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Abstract. This work is concerned with the mathematical analysis of a system of par-

tial di�erential equations modeling the e�ect of phase separation driven by mechanical

actions in binary alloys like tin/lead solders. The system combines the (quasistationary)

balance of linear momentum with a fourth order evolution equation of Cahn{Hilliard

type for the phase separation, and it is highly nonlinearly coupled. Existence and

uniqueness results are shown.

1. Introduction

In many cases binary alloys consist of two coexisting phases. If these alloys are exposed

to thermo-mechanical loads, the interface boundaries are set into motion and drastic

changes of the morphology in the �m (micron) range will arise. Phase �eld models

describe the morphology by means of an order parameter that indicates the present

phase at time t and at any point x of the alloy. In the binary tin/lead alloy, which was

studied intensively by Dreyer and M�uller (see [6{7]), the tin concentration by itself

can be used as a phase �eld.

The phase �eld system that was used in the recent paper [6] to study and describe

qualitatively phase seperation and coarsening processes under external thermomechan-

ical load observed in the binary tin/lead alloy is the following.

The variables are the �elds of

u(x; t) (mechanical) displacement

�(x; t) (tin) concentration.

The �eld equations rely on the static momentum balance and on the conservation law

of the tin content. They read

@�ij

@xj
= 0 and

@�

@t
+
@Jk

@xk
= 0

where the repeated index convention is in force. Let us describe the ingredients of such

equations. The stress tensor is given by Hooke's law including eigenstrains that result

here from di�erent thermal expansions of the phases

�ij = Cijhk(�)
�
"hk � "

�

hk (�)
�

with "hk =
1

2

�
@uh

@xk
+
@uk

@xh

�
:

For a realistic description of the tin/lead system the sti�ness matrix and the eigenstrains

should depend on the concentration because both phases behave di�erently in their

elastic properties as well as in their thermal expansion coeÆcients. We take care for

this by the representations

Cijhk(�) = �(�)C�
ijhk + (1��(�))C

�
ijhk

with the shape function �(�) =
c
�
� �

c� � c�
:
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In the above equation C�
ijhk and C

�
ijhk denote the sti�ness matrices of the cubic �� phase

and of the tetragonal � � phase, respectively. The concentrations c� and c� appearing

in the shape function are the temperature dependent equilibrium concentrations of the

tin/lead phase diagram.

The eigenstrains are assumed to be given by

"
�

hk(�) = �hk(�) (T � TR)

with �hk(�) = �(�)��hk + (1��(�))�
�
hk:

The matrices of thermal expansion coeÆcients of the phases are denoted by ��hk and �
�
hk,

and T and TR are the actual temperature and the reference temperature, respectively.

We assume T and TR to be two �xed constants since our analysis is con�ned to the

isothermal case. For details regarding data and explicit forms of these matrices, we refer

the reader to [6].

Next, we consider the di�usion ux which is given by the extended Cahn{Hilliard

form

Ji = �Mij(�)
@ bw
@xj

where the potential bw is de�ned according to

bw =
@ (�)

@�
� aij(�)

@
2�

@xi@xj

+
1

2

@

@�

�
("ij � "

�

ij(�))Cijhk(�) ("hk � "
�

hk(�))
�
:

The function  (�) is the non-convex combined free energy of the phases, the matrix

aij(�) contains the gradient coeÆcients that can be related to interface surface tensions

and the mobility appears also as a matrix here, i.e. Mij(�), in order to reect the

anisotropy of the di�usion process. The matrices Mij(�) and aij(�) are constructed in

the same way as the sti�ness matrix and the eigenstrains, namely

Mij(�) = �(�)M�
ij + (1��(�))M

�
ij

aij(�) = �(�) a�ij + (1��(�)) a
�
ij:

For given initial and boundary data, the system was used by Dreyer and M�uller (see

[6{9]) for a numerical simulation of various phase separation processes in tin/lead

alloys.

However, for a rigorous mathematical treatment, the system contains too many

complexities. In particular, the quadratic dependence of the potential bw with respect to

the strain tensor renders the analysis diÆcult. Indeed, Lp�estimates for ru are known

to hold just for p close to 2 while global L4
�estimates would be required. Therefore, in

order that the problem turns out to be accessible, we have to make some simpli�cations

concerning the dependence of the matrices Mij, Cijhk, and aij on the concentration

�eld �. Firstly, we restrict ourselves to the setting described below.
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A solid{solid phase change model 3

� Mij(�) = Æij , i.e. Mij is the identity matrix;

� ahk(�) =
�
�(�)a� + (1��(�))a�

�
Æij =: a(�)Æij , i.e. aij reduces to an isotropic

matrix;

� the concentration �eld � is forced to attain only values within the closed interval

[�; �] by including the indicator function I of the interval [�; �] in the poten-

tial  ;

� the potential bw is replaced by a a new variable w which contains in addition the

term �@t
�, where � is a �xed positive constant.

Note that in our framework the new constitutive relation w-� has to be properly

read as a di�erential inclusion. Hence, we are led to the following system

@xj�ij = 0 (1:1)

�ij = Cijhk(�)
�
"hk � "

�

hk(�)
�

(1:2)

"hk =
1

2
(@xhuk + @xkuh) (1:3)

@t
���w = 0 (1:4)

w 2 � @t�� a(�)��+
@ 

@�
+ @I(�)� �hk

@"
�

hk

@�

+
1

2

�
"ij � "

�

ij

�@Cijhk
@�

�
"hk � "

�

hk

�
: (1:5)

The system has to be complemented by appropriate initial and boundary conditions

that will be given explicitly in the next section. It is the aim of this paper to study

the well-posedness of the initial-boundary value problem. We are going to show that

existence and uniqueness results can be obtained for the case N = 1, and for the case

N = 2 provided that the matrix Cijhk is independent of �.

These results have to be compared with Garcke's recent thesis [11] on the same

subject: Garcke makes the simplifying assumption that the gradient matrix aij does

not depend on �; moreover, he does not consider a di�erential inclusion in order to

guarantee the constraint � 2 [�; �]. However, Garcke's existence results apply to the

general N � dimensional case, and the sti�ness matrix Cijhk may depend on �. For

uniqueness, he also has to assume that Cijhk does not depend on � (see the last remark

at the end of this paper). We also note at this point that, owing to the presence of the

smoothing term �@t
� in (1.5), our solution has more regularity than Garcke's. On the

other hand, the introduction of such a term yields a model that is in agreement with

observed results in short time intervals. We also stress the fact that there is strong

experimental evidence for a ��dependence of the gradient matrix, which inuences the

evolution of the microstructure drastically.

The Figure 1.1 shows the speci�c free energy of the model and the corresponding

common tangent construction. This construction results in the sharp interface limit

if the gradient coeÆcient is independent of the concentration. The consideration of

an observed concentration dependence leads in the same limit to a modi�ed common

tangent construction that includes e�ective speci�c free energies with reduced barriers

between the two minima. If additionally the gradient coeÆcients are formed by an

3
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Figure 1.1

anisotropic matrix, the e�ective speci�c free energies become dependent on the interface

normal. This fact is reected by the three other graphs of Figure 1.1 which give for

a diagonal matrix in 2D with di�erent coeÆcients, the e�ective free energies in the

directions (1,0), (1,1), and (0,1), respectively (see [10] for details).

2. Statement of the problem

In this section, we �rst rewrite system (1.1{5) in a form that is more suitable for the

mathematical treatment. Then, we list the precise assumptions we need and state our

results. We introduce

yij(�) := �Cijhk(�) "
�

hk(�) for � 2 [�; �] (2:1)

and present (1.1{2) as

�@xj

�
Cijhk "hk

�
= @xjyij :

Moreover, we assume that the tensor C = (Cijhk) is a Lipschitz function of �, and

de�ne the tensor C 0 = (C 0ijhk) and the function � as follows

C
0

ijhk(�) =
@Cijhk

@�
(2:2)

�(�) =
@ (�)

@�
+
1

2
"
�

ij(�)C
0

ijhk(�) "
�

hk(�) for � 2 [�; �]: (2:3)

Hence, C 0 is bounded and equation (1.5) reads

w 2 � @t�� a(�)��+ @I(�) + �(�) + zij(�) "ij +
1

2
"ij C

0

ijhk(�) "hk

4



A solid{solid phase change model 5

for suitable functions zij de�ned on [�; �]. More generally, we replace the sum of

the subdi�erential @I and of some monotone part �M of � = �M + �A by a maximal

monotone graph �.

So, accounting also for the boundary and initial conditions, we can state the full

problem, at least formally, as described below. To this aim, we explain our notation.

In the sequel, 
 denotes a bounded connected open set in R
N and j
j stands for

its Lebesgue measure. The boundary � of 
 is smooth and consists of two smooth and

nonempty parts �u and �� . We term n the outward unit normal on � and, given a �nal

time T , for the sake of convenience we set

Q := 
� (0; T ); � := �� (0; T ); and �i := �i � (0; T ) for i = u; �. (2:4)

We look for a quadruplet (u; �; �; w) de�ned in Q, where the displacement u is a vector

valued function while �; �; w are scalar valued functions, satisfying the couple of systems

described below. The �rst one consists in the linear elasticity system for u with mixed

boundary conditions, namely

@xj

�
Cijhk(�) "hk(u) + yij(�)

�
= 0 in Q (2:5)

u = 0 on �u (2:6)�
Cijhk(�) "hk(u) + yij(�)

�
nj = 0 on �� (2:7)

where the linearized strain tensor "(u) = ("hk(u)) is de�ned as in (1.3), i.e.,

"hk(u) =
1

2
(@xhuk + @xkuh) (2:8)

and the right hand sides in (2.6{7) have been taken equal to zero just for the sake of

simplicity (however, see the �rst remark below).

The second system is an initial{boundary value problem for a Cahn{Hilliard type

equation for �, namely

@t���w = 0 in Q (2:9)

w = � @t�� a(�)��+ � + (�; "(u)) in Q (2:10)

� 2 �(�) in Q (2:11)

r� � n = rw � n = 0 on � (2:12)

�(0) = �
0 in 
 (2:13)

where  : [�; �]� R
N2

! R is related to the previous functions by

(�; ") := �A(�) + zij(�) "ij +
1

2
"ij C

0

ijhk(�) "hk (2:14)

and �0 is a prescribed initial datum.

Now, we specify our assumptions on the structure of systems (2.5{7) and (2.9{13).

Although we could let some of the coeÆcients and functions depend also on x and t, we

5
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prefer to avoid further technicalities and assume the stronger conditions listed below,

where �0 > 0 and L;M; � � 0 are constants and the corresponding inequalities hold for

any �; �0 2 [�; �] and any symmetric tensors "; "0 2 R
N2

.

�; �; � 2 R with � < � and � > 0 (2:15)

C = (Cijhk) : [�; �]! R
N4

is Lipschitz continuous (2:16)

Cjihk(�) = Cijhk(�) = Chkij(�) (2:17)

Cijhk(�) "hk "ij � �0j"j
2 where j"j

2 := "ij "ij (2:18)

y = (yij) : [�; �]! R
N2

is Lipschitz continuous (2:19)

a : [�; �]! R is Lipschitz continuous and

a0 := inf a� (�� �) sup ja0j > 0 (2:20)

� is a maximal monotone graph in R � R with dom� = [�; �] (2:21)b� : R ! (�1;+1] is convex, proper, l.s.c. and @b� = � (2:22)

 : [�; �]� R
N2

! R satis�es

j(�; ")� (�0; "0)j

� L
�
1 + j"j+ j"

0
j

� �
j�� �0j+ �j"� "

0
j

�
+ Lj"� "

0
j (2:23)

as well as

j(�; ")j �M(1 + j"j+ �j"j
2): (2:24)

Clearly, the above assumptions on yij and  are ful�lled if yij and  are constructed

as above, provided that the functions  , Cijhk, and "
�

ij are smooth. Moreover, note that

(2.20) is satis�ed if a is a positive constant; more generally, it is ful�lled whenever the

variation of a is small enough. Finally, � = 0 if the tensor C 0 vanishes, i.e., if C does

not depend on �.

Theorem 2.1. Assume (2.15{24) and either N = 2 and � = 0 or N = 1. Assume

moreover

�
0 2 H

1(
) and �
0 2 [�; �] a.e. in 
 (2:25)

� < �� < �; where �� :=
1

j
j

Z



�
0: (2:26)

Then, there exists a quadruplet (u; �; �; w) such that

u 2 L1(0; T ;H1(
)N ) (2:27)

� 2 H
1(0; T ;L2(
)) \ C0([0; T];H1(
)) \ L2(0; T ;H2(
)) \ L1(Q) (2:28)

� 2 L
2(Q) (2:29)

w 2 L
2(0; T ;H2(
)) (2:30)

which solves (2.5{13) in the following sense: equation (2.5) is understood in the sense

of distributions, (2.9{11) are satis�ed a.e. in Q, and the boundary conditions hold in

the sense of the appropriate trace theorems.

6
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As far as uniqueness is concerned, we observe that the components � and w of a

solution would be uniquely determined by u and � if � were single valued. However,

this is not the case in our framework. Hence, we look for a unique pair (u; �), only.

Theorem 2.2. Assume (2.15{24) and (2.25{26) and let (ui; �i; �i; wi), i = 1; 2, be

two solutions to problem (2.5{13). Then u1 = u2 and �
1 = �

2 provided that one of

the following assumptions is ful�lled: (i) N = 1; (ii) N = 2 and the supplementary

regularity condition

ui 2 L
4(0; T ;W 1;4(
)N ) (2:31)

holds for i = 1; 2; (iii) N = 2, � = 0 in (2.23{24), and condition (2.31) holds for either

i = 1 or i = 2.

Remark 2.3. Concerning the interpretation of (2.7), we point out that the regularity

of u and � and our structure assumption together with equation (2.5) imply that,

for a.a. t 2 (0; T ), each row of the matrix

Cijhk(�(t)) "hk(u(t)) + yij(�(t))

belongs to L2(
)
N

and its divergence is still in L
2(
). Hence, the left hand side of

(2.7) makes sense in H
�1=2(�) (see, e.g., [4, Thm. 1 p. 240]). As far as the couple

of boundary conditions (2.6{7) is regarded, we note that minor changes in the sequel

would allow us to deal with non zero right hand sides satisfying very weak regularity

assumptions. Moreover, we could also consider the case �u = �, i.e., �� is empty, and

one forgets about (2.7). On the contrary, some modi�cation has to be done even in the

statements if one takes an empty �u, since the �rst component u of the solution would

be unique only up to a rigid motion. Nevertheless, this case can be treated too.

The next sections are devoted to the proof of our results. For the sake of conve-

nience, we de�ne

V := H
1(
); H := L

2(
); W :=
�
v 2 H

2(
) : @nv = 0 on �
	

(2:32)

V :=
�
v 2 V N : v = 0 on �u

	
and V := L

2(0; T ;V): (2:33)

We see H as a subspace of V 0 and denote by h�; �i the duality pairing between V 0 and V .

Moreover, we use the symbol k � k for the standard norm in V , while j � j
 and ( � ; � )

stand for the norm in H and for the corresponding scalar product, respectively. For the

sake of simplicity, we use the same symbol for the norm (or for the scalar product) in a

space and in a power of it. In particular, this holds for V and V, which is a subspace

of V N . Next, we de�ne

KR :=
n
� 2 L

2(0; T ;V ) : k�kL2(0;T ;V ) � R and � � � � � a.e. in Q
o

(2:34)

where the radius R will be chosen later. Indeed, in order to prove our existence result,

we are going to apply the Schauder �xed point theorem to the map F constructed on

7



8 Bonetti { Colli { Dreyer { Gilardi { Schimperna { Sprekels

KR as follows: given �, we solve (2.5{7) for u and then we solve (2.9{13) for �. Finally,

we give advice to the reader that we widely use the notation

Qt := 
� (0; t) for t 2 (0; T ) (2:35)

and the elementary inequality

ab � Æa
2 +

1

4Æ
b
2

8 a; b 2 R 8 Æ > 0 (2:36)

and that we write always c, even in the same formula, for di�erent constants which

depend only on the constants and on the norms of the functions involved in assump-

tions (2.15{24), and on the �nal time T . On the contrary, a notation like cÆ allows the

constant to depend on Æ, in addition.

3. The elliptic problem

In this section, we build and study the �rst step of our construction, i.e., we deal with

the elliptic part (2.5{7) of problem (2.5{13). We show that, for a given �, (2.5{7) is

well-posed, we derive an a priori estimate, and prove that the map

F1 : KR ! V; � 7! u (3:1)

that gives the solution u for a given datum � is continuous.

First of all, we write the variational formulation of problem (2.5{7). We choose

any v = (v1; : : : ; vN ) 2 V and multiply (2.5) by vi. Then, we integrate over 
, sum

over i, rearrange, and use the Green formula. Accounting for (2.17) and (2.7), we obtain

Z



Cijhk(�(t)) "hk(u(t)) "ij(v) =

Z



yij(�(t)) "ij(v) 8v 2 V (3:2)

for a.a. t 2 (0; T ). We note that (3.2) yields a variational formulation of system (2.5{7),

if we specify in advance that u belongs, e.g., to V.

In order to study (3.2), we apply [5, Thm. 3.3, p. 115], which combines the Korn

inequality ([5, p. 110]) with a property of the subspace of the rigid motions, and obtain

the inequality Z



Cijhk(�(t)) "hk(v) "ij(v) � � kvk
2

8v 2 V (3:3)

where � is a positive constant, related to �0 (see (2.18)) and independent of v, �, and t.

Hence, we apply the Lax{Milgram theorem and obtain, for a.a. t 2 (0; T ), a unique

solution u(t) 2 V to (2.5{7).

Basic a priori estimate. We choose v = u(t) in (3.2) and use (3.3). We obtain

ku(t)k � cmax
i;j

jyij(�(t))j
 � bC
8



A solid{solid phase change model 9

with a constant bC which depends only on �, 
, and on the maximum norm of yij
(see (2.19)). In particular, bC does not depend on �. We write the previous inequality as

kukL1(0;T ;V) �
bC: (3:4)

The next step is studying the continuity of F1.

Lemma 3.1. Under the assumptions of Theorem 2.1, the map F1 : KR ! V is

continuous, if KR is endowed with the topology induced by L2(0; T ;V ).

Proof. Assuming that �n; �� 2 KR and that �n ! �
� in L

2(0; T ;V ) strongly. We set

un := F1(�n) and u� := F1(��) and show that un ! u� in V strongly. For any v 2 V

and for a.a. t 2 (0; T ), we haveZ



Cijhk(�n(t))
�
"hk(un(t))� "hk(u�(t))

�
"ij(v)

=

Z



Cijhk(�n(t)) "hk(un(t)) "ij(v)�

Z



Cijhk(��(t)) "hk(u�(t)) "ij(v)

�

Z



�
Cijhk(�n(t))� Cijhk(��(t))

�
"hk(u�(t)) "ij(v)

=

Z



�
yij(�n(t))� yij(��(t))

�
"ij(v)

�

Z



�
Cijhk(�n(t))� Cijhk(��(t))

�
"hk(u�(t)) "ij(v):

Now, we choose v = un(t) � u�(t) and integrate over (0; T ). In view of (3.3), we

easily get

� kun � u�k
2

V
�

Z
Q

�
yij(�n)� yij(��)

� �
"ij(un)� "ij(u�)

�
�

Z
Q

�
Cijhk(�n)� Cijhk(��)

�
"hk(u�)

�
"ij(un)� "ij(u�)

�
:

Thanks to (2.19), we deduce that yij(�n)! yij(��) strongly in L
2(Q) and immediately

see that the �rst integral on the right hand side tends to 0 owing to (3.4). The second

one can be treated in the same way, provided we prove that the product of the �rst

two factors of the integrand converges to 0 strongly in L
2(Q). The �rst factor tends

to 0 strongly in L
p(Q) for any p < 1, since fCijhk(�n)g is bounded in L

1(Q) and

converges to Cijhk(��) in L
2(Q) by (2.16). Hence, we can conclude once we know

that "hk(u�) 2 L
q(Q) for some q > 2. But this regularity result for the solution to

problem (2.5{7) follows, for instance, by [15, Thm. 2.6, p. 192].

Remark 3.2. In the one-dimensional case, system (2.5{7) can be solved by an explicit

formula and one easily sees that (3.4) can be improved. Indeed, for any p 2 [1;1] the

following estimate holds

kukL1(0;T ;W 1;p(
)) �
bCp (3:5)

9
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for any solution u to (2.5{7), where the constant bCp depends on p, in addition. If

instead N > 1, we can only say that (3.5) holds for some p > 2 as a consequence

of [15]. Unfortunately, this value of p is close to 2 in general and we cannot ensure

that (3.5) holds with p = 4. Moreover, even a weaker inequality like

kukL4(0;T ;W 1;4(
)) �
bC4

(cf. (2.31)) is not known, and that is why we have to assume � = 0 somewhere in our

statements. This fact will be clear in the next sections.

4. The Cahn{Hilliard system

In this section, we build and study the second step of our construction, i.e., the map

F2 : domF2 :=
n
u 2 V : kukL1(0;T ;V) �

bCo! KR; u 7! � (4:1)

where � is the �rst component of the solution (�; �; w) to (2.9{13) corresponding to the

given u. The choice of the domain of F2 prescribes that every given u ful�lls the basic

estimate (3.4). So, we have �rst to show that (2.9{13) has a unique solution and to

estimate the norm of that solution in order to �x the parameter R suitably. Then, we

prove continuity for F2 and relative compactness for its range by means of a number of

a priori estimates.

To this aim, we introduce some operators and present (2.9{13) in an abstract form.

First, we denote by A the operator from V to V 0 de�ned by

hAu; vi :=

Z



ru � rv 8u; v 2 V: (4:2)

Note that u 2W and Au = ��u whenever Au 2 H. Let us also introduce the following

subspaces, characterized by the zero mean value condition,

V0 := fv 2 V : hv; 1i = 0g and V
0

0 := fu 2 V
0 : hu; 1i = 0g : (4:3)

We remark that our assumptions on 
 imply that A maps V onto V 00 and that the

kernel of A is the subspace of all constant functions. Therefore, the restriction of A to

V0 maps V0 onto V
0

0 isomorphically and we can de�ne N by the conditions

N : V 0

0 ! V0 and AN v = v 8 v 2 V
0

0 (4:4)

i.e., N v is the solution with zero mean value of a generalized Neumann problem with

right hand side v. Hence, the following relations hold

hAu;N vi = hv; ui 8u 2 V; 8 v 2 V
0

0 (4:5)

hu;N vi = hv;Nui =

Z



(rNu) � (rN v) 8u; v 2 V
0

0 (4:6)Z t

0

hv
0(s);N v(s)i ds=

1

2
kv(t)k

2
�
�

1

2
kv(0)k

2
�

8 v 2 H
1(0; T ;V 00); 8 t 2 [0; T] (4:7)

10



A solid{solid phase change model 11

where k � k
�
is a norm on V 00 which is equivalent to the usual one. Indeed

kvk
2
�
= hv;N vi = jrN vj

2

 8 v 2 V

0

0 (4:8)

and the Poincar�e inequality holds in V0.

Now, we are ready to write the abstract version of problem (2.9{13), where we

take � = 1 without loss of generality. Under the assumptions of Theorem 2.1, given

u 2 V satisfying estimate (3.4), we look for a triplet (�; � w) which ful�ls

� 2 H
1(0; T ;H) \ C0([0; T];V ) \ L2(0; T ;W ) \ L1(Q) (4:9)

� 2 L
2(Q) (4:10)

w 2 L
2(0; T ;W ) (4:11)

and solves the following system

@t�(t) +Aw(t) = 0 in V 0; for a.a. t 2 (0; T ) (4:12)

w = @t
�+ a(�)A�+ � + (�; "(u)) a.e. in Q (4:13)

� 2 �(�) a.e. in Q (4:14)

�(0) = �
0: (4:15)

In the sequel, we assume N = 2 and � = 0 in (2.23{24), while we make just some

remarks to include the case N = 1 and arbitrary �. First of all, we observe that (4.12)

immediately implies

@t

Z



�(t) =

Z



@t
�(t) = 0 for a.a. t 2 (0; T )

i.e., @t�(t) always belongs to the domain of N . Moreover, we also have

1

j
j

Z



�(t) =
1

j
j

Z



�
0(t) = �� 8 t 2 [0; T]

and the same remarks hold for the regularized problems we are going to introduce.

Indeed, we are going to solve (4.12{15) by approximating that system and passing to

the limit with the help or suitable a priori estimates. We use the Yosida regularization ��
of � (see, e.g., [2, p. 28]).

As �� is de�ned everywhere, the constraints � � � � � included in (4.14) are lost

in the regularized problem. Hence, we have �rst to extend the de�nitions of a and  and

allow any value of � in their arguments. Clearly, this can be done in a way that preserves

the boundedness, Lipschitz continuity, growth, and ellipticity properties prescribed in

assumptions (2.16{20) and (2.23{24). As far as (2.20) is concerned, we have to extend

a by setting a(�) = a(�) and a(�) = a(�) for � < � and � > �, respectively. For the

sake of simplicity, we do not write the analogous inequalities for the extended functions

and still refer to (2.16{20) and (2.23{24).

11



12 Bonetti { Colli { Dreyer { Gilardi { Schimperna { Sprekels

Here is the regularized problem. We look for a pair (��; w�), satisfying regularity

requirements analogous to (4.9) and (4.11) but the boundedness of the �rst component,

such that

@t��(t) + Aw�(t) = 0 in V 0; for a.a. t 2 (0; T ) (4:16)

w� = @t�� + a(��)A�� + ��(��) + (��; "(u)) a.e. in Q (4:17)

�
�(0) = �

0: (4:18)

The existence of a solution to the above problem can be shown by using, e.g., a Galerkin

scheme. However, we avoid this proof, since the discretization procedure is standard

and the a priori estimates we are going to derive give also the outline of the convergence

of the discrete solution to the solution to the approximating problem (4.16{18). So,

we start with a solution (��; w�) to (4.16{18), directly. We remark instead that the

existence of such a solution is ensured provided that ( � ; "(u)) maps L2(0; T ;V ) into

L
2(0; T ;H) and is Lipschitz continuous. This condition follows from (2.23{24) with

� = 0. Indeed, in this case, ( � ; "(u)) maps L2(0; T ;H) into itself and is Lipschitz

continuous.

Lemma 4.1. Under the assumptions of Theorem 2.1 with N = 2 and � = 0 in

inequalities (2.23{24), �x any u 2 domF2. Then, problem (4.12{15) has at least a

solution satisfying the regularity requirements (2.28{30) and the estimate

k�kL2(0;T ;V ) � R (4:19)

where R depends only on the constants in assumptions (2.15{24), on the domain 
, on

the �nal time T , and on the initial datum �
0.

Proof. Our argument relies on a number of a priori estimates.

First a priori estimate. We test (4.16) by N (�� � ��) and (4.17) by �
� �

��.

Then, we subtract the resulting equalities to each other and integrate over (0; t), where

t 2 (0; T ) is arbitrary. In view of (4.5), two terms cancel and we obtain, with the help

of (4.7),

1

2
k��(t)� ��k

2
�
+
1

2
j��(t)� ��j

2



+

Z
Qt

r�� � r
�
a(��)(�� � ��)

�
+

Z
Qt

�
��(��)� ��(�

�)
�
(�� � ��)

=
1

2
k�0 � ��k

2

�
+
1

2
j�0 � ��j

2


 �

Z
Qt

(��; "(u))(�� � ��) (4:20)

since ��(�
�) is a constant. Now, we have to treat the three integrals. As a0 = 0 in

R n [�; �], the use of (2.20) leads toZ
Qt

r�� � r
�
a(��)(�� � ��)

�
=

Z
Qt

�
a(��) + (�� � ��)a0(��)

�
jr��j

2

� a0

Z
Qt

jr��j
2
:

12



A solid{solid phase change model 13

The last integral on the left hand side is nonnegative, since �� is monotone. Moreover,

due to (2.24), we have that

�

Z
Qt

(��; "(u))(�� � ��) �M

Z
Qt

(1 + j"(u)j) j�� � ��j

� 1 + bC2 + c

Z t

0

j��(s)� ��j
2

 ds (4:21)

where bC is given by (3.4). Finally, we apply the Gronwall lemma and get

k��kL1(0;T ;H)\L2(0;T ;V ) � R (4:22)

where R is chosen with the dependences speci�ed in the statement.

Second a priori estimate. We test (4.16) by �
� and (4.17) by A��. Then, we

subtract the resulting equalities to each other and integrate as before. We obtain

1

2
j��(t)j

2

 +

1

2
jr��(t)j

2

 +

Z
Qt

a(��)(���)
2 +

Z
Qt

�
0

�(��)jr��j
2

=
1

2
j�0j

2


 +
1

2
jr�0j

2


 +

Z
Qt

(��; "(u))���:

Now we use (2.20), (2.24{25), the monotonicity of ��, and well-known regularity results

on elliptic homogeneous Neumann problems with data in L2(
). Thus, we easily deduce

k��kL1(0;T ;V )\L2(0;T ;W ) � c: (4:23)

Third a priori estimate. We test (4.16) by N�
0

� and (4.17) by �0
�. Then, we

subtract and integrate as before. Two terms cancel again. Hence, if b�� is the Yosida

regularization of b�, owing to (4.8), we haveZ t

0

k�
0

�(s)k
2

�
ds+

Z t

0

j�
0

�(s)j
2


 ds+

Z



b��(��(t))
=

Z



b��(�0)� Z
Qt

a(��)(A��)�
0

� �

Z
Qt

(��; "(u))�
0

�:

Now, using the boundedness of a, (2.24), the inequality (stated in [2, Prop. 2.11, p. 39])

b��(r) � b�(r) 8 r 2 R

along with (2.25), and estimate (4.23) already proved, we easily deduce that

k@t��kL2(0;T ;H) + kb��(�)kL1(0;T ;L1(
)) � c: (4:24)

Fourth a priori estimate. We introduce a notation. We set

�
�

�(t) :=
1

j
j

Z



��(��(t)) for a.a. t 2 (0; T )

13



14 Bonetti { Colli { Dreyer { Gilardi { Schimperna { Sprekels

and treat ���(t) as a function on 
 as well. As v := ��(�)� �
�

� 2 H \ V
0

0 , the function

N v is well de�ned and we can test (4.16) by N v and (4.17) by v. Then, integrating in

time and subtracting as before, with the help of the estimates already proved and (4.6)

it is straightforward to obtain

k��(��)� �
�

�kL2(0;T ;H) � c:

At this point, in order to get the useful estimate

k��(��)kL2(0;T ;H) � c (4:25)

we have to �nd an upper bound for the norm of ���. This can be done using (2.26) and

following [13, Lemma 5.2] (see also [3, third a priori estimate in the proof of Thm. 2.1]

for a detailed application).

Fifth a priori estimate. Clearly, by applying the previous estimates to the right

hand side of (4.17), we deduce an estimate for w� in L
2(0; T ;H). Hence, by comparison

in (4.16) and using (4.24), we infer that

kw�kL2(0;T ;W ) � c: (4:26)

Conclusion of the proof. Collecting (4.22{26), we see that the generalized sequence

f(��; ��(��); w�)g converges, at least for a subsequence (still denoted by the same

symbol for simplicity). More precisely, the three components converge weakly or weakly

star in the spaces

H
1(0; T ;H) \ L1(0; T ;V ) \ L2(0; T ;W ); L

2(0; T ;H); L
2(0; T ;W )

respectively, thanks to well-known weak and weak star compactess results. We term

(�; �; w) the corresponding limit. Clearly, the regularity conditions (2.28{30) hold but

the boundedness of �, and we have to show that the triplet (�; �; w) solves prob-

lem (4.12{15), i.e., that we can pass to the limit in the nonlinear terms and in the

Cauchy condition. This will imply also the boundedness of � as a consequence of (4.14)

and (2.21).

First of all, note that f��g converges strongly in C0([0; T];H) due to estimates

(4.23{24) and the compact embedding of V into H. As far as (4.13) is concerned, we

can use the Lipschitz continuity and boundedness of a and check that

a(��)A(��)! a(�)A(�) weakly in Lp(Q) for any p < 2:

In addition, we see that (2.23) yields (�; "(u))! (�; "(u)) strongly in L1(0; T ;L1(
))

(even better). Equation (4.14) follows immediately since f��(��)g is weakly convergent

in L2(Q) and we can apply, e.g., [1, Prop. 1.1, p. 42]. Finally, (4.19) follows by (4.22)

with the same R.

Remark 4.2. If N = 1 we can allow any positive � in (2.23{24). Actually, we have

to modify (4.1) by including kukL1(0;T ;W 1;4(
)) �
bC4 in the de�nition of domF2. Here

14



A solid{solid phase change model 15

the constant bC4 is given by estimate (3.5), which holds in the one-dimensional case.

We just discuss the crucial estimate (4.21), which involves . This inequality can be

replaced by

�

Z
Qt

(��; "(u))(�� � ��) �M

Z
Qt

(1 + j"(u)j+ �j"(u)j2) j�� � ��j

� 1 + ( bC4)
4 + c

Z t

0

j��(s)� ��j
2

 ds:

The same remark applies to the related estimates we have proved. We also note that no

upper bound on N is needed in the above proof if � = 0. We will exploit the assumption

N = 2 to show that the solution is unique.

Remark 4.3. The above proof also yields

k�kH1(0;T ;H)\L1(0;T ;V )\L2(0;T ;W ) + k�kL2(0;T ;H) + kwkL2(0;T ;W ) � c (4:27)

where c depends on bC but is independent of u 2 domF2.

Lemma 4.4. Under the assumptions of Theorem 2.1 with N = 2 and � = 0 in

inequalities (2.23{24), �x any u 2 V satisfying (3.4). Then, the component � of the

solution given by Lemma 4.1 is unique.

Proof. Let (�i; �i; wi), i = 1; 2, be two solutions and term (�; �; w) their di�erence.

Then, writing ai instead of a(�i) for simplicity, we have

@t
�(t) + Aw(t) = 0 in V 0; for a.a. t 2 (0; T ) (4:28)

w = @t�+ a1A�1 � a2A�2 + � + (�1; "(u))� (�2; "(u)) a.e. in Q: (4:29)

Noting that �(t) has zero mean value for every t 2 [0; T], we test (4.28) and (4.29) by

N� and �, respectively. Then we integrate in time, take the di�erence of the resulting

equalities, and obtain

1

2
k�(t)k

2
�
+
1

2
j�(t)j

2

 +

Z
Qt

r� � r(a1�) +

Z
Qt

��

= �

Z
Qt

�
(�1; "(u))� (�2; "(u))

�
�+

Z
Qt

(��2)(a1 � a2)�: (4:30)

The integral containing � is nonnegative, since �i 2 �(�i) a.e. in Q for i = 1; 2 and � is

monotone. Owing to (2.20), the other integral on the left hand side is treated this wayZ
Qt

r� � r(a1�) =

Z
Qt

a1jr�j
2 +

Z
Qt

�a
0(�1)r�1 � r�

� a0

Z
Qt

jr�j
2
� c

Z
Qt

j�j jr�1j jr�j:

15



16 Bonetti { Colli { Dreyer { Gilardi { Schimperna { Sprekels

So, we have to estimate the last integral from above, and this is rather delicate. In order

to handle this term, we take advantage of the following Gagliardo{Nirenberg inequalities

(surely holding in the two-dimensional case)

kvk
2
L4(
) � c jvj
 jrvj
 8 v 2 V (4:31)

krvk
2
L4(
) � c kvkH2(
) kvkL1(
) 8 v 2 H

2(
): (4:32)

Using �rst the H�older inequality, we have for any Æ > 0

Z
Qt

j�j jr�1j jr�j �

Z t

0

k�(s)kL4(
) kr
�
1(s)kL4(
) jr

�(s)j
 ds

� Æ

Z
Qt

jr�j
2 + cÆ

Z t

0

kr�1(s)k
2
L4(
) k

�(s)k
2
L4(
) ds

� Æ

Z
Qt

jr�j
2 + cÆ

Z t

0

k�1(s)kW k�1(s)kL1(
) j
�(s)j
 jr

�(s)j
 ds

� 2Æ

Z
Qt

jr�j
2 + cÆ k

�
1k

2

L1(Q)

Z t

0

k�1(s)k
2

W j�(s)j
2


 ds

� 2Æ

Z
Qt

jr�j
2 + cÆ

Z t

0

k�1(s)k
2

W j�(s)j
2


 ds

also on account of (4.14). Now, we deal with the right hand side of (4.30). Thanks to

the Lipschitz continuity of a and to (2.23), the whole sum is bounded by

c

Z
Qt

�
1 + j"(u)j+ j��2j

�
j�j

2

� c

Z t

0

�
1 + k"(u(s))kL2(
) + k��2(s)kL2(
)

�
k�(s)k

2

L4(
) ds:

Using (4.31) again, we obtain

c

Z
Qt

�
1 + j"(u)j+ j��2j

�
j�j

2

� c

Z t

0

(1 + j"(u(s))j
 + j��2(s)j
) j
�(s)j
 jr

�(s)j
 ds

� Æ

Z
Qt

jr�j
2 + cÆ

Z t

0

�
1 + j"(u(s))j

2


 + k�2(s)k
2

W

�
j�(s)j

2


 ds:

Collecting all the above inequalities, choosing Æ = a0=4, and neglecting some of the

positive terms on the left hand side, we get from (4.30)

j�(t)j
2

 � c

Z t

0

�
1 + j"(u(s))j

2

 + k�1(s)k

2
W + k�2(s)k

2
W

�
j�(s)j

2


 ds 8 t 2 [0; T]:

16



A solid{solid phase change model 17

As the function in brackets belongs to L1(0; T ), we can apply the generalized Gronwall

lemma and conclude that � identically vanishes.

Remark 4.5. The one-dimensional case can be treated with minor changes in us-

ing the Gagliardo{Nirenberg inequalities. Moreover, in this case, we can allow any �

in (2.23{24). Indeed, the above proof does not use (2.24) explicitely and just requires

that the integrals involving  are convergent. This fact is ensured by (2.24) and Re-

mark 3.2.

5. Proof of Theorem 2.1

Now, we are ready to construct rigorously the function F whose �xed points are the so-

lutions to problem (2.5{13). First, we choose the radius R given by (4.19) in Lemma 4.1

and recall the constant bC introduced in (3.4). Then, we de�ne F1 and F2 according to

(2.34), (3.1), and (4.1). Thanks to the above results, the range of F1 is contained in

the domain of F2 and the range of F2 is contained in the domain of F1. Hence, the

composed map

F := F2 Æ F1 (5:1)

is well de�ned and maps KR into itself. Clearly, a quadruplet (u; �; �; w) satisfying the

regularity requirements (2.27{30) is a solution to (2.5{13) if and only if � is a �xed

point of F .

Hence, we just have to verify that the assumptions of the Schauder �xed point theo-

rem are ful�lled. Clearly, KR is a nonempty closed convex bounded subset of L2(0; T ;V ).

So, accounting for Lemma 3.1, it remains to show that F2 is continuous and that its

range is relatively compact in L2(0; T ;V ). The latter sentence is clear from (4.27), since

the embedding

H
1(0; T ;H) \ L2(0; T ;W ) � L

2(0; T ;V )

is compact by the Aubin lemma (cf., e.g., [14, p. 58]), while the former one follows

from the next lemma.

Lemma 5.1. Under the assumption of Theorem 2.1, the map F2 : domF2 ! KR is

continuous, if domF2 is endowed with the topology induced by V.

Proof. Take un;u 2 domF2 and assume that the sequence fung converges to u in V.

To prove the lemma, we verify that the sequence f�ng of the corresponding solutions

to (4.12{15) converges in L2(0; T ;V ) to the solution corresponding to u. As the desired

limit is decided a priori, it is enough to prove the convergence for a subsequence. By

Remark 4.3, the estimate

k�nkH1(0;T ;H)\L1(0;T ;V )\L2(0;T ;W ) + k�nkL2(0;T ;H) + kwnkL2(0;T ;W ) � c

holds true, where c does not depend on n. By weak and weak star compactness, we can

assume that the three sequences f�ng, f�ng, and fwng are convergent weakly or weakly

star in the appropriate spaces, without loss of generality. Hence, everything reduces to

show that the limit triplet (�; �; w) solves (4.12{15), and this can be done following the

17



18 Bonetti { Colli { Dreyer { Gilardi { Schimperna { Sprekels

same arguments used in the proof of Lemma 4.1, with one more observation regarding

the term that involves un explicitely, namely (�n; "(un)). It suÆces to prove that

it converges to (�; "(u)) in any reasonable topology, e.g., in L1(Q). But this follows

immediately from (2.23), since f"ij(ung) converges to "ij(u) and f�ng converges to �

strongly in L2(Q). Note that this argument holds even if � > 0 in (2.23{24).

6. Proof of Theorem 2.2

We treat both the cases (ii) and (iii). Hence, we use (2.31) when necessary. Minor

changes are needed to deal with the case (i).

Our argument follows the outline of the proof of Lemma 4.4. Indeed, we have

just to add the contribution due to the elliptic equation and to modify the estimate of

the integral involving . So, we consider two solutions and keep the notation of the

mentioned proof. We also introduce

u := u1 � u2

where ui is the �rst component of the solution (ui; �i; �i; wi). We test (4.28) and (4.29)

by N� and �, respectively. Then, we integrate in time and take the di�erence of the

resulting equalities. Moreover, we write (3.2) for both solutions, take the di�erence, use

v = u(t) as test function, and integrate in time. Adding the resulting expression to the

previous one, we obtain a relation that generalizes (4.30), namely

1

2
k�(t)k

2

�
+
1

2
j�(t)j

2


 +

Z
Qt

r� � r(a1�) +

Z
Qt

��+

Z
Qt

Cijhk(�1)"hk(u) "ij(u)

= �

Z
Qt

�
(�1; "(u1))� (�2; "(u2))

�
�+

Z
Qt

(��2)(a1 � a2)�:

+

Z
Qt

�
Cijhk(�2)� Cijhk(�1)

�
"hk(u2) "ij(u)

+

Z
Qt

�
yij(�1)� yij(�2)

�
"ij(u): (6:1)

Hence, we just detail how to modify the proof of Lemma 4.4 and conclude. On the left

hand side, we use to (3.3) and get a good bound from below for the last term, namely

Z
Qt

Cijhk(�1)"hk(u) "ij(u) � �

Z t

0

ku(s)k
2
ds:

We treat the fourth integral on the right hand side with the help of (2.19) and obtain

Z
Qt

�
yij(�1)� yij(�2)

�
"ij(u) � Æ

Z t

0

ku(s)k
2
ds+ cÆ

Z t

0

j�(s)j
2

 ds:
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A solid{solid phase change model 19

To handle the third integral on the right hand side of (6.1), we invoke (2.16) and (4.31).

We have Z
Qt

�
Cijhk(�2)� Cijhk(�1)

�
"hk(u2) "ij(u)

� c

Z t

0

k�(s)kL4(
) k"(u2(s))kL4(
) j"(u(s))j
 ds

� Æ

Z t

0

ku(s)k
2
ds+ cÆ

Z t

0

k"(u2(s))k
2

L4(
) k
�(s)k

2

L4(
) ds

� Æ

Z t

0

ku(s)k
2
ds+ cÆ

Z t

0

k"(u2(s))k
2
L4(
) j

�(s)j
 jr
�(s)j
 ds

� Æ

Z t

0

ku(s)k
2
ds+ Æ

Z
Qt

jr�j
2 + cÆ

Z t

0

ku2(s)k
4
W 1;4(
) j

�(s)j
2

 ds:

Finally, the last integral we have to deal with is the �rst one on the right hand side

of (6.1). Owing to (2.23), we proceed as follows

�

Z
Qt

�
(�1; "(u1))� (�2; "(u2))

�
�

� L

Z
Qt

�
1 + j"(u1)j+ j"(u2)j

� �
j�j+ �j"(u)j

�
j�j+ L

Z
Qt

j"(u)j j�j

� cÆ

Z t

0

�
1 + ku1(s)k+ ku2(s)k

�
k�(s)k

2
L4(
) ds+ Æ

Z t

0

ku(s)k
2
ds

+ �
2
cÆ

Z t

0

�
1 + ku1(s)k

2

W 1;4(
) + ku2(s)k
2

W 1;4(
)

�
k�(s)k

2

L4(
) ds:

Therefore, the argument dealing with the term involving  di�ers from that of the proof

of Lemma 4.4 just for the last integral in the above chain. Applying (4.31) again, we

see that

�
2
cÆ

Z t

0

�
1 + ku1(s)k

2

W 1;4(
) + ku2(s)k
2

W 1;4(
)

�
k�(s)k

2

L4(
) ds

� Æ

Z
Qt

jr�j
2 + �

4
cÆ

Z t

0

�
1 + ku1(s)k

4
W 1;4(
) + ku2(s)k

4
W 1;4(
)

�
j�(s)j

2

 ds:

Therefore, arguing as in the proof of Lemma 4.4, we arrive at

j�(t)j
2

 +

Z t

0

ku(s)k
2
ds � c

Z t

0

'(s) j�(s)j
2

 ds 8 t 2 [0; T]

where we have set

'(s) := 1 + k�1(s)k
2

W + k�2(s)k
2

W + �
4
ku1(s)k

4

W 1;4(
) + (1 + �
4) ku2(s)k

4

W 1;4(
) :

Hence, we apply the generalized Gronwall lemma and conclude.

Remark 6.1. By a direct check in (6.1) (see alse the proof of Lemma 4.4), it is

straightforward to verify that our uniqueness proof works in any space dimension if the

data C and a do not depend on �. This complies with the uniqueness result proved

in [11].
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