1, 22, 32, 19, 27, 23]). In the

present paper, we shall apply the wavelet technique to a piecewise polynomial Galerkin

scheme for two-dimensional boundary integral equations of �rst or second kind with an

integral operator of order r < 0. This corresponds to three-dimensional boundary value

problems.

The general construction of wavelet bases over manifolds is quite di�cult. We shall use

an abstract basis for the space of piecewise polynomials which are continuous or smooth

only over the parametrization patches (cf: (2.1)). The possible jump of our trial functions

over the boundary lines of the parametrization patches, allows us to work simply with the

tensor product versions of the well-established biorthogonal interval wavelets by Dahmen,

Kunoth, and Urban [9] (cf: also [7]). For more information on diverse wavelet bases we refer

the reader to [6, 8, 13, 14, 15, 25, 33, 37]. All our functions will be de�ned over grids which

are uniform re�nements of a coarse initial square shaped grid. Applying these wavelet

basis functions of the trial space, we shall recall the well-known compression results due

to Dahmen, v.Petersdor�, Pröÿdorf, Schneider, and Schwab [12, 29, 35]. Note that these
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wavelet methods are based on the Calderón-Zygmund estimate for the kernel function, i.e:

we have to assume that the derivatives @�P@
�
QK(P;Q) of the kernel function K(P;Q) are

continuous and bounded by O(jP �Qj�2�r�j�j�j�j).

If the boundary surface is not piecewise planar, then the Galerkin sti�ness matrix cannot

be computed exactly by simple analytic formulae. For a fast implementation, an e�cient

quadrature algorithm is needed. This is a very important issue since, for the wavelet

methods as well as for the conventional boundary element methods, the assembling of the

sti�ness matrix takes the major part of the computing time. However, a naive approach

usually leads to slow algorithms or to unacceptably large quadrature errors. Now, that the

compression algorithm is well-understood, the quadrature part of the wavelet algorithm

turns out to be the most di�cult part. Nevertheless, good quadrature schemes are available.

The �rst ideas in this direction go back to the starting paper of Beylkin, Coifman, and

Rokhlin [5], and related results can be found e.g: in [10, 2, 38, 18, 3, 4]. Complete algorithms

for boundary integral operators are presented by v.Petersdor�, Schwab, and Schneider

[29, 35] (cf: also the numerical implementation by Lage and Schwab [24] and the recycling

scheme of Harbrecht and Schneider [21]). These quadrature methods are h-p-methods, i.e:

they are based on tensor products of Gauÿ type rules de�ned over geometrically graded

meshes. The order of the Gauÿ rule is chosen appropriately and tends to in�nity in the

asymptotic convergence analysis. The corresponding error estimates rely on the Calderón-

Zygmund estimate for the kernel function and on the piecewise analyticity of the solution,

the kernel, and the underlying surface. Note that these assumptions are met in a lot of

engineering applications of the boundary element methods.

On the other hand, since the wavelet compression scheme is a pure h-method, it is natural

to ask whether it is possible to de�ne a corresponding h-method quadrature scheme which

is based on rules of a �xed order, only, and which requires a �nite degree of smoothness for

the solution, the kernel, and the surface. Such an algorithm can be helpful for applications

to surfaces with �nite degree of smoothness in problems of e.g: the geosciences. Alternative

fast methods like multipole and panel clustering can treat these surfaces with low degree

of smoothness as well. However, they assume that the kernel function K(P;Q) is either

a restriction to the boundary surface of a piecewise analytic kernel de�ned in the space

domain or such a restriction multiplied by functions depending on one of the two variables

P and Q. In contrast to multipole and panel clustering, the wavelet method together

with an h-method of quadrature is capable to treat kernel functions which are not the

restrictions of analytic functions in space to the boundary surface and which are of �nite

degree of smoothness, only. For the wavelet collocation, this fact has been established in

[19, 34] (cf: also [31, 30]), and the topic of the present paper is to develop and analyze an

analogous h-method quadrature scheme for the wavelet Galerkin procedure (cf: Sects. 5-7).

If N is the number of degrees of freedom, then we shall show that there is a quadrature

algorithm which requires O(N logN) arithmetic operations and a memory capacity for

O(N logN) real numbers to compute an approximated linear system of equations to the

Galerkin method. This system can be solved by O(N logN) arithmetic operations using

a diagonally preconditioned iterative method. Moreover, if h = O(N�1=2) is the step

size of the uniform discretization and if dT � 1 is the polynomial degree of the piecewise

polynomial trial space, then the numerical solution of the quadrature approximated and
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compressed wavelet Galerkin method converges with the same optimal order 2dT � r as

the conventional Galerkin method with exactly computed sti�ness matrix and right-hand

side. Unfortunately, to get this result we have to assume the doubled order 2[2dT � r] for

the degree of smoothness of the kernel function. To avoid a lot of logarithmic factors and

to simplify the presentation, we even suppose a smoothness of degree greater or equal to

2[2dT � r] + 1, and we use quadrature rules with an order of convergence dQ > 2dT � r.

Now let us describe the quadrature rules and let us heuristically indicate why the restrictive

smoothness assumption cannot be avoided. First, we look at the far �eld, i.e: at the entries

in the sti�ness matrix corresponding to trial and test functions for which the distance of

the supports is larger than the diameter of the supports. Due to the compression step

the number of these entries is at most O(N logN). Nevertheless these remaining far �eld

entries are to be computed. For the collocation method (cf: e.g: [34]) which has almost the

same compression structure, a composite quadrature rule of �nite convergence order over

a uniform partition is applied to the integration of the trial function. The integration over

the test functional degenerates to point evaluations for the collocation. The complexity

of this quadrature is proportional to the number of subdivision domains of the composite

rule. Therefore, for each entry in the collocation sti�ness matrix, the maximal number

of subdivision domains, depending on level and distance of the corresponding test and

trial wavelet function, is determined such that the sum of these numbers over all entries

is less than O(N logN). Fortunately, using standard quadrature estimates and standard

wavelet techniques, it turns out that the resulting quadrature error for the solution of the

integral equation is less or equal to the discretization error of the collocation. Now we
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would like to do the same for the Galerkin method. In this case, unfortunately, we have an

additional integration over the test function, but no additional arithmetic operations are

allowed since the numbers of quadrature knots for the collocation has already been chosen

to be maximal. So the task is to set up a quadrature for the integration over test and trial

function which has the same number of quadrature knots as the collocation quadrature,

where the integration is performed over the support of the trial function, only. The answer

due to Smolyak [36] is to use a special tensor product technique to obtain a sparse grid

rule over the tensor product of the supports of test and trial function. This leads to,

with the exception of additional logarithmic factors, the same number of quadrature knots

as for the integration over one domain and to the same error bounds. Summarizing, for

the computation of the far �eld part of the Galerkin sti�ness matrix, we �rst determine

the number of possible quadrature knots such that the sum over all entries is less than

O(N logN) and such that the number depends on level and distance of the trial and test

functional, only (cf: Sect: 7). Using this bound for the knots, we de�ne the Smolyak rule

over the tensor product of the supports of test and trial function basing on composite rules

of �nite order over each factor space (cf: Lemma 5.3).

For the entries in the near �eld, i.e: for entries for which the corresponding trial and test

functions have a distance of the supports less than the maximum diameter of the supports,

the quadrature is to be adapted to the singularity of the kernel functionK(P;Q) for P ! Q.

Here the Calderón-Zygmund estimate for the kernel function is not su�cient since unlike

to a kernel of the form K(P;Q) = jP �Qj�2�r the direction of the singularity can not be

separated. Indeed, the k-th order derivatives of a Calderón-Zygmund kernel are bounded

by O(jP �Qj�2�r�k) independently of in which direction the derivative is taken, whereas,

for jP �Qj�2�r, only the k-th order derivatives with respect to radial direction R = P �Q

are bounded by O(jP � Qj�2�r�k), and those in the tangential direction perpendicular

to R are less than O(jP � Qj�2�r). A missing separation is bad since, for this case, the

graded meshes are to be chosen such that the subdomains close to the singularity set

f(P;Q) : P = Qg are small in diameter. The number of subdomains in these graded

meshes blows up with smaller step sizes. More precisely, for a graded mesh with mesh size

h, the numberN of subdomains is bounded from below by a constant multiple of h�� where

the exponent � depends on the degree of the grading (cf: the univariate case in Figure 1). If

we can separate the singularity by a substitution of variables (P;Q) = (P; P +R) such that

jP � Qj�2�r = jRj�2�r, then the subdomains of the graded mesh close to the singularity

set f(P;R) : R = 0g must be small in R direction but can be larger in the direction of

P . For a graded mesh with mesh size h, the number N of subdomains can be bounded by

O(h�2) independently of the degree of mesh grading (cf: the example in Figure 2). Hence,

in accordance with this argument we assume that the kernel behaves like jP �Qj�2�r, and

we separate the singularity substituting (P;Q) by (P;R) with R := P �Q.1 After this we

apply the Smolyak quadrature rule based on the composite rule over uniform partitions for

the P -domain and on the composite rule for the Q-domain over partitions graded towards

the singularity point R = 0 (cf: Lemma 5.2). If test and trial functions are supported on

di�erent parametrization patches, the separation of the singularity is more involved, and

1More precisely, this separation is to be performed with respect to the variables in the parameter

domain.
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slight modi�cations of the quadratures are needed (cf: Lemmata 5.4 and 5.5).

If we have only one parametrization mapping � : S �! � to represent the whole boundary

surface � and if the kernel K(P;Q) takes the simple product form K(P;Q) = k(x; y �

x)jy � xj�2�r with P = �(x) and Q = �(y) and with a 2dT � r times di�erentiable

function k(x; z), then we almost get the optimal order of convergence 2dT � r for the

quadrature approximated wavelet Galerkin method without supposing a doubled degree

of smoothness. Here, as usual for Smolyak rules, di�erentiability of order 2dT � r means

the existence of mixed derivatives @�x@
�
z k(x; z) with j�j � 2dT � r and j�j � 2dT � r.

However, to ensure a representation K(P;Q) = k(x; z)jzj�2�r
; z = y � x for the function

K(P;Q) = K(�(x); �(x + z)) we need the doubled order of smoothness 2[2dT � r] + 1 for

the surface and the doubled order of smoothness 2[2dT �r] for the kernel function K(P;Q)

(for more details see (2.6) and the assumptions of Sect: 2).

Finally, we emphasize that the presented quadrature algorithm is designed to get an asymp-

totically optimal method. So far the existence of this algorithm is more a theoretical result.

The method is still to be tested numerically, and its e�ciency must be improved by numer-

ous modi�cations. For this purpose, we shall present the Smolyak rule, which is based on

a piecewise polynomial interpolation rule, with the help of the wavelet basis due to Harten

and Yad-Shalom [22] (cf: (5.1)). We believe that this is helpful for an optimization which

is yet to be done.
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2 The Operator Equation

We suppose that the integral equation to be solved is given on a two-dimensional closed

boundary manifold � � R
3 with �nite degree of smoothness. More exactly, we assume that

� is the union of m� square shaped parametrization patches �m, i:e:

� = [m�

m=1�m; �m := �m(S); (2.1)

S :=
n
(s; t) 2 R

2 : 0 � s � 1; 0 � t � 1
o
:

Here the �m denote parametrization mappings from the standard square S to the manifold

�. We assume that the �m extend to mappings from the larger square

S
e :=

n
(s; t) 2 R

2 : �1 � s � 2; �1 � t � 2
o

(2.2)

to � and that these extensions are d� times continuously di�erentiable with a prescribed

d� � 2. Further we suppose that the intersection of two patches �m and �m0 is either empty

or a common corner point or a common side. In the last case we suppose that there exist

corner points e1; e2; e
0

1; e
0

2 2 S such that

�m \ �m0 =
n
�m(e1 + �(e2 � e1)) : 0 � � � 1

o
;

�m

�
e1 + �(e2 � e1)

�
= �m0

�
e
0

1 + �(e02 � e
0

1)
�
; 0 � � � 1: (2.3)

Since the manifold is at least continuously di�erentiable, for each Q 2 �, there exists a

unit vector nQ normal to � at Q and pointing into the exterior domain bounded by �. The

Sobolev spaces Hs(�) over � can be de�ned in the usual way. We de�ne the space Hs(�m)

over �m as the image of the Sobolev space over S, i:e: Hs(�m) := ff : f Æ �m 2 H
s(S)g

and the space PHs(�) := �m�

m=1H
s(�m). Consequently, we get

H
s(�) = PH

s(�); �
1

2
< s <

1

2
; (2.4)

CkfkHs(�) � kfkPHs(�) :=

vuut m�X
m=1

kf j�mk
2
Hs(�m)

; f 2 Hs(�); �
1

2
< s:

Over � we consider a pseudo-di�erential operator A of order r � 0 mapping Hr=2 into

H
�r=2. We suppose that A is strongly elliptic, i.e: there is a positive constant cse, a non-

zero number � 2 C , and a compact operator T : H
r=2(�) �! H

�r=2(�) such that the

Gårding inequality h�(A � T )u; uiL2 � csekuk
2
Hr=2 holds for any u 2 H

r=2(�). Moreover,

we assume that A is an integral operator of the form A = K for r < 0 and A = aI +K for

r = 0, where aI stands for the operator of multiplication by a function a with inf� jaj > 0

and where the integral operator K is de�ned by

Ku(P ) :=

Z
�

K(P;Q)u(Q) dQ�; (2.5)

K(P;Q) :=

8<
:

k

�
P;Q;

Q�P

jQ�P j

�
jQ� P j�2�r if r < 0

k

�
P;Q;

Q�P

jQ�P j

�
jQ� P j�1 if r = 0:

(2.6)
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Thus, for r = 0, we only consider Fredholm equations of the second kind where the compact

integral operator is a pseudodi�erential operator of order �1. The function k depends on

the points P;Q 2 �, and on the unit vector in the direction of the di�erence Q � P . We

suppose that this function k : � � � � S
2 �! C is dk times continuously di�erentiable.

More precisely, for any dk-th order derivative @�P ; j�j = dk taken with respect to variable

P 2 �, for any dk-th order derivative @
�
Q; j�j = dk taken with respect to the variable Q 2 �,

and for any dk-th order derivative @


�; j
j = dk taken with respect to the variable � 2 S2,

we require that the mixed derivative @�P@
�
Q@



�k(P;Q;�) is continuous. The function k need

not to be a restriction to ��� of a function de�ned on the space R3 �R
3 . It may depend

for instance on the unit normals nP and nQ pointing into the exterior or on any di�erent

kind of di�erentiable vector �eld over �. For the operator A including the just de�ned

integral operator K, we assume the continuity and the invertibility of the mapping

A : Hs(�) �! H
s�r(�); r� dT � s � dT : (2.7)

For an operator A which satis�es all these assumptions, we shall solve the operator equation

Au = v with known right-hand side v and unknown u. To get error estimates with optimal

order 2dT � r (cf: (3.2)), we �nally assume u 2 HdT (�).

For instance, the single and double layer potential equations over smooth curves belong to

our class of strongly elliptic operator equations. Indeed, for the single layer case A = As

corresponding to Laplace's equation, the order rs is �1, and

Ks(P;Q) :=
1

4�

1

jP �Qj
:

In case of the double layer operator A = Ad we get the order rd = 0, and the multiplication

function ad � 0:5 is constant. The kernel of the integral operator Kd is de�ned by

Kd(P;Q; nQ) = �
1

4�

nQ � (P �Q)

jP �Qj3
:

Note that the operator Kd := Ad � adI is a pseudo-di�erential operator of order �1.

Boundary integral operators for the Stokes system or for Lamè's system can be represented

in a similar fashion (cf: [26]).

3 The Wavelet Galerkin Method

To solve Au = v numerically, we seek an approximate solution uL in the trial space VL
depending on the positive level L 2 Z. This is the space of all piecewise continuous trial

functions f : � �! C such that f is dT�2 (dT � 1) times continuously di�erentiable2 over

each parametrization patch �m; m = 1; : : : ; m�, and such that, for each k1; k2 = 1; : : : ; 2L,

the restriction of the function (x1; x2) 7! f(�m(x1; x2)) to the square [(k1�1)2�L; k12
�L]�

2Here, dT = 1 means no condition on the di�erentiability and on the continuity of f , and dT = 2 simply

means continuity.
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[(k2 � 1)2�L; k22
�L] is polynomial of degree less than dT with respect to both components

x1 and x2 of x = (x1; x2). Using the notation

hu; wi :=

m�X
m=1

Z
S

u

�
�m(x)

�
w

�
�m(x)

�
j�0m(x)j dSx; j�0m(x)j := j@x1�m(x)� @x2�m(x)j

for the L2(�) scalar product, the Galerkin method consists in seeking uL 2 VL from

hAuL; wi = hv; wi; w 2 VL: (3.1)

If the operator in (2.7) is bounded and invertible and if u 2 HdT (�), then we arrive at the

standard error estimate

ku� uLkHr�d
T (�) � CG[2

�L]2dT�r kukHd
T (�): (3.2)

For the computation of uL we utilize a representation with respect to a wavelet basis.

Therefore, we introduce the grids

4l :=
n
�m

�
k12

�l
; k22

�l
�
: k1; k2 = 0; : : : ; 2l; m = 1; : : : ; m�

o
; l = 0; : : : ; L;

rl :=

�
40 if l = �1

4l+1 n 4l if l = 0; : : : ; L� 1;

and choose a wavelet basis3 f P ; P 2 4Lg for the space VL. The level l(P ) of the point

P 2 4L and of the corresponding wavelet  P is the unique integer l with P 2 rl. We

require:

i) There is a constant C > 0 such that, for any L and any P = �m(k
0

12
�l
; k

0

22
�l) 2 4L,

the function j P j is less than C and that the support supp P of  P is contained in

the neighbourhood fQ 2 �m : jP �Qj � C 2
�l(P )g of P .

ii) There is a positive integer ~
dT > 2dT � r, such that  P with P 2 rl; l = 0; : : : ; L� 1

has ~
dT vanishing moments. For supp P contained in �m, this means that the integralR

S
[ P Æ�m][pÆ�m] is zero for any p : � �! C such that pÆ�m is polynomial of total

degree less than ~
dT .

iii) There are constants ~
d
�

T (maxf1;�rg <
~
d
�

T <
~
dT ) and CNE > 0 such that, for s

with � ~
d
�

T < s < dT � 1=2, for arbitrary L � 0, and for any sequence of coe�cients

�P ; P 2 4L, the discrete norm equivalence

C
�1
NE







X
P24L

�P P







PHs(�)

�

sX
P24L

j�P j
2
22l(P )[s�1] � CNE







X
P24L

�P P







PHs(�)

(3.3)

3Taken as indeces, we distinguish the grid points P = �m
�
k12

�l; k22
�l

�
and P 0

= �m0

�
k0
1
2
�l; k0

2
2
�l

�

with m 6= m0 even if they coincide as points of R3 . In particular, the function  P will depend on the

representation P = �m
�
k12

�l; k22
�l

�
.
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is valid. Moreover, for any f 2 PHs(�) with dT�1=2 � s � dT and for the coe�cients

�P ; P 2 4L of the L2 orthogonal projection
P

P24L
�P P of f , we requiresX

P2rl

j�P j
2
22l[s�1] � CNE kfkPHs(�) ; l = �1; : : : ; L� 1: (3.4)

For examples of wavelets with all these properties cf: e.g: [17, 7, 9, 8, 13, 14, 15, 16, 6].

Now the vector of coe�cients � := (�P )P24L
of the Galerkin solution uL is to be determined

by solving the linear system AL� = � resulting from (3.1). Here the sti�ness matrix is given

by AL := (hA P ;  P 0i)P 0;P24L
and the right-hand side � := (�P )P24L

by �P := hv;  P i.

To represent the Galerkin equation as an operator equation, we choose a Bessel potential

type operator �, which is continuous and invertible as an operator in Hs �! H
s�r=2

; s �

dT + r=2 and which is selfadjoint with respect to the L2 scalar product. We denote the L2

orthogonal projection onto the space �VL by �L and introduce the projection PL := ��L�
�1

onto the space ~
VL := �2

VL. Clearly, we can choose a basis ~
 P of VL such that

�Lf =
X
P24L

hf;� P i� ~
 P ; PLf =

X
P24L

hf;  P i�
2 ~
 P :

The image space of the operator P �

L, which is the adjoint to PL with respect to the L2

scalar product, is VL. Hence, we can write (3.1) as

[PLAjVL ] uL = PLv; [PLAjVL] : H
r=2 � VL �! ~

VL := �2
VL � H

�r=2
: (3.5)

Obviously, the basis f�2 ~
 Pg in ~

VL is dual to f Pg (i.e: h P ;�
2 ~
 P 0i = ÆP;P 0; P; P

0 2 4L),

and AL is the matrix with respect to the bases f Pg and f�
2 ~
 P g of the discretized Galerkin

operator PLAjVL mapping VL into ~
VL. In view of the one to one correspondence of operator

and matrix representation, we shall denote the last operator with the same symbol AL.

In general we identify the operators from VL to ~
VL with their matrix representation taken

with respect to the bases f Pg and f�
2 ~
 Pg. The discrete norm equivalence (3.3) and the

following lemma allow us to reduce the operator norm estimates to bounds on the matrix

norm in weighted l2 spaces.

Lemma 3.1 The system f�2 ~
 Pg forms a Riesz basis in H

�r, i.e: there is a constant

CNE > 0 such that, for any L � 0 and for any sequence of coe�cients �P ; P 2 4L, the

discrete norm equivalence

C
�1
NE







X
P24L

�P�
2 ~
 P







H�r(�)

�

sX
P24L

j�P j
2
22l(P )[�r+1] � CNE







X
P24L

�P�
2 ~
 P







H�r(�)

(3.6)

is valid.

Proof. Here and in the following we denote by C a generic constant the value of which

may change from instance to instance. From the de�nition of dual norms and from the

continuous embedding H�r � PH
�r, we infer

C







X
P24L

�P�
2 ~
 P







H�r(�)

� sup
kvkPHr�1

�����
* X
P24L

�P�
2 ~
 P ; v

+����� :
9



The boundedness of the projection �L in the Sobolev spaces of order s with r=2� 1=2 <

s < �r=2 + 1=2 implies the boundedness of PL for �1=2 < s < �r + 1=2, and together

with (3.3) and with the duality of f Pg and f�
2 ~
 Pg we arrive at

C







X
P24L

�P�
2 ~
 P







H�r(�)

� sup
kP �

L
vkPHr�1

�����
* X
P24L

�P�
2 ~
 P ; P

�

Lv

+�����
� sup

k

P
P 024

L
�
P 0 P 0kPHr�1

�����
* X
P24L

�P�
2 ~
 P ;

X
P 024L

�P 0 P 0

+�����
� supP

P 024
L
j�
P 0 j

222l(P
0)[r�1]

�1

�����
X
P24L

�P�P

�����
�

sX
P24L

j�P j222l(P )[�r+1]
:

To get the upper bound, we set ul :=
P

P2rl
�P�

2
 P and observe that the space ~

VL

satis�es the usual approximation and inverse properties in the Sobolev spaces of order s

with s < r + 1=2 and that PL is uniformly bounded in the Sobolev spaces of order s with

�1=2 < s < r+ 1=2 . Consequently (cf: the arguments in [8]), we conclude





X
P24L

�P�
2 ~
 P







2

H�r(�)

� C

L�1X
l=�1

kulk
2
H�r(�): (3.7)

For each term in the last sum, we apply the inverse property and arguments like those used

above to arrive at

kulkH�r(�) � 2�rl







X
P2rl

�P�
2
 P







H0(�)

(3.8)

� C2�rl sup
k[P �

l
�P �

l�1]vkH0�1

�����
*X
P2rl

�P�
2 ~
 P ;

�
P
�

l � P
�

l�1

�
v

+�����
� C2�rl supP

P 02r
l
j�
P 0 j

222l[0�1]�1

�����
X
P2rl

�P�P

����� � C2�rl

sX
P2rl

j�P j222l:

The estimates (3.7) and (3.8) imply the upper bound.

In the wavelet algorithm the fully populated matrix AL is approximated by the sparse

compressed matrix ACL de�ned by

A
C
L :=

�
aP 0;P

�
P 0;P24L

; aP 0;P :=

�
0 if dist (supp P ; supp P 0) �m

hA P ;  P 0i else,
(3.9)

m := max
n
2�l(P ); 2�l(P

0)
; D2[2��1]L��l(P )��l(P

0)
o
:

HereD > 1 is an appropriate constant and � < 1 is chosen close to one. From [11, 12, 29, 35]

(cf: also [5]), we infer

10



Theorem 3.1 Suppose ~
dT is chosen such that ~

dT > �r=2 and ~
dT > dT � r. Take � from

the open interval (a; 1) with a := [ ~dT + dT ]=[2 ~dT + r], suppose that the operator in (2.7) is

bounded and invertible and that u 2 HdT (�). Moreover, suppose that the smoothness order

d� of the boundary manifold � is greater or equal to ~
dT+1, and that the di�erentiation order

dk of the kernel function is greater or equal to ~
dT . Then there exists a constant D0 � 1

and an integer L0 > 0 such that, for all D > D0 and L � L0, the discretized operator

A
C
L : H

0 � VL �! ~
VL � H

�r is invertible and the inverse is bounded uniformly with

respect to L and D. In particular, the solution �C = (�CP )P24L
of the compressed equation

A
C
L�

C = � exists at least for L � L0, and the approximate solution u
C
L :=

P
P24L

�
C
P  P

obeys the estimate

ku� u
C
LkHr�d

T (�) � CW [2�L]2dT�r kukHd
T (�): (3.10)

If N = O(22L) is the dimension of the trial space (number of degrees of freedom), then the

number of non-zero entries in the compressed sti�ness matrix ACL is of the size O(N logN).

Note that the linear equation ACL�
C = � admits an asymptotically optimal diagonal pre-

conditioning (cf: (3.3) and (3.6)). Moreover, a second compression step for matrix entries

corresponding to wavelet basis functions with overlapping supports is possible. This second

compression reduces the number of non-zero entries in ACL to O(N) (cf: [35]). However, we

shall use the compression of Theorem 3.1, only.

To prepare the estimation of the quadrature error we shortly review the derivation of

the basic estimates in the proof of Theorem 3.1. First, the Lax-Milgram theorem together

with standard compact perturbation arguments yields the invertibility and stability of AL :

H
r=2 � VL �! ~

VL � H
�r=2. From this and from the approximation and inverse properties

of the spaces VL and ~
VL we conclude the invertibility and stability of the discretized operator

AL : H
0 � VL �! ~

VL � H
�r. Now, using a decay property of the matrix entries,

the norm equivalences (3.3) and (3.6), as well as a Schur lemma argument (cf: the next

lemma), the di�erence of the Galerkin operator and the compressed Galerkin operator

AL � A
C
L : H0 � VL �! ~

VL � H
�r turns out to be small at least for su�ciently large D.

Hence, ACL is invertible and stable, too. The error estimate in the Sobolev norm of order

r� dT follows from the Aubin-Nitsche trick


u� u

C
L




H�d

T
+r

� C




A

�
u� u

C
L

�


H�d

T

� C sup
kvk

H
d
T
�1

��� 
A �u� u
C
L

�
; v � vL

�
+


A

�
u� u

C
L

�
; vL

� ���;
� C




u� u

C
L




H0 sup

kvk
H
d
T
�1

vLbest appr: of v

kv � vLkHr

+C sup

kvk
H
dT
�1

vLbest appr: of v

��� 
A �u� u
C
L

�
; vL

� ���;

from the identity hA(u�uCL ); vLiL2 = [(ACL �AL)�
C
; �], and from a Schur lemma argument

applied to the estimation of [(ACL � AL)�
C
; �] (cf: the next lemma). Here [�; �] stands for

11



the scalar product in the Euclidean space and the coordinates of �C and � are de�ned by

u
C
L =

P
�
C
P P and vL =

P
�P P , respectively. The function vL is the best approximation

to a function v fromH
dT chosen in accordance with the Aubin-Nitsche trick, and, due to the

stability in H0, the Galerkin solution uCL is an almost4 best approximation to the function

u 2 H
dT . Due to this the components �P and �P of uCL =

P
�
C
P  P and vL =

P
�P P

satisfy the estimate (3.4) with s = dT . Finally, we recall the Schur lemma which reduces

the estimates of ACL � AL to the decay estimate of the matrix entries.

Lemma 3.2 For any real number x, there hold the estimates

kAL � A
C
LkH0

�VL�! ~VL�H�r �

q
�
�r;0
1 �

�r;0
2 ; (3.11)

sup

�:
P

P2r
l
j�P j

222l(dT�1)�1

�:
P

P2r
l
j�P j

222l(dT�1)�1

���h(AL � A
C
L )�; �

i��� �

q
�
�dT ;dT
1 �

�dT ;dT
2 ; (3.12)

�
t0;t
1 :=

L�1X
l(P )=�1

sup
P2rl(P )

( X
P 024L

2(t
0+1�x)l(P )jbP;P 0j2

(�t+1+x)l(P 0)

)
;

�
t0;t
2 :=

L�1X
l(P 0)=�1

sup
P 02r

l(P 0)

(X
P24L

2(t
0+1+x)l(P )jbP;P 0j2

(�t+1�x)l(P 0)

)
:

Proof. For the H�r norm of a function vL =
P
�P�

2
 P 2 ~

VL = im PL, we get

kvLkH�r = sup
w: kwkHr�1

D
vL; w

E
� C sup

wL2VL: kwLkHr�1

D
vL; wL

E
:

Here we have used the uniform boundedness of P �

L in the space Hr. Setting wL =
P
�P P

and taking the discrete norm equivalences into account, we arrive at

kvLkH�r � C sup
�:
P
j�P j222(r�1)l(P )�1

X
�P�P �

qX
j�P j222(�r+1)l(P )

:

On the other hand, if vL = (AL � A
C
L)uL and if the entries of (AL � A

C
L) are the numbers

bP;P 0, then
(3.13)

j�P j =

�����
X
P 024L

bP;P 0�P 0

����� �
s X

P 024L

jbP;P 0j2(1+x)l(P
0)
X
P 024L

jbP;P 0j2(�1�x)l(P
0)j�P 0j2;

kvLk
2
H�r �

X
P24L

22(�r+1)l(P )
X
P 024L

jbP;P 0j2
(1+x)l(P 0)

X
P 024L

jbP;P 0j2
(�1�x)l(P 0)j�P 0j

2

� �
�r;0
1

X
P24L

2(�r+1+x)l(P )
X
P 024L

jbP;P 0j2
(�1�x)l(P 0)j�P 0j

2

4I.e: the approximation error is like that of the best approximation but with an additional constant

factor

12



� �
�r;0
1

X
P 024L

X
P24L

2(�r+1+x)l(P )jbP;P 0j2
(1�x)l(P 0)2�2l(P

0)j�P 0j
2

� �
�r;0
1

L�1X
l(P 0)=�1

sup
P 02r

l(P 0)

( X
P24L

2(�r+1+x)l(P )jbP;P 0j2
(1�x)l(P 0)

) X
P 02rL

2�2l(P
0)j�P 0j

2

� �
�r;0
1 �

�r;0
2 sup

l=�1;:::;L�1

X
P 02rl

2�2l(P
0)j�P 0j

2
:

The estimate (3.11) is proved.

To derive (3.12) we observe

sup
�:
P

P2r
l
j�P j22

2l(d
T
�1)

�1

���[�; �]��� = sup

�����
X
P24L

�P�P

����� �
L�1X

l(P )=�1

s X
P2rl(P )

22(�dT+1)l(P )j�P j2:

Using an estimate like in the �rst step of (3.13) and the Cauchy-Schwarz inequality, we

arrive at

sup
�:
P

P2r
l
j�P j22

2l(d
T
�1)

�1

���[�; �]��� � L�1X
l(P )=�1s X

P2rl(P )

22(�dT+1)l(P )
X
P 024L

jbP;P 0j2(�dT+1+x)l(P 0)
X
P 024L

jbP;P 0j2(dT�1�x)l(P
0)j�P 0j2

�

L�1X
l(P )=�1

s
sup

P2rl(P )

2(�dT+1�x)l(P )
X
P 024L

jbP;P 0j2(�dT+1+x)l(P 0)

s X
P2rl(P )

X
P 024L

2(�dT+1+x)l(P )jbP;P 0j2(dT�1�x)l(P
0)j�P 0j2

�

q
�
�dT ;dT
1

vuut L�1X
l(P )=�1

X
P2rl(P )

X
P 024L

2(�dT+1+x)l(P )jbP;P 0j2(dT�1�x)l(P
0)j�P 0j2:

�

q
�
�dT ;dT
1

vuut L�1X
l(P 0)=�1

X
P 02rl(P )

X
P24L

2(�dT+1+x)l(P )jbP;P 0j2(dT�1�x)l(P
0)j�P 0j2:

Applying the same arguments as in the last steps of (3.13), the estimate (3.12) follows.

Now, if A
Q
L is the quadrature approximation of the matrix ACL and if �Q := (�

Q
P )P24L

,

�

Q
P � �P := hv;  P i is the quadrature approximated vector on the right-hand side of the

Galerkin equation, then we get the same conclusions as in Theorem 3.1 for the quadrature

approximated method if we can prove (compare the Strang lemmas for �nite element

methods) 


ACL � A

Q
L





H0

�VL�! ~VL�H�r

� O(L�1); (3.14)
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���h(ACL � A

Q
L )�; �

i��� � CQ[2
�L]2dT�r

; (3.15)sX
P24L

����P � �

Q
P

���2 22l(P )[0+1] � CQ[2
�L]2dT�r

; (3.16)

where the components �P and �P of � and � are supposed to satisfy the estimate (3.4) with

s = dT . Note that the last condition (3.16) could be relaxed if necessary.

4 The Quadrature Rule for the Multiplication Operator

and the Right-Hand Side

Since the quadrature for the integral operator will take the main part of the computing

time, the quadrature for the multiplication operator and the right-hand side need not to

be optimal. Therefore, we present very simple quadrature algorithms, only. The proofs of

the corresponding error estimates are straightforward.

Lemma 4.1 Suppose the right-hand side function v is dQ times continuously di�erentiable

over � with dQ > 2dT � r. We split � into the union of the level L squares

�m;L;k :=
n
�m(x) : k12

�L � x1 � [k1 + 1]2�L; k22
�L � x2 � [k2 + 1]2�L

o
;

m = 1; : : : ; m�; k1 = 0; : : : ; 2L � 1; k2 = 0; : : : ; 2L � 1

and, for each �m;L;k and for each polynomial p Æ �m of degree less than dT , we compute the

integrals

Z [k1+1]2�L

k12�L

Z [k2+1]2�L

k22�L
v

�
�m(x)

�
p

�
�m(x)

�
dx � Q

�
v Æ �m p Æ �m

�

by applying the product quadrature rule Q(�) which is the integral of a polynomial inter-

polation to v Æ �m multiplied by p Æ �m and which has the order of convergence dQ. If

the approximate values �
Q
P of hv;  P i; P 2 4L \ �m are determined from these values

Q(v Æ �m p Æ �m) by

�

Q
P :=

X
k1;k2=0;:::;2L�1:

�m;L;k\supp P 6=;

Q(v Æ �m  P Æ �m); (4.1)

then we arrive at the estimate����QP � Dv;  PE��� � C

h
2�L

idQ
2�2l(P ):

Lemma 4.2 Suppose the multiplication function a is dQ times continuously di�erentiable

over � with dQ > 2dT � r. We split � into the union of the level L squares �m;L;k and, for
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each �m;L;k and for each pair of polynomials p1 Æ �m and p2 Æ �m of degree less than dT , we

compute the integralsZ [k1+1]2�L

k12�L

Z [k2+1]2�L

k22�L
a

�
�m(x)

�
p1

�
�m(x)

�
p2

�
�m(x)

�
dx � QL;k;p1;p2;

QL;k;p1;p2 := Q

�
a Æ �m p1 Æ �m p2 Æ �m

�
by applying the product quadrature rule Q(�) which is the integral of a polynomial interpo-

lation to a Æ �m multiplied by p1 Æ �m p2 Æ �m and which has the order of convergence dQ.

Proceeding with l from L� 1 to 0, we compute the quadrature approximationsZ [k1+1]2�l

k12�l

Z [k2+1]2�l

k22�l
a

�
�m(x)

�
p1

�
�m(x)

�
p2

�
�m(x)

�
dx � Ql;k;p1;p2;

Ql;k;p1;p2 :=

2k1+1X
k01=2k1

2k2+1X
k02=2k2

Ql+1;k0;p1;p2: (4.2)

If the approximate values m
Q
P 0;P ; P; P

0 2 4L \�m of ha P ;  P 0i are determined from these

values Ql;k;p1;p2 by

m

Q
P 0;P :=

X
k1;k2=0;:::;2maxfl(P );l(P 0)g

�1:

�
m;maxfl(P );l(P 0)g;k\supp P\supp P 0 6=;

Qmaxfl(P );l(P 0)g;k; P ; P 0
; (4.3)

then we arrive at the estimate���mQ
P 0;P �

D
a P ;  P 0

E��� � C

h
2�L

idQ
2�2maxfl(P );l(P 0)g

:

5 The Wavelet Quadrature Rule for the Discretized In-

tegral Operator

5.1. In this section we introduce a wavelet quadrature rule. This rule is an easy generaliza-

tion of the tensor product rules which are known e.g: under the names Smolyak quadrature,

blending, and sparse grid rule (cf: [36] and e.g: [20]). In contrast to the classical Smolyak

rules a certain type of mesh re�nement is involved. In particular for the integrals in our

Galerkin sti�ness matrix, our quadrature is almost a Smolyak tensor product of rules over

uniform meshes in a direction with smooth derivatives and of rules over graded meshes in

the perpendicular direction where the integrand exhibits a weakly singular behaviour.

The basic idea for our rule is to represent the piecewise polynomial interpolation projection

with the help of a wavelet basis (cf: [22]), to reduce this basis adaptively to the basis

functions important for the approximation of the integrand, and to de�ne the quadrature as

the corresponding interpolation rule. We �rst introduce the basis functions and their dual

functionals for the interval. Then we de�ne the two-dimensional tensor product wavelets
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and use these to construct a general adaptive Smolyak rule over a four dimensional domain.

Finally, we shall derive the orders of convergence for the quadrature applied to special types

of integrands arising in the computation of the Galerkin sti�ness matrix.

First we �x the order of quadrature dQ � ~
dT . Over I := [0; 1] we introduce the grids

4I
l := f[k + j=(dQ � 1)]2�l : k = 0; 1 : : : ; 2l � 1; j = 1; : : : ; dQ � 1g [ f0g and rI

l := 4I
lc

for l = lc � 1 and rI
l := 4I

l+1 n 4
I
l for l = lc; lc + 1; : : : . Here lc is a �xed level for the

coarsest grid. We denote by V I
l the space of continuous piecewise polynomial functions

f over I such that, for each subinterval I lk := [k2�l; (k + 1)2�l], the function f coincides

over I lk with a polynomial of degree less than dQ. For t = [k + j=(dQ � 1)]2�l 2 4I
l , we

de�ne the (k,j)-th scaling function 'lt of level l as the unique Lagrange basis function in Vl
determined by 'lt([k

0 + j
0
=(dQ � 1)]2�l) = Æk;k0Æl;l0. A hierarchical system of basis function

f It g is obtained by choosing the wavelets  It := '
l
t for t 2 rI

l ; l � lc and  
I
t := '

lc
t for

t 2 rI
lc�1

. We get a dual basis of functionals by setting

~
 
I
t (f) :=

�
f(t)�

P
�24l: t2supp '

l
�

'
l
� (t)f(�); if t 2 rI

l ; l = lc; : : :

f(t) if t 2 rI
lc�1

and arrive at ~
 
I
t ( 

I
� ) = Æt;� for all points t; � 2 [1l=lc4l. Note that each dual wavelet

functional is a linear combination of a �nite number of Dirac delta functionals. Since

the polynomials of degree less than dQ are in the span of the functions  Ix; x 2 rI
lc�1

,

the duality implies that ~
 
I
t with t 2 rI

l ; l � lc vanishes over polynomials of degree less

than dQ, i.e: the dual functionals have dQ vanishing moments. The interpolation over the

uniform grid takes the form

I
I
Lf :=

X
t24I

L

f(t)'Lt =
X
t24I

L

~
 
I
t (f) 

I
t :

We even get f =
P

t2[4I

l

~
 
I
t (f) 

I
t for continuous functions f and for functions f with weak

singularities in a �nite number of points. The convergence of the last representation is to

be understood in the L1 sense and the function values in ~
 
I
t (f) which are not de�ned are

set to zero.

To construct the tensor product wavelets on the square S := I � I, we introduce the grids

4S
l := 4I

l �4
I
l and r

S
l := 4S

lc
for l = lc � 1 resp. rS

l := 4S
l+1 n 4

S
l for l = lc; lc + 1; : : : .

We set l(x) := l if x 2 rS
l ; l = lc � 1; : : : and de�ne

 
S
x (t1; t2) :=

8>><
>>:

'
0
x1
(t1)'

0
x2
(t2) if x = (x1; x2) 2 r

S
lc�1

 
I
x1
(t1)'

l
x2
(t2) if l � lc; x1 2 r

I
l ; and x2 2 4

I
l

'
l
x1
(t1) 

I
x2
(t2) if l � lc; x2 2 r

I
l ; and x1 2 4

I
l

 
I
x1
(t1) 

I
x2
(t2) if l � lc; x1 2 r

I
l ; and x2 2 r

I
l ;
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~
 
S
x (F ) :=

8>>>>>>>>>>>><
>>>>>>>>>>>>:

F (x1; x2) if x = (x1; x2) 2 r
S
lc�1

F (x1; x2)�
P

�24l: x12supp '
l
�

'
l
� (x1)F (�; x2) if x1 2 r

I
l and x2 2 4

I
l

F (x1; x2)�
P

�24l: x22supp '
l
�

'
l
� (x2)F (x1; �) if x2 2 r

I
l and x1 2 4

I
l�

F (x1; x2)�
P

�24l: x12supp '
l
�

'
l
� (x1)F (�; x2)

�

�
P

� 024l: x22supp '
l

� 0
'
l
� 0(x2)

�
F (x1; �

0)�

P
�24l: x12supp '

l
�

'
l
� (t)F (�; �

0)

�
if x1 2 r

I
l and x2 2 r

I
l :

In tensor product notation, the last case of the last formula can be written as ~
 
S
x = ~

 
I
x1

 ~
 
I
x2

for x1 2 r
I
l and x2 2 r

I
l and l � lc. Again we get the duality relation ~

 
S
x ( 

S
y ) = Æx;y for all

points x; y 2 [1l=lc4
S
l , the dQ vanishing moments for the functionals ~

 
S
x ; x 2 r

S
l ; l � lc,

and the representation for the interpolation

I
S
LF :=

X
x24S

L

~
 
S
x (F ) 

S
x :

If we set 4S := [1l=lc4
S
l , then we additionally get F =

P
x24S

~
 
s
x(F ) 

S
x for continuous

functions F and for functions F with weak singularities along a �nite number of smooth

curves or with weak singularities at a �nite number of points. This representation is to be

de�ned as in the univariate case.

Now consider a function f : S � S �! C , which is the product f = gh of a piecewise

polynomial function h and another function g. If the factorization f = gh is not given

explicitely, then we assume h � 1 and f � g. We de�ne two coarsest levels, lxc for the

wavelets with respect to the variable x and lyc for those with respect to y. Then, for any

prescribed " > 0, the integral I(f) of f over a subdomain D � S�S can be approximated

by

I(f) :=

ZZ
D

f(x0; y0) dy0 dx0 � Q"(f) :=
X

x24S; y24S: j�f;x;yj�"

�f;x;y; (5.1)

�f;x;y :=
h
~
 
S
x 


~
 
S
y

i
(g)

ZZ
D

h(x0; y0) Sx (x
0) Sy (y

0) dy0 dx0:

The quadrature weights
RR
D
h 

S
x 

S
y are integrals of piecewise polynomial functions and

can be computed easily at least for simple domains D. Note that our quadrature rule

possibly involves function evaluations outside of the domain of integration D. Thus we

always assume that our function can be extended to these points. For tensor product

subdomains D, we could modify our interpolation easily to an interpolation inside of the

domain. This leads to classical quadrature rules. In particular, the Smolyak quadrature

for smooth functions f corresponds to a summation in (5.1) taken over all x; y 2 4S
L such

that x 2 rS
l , y 2 r

S
l0 , and l + l

0
< L. Obviously, the error of quadrature and the number

of arithmetic operations N" can be estimated as

jI(f)�Q"(f)j �
X

x;y24S:

j�f;x;yj<"

j�f;x;yj; N" � C

X
x;y24S:

j�f;x;y j�"

1: (5.2)
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If we have upper bounds jI(f)�Q"(f)j � C"
� and N" � C"

��, then we obtain " � CN

�1=�
"

and the complexity estimate jI(f)� Q"(f)j � CN

��=�
" . For the case that the underlying

domain D is S � S, we can choose lxc = l
x
c = �1. For domains D = D

x � D
y with

Dx = supp [ P Æ �m] and Dy = supp [ P 0 Æ �m], we choose the coarsest levels lxc and l
y
c

such that the wavelets of level lxc � 1 and lyc � 1 (i.e: the scaling functions of level lxc and

l
y
c ) are polynomials over supp [ P Æ �m] and supp [ P 0 Æ �m], respectively. Then, for the

choice h(x; y) =  P (�m(x)) P 0(�m(y)), the quadrature weights
RR
D
h 

S
x 

S
y vanish due to

the vanishing moments of  P Æ �m and  P 0 Æ �m. In other words, the quadrature rule Q"

contains only terms �f;x;y for which ~
 
S
x and ~

 
S
y are wavelets of level greater or equal to lxc

and lyc , respectively. These wavelets have dQ vanishing moments.

5.2.To apply the quadrature (5.1) to the computation of the sti�ness matrix, we observe

the following separation of the singularity direction in the singular kernel function de�ned

over Se � S
e (cf: (2.2)).

Lemma 5.1 i) For m = 1; : : : ; m�, r < 0 and for any two-dimensional multiindices �

and � with j�j; j�j � 1
2
minfdk; d� � 1g, there exist a constant C�;� such that���@�x@�zK��m(x); �m(x + z)

���� � C�;�jzj
�2�r�j�j

; x; x + z 2 Se; (5.3)���@�z @�yK��m(y + z); �m(y)
���� � C�;�jzj

�2�r�j�j
; y; y + z 2 Se: (5.4)

ii) Suppose that 1 � m;m
0 � m� and that r < 0. For the sake of de�niteness and in

accordance with the assumption (2.3), we assume that the intersection of �m \ �m0

is the common side f�m((x1; 0)) : 0 � x1 � 1g with the property �m((x1; 0)) =

�m0((x1; 0)); 0 � x1 � 1. Then, for any multiindices � and � with j�j + j�j �

minfdk; d� � 1g and for any (y1 + z2; z1); (y1; z3) 2 S
e, there exist a constant C�;�

such that ���@�y1@�zK��m(y1 + z2; z1); �m0(y1; z3)
���� � C�;�jzj

�2�r�j�j
: (5.5)

iii) Suppose that 1 � m;m
0 � m�, that the intersection of �m and �m0 consists of one

point, only, and that r < 0. For the sake of de�niteness, we suppose �m(0; 0) =

�m0(0; 0). Then, for any two-dimensional multiindices � and � with j�j + j�j �

minfdk; d� � 1g and for any x; y 2 S, there exist a constant C�;� such that

���@�x@�yK��m(x); �m0(y)
���� � C�;�

hp
jxj2 + jyj2

i
�2�r�j�j�j�j

: (5.6)

iv) If r = 0, then the preceding estimates hold with r replaced by �1.

Proof. Indeed, we may suppose r < 0 without loss of generality. Using (2.6) and the

Newton-Leibniz formula, we conclude

K (�m(x); �m(x+ z)) = k

�
�m(x); �m(x + z);

�m(x+ z)� �m(x)

j�m(x+ z)� �m(x)j

�
�
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�����m(x+ z)� �m(x)

z

����
�2�r

jzj�2�r

= k

0
BB@�m(x); �m(x + z);

R 1

0
�
0

m(x+ �z) d� � z
jzj����R 1

0
�
0

m(x+ �z) d� � z
jzj

����

1
CCA �

����
Z 1

0

�
0

m(x+ �z) d� �
z

jzj

����
�2�r

jzj�2�r

:

From this representation the estimate (5.3) follows easily. The second estimate (5.4) can

be derived analogously.

On the other hand, using the identity �m(x1; 0) = �m0(x1; 0), we get

�m(y1 + z2; z1)� �m0(y1; z3) =
h
�m(y1 + z2; z1)� �m(y1 + z2; 0)

i
+h

�m(y1 + z2; 0)� �m(y1; 0)
i
�
h
�m0(y1; z3)� �m0(y1; 0)

i
�m(y1 + z2; z1)� �m0(y1; z3) = F (y1; z) � z :=

�
F1(y1; z); F2(y1; z); F3(y1; z)

�
� z;

F1(y1; z) :=

Z 1

0

�
0

m0(y1 + z2; �z1) d�;

F2(y1; z) :=

Z 1

0

�
0

m(y1 + �z2; 0) d�;

F3(y1; z) := �

Z 1

0

�
0

m(y1; �z3) d�:

We arrive at

K

�
�m(y1 + z2; z1); �m0(y1; z3)

�
= k

0
@
�m(y1 + z2; z1); �m0(y1; z3);

F (y1; z) �
z

jzj

jF (y1; z) �
z

jzj
j

1
A �

����F (y1; z) � zjzj
����
�2�r

jzj�2�r

: (5.7)

From this representation the estimate (5.5) follows easily. The assertion of part iii) follows

analogously.

Hence, to de�ne e�cient quadrature rules we distinguish four cases. First we consider

integrands of the form (compare Lemma 5.1)

f1(x; y) = K

�
�m(x); �m(x+ y)

�
j�0m(x + y)jj�0m(x)j P (�m(x)) P 0(�m(x+ y));

l(P ) � l(P 0);
(5.8)

f2(x; y) = K

�
�m(y + x); �m(x)

�
j�0m(y + x)jj�0m(y)j P (�m(y + x)) P 0(�m(y));

l(P 0) � l(P );
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in case that the supports of  P and  P 0 are contained in the same parametrization patch

�m and that the distance dist between the supports is less than �maxf2�l(P ); 2�l(P
0)g,

where � is a prescribed positive constant. Second we consider

f3(x; y) = K

�
�m(x); �m0(y)

�
j�0m0(y)jj�

0

m(x)j P (�m(x)) P 0(�m0(y)); (5.9)

for supp P and supp P 0 contained in possibly di�erent patches �m and �m0 such that dist

is greater or equal to �maxf2�l(P ); 2�l(P
0)g. Third we analyze (5.9) for disjoint supp P and

supp P 0 contained in di�erent patches �m and �m0 such that dist is less than the value

�maxf2�l(P ); 2�l(P
0)g. Finally, we consider supp P and supp P 0 contained in di�erent

patches �m and �m0 but with dist = 0. In this case we split the domain into smaller subdo-

mains and treat the arising disjoint pairs of two-dimensional domains like in the previous

case. The non-disjoint pairs are treated by a transform like in (5.5), by Du�y's transform,

and by an additional potential transform. This way we have to integrate functions of the

form

f4(x; y) = K

�
�m

�
2�l(y1 + x

�
2x1); 2

�l
x
�
2

�
; �m0

�
2�ly1; 2

�l(x�2y2)
��

�����0m0

�
2�ly1; 2

�l(x�2 y2)
���� ����0m�2�l(y1 + x

�
2x1); 2

�l
x2

����� (5.10)

 P

�
�m

�
2�l(y1 + x

�
2x1); 2

�l
x
�
2

��
 P 0

�
�m0

�
2�ly1; 2

�l(x�2y2)
��

[x�2 ]
2
�x

��1
2 ;

f5(x; y) = K

�
�m

�
2�lx1; 2

�l(y�2 x2)
�
; �m0

�
2�l(x1 + y

�
2 y1); 2

�l
y
�
2

��
�����0m0

�
2�l(x1 + y

�
2 y1); 2

�l
y
�
2

���� ����0m�2�lx1; 2�l(y�2 x2)����� (5.11)

 P

�
�m

�
2�lx1; 2

�l(y�2 x2)
��
 P 0

�
�m0

�
2�l(x1 + y

�
2 y1); 2

�l
y
�
2

��
[y�2 ]

2
�y

��1
2 2�4l;

f6(x; y) = K

�
�m

�
2�lx1; 2

�l(y�1 x2)
�
; �m0

�
2�l(x1 + y

�
1 ); 2

�l(y�1 y2)
��

�����0m0

�
2�l(x1 + y

�
1 ); 2

�l(y�1 y2)
���� ����0m�2�lx1; 2�l(y�1 x2)����� (5.12)

 P

�
�m

�
2�lx1; 2

�l(y�1 x2)
��
 P 0

�
�m0

�
2�l(x1 + y

�
1 ); 2

�l(y�1 y2)
��

[y�1 ]
2
�y

��1
1 2�4l;

f7(x; y) = K

�
�m

�
2�lx�1 ; 2

�l(x�1x2)
�
; �m0

�
2�l(x�1 y1); 2

�l(x�1 y2));
��

�����0m0

�
2�l(x�1 y1); 2

�l(x�1 y2)
���� ����0m�2�lx�1 ; 2�l(x�1x2)����� (5.13)

 P

�
�m

�
2�lx�1 ; 2

�l(x�1x2)
��
 P 0

�
2�l(x�1 y1); 2

�l(x�1y2)
��

[x�1 ]
3
�x

��1
1 2�4l;

where l = l(P ) and � > 1 is a su�ciently large integer. Without loss of generality, we

always suppose r < 0 in (5.8) -(5.13). The case r = 0 follows from the case r = �1 since

by de�nition the singularity of the integral operator is like that of an operator of order �1.

5.3. First we suppose that supp P and supp P 0 are contained in the same parametr-

ization patch �m. We consider f1 and f2 (cf: (5.8)) and assume that these are singular or
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almost singular, i.e: that the distance between the supports supp P and supp P 0 is less

than �maxf2�l(P ); 2�l(P
0)g. Since f2 can be treated analogously to f1, we may restrict

our consideration to maxf2�l(P ); 2�l(P
0)g = 2�l(P

0) and to f1 . The integrand f1 is to be

integrated over the support supp [ P Æ �m] times the support supp [ P 0 Æ �m] shifted by x.

Lemma 5.2 Choose a parameter % from the interval (0; 1) and suppose the relations (cf:

Lemma 5.1)

max

�
0; 1 +

r

dQ

�
< %; 0 < �r < dQ �

1

2
minfdk; d� � 1g

are ful�lled. We consider the domain of integration

D :=
�
(x; y) 2 R

2 : x 2 supp [ P Æ �m] ; y + x 2 Sy
	
;

where Sy � supp [ P 0 Æ �m] is a square of size 2�l(P
0) such that  P 0 Æ �m is polynomial over

Sy. Furthermore, we consider the integrand function f = f1 from (5.8) over D. However,

we extend f replacing the wavelet function (x; y) 7!  P 0(�m(x+y)) by the polynomial p(x; y)

which coincides with  P 0(�m(x+y)) over D. For our quadrature formula, we introduce the

auxiliary functions h(x; y) =  P (�m(x)) and

g(x; y) = K

�
�m(x); �m(x + y)

�
j�0m(x+ y)jj�0m(x)j

(
 P 0

�
�m(x + y)

�
if (x; y) 2 D

p(x; y) else :

If �f1;x;y is de�ned by (5.1), then the Smolyak rule

Q(f1) :=
X

x24S; y24S:

[l(x)�l(P )]+(1�%)[l(y)�l(P 0)]+% log2(2l(y)(jy1j+jy2j�dist))�l0

�f1;x;y;

l0 :=
1

2
log2N �

1

2
log2 log2N; dist := dist

�
supp [ P Æ �m]; supp [ P 0 Æ �m]

�
includes no more than O(N) terms and quadrature knots. It requires no more than O(N)

arithmetic operations, and the corresponding quadrature error satis�es

jI(f1)�Q(f1)j � C�dQ
N
�dQ=2 [log2N ]

[dQ+2]=2
2�[dQ+2]l(P )2l(P

0)r
:

Remark 5.1 Note that for % = 0 we have the classical Smolyak rule. The parameter

% 6= 0 leads to a mesh grading in the y domain toward the direction of supp [ P Æ�m]. This

mesh grading exhibits the same approximation properties like the mesh with the grading

in Fig: 3 with parameter � = 1=[1 � %] (In this picture we �rst have divided the square

of supp [ P 0 Æ �m] into the 2l strips Strk; k = 0; : : : ; 2l � 1 of all points with distance

between [(k + 1)=2l]� and [k=2l]� to the corner point closest to supp [ P Æ �m]. Second

we have divided each strip Strk uniformly into squares of side length equal to the width

h = [(k + 1)=2l]� � [k=2l]� of the strip.). Thus the rule of Lemma 5.2 is a Smolyak

quadrature based on a tensor product of a uniform mesh in x direction and a graded mesh

in y direction.
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h

Figure 3: Mesh grading in y domain.

Proof. Without loss of generality we consider the most critical case of intersecting supports

supp [ P Æ �m] and supp [ P 0 Æ �m] (dist = 0), and, for simplicity of notation, we suppose

supp [ P Æ�m] = [0; 2�l(P )]2 and that the support supp [ P 0 Æ�m] shifted by x is [0; 2�l(P
0)]2.

We get the estimate

j�f1;x;yj � C

�
2�[2+dQ]l(x)2�[2+dQ]l(y)jyj�2�r�dQ�dQ if jyj � [dQ + 1]2�l(y)

2�[2+dQ]l(x)2�2l(y)j2�l(y)j�2�r if jyj < [dQ + 1]2�l(y);
(5.14)

j�f1;x;yj � C�dQ2�[2+dQ]l(x)2rl(y)
h
1 + [jy1j+ jy2j]2

l(y)
i�2�r�dQ

: (5.15)

Indeed, if jyj � [dQ + 1]2�l(y) and l(x) � l
x
c ; l(y) � l

y
c , then the kernel function is non-

singular over supp Sx � supp Sy , the vanishing moments of the quadrature functionals

admit the estimate

j ~ Sx 

~
 
S
y (f)j � C2�dQl(x)2�dQl(y) sup

j�j�dQ; j�j�dQ

j@�x@
�
y f j;

the modulus of the integral
RR
h 

S
x
 

S
y is less than 2�2l(x)2�2l(y), the dQ-th order derivatives

of  P 0 Æ�m are bounded by 2dQl(P
0), and the derivatives of the kernel can be estimated using

Lemma 5.1, i). Due to the �almost singular� location of the supports supp [ P Æ �m] and

supp [ P 0 Æ �m] the factor 2
dQl(P

0) is less than Cjyj�dQ�dQ . All these facts lead to the �rst
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estimate in (5.14). If jyj < [dQ + 1]2�l(y) and l(x) � l
x
c ; l(y) � l

y
c , then, beside the Dirac

delta functionals Æz with grid points z, jzj � 2�l(y), the functional ~ Sy may also contain the

Dirac delta functional Æz at z = 0. The corresponding in�nite function values are set to

zero by de�nition, i.e: the functional ~ Sy applied to f is modi�ed into a linear combination

of Dirac delta functionals Æz with jzj � 2�l(y). Thus the vanishing moment property is lost,

and we arrive at the lower line in (5.14). If l(x) � l
x
c ; l(y) = l

y
c � 1, then jyj � C2�l(y)

and, again, without using any vanishing moments we arrive at the lower line in (5.14).

Finally, if l(x) = l
x
c � 1, then the quadrature term vanishes due to the vanishing moments

of h(x; y) =  P (�m(x)).

To get the quadrature error estimate, we determine the error jI(f1) � Q(f1)j and prove

that the number of arithmetic operations is O(N). Since the case � > 1 can be treated

like the case � = 1, we may assume � = 1 without loss of generality. Setting

l
0

0 := l
0

0(l) :=
l0 � [l � l(P )]

1� %

;

l
0

1 := l
0

1(l) := l0 � [l � l(P )];

m0 := m0(l; l
0) := 2fl0�[l�l(P )]�[l

0
�l(P 0)]g=%+[l0�l(P 0)]

;

we obtain that each of the following three inequalities l(x)>l0+ l(P ); l(y)>l00+ l(P 0), and

j1+[jy1j+jy2j]2
l(y)j > m0 imply [l(x)�l(P )]+(1�%)[l(y)�l(P 0)]+% log2

�
2l(y)(jy1j+ jy2j)

�
>

l0, which excludes the term �f1;x;y from the sum in Q(f1). On the other hand, for a �xed

l(y), the maximal value for j1+[jy1j+jy2j]2
l(y)j with supp Sy \supp P 0 6= ; is O(2l(y)�l(P

0)).

Hence, for l(y) � l
0

1 + l(P 0), all �f1;x;y with supp Sy \ supp P 0 6= ; belong to the sum in

Q(f1). Obviously, there are at most O(22(l�l(P ))) points x of level l in supp P and there

are at most O(m) points y of level l0 with j1+ [jy1j+ jy2j]2
l(y)j = m in supp P 0. Choosing

l = l(x) and l0 = l(y), and transforming these variables to l = l � l(P ) and l0 = l
0 � l(P 0),

respectively, we get the estimate

jI(f1)�Q"(f1)j �

1X
l=l0+l(P )

22(l�l(P ))
1X

l0=l(P 0)

1X
m=1

Cm2�[dQ+2]l2rl
0

m
�[dQ+r+2] (5.16)

+

l0+l(P )X
l=l(P )

22(l�l(P ))
1X

l0=l00+l(P
0)

1X
m=1

Cm2�[dQ+2]l2rl
0

m
�[dQ+r+2]

+

l0+l(P )X
l=l(P )

22(l�l(P ))
l00+l(P

0)X
l0=l01+l(P

0)

1X
m=m0

Cm2�[dQ+2]l2rl
0

m
�[dQ+r+2]

� C2�[dQ+2]l(P )2rl(P
0)

� 1X
l=l0+l(P )

2�dQ[l�l(P )]
1X

l0=l(P 0)

2r[l
0
�l(P 0)] +

l0+l(P )X
l=l(P )

2�dQ[l�l(P )]
1X

l0=l00+l(P
0)

2r[l
0
�l(P 0)] +

l0+l(P )X
l=l(P )

2�dQ[l�l(P )]
l00+l(P

0)X
l0=l01+l(P

0)

2r[l
0
�l(P 0)]

1X
m=m0

m
�[dQ+r+1]

�
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� C2�[dQ+2]l(P )2rl(P
0)

� 1X
l=l0

2�dQl
1X
l0=0

2rl
0

+

l0X
l=0

2�dQl
1X
l0=l00

2rl
0

+

l0X
l=0

2�dQl
l00X

l0=l01

2rl
0
h
2fl0�l�l

0
g=%+l0

i
�[dQ+r]

�

� C2�[dQ+2]l(P )2rl(P
0)

�
2�dQl0 +

l0X
l=0

2�dQl2r[l0�l]=[1�%] +

2�l0[dQ+r]=%

l0X
l=0

2lf�dQ+[dQ+r]=%g

l00X
l0=l01

2l
0
fr�[dQ+r][1�1=%]g

�

� C2�[dQ+2]l(P )2rl(P
0)

�
2�dQl0 + 2rl0=[1�%]

l0X
l=0

2lf�r=[1�%]�dQg +

2�l0[dQ+r]=%

l0X
l=0

2lf�dQ+[dQ+r]=%g2l
0
1fr�[dQ+r][1�1=%]g

�

� C2�[dQ+2]l(P )2rl(P
0)

�
2�dQl0 + 2rl0=[1�%]2l0f�r=[1�%]�dQg + 2�l0dQl0

�
� C2�[dQ+2]l(P )2rl(P

0)2�dQl0 l0

� C2�[dQ+2]l(P )2rl(P
0)
N
�dQ=2 [log2N ]

[dQ+2]=2
:

On the other hand, the number N of arithmetic operations can be estimated as

N �

l0+l(P )X
l=l(P )

22[l�l(P )]
� l01+l(P

0)X
l0=l(P 0)

22[l
0
�l(P 0)]

C +

l00+l(P
0)X

l0=l01+l(P
0)

m0X
m=1

Cm

�

� C

l0X
l=0

22l
� l01X

l0=0

22l
0

+

l00X
l0=l01

h
2fl0�l�l

0]g=%+l0
i2�

� C22l0 l0 + C22l0=%
l0X
l=0

22l[1�1=%]
l00X

l0=l01

22l
0[1�1=%]

� C22l0 l0 + C22l0=%
l0X
l=0

22l[1�1=%]22l
0
1[1�1=%] � C22l0 l0 � CN:

5.4. Next we consider the function f3 (cf: (5.9)) under the assumption that the support

supp P is contained in the boundary patch �m and supp P 0 in �m0 . Moreover, we assume

that the distance dist := dist(supp P ; supp P 0) is greater or equal to the expression

�maxf2�l(P ); 2�l(P
0)g. Since two parametrizations �m and �m0 are involved for possibly

di�erent m and m
0, we are not able to separate the singularity direction in the kernel

function. Hence, we get a factor dist�� in the estimate of each �-th order derivative of the

kernel independent of whether we di�erentiate with respect to x or y. We arrive at
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Lemma 5.3 Suppose the relations �dQ < r < 0, dQ � 1
2
minfdk; d� � 1g are valid. We

consider the domain of integration D = supp [ P Æ �m] � supp [ P 0 Æ �m0 ]. Furthermore

suppose our integrand f = f3 is the function from (5.9). For our quadrature, we introduce

the auxiliary functions g and h by g(x; y) = K(�m(x); �m0(y))j�0m0(y)jj�0m(x)j as well as

h(x; y) = [ P Æ �m(x)][ P 0 Æ �m(y)]. If �f3;x;y is given by (5.1), then the Smolyak rule

Q(f3) :=
X

x24S; y24S:

[l(x)�l(P )]+[l(y)�l(P 0)]�l0

�f3;x;y; l0 :=
1

2
log2N �

1

2
log2 log2N (5.17)

includes no more than O(N) terms and quadrature knots. It requires no more than O(N)

arithmetic operations, and the corresponding quadrature error satis�es

jI(f3)�Q(f3)j � C2�[dQ+2]l(P )2�[dQ+2]l(P 0)
N
�

d
Q

2 [log2N ]
d
Q
+2

2 dist�[2dQ+r+2]
: (5.18)

Proof. Clearly, the number N of arithmetic operations can be estimated as

N � C

l0+l(P )X
l=l(P )

22(l�l(P ))
l0+l(P

0)�[l�l(P )]X
l0=l(P 0)

22(l
0
�l(P 0)) � C

l0X
l=0

22l
l0�lX
l0=0

22l
0

(5.19)

� C

l0X
l=0

22l22(l0�l) � C22l0 l0 � CN:

Similarly to (5.15), there holds

j�f3;x;yj � C2�[2+dQ]l(x)2�[2+dQ]l(y)dist�[2dQ+r+2]
: (5.20)

For the quadrature error, we obtain

jI(f3)�Q"(f3)j � C

1X
l=l0+l(P )

22(l�l(P ))
1X

l0=l(P 0)

22(l
0
�l(P 0)) 2

�[2+dQ]l2�[2+dQ]l
0

dist2dQ+r+2

+C

l0+l(P )X
l=l(P )

22(l�l(P ))
1X

l0=l0�[l�l(P )]+l(P 0)

22(l
0
�l(P 0)) 2

�[2+dQ]l2�[2+dQ]l
0

dist2dQ+r+2

� C

2�2l(P )2�2l(P
0)

dist2dQ+r+2

� 1X
l=l0+l(P )

2�dQl
1X

l0=l(P 0)

2�dQl
0

+

l0+l(P )X
l=l(P )

2�dQl
1X

l0=l0�[l�l(P )]+l(P 0)

2�dQl
0

�

� C

2�2l(P )2�2l(P
0)

dist2dQ+r+2

�
2�dQ[l0+l(P )]2�dQl(P

0) +

l0+l(P )X
l=l(P )

2�dQl2�dQfl0�[l�l(P )]+l(P
0)g

�
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� C

2�2l(P )2�2l(P
0)

dist2dQ+r+2

�
2�dQl(P

0)2�dQ[l0+l(P )]l0

�
� C2�[dQ+2]l(P )2�[dQ+2]l(P 0)dist�[2dQ+r+2]

N
�dQ=2 [log2N ]

[dQ+2]=2
:

5.5.Next we consider the function f3 under the assumption that the support supp P is

contained in the boundary patch �m and supp P 0 in �m0 . Moreover, we assume that the

distance dist := dist(supp P ; supp P 0) satis�es 0 < dist < �maxf2�l(P ); 2�l(P
0)g. In this

case dist is automatically greater or equal to the expression c�1� minf2�l(P ); 2�l(P
0)g, where

c� is the Lipschitz constant for the inverse parametrization mappings ��1m ; m = 1; : : : ; m�.

We arrive at

Lemma 5.4 Suppose the relations �dQ < r < 0; dQ � 1
2
minfdk; d� � 1g are valid

and assume 0 < dist < maxf2�l(P ); 2�l(P
0)g. For the sake of de�niteness, we �rst as-

sume maxf2�l(P ); 2�l(P
0)g = 2�l(P

0). We consider the domain of integration given by

D = supp [ P Æ �m] � supp [ P 0 Æ �m0 ]. For our quadrature, we split the larger support

supp [ P 0 Æ �m0 ] into the union of dyadic subsquares Siy; i = 1; : : : ; id such that:

i) The wavelet  P 0 Æ �m0 is polynomial over each Siy.

ii) The side length 2�l
i
y of Siy is less than the distance d from �m(S

i
y) to supp P and

larger than 0:25d.

iii) The minimal side length of a Siy is 2
�ld with ld the largest integer such that 2

�ld � dist.

iv) The number of subdomains for a �xed side length 2�l is less than 8.

We consider the integrand f = f3 from (5.9) over supp [ P Æ �m] � S
i
y. However, we

extend f replacing the wavelet function (x; y) 7!  P 0(�m0(y)) by the polynomial p(x; y)

which coincides with  P 0(�m0(y)) over D. Over each domain supp [ P Æ �m]� S
i
y we apply

the quadrature rule of Lemma 5.3. More precisely, we introduce the auxiliary functions

h(x; y) = [ P Æ �m(x)] and

g(x; y) = K

�
�m(x); �m0(y)

�
j�0m0(y)jj�0m(x)j

�
 P 0(�m(y)) if y 2 Siy
p(x; y) else :

If �f3;x;y is give by (5.1), then the composite Smolyak rule

Q(f3) :=

idX
i=1

X
x24S; y24S

\Siy :

[l(x)�l(P )]+[l(y)�li
y
]�l0

�f3;x;y; (5.21)

l0 :=
1

2
log2N �

1

2
log2 log2N �

1

2
log2[l(P ) + 1� l(P 0)]

includes no more than O(N) terms and quadrature knots. It requires no more than O(N)

arithmetic operations, and the corresponding quadrature error satis�es

jI(f3)�Q(f3)j � C

2�[dQ+2]l(P )

dist[dQ+r]
N
�

dQ

2 [log2N ]
dQ+2

2 [l(P ) + 1� l(P 0)]
dQ

2 :
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Under the same assumption but with 0 < dist < maxf2�l(P ); 2�l(P
0)g = 2�l(P ), an analogous

quadrature with the roles of  P and  P 0 interchanged leads to the estimate

jI(f3)�Q(f3)j � C

2�[dQ+2]l(P 0)

dist[dQ+r]
N
�

d
Q

2 [log2N ]
d
Q
+2

2 [l(P 0) + 1� l(P )]
d
Q

2 :

Proof. Suppose l(P ) > l(P 0). For a �xed i and supp [ P Æ �m]� S
i
y, the proof of Lemma

5.3 implies the bound C22l0l0 for the number of knots and the bound

C2�[dQ+2]l(P )2�[dQ+2]liy

h
2�l

i
y

i�[2dQ+r+2]

2�dQl0 l0 (5.22)

for the corresponding quadrature error. Note that the Smolyak rule for supp [ P Æ�m]�S
i
y

is de�ned with a coarsest level lyc adjusted to liy and not to l(P 0). Summing up over i we

arrive at

N �

idX
i=1

C22l0 l0 � C22l0 l0id � CN;

jI(f3)�Q(f3)j �

idX
i=1

C2�[dQ+2]l(P )2�[dQ+2]li
y

h
2�l

i
y

i�[2dQ+r+2]

2�dQl0 l0

� C

ldX
l=l(P 0)�log �

2�[dQ+2]l(P )2�[dQ+2]l
h
2�l
i�[2dQ+r+2]

2�dQl0 l0

� C2�[dQ+2]l(P )

ldX
l=l(P 0)�log �

2[dQ+r]l2�dQl0 l0

� C2�[dQ+2]l(P )dist�[dQ+r]2�dQl0 l0

� C

2�[dQ+2]l(P )

dist[dQ+r]
N
�

d
Q

2 [log2N ]
d
Q
+2

2 [l(P ) + 1� l(P 0)]
d
Q

2 :

Remark 5.2 If the levels l(P ) and l(P 0) coincide, then we can split both, the support of

the trial function  P Æ�m and the support of the test function  P 0 Æ�m0 into the squares Six
and Sjy of level l(P ), and we can set h(x; y) � 1 in the quadrature of Lemma 5.4. Indeed,

the derivatives of order k to the polynomials  P Æ �m and  P 0 Æ �m0 are bounded by 2kl(P ),

which is less than dist�k, and (5.22) remains valid.

5.6.Finally, we consider the case that the support supp P is contained in the boundary

patch �m and supp P 0 in �m0 ; m 6= m
0 and that these supports are not disjoint. Without

loss of generality suppose maxf2�l(P ); 2�l(P
0)g = 2�l(P

0). In this case we split the domain

of integration D = supp [ P Æ �m] � supp [ P 0 Æ �m0 ] into two parts D = D1 [ D2. Here,

by D1 we denote the union of all direct products Sx � Sy such that Sx � supp [ P Æ �m]

and Sy � supp [ P 0 Æ �m0 ] holds, that the curved squares �m(Sx) and �m0(Sy) have at least

one point in common, and that Sx and Sy are squares of level l(P ), i.e: squares from the
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uniform partition of the parameter domain S into 22l(P ) equal parts. By D2 we denote

the remainder. Now we can apply the quadrature of Lemma 5.3 and Remark 5.2 to the

domain D2. For the subdomains Sx � Sy � D1 with a common edge, we use

Lemma 5.5 Without loss of generality we assume that the intersection of �m \ �m0 is

the common side f�m((x1; 0)) : 0 � x1 � 1g with the additional property �m((x1; 0)) =

�m0((x1; 0)); 0 � x1 � 1. Moreover, to simplify the notation, we assume that Sx and Sy
coincide with the square f(x1; x2) : 0 � x1; x2 � 2�l(P )g. We split the domain of integration

D
0 = Sx � Sy into the three parts

D
0

4 :=
n
(x0; y0) 2 D0 : x02 � y

0

2; x
0

2 � jx01 � y
0

1j
o
;

D
0

5 :=
n
(x0; y0) 2 D0 : y02 � x

0

2; y
0

2 � jx01 � y
0

1j
o
;

D
0

6 :=
n
(x0; y0) 2 D0 : jx01 � y

0

1j � x
0

2; jx
0

1 � y
0

1j � y
0

2

o
;

and apply a transform similar to that of Du�y (cf: the formulae (5.10)-(5.12))

D
0

4 3
�
(x01; x

0

2); (y
0

1; y
0

2)
�

= 2�l(P )
�
(y1 + x

�
2x1; x

�
2 ); (y1; x

�
2 y2)

�
;

�
(x1; x2); (y1; y2)

�
2 D00

4 ;

D
0

5 3
�
(x01; x

0

2); (y
0

1; y
0

2)
�

= 2�l(P )
�
(x1; y

�
2 x2); (x1 + y

�
2 y1; y

�
2 )
�
;

�
(x1; x2); (y1; y2)

�
2 D00

5 ;

D
0

6 3
�
(x01; x

0

2); (y
0

1; y
0

2)
�

= 2�l(P )
�
(x1; y

�
1 x2); (x1 + y

�
1 ; y

�
1 y2)

�
;

�
(x1; x2); (y1; y2)

�
2 D00

6 ;

where � stands for a positive integer with � > [dQ + 1]=[�r]. Over the domains D00

i we

have to integrate the function f = fi+3 (cf: (5.10)-(5.12)). If  P Æ �m(x
0) coincides with

the polynomial p(x0) for x0 2 Sx and if  P 0 Æ �m(y
0) coincides with the polynomial ~p(y0) for

y
0 2 Sy, then we set

g(x; y) := K

�
�m

�
2�l(P )(y1 + x

�
2x1); 2

�l(P )
x
�
2

�
; �m0

�
2�l(P )y1; 2

�l(P )(x�2 y2)
��

�����0m0

�
2�l(P )y1; 2

�l(P )(x�2 y2)
��������0m�2�l(P )(y1 + x

�
2x1); 2

�l(P )
x2

�����
p

�
2�l(P )(y1 + x

�
2x1); 2

�l(P )
x
�
2

�
~p
�
2�l(P )y1; 2

�l(P )(x�2y2)
�
[x�2 ]

2
�x

��1
2

for f = f4, de�ne g for f = f5 and f = f6 analogously, choose h � 1, and retain the

de�nition of �f;x;y = �fi+3;x;y from (5.1). Then the Smolyak rule

Q(fi+3) :=
X

x24S; y24S:

[l(x)�l(P )]+[l(y)�l(P 0)]+�l0

�fi+3;x;y; l0 :=
1

2
log2N �

1

2
log2 log2N

includes no more than O(N) terms and quadrature knots. It requires no more than O(N)

arithmetic operations, and the corresponding quadrature error satis�es

jI(fi+3)�Q(fi+3)j � CN
�dQ=2 [log2N ]

[dQ+2]=2
2�[2�r]l(P )

:

The quadrature weights
RR
D00
i+3
 
S
x 
  

S
y can still be computed analytically.
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Proof. For de�niteness sake, we restrict our consideration to the quadrature over D00

4 .

From (5.7) we infer�
K

�
�m

�
2�l(P )(y1 + x

�
2x1); 2

�l(P )(x�2 )
�
; �m0

�
2�l(P )y1; 2

�l(P )(x�2 y2)
���

[x�2 ]
2
�x

��1
2 2�4l(P )

= k

�
�m

�
2�l(P )(y1 + x

�
2x1); 2

�l(P )(x�2 )
�
; �m0

�
2�l(P )y1; 2

�l(P )(x�2 y2)
�
;

F

�
2�l(P )y1; 2

�l(P )(x�2 ; x
�
2x1; x

�
2y2)

�
�
(1; x1; y2)
j(1; x1; y2)j���F�2�l(P )y1; 2�l(P )(x�2 ; x�2x1; x�2y2)

�
�
(1; x1; y2)
j(1; x1; y2)j

���
�
�

����F
�
2�l(P )y1; 2

�l(P )(x�2 ; x
�
2x1; x

�
2 y2)

�
�
(1; x1; y2)

j(1; x1; y2)j

����
�2�r

x
�r��1
2

j(1; x1; y2)j2+r

2[�2+r]l(P )
:

The only singular factor in the last expression is x�r��1
2 . Di�erentiation with respect to

x1, y1, and y2 does not lead to higher order singular factors. Only the di�erentiation with

respect to x2 decreases the singularity exponent in the power of x2 by one. Consequently,

the kernel function including the substituted variables and multiplied by the Jacobian of

the transformation mapping has continuous derivatives up to order dQ, and the partial

derivatives of f4 taken up to order dQ are uniformly bounded by C2[�2+r]l(P ). This fact

and the proof to Lemma 5.3 imply the estimate of the present lemma.

The quadrature weights
RR
D00
4
 
S
x 
  

S
y can still be computed analytically. Indeed, the

boundary of the transformed domain is determined by simple rational functions, and the

integration of polynomials in such a domain requires the primitives of simple rational

functions, only.

The case �m(Sx) \ �m(Sy) = fQg can be treated similarly. For simplicity of notation, we

assume that Sx and Sy coincide with f(x1; x2) : 0 � x1; x2 � 2�l(P )g and that �m \ �m0 =

fQg and Q = �m(0; 0) = �m0(0; 0). The domain D0 is to be split into four parts according

to which of the four coordinates x1, x2, y1, y2 is the largest. For de�niteness, we consider

the part where x1 is the largest. The transformation can be chosen by

D
0

1 :=
n
(x0; y0) 2 D0 : x01 = maxfx1; x2; y1; y2g

o
;

D
0

1 3
�
(x01; x

0

2); (y
0

1; y
0

2)
�

= 2�l(P )
�
(x�1 ; x

�
1x2); (x

�
1y1; x

�
1 y2)

�
;

�
(x1; x2); (y1; y2)

�
2 D00

1 :

Over the domains D00

i we have to integrate the function f = f7 (cf: (5.13)). We choose

h � 1 and retain the de�nition of �f;x;y = �fi+3;x;y from (5.1). Then the assertions of the

last lemma remain valid for the Smolyak rule applied to f7, and the proof is the same.

Even more, the condition on � can be relaxed to � > [dQ + 1]=[2� r].

6 The Quadrature Algorithm and its Complexity

Using the quadrature formulas of Sect: 4, the algorithm for the assembling of the sti�ness

matrix corresponding to the operator of multiplication and the computation of the right-
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hand side is de�ned. To set up the integrals hK P 0;  P i, we apply the Lemmata 5.2-5.5,

where the number of quadrature knots N = NP;P 0 is still to be given. We choose parameters

� slightly less than two, 
 slightly larger than two, 
0 slightly larger than one, �m slightly

less than zero, and �M slightly less than 1 + 

0. We introduce the numbers � := 2� � 


and �0 := 1 + �M + �m � 

0, and set (compare the compression strategy in (3.9))

NP;P 0 :=

8>>>>>>>>>><
>>>>>>>>>>:

max

�
1; 2

�L��l(P )��l(P 0)

Dist


�
if supp P ; supp P 0 � �m or if

dist � �max
�
2�l(P ); 2�l(P

0)
	

max

�
1; 2

�0L��mminfl(P );l(P 0)g��M maxfl(P );l(P 0)g

�dist

0

�
if 0 < dist < �max

�
2�l(P ); 2�l(P

0)
	
and

supp P [ supp P 0 not contained in a

single �m

(6.1)

Here the symbol Dist stands for the sum of the distance between the points P and P
0

plus the minimum minf2�l(P ); 2�l(P
0)g. Hence, we have dist < CDist and dist � Dist if

dist � maxf2�l(P ); 2�l(P
0)g. It turns out that the choice of the quadrature leads to an

algorithm of almost optimal complexity.

Theorem 6.1 Suppose the assumptions of Theorem 3.1 are ful�lled. If N = O(22L) is

the dimension of the trial space (number of degrees of freedom), then the number N of all

quadrature knots and the number of all arithmetic operations necessary for the assembling of

the sti�ness matrix and the computation of the right-hand side is O(N logN). In particular,

the last complexity bound does not depend on the parameter �.

Proof. To get the right-hand side (�
Q
P )P , we have to compute the approximate integrals

Q(vÆ�m p Æ �m) over the level L subdomains. This step requires O(N) operations. Next we

have to add these values to form (4.1). Since each �m;L;k is contained in no more than O(L)

supports supp P , we need no more than O(N logN) operations for the right-hand side.

To obtain the approximate multiplication operator, we �rst compute the values QL;k;p1;p2

which requires no more than O(N) operations. Even the next step, the determination of

the Ql;k;p1;p2 with l < L can be established with no more than O(N) operations. Finally, the

summation in (4.3) cost no more than O(N logN) operations, since each curved triangle

�m;l;k is contained in at most O(L) supports supp P of level l(P 0) � l. In other words, the

computation of the discretized multiplication operator requires no more than O(N logN)

operations, too.

Next we count the operations for the assembling of the discretized integral operator. Ob-

viously, the number of all necessary arithmetic operations is less than a constant multiple

of the number of quadrature knots. Thus we only have to count the knots. We split N

into the sum
P2

i=1Ni, where the Ni are the counts for the knots in the two special cases

appearing in the de�nition (6.1). First we consider the case that supp P ; supp P 0 � �m
or dist � �maxf2�l(P ); 2�l(P

0)g. From (6.1) and the estimate for the non-zero entries in
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Theorem 3.1, we conclude

N1 �
X
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In the second case
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Clearly, the number of all  P with P 2 rl(P ) such that there is a grid point P 0 with

P
0 2 rl(P 0); l(P

0) � l(P ), with dist � �2�l(P ), and with supp P 0 not contained in the

same �m, is less than O(�2l(P )). Using this fact, we continue
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0
��M ]L � CN logN:

7 The Estimate of the Quadrature Algorithm

Theorem 7.1 Suppose that the assumptions of Theorem 3.1 are ful�lled and that the

quadrature order dQ and the number of vanishing moments ~
dT satisfy 2dT � r < dQ � ~

dT .
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Moreover, suppose that dQ �
1
2
minfdk; d� � 1g, that D > D0, L � L0 (cf: Theorem 3.1)

and that the compressed matrix A
Q
L � A

C
L together with the right-hand side �Q = (�

Q
P )P24L

is computed by the quadrature algorithm of the previous sections. Finally, suppose that

the constant � is chosen as � := L
0:5[dQ+4]=[2dQ+r�
dQ=2]. Then the discretized opera-

tor A
Q
L : H

0 � VL �! ~
VL � H

�r is invertible and the inverse is bounded uniformly

with respect to L and D. In particular, the solution �
Q = (�

Q
P )P24L
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and quadrature approximated equation A

Q
L�

Q = �
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u

Q
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P
P24L

�

Q
P  P converges to the exact solution according to

ku� u

Q
LkHr�d

T (�) � C[2�L]2dT�r kukHd
T (�): (7.1)

Proof. i) First we consider the error due to the quadrature applied to the computation of

the terms hK P 0;  P i in the entries of the sti�ness matrix. Without loss of generality we

suppose r < 0. Indeed, the case of a Fredholm integral equation of the second kind with

order r = 0 can be treated analogously to the case r < 0. We only have to replace r in the

kernel singularity estimates by �1 and to keep r = 0 in the places where really the order

of the operator is needed.

ii) In this point of the proof, we analyze the error caused by the quadrature for the term

hK P 0;  P i in the entries with dist larger than �maxf2�l(P ); 2�l(P
0)g. We denote the

absolute values of the corresponding terms in the entries of ACL � A

Q
L by bP;P 0. From the

de�nition of the NP;P 0 and Lemma 5.3 we infer
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To derive the missing consistency estimates (cf: (3.14)-(3.15)), we use Lemma 3.2. Setting

x = �1, we obtain
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Clearly, the last sum over P 0 2 rl(P 0) multiplied by 2
�2l(P 0) is less than the bounded integralR
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Thus we continue
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(7.2)

Here, by the bracket [ � ]+ with lower index +, we have denoted the positive part of the

expression inside of the bracket. Analogously, for the second sum in the Schur estimate,

we arrive at
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This estimate together with (7.2), with our choice of �, and with Lemma 3.2 implies the

assertions of the theorem for the quadrature errors in the case that dist is larger than

�maxf2�l(P ); 2�l(P
0)g.

iii) Next we estimate the error caused by the quadrature for hK P 0;  P i in the entries with

dist less than �maxf2�l(P ); 2�l(P
0)g but with supports supp P and supp P 0 contained in

a single parametrization patch �m. We denote the absolute values of the corresponding

terms in the entries of ACL �A
Q
L by bP;P 0. From the de�nition of the NP;P 0, Lemma 5.2, and
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the analogous result for the estimation of f2, we infer
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To derive the missing consistency estimates (cf: (3.14)-(3.15)), we use Lemma 3.2. Setting

x = �2 for l(P ) � l(P 0) and x = 0 for l(P ) > l(P 0), we obtain
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Here, using an integral as bound resp. a simple majorant for a sum of one item, we get

the following estimates for the sums over P 0.
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Inserting these formulas, we arrive at
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For the second sum in Schur's lemma, we analogously get
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Estimating the sum over P 0 by an integral resp. by a simple upper bound for one item, we
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This estimate together with (7.3) and with Lemma 3.2 implies the assertions of the the-

orem for the quadrature errors in the case that the entries have a distance dist less than

�maxf2�l(P ); 2�l(P
0)g and supports supp P and supp P 0 contained in a single parametri-

zation patch �m.

iv) Next we estimate the error caused by the quadrature for hK P 0;  P i in the entries with

0 < dist < �maxf2�l(P ); 2�l(P
0)g but with supports supp P and supp P 0 not contained

both in the same parametrization patch �m. We denote the absolute values of the corre-

sponding terms in the entries of ACL � A

Q
L by bP;P 0 and set lm := minfl(P ); l(P 0)g as well
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2
g
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We assume dQ > 2dT � r in Theorem 7.1. Furthermore, without loss of generality we

assume dQ < 2dT � 2r. Note, if dQ < 2dT � 2r does not hold, then we can replace the

parameter dQ by a d0Q with the additional property d0Q < 2dT �2r, and Lemma 5.4 remains

true with dQ replaced by d0Q. Thus we have �dT +r+[�M�

0]
dQ
2
< 0 and �dT +�m

dQ
2
< 0.

We conclude

�
t0;t
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2 2Lf[dT�t]+[dT+t
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�

(
O(L�1) if t0 = �r; t = 0

C�dQ=2
L
dQ+12�L�

0
dQ

2 if t0 = �dT ; t = dT :
(7.4)

Analogously, for the second sum in the Schur estimate, we arrive at

�
t0;t
2 � C

L�1X
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sup
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� X
P24L
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X
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�
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+2l(P
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d
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� L�1X
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2l(P )ft
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d
Q

2
�[dQ+2]g

X
P2rl(P ):

0<dist<�2�l(P
0)

dist�[dQ+r]+
0
d
Q

2

��

Estimating the sum over P by an integral resp. by a simple upper bound for one item, we

get

�
t0;t
2 � C�dQ=2

L
dQ+12�L�

0
d
Q

2

L�1X
l(P 0)=�1

�
2l(P

0)f�t+2+�M
d
Q

2
�[dQ+2]g �

� l(P 0)�1X
l(P )=�1

2l(P )ft
0+�m

d
Q

2
g2�l(P

0)f�[dQ+r]+
0
d
Q

2
g

�

+2l(P
0)f�t+2+�m

d
Q

2
g �� L�1X

l(P )=l(P 0)
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2
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(
O(L�1) if t0 = �r; t = 0
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L
dQ+12�L�

0
d
Q

2 if t0 = �dT ; t = dT :

This together with (7.4) and with Lemma 3.2 implies the assertions of the theorem for the

quadrature errors in the case that dist is positive and less than �maxf2�l(P ); 2�l(P
0)g.

v) Next we estimate the error caused by the quadrature for hK P 0 ;  P i in the entries

with 0 = dist but with supports supp P and supp P 0 not contained both in the same

parametrization patch �m. However, in view of the Lemmata 5.4 and 5.5 we have the same

estimates as for the case that the wavelets are supported on di�erent parametrization

patches and 0 < dist � minf2�l(P ); 2�l(P
0)g. Therefore the technique from the part iv) of

the present proof applies also to the case 0 = dist.

vi) Finally, the estimate (3.16) is an immediate consequence of the estimate in Lemma

4.1, i.e: the error due to the quadrature of the right-hand side is bounded by O(2�L[2dT�r]).

To estimate the error due to the discretized multiplication, we set x = �1 and apply the
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Lemmata 3.2 and 4.2. We de�ne � := 0 for t > 0 and � := 1 for t = 0, and get

�
t0;t
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2�tl(P
0)

� C
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O(L�1) if t0 = �r; t = 0

2�LdQ if t0 = �dT ; t = dT :

On the other hand, setting � := 0 for t0 < 0 and � := 1 for t0 = 0, we get

�
t0;t
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L�1X
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sup
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Thus the theorem is proved.
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