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On Stationary Schrodinger-Poisson Equations Modelling an Electron 
Gas with Reduced Dimension (by H.-Chr. Kaiser and J. Rehberg) 

Abstract: We regard the Schrodinger-Poisson system arising from the modelling of an 
electron gas with reduced dimension in a bounded up to three-dimensional domain and 
establish the method of steepest descent. The electrostatic potentials of the iteration 
scheme will converge uniformly on the spatial domain. To get this result we investigate 
the Schrodinger operator, the Fermi level and the quantum mechanical electron density 
operator for square integrable electrostatic potentials. On bounded sets of potentials the 
Fermi level is continuous and boundeq, and the electron density operator is monotone 
and Lipschitz continuous. - As a tool we develop a Riesz-Dunford functional calculus 
for semibounded self-adjoint operators using paths of integration which enclose a real 
half axis. 

Key words: stationary Schrodinger-Poisson system, monotone potential operators, ite-
rative methods, electron gas with reduced dimension, nanoelectronics. 

1991 Mathematics Subject Classification: 35J05/10/20/60/65, 35Pl5, 47 A55/60, 
47 A 75, 47H05, 49J50, 49M10, 81Q10/15. 

1. THE SCHRODINGER-POISSON EQUATION 

The Schrodinger-Poisson system is a nonlinear Poisson equation 

- .6.V = n(Vo + V)- nv i:ri n, Vian= 0 (1.1) 

for the electrostatic potential V, the right-hand side of which is up to a fixed part 
nv the quantum mechanical expression of the electron density 

00 

n(Vo + V)(x) = Lf(Ez - €o)l~z(x)l 2 , x En, (1.2) 
l=l 

where €z = €z(Vo + V) are the eigenvalues (in increasing order, counting multipli-
city) and ~z = ~z(Vo + V) the corresponding orthonormal eigenfunctions of the 
Schrodinger equation 

(-.6. +Vo+ V) ~z = €z~z inn, ~zlao = 0, la l~zl 2 = 1, l = 1, 2, .... (1.3) 

Vo E L2(f2; R) is a given external potential and Eo = Eo(Vo + V) denotes the Fermi 
level which is defined by the electric-neutrality condition 

la nv(x)dx.= la n(Va + V)(x)dx = ~f(E1(Va + V)- Eo(Va + V)), (1.4) 

f being the thermodynamical equilibrium distribution function. Thus, Eo in general 
depends on the potential in the Schrodinger equation. We will also regard the 
auxiliary problem (1.1)-(1.3), where fo is a given parameter. The Schrodinger-
Poisson system (1.1)-(1.4) models an electron gas with reduced dimension situated 
in the bounded spatial domain n c Rd, d ~ 3 (cf. ALBINUS in this preprint, [2] 
and the references cited there). For a zero-, one- or two-dimensional electron gas 
the dimension d of the spatial domain n is d = 3, 2, 1, respectively. N .B. we make 
use of the assumption d ~ 3 without further notice throughout this paper which 
comes to bear especially when Sobolev's Embedding Theorem is involved. 
The Schrodinger-Poisson system can be written as a nonlinear operator equation 

A(V) = -nv, V E HJ(n; R) (1.5) 
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in the Sobolev space H-1(0.; R). The Schrodinger-Poisson operator A E (HJ ~ H-1 ) 

is defined by . 

(A(V), W) :=lo (VW · VV - Wn(Va + V))dx, VV, WE H6(n; R), (1.6) 

i.e. it is the difference of the duality mapping J EB (HJ, H- 1 ) of the space 
HJ(n; R) equipped with the norm llullH1 = llVullL2 and the electron-density ope-o 
rater n which maps L2 (0.; R) into L00 (f2; R) (cf. §6.1). The operator equation (1.5) 
makes sense if nD E H-1(n; R). On the other hand we need nD E L1 (D.; R) in or-
der to formulate the electric-neutrality condition (1.4). To cover both demands we 
assume nD E L2 (D.; R). 
Recently NIER showed [10], [11] that the Schrodinger-Poisson operator (1.6) is a 
strongly monotone potential operator. To that end he regarded the functional 

¢(U) = Eo(U) tr (!(Hu - Eo(U))) +tr (F(Hu - Eo(U))). (1.7) 

for electrostatic potentials U = Va+ V from the affine space Va+ HJ(n; R). In (1. 7) 
Hu= -~+Va+ VE (L2 (0.) ~ L2 (f2)) is the Schrodinger operator with domain 
H 2 (0.) n HJ(n) and Fis the primitive 

F(t) = - [" f(s)ds, t ER (1.8) 

of the distribution function f. ¢;is infinitely often Frechet differentiable and the first 
derivative of c/J is just the electron density which turns out to be a strictly monotone 
operator n E (Va+ HJ(D.; R) ~ H-1(0.; R)). Thus, the operator equation (1.5) is 
equivalent to the minimization problem 

I(V) = min I(W), 
We HJ 

1 
I(W) := 2llWllHJ - ¢(Va+ W) + (nD, W). (1.9) 

We will regard the functional (1.7) on the space L2 (D.; R). In order to get the 
Frechet differentiability of¢ and non that space we will prove 

i. the uniform equivalence of the graph-norms belonging to Schrodinger ope-
rators with potentials from any bounded set in L2 (0.; R) (cf. §3.4), 

ii. the boundedness of the Fermi level on every L2-bounded set of electrostatic 
potentials (cf. §5). 

We also prove that the electron-density operator n is monotone and bounded Lip-
schitzian as an operator n E (L2 (0.; R) ~ L2 (0.; R)). This guarantees the conver-
gence of the method of steepest descent applied to the Schrodinger-Poisson equa-
tion (1.5) and allows to establish even uniform convergence on n for the iteration 
sequence of electrostatic potentials. Thus we can estimate the distance of the spec-
tra and even of single eigenvalues of the Schrodinger operators corresponding to 
the potentials from the iteration sequence, using eigenvalue perturbation theory 
[17], [9], [14). 
NIER [11] operates with a functional calculus for self-adjoint operators due to 
HELFFER, SJOSTRAND and GERARD. We develop a Riesz-Dunford calculus instead 
(cf. §4) which in principle allows an extension to m-accretive operators. One has 
to cope with Schrodinger operators of this kind when, a magnetic field is included 
in the problem, or when other boundary conditions are regarded. 
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When dealing with the Schrodinger-Poisson equation we operate with spaces of 
real-valued functions whereas the Schrodinger operator is defined on a space of 
complex-valued functions. N.B. we regard solely real-valued potentials for the 
Schrodinger operator. In the sequel we will use the same notation for spaces of 
complex-valued functions and the corresponding subspaces of real valued functi-
ons. 
Throughout this paper we make the following assumptions about the data of the 
problem: 

• The spatial domain n c Rd, (d:::; 3) in which we regard the Schrodinger-
Poisson system is assumed to be in the GROGER-class VlPo (cf. [5]) for some po > d, 
i.e. n is regular in the sense of GROGER (e.g. bounded and open) and the duality 
mappmg 

J E (H~(!1)--> W 1(!1)) (Ju,v) =lo 'Vv · 'VUdx u,v E H~(!1) (1.10) 

of the Sobolev space HJ(n) maps WJ''P0 (i1) onto w-l,po(n). Thus, the operator 

Jp = llw~·P E (wJ",p(n) -7 w-1,p(n)) (1.11) 

is a continuous bijection for all 2 :::; p :::; p0 (cf. [5]). A theorem of GROGER and 
REHBERG [6] then gives that the mapping 

Jp +Al E (w5,p(n) -7 w-1.P(n)) (i.12) 

is a continuous bijection from W~·P onto w-l,p for all A E C with ~,;\ ~ 0. Hence 
the adjoint of the linear operator (1.12) 

(JP+ AI)lw~·" )* E (w5•q(i1) -7 w-l,q(n)), l/p + l/q = 1 

is a continuous bijection from wJ-·q = (w-1·P)* onto w-l,q = (wJ-·P)*. There is for 
1 1 . all u E W0 'P and v E W0 'q 

(u, (JP+ Al)*v) =((JP+ AI)u, v) = ((J + .:\l)u, v) =lo (.:\vu+ \lv · \lu) dx, 

i.e. (JP+ AI)* is the extension lq + .:\1 of the operator J + Al E B ( W5· 2
, w-1•2), 

to the space WJ''q. Thus, 

Po < < 
1 

_p _po 
Po-

(1.13) 

is a continuous bijection. 
For any Lipschitz-domain n there is a p0 > 2 such that n E Vlp0 [5]. This suffices in 
the two-dimensional case ( d = 2). In general, as we regard homogeneous Dirichlet 
boundary conditions, i1 E Vlp is satisfied for all 2:::; p < ooif i1 is a bounded domain 
of class C1 (cf. [16]). Furthermore we assume n to be such that J maps the space 
H 2 (i1) n HJ(n) onto L2 (i1), i.e. the Laplacian 

- tJ. = JIH2nHJ E ( H 2(n) n H6(n) -7 L2 (i1)) (1.14) 

is a continuous bijection. This hypothesis is satisfied if n is a bounded domain of 
class C2 or convex polygonal (cf. [4] and the references citea there). 
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• The given external potential Vo is assumed to be real-valued and square 
integrable on n. It represents the electronic characteristics of the material, the 
positive background charge, the applied voltage and eventually inhomogeneous 
boundary conditions for the potential. 

• The fixed part nn on the right-hand side of the nonlinear Poisson equation 
also shall be a square integrable function on n. It stands for a given density of 
ionized impurities. 

• The thermodynamical equilibrium distribution function f defines the oc-
-cupation factor Nz = f( ez - e0 ) which is the average number of electrons in the 
quantum state l with the energy ez at thermodynamical equilibrium. f is assumed 
to be positive and strictly decreasing and the primitive (1.8) should exist. We will 
further specify f in §4.2. 

2. THE SCHRODINGER OPERATOR 

2.1. The Dirichlet-problem for the Laplacian. According to the assumptions 
about the regularity of the spatial domain n the Laplacian with homogeneous 
Dirichlet-boundary-conditions (cf. (1.14)) has the following properties: 

• -l::l. is a self-adjoint, positive definite operator with compact resolvent in 
the Hilbert space L 2 (!1). 

• The spectrum of -l::l. is discrete; there is a countable number of real eigen-
values .A1 (counting multiplicity) 

0 < m == .A1 ~ .A2 ~ .Aa ~ . . . , .:.\z ~ oo 

and eigenfunctions 'l/Jz spanning an orthonormal basis in 1 2 (!1); the asym-
ptotical distribution of the eigenvalues is [18], [14] 

lim ~: = c 1n1 2
• z_.oo Az (2.1) 

• The H2-norm, the graph norm of -l::l. and ll(P - l::l.) · 11£2, p > 0 are equiva-
lent on dom l::l. == H 2(!1) n HJ(n) 

II . II H2 ( 0) l'V II ( i - l::l.) . II L2 ( 0) l'V II ( p - l::l.) . II £2 ( 0) v p > 0. ( 2. 2) 

Proposition 2.1. Let be p > 0 and 0 ~ (} < 1/2. The operator (p - l::l.)1- 9 is a 
continuous bijection of H 2<1- 8>(n) n HJ-8(!1) onto L2(fi). 

Proof. The operator p - /:).. is self-adjoint and positive definite in L2 , and its domain 
H 2 n HJ is a Hilbert space ( dom(p - f),.), ll(P - l::l.) · llL2) which is dense in L 2

• Hence 
the interpolation space 

dom(p - f:),.) 1
-

9 == [dom(p - /:)..), L2
]8 = [H2

, L2Je n [HJ, L2
]8 == H 2

<
1

-
9> n nJ-8 

becomes a Hilbert space with the graph norm of (p - l::l.)1- 9 [8]. Moreover, 
the graph norm of (p - l::l.)1- 9 and the norm of H 2<1 - 9> n HJ-8 are equivalent. 
Thus, (p- f:),.) 1- 8 EB (H2<1 - 9> n HJ-8 ,L2). As t 1- 8 maps R+ one-to-one onto R+, 
(p - l::l. )1- 8 is a bijection because (p - /:)..) is. D 
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2.2. Self-adjointness, lower bound and spectrum. We regard the Schrodin-
ger operator 

H = Hv = -fl.+ v E ( L2(!1) ~ L2(!1)) , dom H = H 2(n) n Ht(n) (2.3) 

for real-valued potentials V E L2(0) and recall (cf. [11]) 
Proposition 2.2. For each VE L2(!1) the multiplication operator V E (L 2 ~ L 2 ) 

is infinitesimally small with respect to -fl. i. e. the relative -fl.-bound of V is zero: 

llV~llL2 ~ Sllfl.~11£2 + 011~11£2 ' v~ E H 2 (!1)' vs> 0 
with some C = C (6, llVllL2)· 

As V is real-valued, the multiplication operator V E ( L 2 ~ L 2 ) is self-adjoint on 
dom V = {~ E L 2(!1) : V~ E L 2(!1)} and by Sobolev's Embedding Theorem 

domfl. c H 2(0) ~ L00 (!l) c dom V. 
Thus, by the Kato-Rellich Theorem H is self-adjoint. The multiplication ope-
rator V is also relatively compact with respect to -fl. , because the embedding 
H 2 (!1) ~ L 00 (!l) is compact. Hence, by Weyl's Theorem the essential spectrum of 
H and -fl. is the same and we conclude that the spectrum of the Schrodinger ope-
rator (2.3) is discrete i.e. Hv has a countable number of real eigenvalues { €z(V)}~1 
(counting multiplicity) and the corresponding orthonormal eigenfunctions provide 
a basis of L 2(!1). 
Proposition 2.3. For each (real-valued) potential VE L2 (!1) the graph-norms of 
the Schriidinger operator (2.3) and the Laplacian (1.14) are equivalent: 

C(V)ll(i - fl.)~11£2 ~ ll(H + i)~llL2 ~ C("\:')ll(i - fl.)~11£2, v~ E domH. 
Proof. As H and -fl. are self-adjoint their domain dom H = dom fl. becomes a 
Banach space 

~H = (domH, ll(H + i) · llL2) ~A= (domH, ll(i- fl.)· 11£2) 

with the corresponding graph norm. As the embedding H 2 ~ L 00 is continuous 
and according to (2.2) there is by Proposition 2.2 

llV~llL2 ~ llVllL2 ll~llL00 ~ eollVllL2 ll~llH2 ~ c llVllL2 ll(i - fl.)~llP 

and we may notice 

i.e. the embedding ~A ~~His bounded and as it is bijective too, so is its inverse 
by the Inverse Mapping Theorem. D 

Corollary 2.1. For every p > max{O, -E1(V)} the norms ll(P + H) · il&, and 
ll(P - fl.) · llL2 are equivalent on domH = domfl. = H 2 (!1) n HJ(!l). 

Theorem 2.1. Let be M > 0 arbitrary and M the closed M-ball of L2(f2). Then· 
the infima E1 (V) of the spectra from the Schrodinger operators Hv = -~ + \/ cor-
responding to the potentials V E M are bounded: 

- oo < aM ~ E1(V) ~ ~M < oo, VV frM. (2.4) 
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Proof. We first show that the spectra are uniformly bounded from below. By a 
corollary of the Kato-Rellich Theorem Hv is bounded from below with 

{ 
C (5, llVllL2 ) } av(5)=m-max 1 _ 5 · , 5m+C(5,llVllL2) , 

for all 0 < 5 < 1, where mis the smallest eigenvalue of -:fl and C = C (5, llVllL2) 
is the constant from Proposition 2.2. Hence for all VE 1 2 with llVllL2 ~ M the 
spectrum a( Hv) of Hv is bounded from .below by 

{ {
0(5,M) }} aM = sup m - max 

5 
, 5m + C ( 5, M) . 

O<o<l 1 -
(2.5) 

Next we give an upper bound for the infima of the spectra. The smallest eigenvalue 
E1(V) of Hv is given by (N.B. domHv = domtl = H 2 n HJ) 

E1(V) = inf ((-fl+ V)'lj;, 'if;). 
'I/I Edom a 
ll1"l1L2=l 

For all 'lj; E dom fl there is 

We estimate the second term on the right-hand side 

For all 'lj; E dom fl there is 

where Co is the embedding constant of HJ(!l) into 1 4 (11). Putting together the 
above estimates one obtains 

E1(V) ~ (l+c0~!Af\ inf (-fl'lj;,'lj;)=(l+eo~!Af\m, (2.6) V ..Lv.t j 'I/I Edom a V ..Lv.t) 

l11"l1L2=l 

where m > 0 is the smallest eigenvalue of -fl. D 

3. THE RESOLVENT OF THE SCHRODINGER OPERATOR 

For a separable Hilbert space 1-l, later on unless specifically noticed 1 2 (11) let de-
note B = B(H) = B(H, 1-l) the Banach algebra of bounded linear operators on 1-l 
with the usual norm II · II for linear operators, Bo the subspace of finite rank opera-
tors, B00 the closed ideal of compact operators, (Bp, II ·.lip), 1 ~ p < oo the closed 
ideal of p-summable operators . An operator A E B00 with a discrete spectrum of 
eigenvalues o:1 , o:2 , ••• belongs to the summability-class Bp if the sequence { o:i}~1 
is p-summable: { o:i}~1 E lp (cf. e.g. [15]). 
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3.1. The resolvent of the Laplacian. Let us regard again the homogeneous 
Dirichlet problem for the Laplacian. For all z EC with ~z::; 0 the corresponding 
resolvent of the Laplacian (1.14) is compact 

(3.1) 

and there is 

In the same way one obtains 

( .6. + Z ta E B00 , V z E C, ~z ::; 0, Va > 0, 1 
11(.6. + ztall ::; A! < 00. (3.2) 

Apart of compactness we even get p-summability (cf. [11]). 

Lemma 3.1. The resolvent (.6. + zt1 belongs to the space Bp for any p > d/2 and 
all z E C with ~z ::; 0. 

Proof. Let be 0 < ;\1 ::; ;\2 ::; ••• the eigenvalues of -.6. (counting multiplicity). 
Then the eigenvalues of the resolvent are z~>.i' l = 1, 2, ... and as 

one gets 

This series converges for any p > d/2 as E~1 (1/l)2
p/d according to (2.1). D 

Corollary 3.1. For each a > 0 there is 

(.6. + zta E Bp Vz EC, ~z::; 0, Vp > d/(2a). (3.3) 

As the summability-classes Bp are two-sided ideals in B the operators ( .6. - p t 1 

and V(.6. - pt1 are from the same summability-class for all VE L00 (!1). Next we 
will have a look at the 

3.2. Summability-class of the operators V(.6. - p t 1 , p > 0, VE L2(!1). For 
each VE L2 (!1) the mapping 

'r/; E L 2 ~ (.6. - p)-1 7/; E H 2 ~ V(.6. - p)-17/; E L 2 

is compact, because the embedding H2 ~ L00 is compact, i.e. V(.6. - pt1 E B00 • 

We will prove V( .6. - p t 1 E Bp, Vp > 2d. 

Lemma 3.2. For all p > 0 and p > 2d the linear mapping 

V(V) = V(.6. - Pt 1 (3.4) 

is (uniformly in p} continuous. 

7 



Proof. We decompose with 0 < B < 1/4 

V(.6. - P t1 = V(.6. - P )e-1(.6. - P te. 
According to Corollary 3.1 we have (.6. - p)-9 E Bp, Vp > d/(28). Now by Proposi-
tion 2.1 there is for all 'if; E 1 2 (!1) 

llV(.6.- P)8
-
1't/JllL2 ~ llVllL2 ll(.6.- P)8

-
1't/JllL00 ~ eollVllL2ll(.6.- P)8

-
1't/JllH2(1-8) 

~ c llVllL2 ll't/JllL2 
(N.B. the embedding H 2(l-B) ~ L00 is continuous as 2(1 - B) > d/2 and the 
H 2<1- 8Lnorm is the norm of H 2(l-B) n HJ-9 ). We conclude by assembling the 
estimates in the following way 

There is a suitable B < 1/4 for every p > 2d and the constant c depends on p but 
not on p. D 

In the two-dimensional case for VE 1 2 (!1) the operator (.6. - p)-1V(.6. - p)-1 is 
nuclear, more precisely 

Corollary 3.2. For all 1 ~ p < oo with p > 2d/5 and each VE 1 2 (!1) there is 
(.6. - p)-1V(.6. - p)-1 E BP if p > 0, and 

11(.6. - Pt1V(.6. - Pt1llP ~ c11VllL2 Vp > 0. 

Proof. By means of Holder's inequality, Lemmata 3.1 and 3.2 one obtains 

11(.6.- p)-1V(.6.- p)-1llP ~ ll(.6.-p)-1llP1 llV(.6.- P)-1llP2 ~ cllVllL2 
where 1 ~ l/p = 1/p1 + l/p2 and P1 > d/2, P2 > 2P, i.e. p is greater than 2d/5. 
Thus, in the two-dimensional case (d=2) the operator (.6. - pt1V(.6. - Pt1 is 
indeed nuclear. D 

3.3. Calculations with resolvents. Let us regard the Schrodinger operators 
(2.3) H; = -~ + V; corresponding to potentials V; E 1 2 (!1), j = 1, 2 and their re-
solvents R; = R;(z) = (z - H;)-1 at a common regular point z. We can decompose 
the difference of these resolvents in the following way 

R2 - Ri = R2(1-R21R1) = R2(R'11R1 - R21R1) 
= R2(R'11 - R21 )R1 = R2(V2 - Vi) R1. 

Using this decomposition a second time one gets 

where V = V2 - Vi. Continuing this way one obtains the expansion 
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By means of (3.5) the difference of resolvent-squares can be decomposed as follows 

R; - R~ = R2(R2 - Ri) + (R2 - Ri)R1 
= Ri(R2 - Ri) + (R2 - Ri)R1 + (R2 - Ri)(R2 - Ri) 
= R~V Ri + Ri V R~ + RiR2(V Ri)2 + R2(V Ri)2 Ri + (R2 V Ri)2. 

3.4. L2-bounded sets of potentials. We regard the Schrodinger operators (2.3) 
corresponding to potentials V from the closed M-ball M in L2 ( n) and denote the 
resolvent of Hv at z = -pM = aM -1 (cf. (2.5)) by 

Rv = (-PM - Hv t 1 = (Li - PM - Vt 1
• (3.6) 

According to Theorem 2.1 z = -pM is a common regular point for all the Schrodin-
ger operators under consideration. 

Theorem 3.1. The norms ll(Hv +PM)· llL2 related to the Schrodinger operators 
Hv, VE M are uniformly equivalent, i.e. there is a constant CM such that 

CM ll(Hv + PMt1(PM - Li)ll::; 1, \IVE M. 

Remark 3.1. As PM is a real value there is 

[(PM -Li)(Hv + PMt1]* = (Hv + PMt1(pM- Li) 
and we have for all potentials V E M 

1 
ll(PM -Li)(Hv + PMt1 ll = ll(Hv + PMt1(PM -Li)ll::; CM. (3.7) 

Proof. We decompose by means of (3.5) 

(Hv + PMt1(PM - Li)= RvR01 =1 + VRv 
and estimate the operator norm: 

ll(Hv +PM t 1(PM - Li)ll ::; 1 + llVllL2 llRvllB(L2,L00 )· (3.8) 

Now we get the assertion by the following lemma. D 

Lemma 3.3. The resolvents (3.6) of the Schrodinger operators (2.3) are uniformly 
bounded in B(L2, L00

) for all potentials VE M. 

Proof. The set {Rv: VE M} is bounded in B(L2, L00
) iff 

(3.9) 

is bounded in L00 (f2). 
According to Theorem 2.1 the distance of -pM to the spectrum of the operator 
-Li+ V is at least 1 and thus ll(Li - PM - Vt1 llB(£2,£2) ::; 1. Hence the set (3.9) 
lies within the unit ball of L2(f2). This implies 

111/1 + V ¢11£1 ::; v'lfil + M, \IVE M, 111/111£2 ::; 1 

for all </> from (3.9), i.e. the set 

{ 1/1 + v </> : (Li _:_ p M) </> = 'lj; + v </>' 11 'lf; II £2 ::; 1, v E M} ( 3 .10) 
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is bounded in L1(il). The embedding L1(il) ~ w-l,p is continuous for 1 ~ p < d~ 1 , 
hence for these p the set (3.10) is bounded in w-l,p(n). As .6. - PM "is a continuous 
bijection from W5'P(!l) onto w-l,p(il) for po/(po - 1) ~ p ~Po (cf. (1.13)), now 
follows that the set (3.9) is HJ-bounded in the one-dimensional case (d = 1) and 
in general W5'P -bounded if ~ ~ p < d~l. This implies the Lq_boundedness of 
(3.9) for 

• q = oo in the one-dimensional case ( d = 1), 
• 1 ~ q < oo in the two-dimensional case ( d = 2), 
• 1 ~ q ~ 3 in the three-dimensional case ( d = 3), 

according to Sobolev's Embedding Theorem. As 

now follows the Lr -boundedness of the set (3.10) for 
• 1 ~ r < 2 in the two-dimensional case ( d = 2), 
• 1 ~ r < 3/2 in the three-dimensional case (d = 3). 

By embedding (3.10) is bounded in w-1,P(il) for 
• 1 ~ p < oo in the two-dimensional case ( d = 2), 
• 1 ~ p ~ 3 in the three-dimensional case ( d = 3). 

If Po/(Po - 1) ~ p ~ min{3,po} the bijection (.6. - PMr1 EB (w-1,p, W~'P) maps 
the w-l,p(n)-bounded set (3.10) onto (3.9) which thus turns out to be a bounded 
set in WJ''P(n). 
In the two-dimensional case ( d = 2) now immediately follows the L00 -bounded-
ness of the set (3.9) because W5'P(n) is continuously embedded into L00 (0) for all 
p > 2. 
In the three-dimensional case ( d = 3) we have to reiterate our argument 
once again. From the WJ''3-boundedness of (3.9) one obtains by embedding 
the Lq_boundedness for 1 ~ q < oo. Hence the set (3.10) is Lr -bounded for 
1 ~ T < 2 and via embedding it is w-l,p_bounded for 1 ~ p < 6. Application of 
(.6. - PM rl EB (w-l,p, wJ-,p) now provides the wJ,p-boundedness of the set (3.9) 
for some p > 3 and thus by embedding its L00-boundedness. D 

Corollary 3.3. Let be M 1 and M 2 two bounded sets in L2 (!l). The set 

(3.11) 

is bounded in B(L2 ) by 

sup llWllL2 sup 11Rvll 8 (L2,Loo)· 
WEM1 VEM2 

Corollary 3.4. The eigenfunctions { -rfaz(V)}~1 of the Schrodinger operator (2.3) 
are continuous on n and there is 

c 11-rfaz(V)llccn> ~CM (ez(V) +PM), l = 1,2,. .. , VV EM, (3. 12) 

e1(V) being the eigenvalue of the Schrodinger operatoiHv corresponding to lJ!1( V). 
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Proof. The eigenfunctions 'l/Jz = 'l/;i(V) belong to H 2(f2) which is continuously em-
bedded into C(n). There is for all V E M (recall Theorem 3.1 and (2.2)) 

c 
ll'l/Jzllc(n) < co ll'l/JzllH2 ::; c ll(PM - ~)'l/JzllL2 ::; CM ll(Hv + PM)'l/JcllL2 

c c 
CM ll(ez + PM)'l/JzllL2 = CM (ez +PM) l = 1, 2, ... , 

where Ez = Ez(V). D 

3.5. Dependence on the complex argument. Let H = f~00 A.dE( >..) be the 
spectral decomposition of the (self-adjoint) Schrodinger operator (2.3). For all 
z EC, z rf. a(H) there is 

ll(z - Ht 1(H + PM)ll = ll(H + PM)(z - Ht1 ll 

=Ii: >.z~P~ dllE(>.)111 '.'0 c~~&il>.z+_P~I) 1-: dllE(>.)11 

< sup ( 1 + lz + PMI) < 1 + PM+ lzl . 
- AEu(H) lz - A.I - dist(z, a(H)) 

(N.B. the operators (H +PM) and (z - Ht 1· commute, as self-adjoint operators 
commute with their resolvents.) There follows for all VE L2 (f2), llVllL2 ::; Mand 
z EC, dist(z, [aM, oo )) ~ 5 

ll(z - Ht1(H + PM)ll = ll(H + PM)(z - Ht1 1i '.'O 1 +PM; lzl . (3.13) 

Lemma 3.4. For all potentials VE L 2(f2) with llVllL2 ::; M and all z EC with 
dist(z, [aM, oo )) ~ 5 there is for the resolvent (z - Hv t 1 of the Schrodinger ope-
rator (2.3) 

ll(PM - ~)(z - Hv t 1
11 = ll(z - Hv t 1 (PM - ~)II::; CMo (1 + lzl) (3.14) 

where CMo = ep:66 , PM = 1 - aM and aM as defined in (2.4). 

Proof. We decompose 

(PM - ~)(z - Hv t 1 = (PM - ~)(Hv +PM t 1(Hv + PM)(z - H~ t 1 

(z - Hv t 1(PM - ~) = (z - Hv t 1(Hv + PM)(Hv +PM t 1 (PM - ~) 

and estimate by means of (3.13) and Theorem 3.1. D 

Using this result we can state for the resolvents of the Schrodinger operators cor-
responding to potentials from the M-ball in L2(f2) estimates which are analogous 
to those for the resolvent of the Laplacian from Sections 3.1 and 3.2. From the 
Lemmata 3.1, 3.4 and Corollary 3.1 follows immediately 

Proposition 3.f. Let be V a potential from the M-ball in L 2(Q) and z a complex 
number with dist(z, [aM, oo )) ~ 5. Then the resolvent (z - Hv )-1 of the Schrodin-
ger operator (2.3) belongs to the summability-class Bp.for all p > d/2. Moreover 
there is for all a > 0 · 

(z - Hv ta EBp, \:Ip> d/(2a). (3.15) 
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Proposition 3.2. Let be U, V E L2(f2), M = llVllL2, z a complex number with 
dist(z, [aM, oo )) 2:'.: S and Hv = -~ + V the Schriidinger operator (2.3). Then 
U(z - Hv )-1 E Bp, for all p > 2d and 

llU(z - Hvt1llP ~ c CMs(l + lzl)llUllL2· (3.16) 
Proof. We decompose 

U(z - Hvt1 = -U(~ - PMt1(~ - PM)(z - Hvt1 

and estimate by means of Holder's inequality 

llU(z - Hvt1llP ~ llU(~ - PMt1 llpll(~ - PM)(z - Hvt111· 

Now the assertion follows from the Lemmata 3.2 and 3.4. D 

By means of Propositions 3.1, 3.2 one obtains 

(z - HVit1U(z - Hv2 t 1 E Bp, 

ll(z - HVit 1U(z - HvJ-1 llP ~ c CiI0(l + jzl)2 llUllL2, M = max{llV111£2, llV2llL2}, 
Vp > 2d/5, VU, Vl, V2 E L 2(n), Vz E C, dist(z, [aM, oo )) 2:'.: S. 

Thus, in the two-dimensional case (d = 2) the operators (z - HVi)- 1U(z - Hv2 )-
1 

are nuclear. In the three-dimensional case ( d = 3) any product of two resolvents 
(z - Hv;)-1, j = 1, 2 and one operator U(z - Hv )=-1 is nuclear; more precis~ly 

Proposition 3.3. Let be U, V, Vi, V2 E L2(f2), M = max{llVllL2, llV1llL2, llV2llL2}, 
z a complex number with dist(z,[aM,oo)) 2:'.: Sand Hv, Hv11 Hv2 the Schriidinger 
operators (2.3) with potentials V, Vi, V2, respectively. Then all first order pro-
ducts of the operators (z - HVi)-1, (z - Hv2 )-

1 and U(z - Hv )-1 belong to the 
summability-class BP for all p > 2d/9 and have equal Bp-norm. There is 

ll(z - HVit1U(z - Hv t1(z - Hv2t1llP::; c Clts(i + jzl)allUllL2· 

4. FUNCTIONS OF THE SCHRODINGER OPERATOR 

Ultimately we are interested in the Frechet derivative of tr (f(Hv )) with respect to 
the potential V, where Hv is the Schrodinger operator (2.3) and f is the positive 
decreasing distribution function f or one of its primitive functions. We have got 
p-summability of the resolvent of the Schrodinger operator Hv. Now we are looking 
for a suitable representation of f(Hv) in terms of the resolvent of Hv. NIER based 
his calculations on the following one due to HELFFER and SJOSTRAND [7]: 
Let be H a self-adjoint operator in a Hilbert space, f E O~(R) and~ E O~(C) an 
extension off such that az~ = 0 on the real axis. Then there is 

f(H) = i_ I az~(z)(z - Ht1dz !\dz. 
27r Jc 

In the present context, however, this construction is rather complicated, because 
the distribution function has not finite support. One may raise the question whether 
a Dunford integral of the form 

f(Hv) = ~ f f(z)(z - Hv )-:-1dz 
2n Jr 
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cannot be used, where r is an orientated contour 'enclosing' the spectr1:1m of Hv. 
This seems possible as the spectrum of Hv is uniformly bounded from below for 
all potentials from a ball in L2 and indeed it can be done. 

4.1. Functional calculus. For any p E R and S > 0 we define 

K = Kp,6 = {z EC: dist([p,oo),z):::; S}. ( 4.1) 

A path r is said to be admissible with respect to K = Kp,6, or K-admissible, 
if r c K is a piecewise continuously differentiable orientated contour with 
r n [p, 00) = 0, surrounding the half-axis [p, 00) in such a way that it always lies 
on the left-hand side. Let be G ::J K a region in C and let us assume throughout 
this section 

f E O(G), r lf(z)ldz < oo, JaK ( 4.2) 

where 0( G) denotes the C-algebra of all holomorphic functions in the domain G 
[13]. 

Lemma 4.1. For any Kp,6 -admissible contour r there is 

f(.X) = ~ f f(z) dz, \I.A E [p, oo ). 
2n Jr z - .X 

Proof. Let be j > p arbitrary and 

( 4.3) 

{zj} {z Er: ~z = j, ~z > O} {zj} 
r; = { z E r : ~z < j} 1; 

{ z E I' : ~z = j, ~ z < 0} 
{z E 8K : ~z < j}, 

r; = [zj,ztJ /j [j - iS, zj] U [j + iS, zj]. 

Now let be A E [p, oo) and j any integer with j >.A+ 1. According to Cauchy's 
Curvilinear Integral Theorem we have 

The first integral on the right-hand side is uniformly bounded for all A E [p, oo) 
and j >A+ 1: 

r f( z) r t ( z) I r t ( z) 1 r 
Jr; z - A dz :::; J-r; z - A dz + Ir; z - A dz :::; 5 J-r; lf(z)I dz+ 2Sllfll£oo(K)-

In the limit j ~ oo we have by Lebesgue's Dominated Convergence Theorem 

lim r f ( z) dz = r f ( z) dz. 
j-too Jr· z - A Jr z - A J 

The remaining integral tends to zero as j ~ oo because of 

fr f(z) 26 
_ --, dz :::; -. -, llfllL00 (K)· 
r; z - I\ J - I\ 

D 
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Corollary 4.1. Under the assumptions of Lemma 4.1 there is 

(k) _ ~ f f(z) 
. f (.:\) - 27ri lr (z - .:\)k+1 dz, k = 0, 1, . . . , V .:\ E [p, oo). ( 4.4) 

Theorem 4.1. Let be H a self-adjoint semi-bounded operator in a Hilbert space 
and p any real number which is not greater than the lower bound of H. Then the 
Dunford integral over any Kp,0 -admissible contour r with positive distance to the 
half-axis [p, oo) equals f ( H) 

1 l . f(H) = -. f(z)(z - Ht 1 dz. 2n .r ( 4.5) 

Proof. Let's regard the spectral decomposition H = J~00 .:\dE(.:\) of H. Then 

(z - Ht1 = l: z ~ >. dE(A), f(H) = l: f(A)dE(>.). 

By means of Lemma 4.1 and Fubini's Theorem we can justify the following calcu-
lations 

f(H) l: f(A)dE(A) = l: 2~i t ;~)>. dz dE(A) 

~ f f(z)j_
00 

dE(.:\) dz = ~ f f(z)(z - Ht 1 dz. 
2n Jr -oo z - A 2n Jr 

N.B. fdz@ dE(.:\) is a bounded measure on r x [p,oo) and lz~AI:::; dist([p~oo),r) for 
z E r, .:\ E [p, oo). D . 

Corollary 4.2. Under the assumptions of Theorem 4.1 there is 

f(k)(H) = ~ f f(z)(z - Ht{k+l) dz, k = 0, 1,. ... 
2n lr 

Observing Theorem 2.1 we now get 

( 4.6) 

Corollary 4.3. Let be M > 0, Hv the Schrodinger operator (2.3) corresponding 
to a potential VE L2 (f2) with llVllL2 :::; M, O'M as defined in (2.4), y E R arbitrary 
and p < UM - y. Then for any Kp,o-admissible contour r with positive distance to 
the half-axis [p, oo) there is 

k! Ir . f(k)(Hv - y) = -. f(z)(z - Hv + Yt(k+l) dz, 
2n r 

k=O,l, .... (4.7) 

Remark 4.1. We can choose in particular r = 8K, K = Kp,o according to ( 4.1), as 
a K-admissible path with positive distance to the half axis [p, oo) which we will 
frequently do in the followi:r;ig applications. 
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4.2. The distribution function f and its primitive functions. In §1 we as-
ked the distribution function f to be positive, strictly decreasing and ·vanishing 
towards +oo in such a way that F( s) = - fs00 f ( t )dt exists. Provided all the inte-
grals involved are finite we denote by 

jHl(s):=-f" j(Hl(t)dt, j=l,2, ... , j<0l:=f (4.8) 

the iterated primitive functions of f which tend to zero while the argument ap-
proaches +oo. The functions (-l)i J(-i) are positive and strictly decreasing and if 
j(-i)exists there is limt-+oo tlf(l-i)(t)I = 0. 
In view of the functional calculus from §4.1 we will assume that f is the trace of 
some holomorphic function in a region G covering the real line. More precisely G 
shall be a region in C which is symmetric about R with the following property 

'tip ER 36 > 0 Kp,o c G. ( 4.9) 

With regard to the distribution function f we assume 

f E O(G), f(G n R) c (0, +oo), J'(G n R) c (-oo, 0). (4.10) 

The reality off on R can equivalently be expressed as f(z) = f(z) for all z E G. 
N.B. f has primitive functions which are holomorphic in .G and real-valued on R. 
Further we have to impose a decay property on the primitives off: 

..l"" 11-k(t + iO)J IW dt < oo, v p E R, (k, v) = (1, 4), (2, 4), (3, 6), ( 4.11) 

where S = 6(p) is as in ( 4.9). ( 4.11) ensures together with the holomorphy off in 
G and the reality of f on R the existence of the integrals 

faK,,, lrk(z)I (1 + lzndz < oo, Vp ER, ( 4.12) 

( k, v) E (1, [O, 4]) U (2, [O, 4]) U (3, [O, 6]), 
for the sets K = Kp,o from ( 4.9). We need the property ( 4.12) with ( k, v) = (3, 6) 
in order to prove the uniform boundedness of the electron density (cf. Proposi-
tion 6.1) and we require it with (k, v) = (1,4) and (k, v) = (2,4) to get the Frechet-
differentiability (with respect to the potential V) of the operator f (Hv - €0 (V)) 
and F (Hv - e0(V)) respectively (cf. Lemma 6.1). 

Remark 4.2. The class ( 4.10), ( 4.11) covers all the physically relevant distribution 
functions, such as the decaying exponential e-at, a> 0 and~' a,/3 > 0. 
By means of the functional calculus we can prove 

Theorem 4.2. Let be H the Schrodinger operator (2.3) with an arbitrary potential 
V E L 2 (f2). Then f(H) and F(H) are nuclear operators in L 2(f2), where f is a 
distribution function with (4.10),(4.11) and F = J(-l) the corresponding pn.mitive 
(4.8). 

Proof. Let be j = 0 or j = 1. According to Corollary 4.3 there is 

J(-i)(H) = ~ f 1<-i-2>(z)(z - Ht 3 dz, 
2n laK 
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where K = KuM,o(uM)> M = llVllL2· We know that (z - Ht3 is nuclear (cf. Propo-
sition 3.3, take U = 1 ), thus 

llf(-j)(H)lli ~ ~ r lf(-i-2>(z)l ll(z - Ht3 ll1 dz 
7r JaK 

~ ~Cits { lfC-i-2>(z)l(l + lzl)3dz < oo. 
7r JaK 

The right-hand side of this inequality is finite according to ( 4.12). D 

4.3. Differentiation with respect to potentials from L2(f2). We will now 
establish the Frechet-differentiability of the function 

( 4.13) 

which depends on the potential V of the Schrodinger operator (2.3) and where 
F is the primitive function ( 4.8) of the distribution function f. The procedure is 
analogous to that in [11], though by admitting potentials from L2( n) one has to 
regard higher order resolvent terms. 

Theorem 4.3. The function ( 4.13) is Frechet differentiable for every V E L2(f2) 
and the derivative F~(V) E B(L2(f2), 8 1 ) is given by 

F~(V)[W] = 2~i £ j<-2l(z) (R2WR+ RWR2
) dz, VW E L2(!1), (4.14) 

where R = R(z) = (z - Ht1 is the resolvent of the Schrodinger operator (2.3) and 
r is any K -admissible contour with positive distance to the half-axis [a M' 00). a M 
is as in (2.5) with M > llVllL2 and K = KuM,o(uM) is the set (4.1) with the 5 from 
( 4.9). 

Proof. Indeed, F~(V) E B(L2(f2), 8 1 ), because by Proposition 3.3 (also recall Re-
mark 4.1, (4.9) and (4.1)) there is for any WE L2(f2) 

l[F~(V)[WJll1 < 2~ laK l/C-2l(Z)i llR2WR + RWR2 ll1 dz 

< ~C1-sllWllL2 f lfC-2>(z)I (1 + lzl)3 dz 
27r JaK 

and the integral on the right-hand side is finite according to ( 4.12). Without loss 
of generality let be WE L2(f2) such that llV + WllL2 ~ M. Then 

Fo(V + W) - Fo(V) = ~ f fC- 2>(z) ((z - (H + W)t 2 - (z - Ht2) dz. 2n Jr 
Now we decompose the difference of the resolvent-squares (cf. §3.3) under the 
integral 

R~ - R 2 = R 2WR + RWR2 t RRw(WR)2 + Rw(WR)2 R + (RwWR) 2 

where R = R(z) = (z - Ht 1 and Rw = Rw(z) = (z - (H + W)t 1
. The first two 

terms are the contribution to the derivative and we get for the remainder of the 
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linear expansion of F 0 (V + W) at V 

w(V, W) = Fo(V + W) - Fo(V) - F~(V)[W] 

= 2~i frJ<- 2l(z) (RRw(WR)2 + Rw(WR)2R+ (RwWR)2
) dz. 

By means of Proposition 3.2, Proposition 3.3 and ( 4.12) we can estimate the nuclear 
. norm of the remainder 

llw(V, W)ll1 ~ 2c CiullWlli,2 f IJ<-2)(z)I (1 + lzl)4 dz < oo. 
7r JaK 

Thus we have received the desired result 

D 

llw(V, W)lli ~ 0 as llWllL2 ~ 0 . 
llWllL2 

Remark 4.3. One gets higher derivatives of F0 (V) by further decomposing the dif-
ference of the resolvent-squares R~ - R2 • Thus one obtains for the second order 
term in the Taylor expansion 

Fo(V + W) = Fo(V) + F~(V)[W] + ~F~(V)[W, W] + ... 

F~'(V)[W, W] = ~ f f<- 2)(z) (R2 (W R)2 + R(W R)2 R + (RW R)2
) dz,. ( 4.15) 

2n lr 
where R = (z - Hv )-1 . The nuclear norm of the corresponding remainder is a 
o(llWlli,2). 
If the operators W and R = ( z - Ht1 commuted, there would be 

F~(V)[W] ~ f f<- 2>(z)(R2WR+RWR2
) dz 

2n lr 
( 2!i£f<-2l(z)(z-Ht3 dz) W = f(H)W, 

i. e. F~(V) = f(H). In general, however, the operators W and (z - Ht1 do not 
commute, but we get something of the above under the trace, as tr( AB)= tr( BA). 

Theorem 4.4. The functional 

</Jo E (L2(n) ~ R), </>0 (V) = tr(Fo(V)) = tr(F(Hv)) (4.16) 

is Frechet differentiable for every V E L2(n) and the derivative <P~(V) E (L2(n))* = 
L 2(n) is given by 

(</>~(V), W) =tr (f(Hv) W), VW E L2(n). ( 4.17) 

Proof. Let be VE L2(n) arbitrary and fixed, M > llVllL2 and without loss of ge-
nerality WE L2(!1) such that !IV+ WllL2 ~ M. Each term in the linear expansion 

Fo(V + W) = Fo(V) + F~(V)[W] + w(V, W) 
of F 0(V + W) is nuclear and by applying the continuous linear functional tr we get 

</>o(V + W) = </>o(V) + tr(F~(V)[W]) + tr(w(V, W)). 
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Let us first estimate the remainder 

I tr( w(V, W))I ::; llw(V, W) Iii = o (II WllL2) . 
tr(F~(V)[W]) is indeed the Frechet derivative </>~(V) applied to W, because the 
composition tr oF~(V) : L2(n) ~) 8 1 ~ R is a continuous linear functional. 
Now we calculate the derivative explicitly, using the relation tr( AB)= tr( BA) 

(</>~(V), W) = tr(F~(V)[W]) = 2~i £1<-2>(z)tr (R2WR + RWR2
) dz 

= ~ f j<-2)(z) tr ((z - Hv t 3 w) dz 
2n lr 

=tr(~ f JC-2)(z)(z - Hv t 3 dz w) =tr (f(Hv) W) 
2n lr 

where r is as in Theorem 4.3. D 

5. THE FERMI LEVEL Eo(V) 
The Fermi level Eo as a function of the potential V is implicitly defined by the 
electric-neutrality equation 

iin = f nn(x)dx = f n(x)dx = f f(E1(V)- Eo(V)), lo lo l=l 
(5.1) 

where { E1(V)}~1 are the eigenvalues in increasing order (counting multiplicity) 
of the Schrodinger operator (2.3) with the potential V E L2 (n). Indeed, for every 
VE L2(n) the Fermi level Eo(V) is uniquely determined that way, as the series 

00 

g(V,y) = l:f(E1(V)-y) = tr(Hv -y)' v E L2 (n), y ER (5.2) 
l=l 

converges according to Theorem 4.2 and defines a positive and (strictly) increasing 
function gv(Y) = g(V, y) with the property 

lim gv(y) = oo, lim gv(y) = 0. 
y-+oo y-+-oo 

The function g E (L2(n) x R ~ R) has continuous partial derivatives 

81g(V, y) E B(L2 (n), R) = L2 (n), 

on L2 (n) x R 

82g(V,y) E B(R,R) = R 

(81g(V, y ), W) tr(f'(Hv - y)W), vw E L 2 (n) 
00 

- -tr(f'(Hv - y)) = - E j'(E1(V) - y) > 0. 
l=l 

(5.3) 

(5.4) 

Thus, by the Implicit Function Theorem for every VE L2 (n) there is a neigh-
borhood M C L2(n) of V and a continuously Frechet-differentiable function 
Eo E (M. ~ R) such that 

g(V, Eo(V)) = iin, VV E M 
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and the Frechet-derivative €~ E (.M ~ L2(n)) is given by 

( / (V) W) = tr(f1(Hv - Eo(V))W) VW E L2(n) VV EM 
Eo ' tr(f1(Hv - Eo(V))) ' ' · (5.5) 

This implies that Eo E (L2(n) ~ R) is a continuously Frechet-differentiable func-
tion on every compact subset of L2(n). NIER [11] used the M-ball of H 1(n) as 
such a set. We want to extend the result to the M-ball of L 2(n). 

Theorem 5.1. Let be M > 0 arbitrary and M the closed M-ball in L2 (n). Then 
the mapping Eo E ( (M, wk)~ R) is continuous. 

Proof. Assume the mapping €0 E ( (M, wk)~ R) were not continuous. Then there 
is a sequence {Vi}l~1 CM and a V'E M with Vi~ V weakly in L2(n) such that 

l€o(Vi) ~ Eo(V)I > 80 > o, Vl = 1, 2, .... (5.6) 
Let be H = Hv = -l:i + V and Hz= HVi = -l:i +Vi the Schrodinger operators 
(2.3) corresponding to the potentials V and Vi, l = 1, 2, .. .',respectively. We abbre-
viate Eo := Eo(V) and €oz := Eo(Vi), l = 1, 2, .... According to the electric-neutrality 
condition (5.1) we have 

fin =tr (!(Hz - Eoz)) =tr (f(H - Eo)), Vl = 1, 2, ... , 

i.e. for all l = 1, 2, ... there is 

tr(f(Hz - Eoz)- f(Hz - Eo)) = tr(f(H - Eo)- f(Hz - Eo)). (5.7) 

Next we will show that the right-hand side of (5.7) tends to 0 as l ~ oo. As the 
Vi are bounded in L2 there is by Corollary 4.3 

tr (f(H - Eo) :-- f(Hz - Eo)) (5.8) 
1 . 

= -. f F(z) tr ((z - H + Eot2 
- (z - Hz+ Eot2

) dz, 
2n laK 

where K = Kp,o(p) with p = aM - e0 is as in ( 4.1) and ( 4.9) respectively. N.B. K 
does not depend on l. We denote ( = z + e0 , decompose the difference of the resol-
vents 

((-Ht2-((-H1t2 
= (( - Ht2(V - Vi)(( - Hzt1 + (( - Ht1(V - Vi)(( - H1t2 

and estimate its nuclear norm by means of Holder's inequality and the Lemmata 3.1 
and 3.4 

II(( - Ht2 
- (( - Hzt2 l1

1 
(5.9) 

~II((- Ht1(V - Vi)((- Hzt1 ll2 (II(( -Ht1 ll2 +II(( - Hzt1 ll2) 
~ 2ato(1 + ICl)3 jj(P - l:it 1(v - Vi)(p - l:it1 1l2 ll(P - l:it1 ll2 
~ 2ato(1 + IC1)3 ll(p -1:ir1ll2 ll(p- Lir11211: ll(P -1:ir112(v - Vi)(p - Lir112ll 

where p =PM= 1 - aM. This decomposition ensures on the one hand the Be 
summability of the operator (p - l:i t 112 (cf. Corollary 3.1) and on the other hand 
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allows to decompose (p - !::::.. )-112 = (p - !::::.. )-318(p - !::::.. )-118 , into a part which maps 
L2 into L4 as · 

(cf. e.g. [1]) and another part (p - 1::::..)-118 which is compact. By means of this 
decomposition we get in a first step that the sequence of operators 

converges Ai -l. 0 weakly in B (L2(n)). Indeed there is for all 'I/;,</> E L2 (n) 

( (p _ !::::.. t3f8(V _ V,)(p _ !::::.. t3f8'lj;, ¢) 
((V _ V,)(p _ !::::..t3f8'lj;, (p _ !::::..t3/8¢) 

J/v - V,)(x) ((p- !::::..t3f81fJ) (x) ((p- !::::..t3/8</>) (x) dx. 

and this tends to zero as l ~ oo because ((p - 1::::..)-3181/J). ((p - !::::..)-318<f>) E L2(n) · 
and V, -l. V weakly in L2 (n). Next we will show that the sequence of the operators 

converges to zero in the uniform operator topology of B ( L2 ( n)). Otherwise there 
would be a sequence { ¢z} C L2(n) with ll¢i!IL2 = 1, l = 1, 2, ... such that 

As the operator (p - 1::::..)-118 is compact then there. would be a </> E L2(n) and a 
subsequence {</>i;}~1 C {</>i}~1 with (p - !::::..)-118¢z; ~ </> strongly in L2(n). Thus 
we have 

II (p - !::::.. tl/8 Ai; (p - !::::.. rl/8<Pi;11£2 ( s.11) 

~ ll(p- 1::::..t1f8Ai; ((p-1::::..tl/8</>z; - ¢)llL2 + ll(p-!::::..t1f8Ai;<f>llL2. 

For every 1f; E L2 (n) we have A1'lj; -l. 0 weakly in L2(n) and because (p - ~t 1 l8 

is compact, (p - !::::..t118 Az1/; ~ 0 strongly in L2 (n). Thus, in 'particular the second 
term on the right-hand side of (5.11) converges towards zero as j ~ oo. On the 
other hand by the Banach-Steinhaus Theorem the operator norms 11 (p - ~ )- 1 i 8 Al11 
are bounded and as (p - 1::::..)-118</>i; ~ </> strongly in L2 (n) this implies that the _ 
first term on the right-hand side of (5.11) tends to zero. Thus we have got 
ll(p-!::::..)-118Ai;(P- !::::..t 1 18 11~0 which is a contradiction to (5.10), hence 

(5.12) 
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Combining this result with the estimate (5.9) and (5.7), (5.8) (notice the decay 
properties of F as stated in ( 4.12)) one obtains 

0 lim ltr (f(H - Ea) - f(Ht - Eo))I 
t-+oo 

(5.13) 

lim ltr (!(Ht - Eat) - f(Ht - Eo))I 
l-+oo 

00 

lim L lf(Ej(Vl) - Eoz) - f(Ej(Vl) - Eo)I 
Z-+oo . 

J=l . 

> lim lf(E1(Vz) - Eoz) - f(E1(Vz) - Eo)I 
Z-+oo 

(recall that f is strictly decreasing and therefore all the differences 
(!( Ej(Vl) - Eat) - J( Ej(Vl) - Ea), j = 1, 2,... have the same sign). According 
to Theorem 2.1 the sequence { E1 (Vz)}~1 is bounded. hence the sequence 
{f ( Ei(Vz) - Eo)}~1 is bounded and because of (5.13) {f ( E1(Vz) - Eoz)}~1 is boun-
ded too, i.e. there is an interval [a, b], 0 < a, b < oo such that 

f ( Ei (Vi) - Ea) E [a, b], f ( €1(Vz) - Eat) E [a, b], l = 1, 2, .... 

1-1 is strictly decreasing and continuous on [a, b] because f is strictly decreasing 
and continuous on R. Hence for the 60 from (5.6) there is a 61 > 0 and for that 
according to (5.13) a 11 E N such that 

which is a contradiction to our original assumption (5.6). D 

By means of the weak compactness of M we get immediately 

Corollary 5.1. The Fermi level Eo(V) is bounded on M 

~M::; Eo(V)::; EoM, VV EM. (5.14) 

Theorem 5.2. The Frechet-derivative €~ E (L2(f2) ~ L2 (f2)) of the Fermi level 
with respect to the potential V is bounded on any M-ball M in L 2 (f2) 

(5.15) 

Proof. Let be VE M arbitrary, { €z(V)}~1 the eigenvalues of the corresponding 
Schodinger operator (2.3) and Eo(V), E~(V), the Fermi level and its Frechet-
derivative at V. According to (5.5) there is 

1 , ltr(f'(Hv-Eo(V))W)I 
llE0 (V)llL2 = sup j(E0 (V), W)I = sup (f'(H _ (V))) 

11w11L2=l llWllL2=l tr v €0 
(5.16) 

we~ we~ 

We estimate the numerator in (5.16) by means of Pr()position 3.3 and make 
use of the Dunford-integral representation (cf. Corollary 4.3) of the operator 
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f'(Hv - Eo(V))W over the contour 8K of the set K = KuM-°€oM,o with 8 as in 
( 4.9), which can be used for all VE M: · 

lf'(Hv - Eo(V))WI ltr Ci faKF(z)(z -Hv + Eo(V)f3 Wdz)I 
1:i t F(z) tr ((z - Hv + Eo(V)f3 W) dzl 

< ; t IF(z)i ll(z - Hv + Eo(V)f3 wlf1 dz 

< ;cltollWllv faK IF(z)I (1 + lzl3
) dz< oo. 

The integral on the right-hand side is finite according to ( 4.12). 
It remains to show that the denominator of (5.16) keeps away from zero on M. 
Because of the monotonicity off there is 

00 

- 'Li' (Ez(V)- Eo(V)) ~ -!' (E1(V) - Eo(V)), VV E L 2 (n). 
l=l 

The sets {€1(V)}veM and {Eo(V)}VeM are bounded (cf. Theorem 2.1 and Corol-
lary 5.1), hence there is a finite interval [a, b] such that E1(V) - Eo(V) E [a, b] for 
all V E M and as f' is continuous there is a SM E [a, b] with 

0 > f'(sM) = max f'(s) ~ sup f'( E1(V) - Eo(V)). 
sE[a,b] VEM 

Thus we have got that (5.16) is uniformly bounded for all VE M. D 

Corollary 5.2. The mapping Eo E (M---? R) is Lipschitz-continuous with the con-
stant from Theorem 5.2 

!Eo(Vl)- Eo(V21::; Le0 (M)llVi -V2llL2, VVJ., V2 EM. (5.17) 

6. THE ELECTRON DENSITY n = n(V) 
6.1. Boundedness. For every VE L2(n) the electron density n = n(V) is defined 
by 

00 

n(V)( x) = L f ( Ez(V) - Eo(V)) 17/Ji(V)( x )1 2 x E n ' (6.1) 
l=l 

where { Ez(V) }l~1 and { 7/Ji(V) }l~1 are the eigenvalues in increasing order (counting 
multiplicity) and the corresponding eigenfunctions of the Schrodinger operator (2.3) 
and Eo = Eo(V) is the Fermi level. The series 

00 

°Lf(Ez(V)- Eo(V)) = tr(f(Hv - Eo(V)) 
l=l 

converges according to Theorem 4.2. Hence, n(V) E L1(n). 
Proposition 6.1. For all potentials VE L2(n) there is n(V) E L00 (n) and the 
defining series (6.1) converges uniformly for all x En. For every M > 0 we may 
notice 

sup lln(V) II Loo < oo, (6.2) 
VeM 
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where M denotes the closed 'M-ball in L2 (f2). 

Proof. Let be V E M arbitrary, { <:z(V)}~1 the eigenvalues (counting multiplicity) 
of the corresponding Schodinger operator (2.3) and <:o(V) the Fermi level. We esti-
mate ( 6.1) making use of the Dunford-integral representation (cf. Corollary 4.3) of 
the operator f ( Hv - Eo(V)) over the contour 8K of the set K = KuM,o with S as 
in ( 4.9), thereby using (3.12), Lemma 3.4, Proposition 3.1 and Corollary 5.1 and 
abbreviating <:z = <:z(V), l = 0, 1, 2, ... : 

c2 oo . 

lln(V)llL00 ::; c2 I: f ( <:z - Eo)(PM + €z)2 

M l=l 

= co(M) tr(! (Hv - <:o) (PM+ Hv )2
) 

= co(M) tr(~ f f- 3 (z) (z - Hv + <:or4 dz (PM+ Hv )2
) 

7ri JaK 

::; c1(M) faK lf-3(z)l ll(z - Hv + <:or4 (PM+ Hv )2
11 1 dz 

= c1(M) faK lf-3(z)l ll(z - Hv + Eor4 ((PM+ Eo + z) - (z - Hv + Eo))2
1l 1 dz 

= c1(M) faK lf-3(z)l ll(PM + <:o + z)2 (z - Hv + <:or4 

- 2 (PM+ Eo + z) (z - Hv + Eor
3 + (z - Hv + Eor2 1l1 dz 

::; c1(M) laK jf-3(z)j {IPM + Eo + zl 2 C'it0 (1 + lz + Eol 4
) 

+ 2 IPM + Eo + zl C10 ( 1 + lz + Eol 3
) + C'it0 ( 1 + lz + Eoi2)} dz 

::; c2(M) laK lf-3(z)j (1 + lzl6
) dz < oo. 

The integral on the right-hand side is finite according to ( 4.12) and the whole 
right-hand side does not depend any more on V. D 

6.2. Potentiality. We will prove that the electron-density operator 

(6.3) 

which maps an electrostatic potential VE L2 (f2) onto the corresponding electron 
density (6.1) is a potential-operator. 

Lemma 6.1. Let be Hv the Schrodinger operator (2.3) with the potential V, 
Eo(V) the corresponding Fermi-level (5.1), U E L2 (f2) arbitrary but fixed and J(-i), 
j = 0, 1 the primitive ( 4.8) of a distribution function f with ( 4.10),( 4.11) or this 
function itself. The function 

(6.4) 
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is Frechet differentiable for every V E L 2(n) and the derivative F'(V) E 
B(L2(n), B1 ) is given by 

.F'(V)[W] = 2~i J1<-i-ll(z) (R2(z)WR(z) + R(z)WR2(z)) dz 

- tr(!' (Hv - Eo(V)) W) U 1(1-j) (Hv - Eo(V)) 'v'W E L2(n) (6.5) 
tr(!' (Hv - Eo(V))) ' 

where R = R(z) = (z - Hv + Eo(V))-1 and r is any Kp,o(p)-admissible path with 
positive distance to the half-axis [p, oo ). K = Kp,o(p) is the set ( 4.1) with 
p = aM - €oM and M > llVllL2, aM and €oM being the .lower bound (2.4) of the 
spectrum and the upper bound (5.14) of the Fermi level, respectively. 
Proof. In the same way as in the proof of Theorem 4.3 one can show that F'(V) is 
indeed from B(L2(n), 8 1 ). Now without loss of generality let be WE L2(0) such 
that llV + WllL2 :::; M. Then 

F(V + W) - F(V) = U f(-i) (Hv+w - Eo(V + W)) - U 1(-i) (Hv - Eo(V)) 

= ~ r 1(-j-l)(z) ((z + Eo(V + W) - Hv - Wt 2 - (z + Eo(V) - Hv t 2 ) dz. 
2n Jr 

N~B. the requirements on the contour r in the lemma serve for both arguments 
Hv+w - Eo(V + W) and Hv - Eo(V) of the function 1(-i). Now we decompose the 
difference of the resolvent-squares (cf. §3.3) under the integral 

R'tv - R2 = R2WR + RWR2 
- 2(E~(V), W)R3 

- 2we(V, W)R3 + RRw(WR)2 + Rw(WR)2R+ (RwWR) 2 

+ ((E~(~), W) 2 + w;(v, W)) (RRwR2 + RwR3 + (RwR) 2
) (6.6) 

where Rw = Rw(z) = (z - (Hv - Eo(V) + W - (€a(V), W) -we(V, W))r1 and 
E~(V) is the Frechet-derivative (5.5) of the Fermi level at V. By we(V, W) we denote 
the remainder in the linear expansion Eo(V + W) = Eo(V) + (E~(V), W) + we(V, W). 
The first three terms in (6.6) are the contribution to the derivative. According to 
(5.5) and Corollary 4.3 there is indeed for all WE L2(n). 

2(E~(V).' W) r 1(-j-l)(z)R3(z) dz= tr(f'(Hv - Eo(V))W) 1<1-j) (Hv - Eo(V)). 
2n Jr tr(f'(Hv - Eo(V))) 

For the remainder of the linear expansion of F(V + W) at V we get 

w(V, W) = F(V + W) - F(V) - F'(V)[W] 

= ~ f 1<-i-1)(z) (-2we(V, W)R3 + RRw(WR)2 + Rw(WR)2R+ (RwWR) 2 

2n Jr 
+ ((E~(V), W) 2 + w:(v, W)) (RRwR2 + RwR3 + (RwR) 2

)) dz. 

By means of Proposition 3.2 and 3'.3 we can estimate the nuclear norm of w(V, W) 

llw(V, W)ll1 ~ C llUllL• ( Clf6 o(llWllL•) [ l1H-1>(z)I ( 1 + lzl3
) dz 

+ct:6 (llWlli· + llE~(Vm.11w111. + o(llWlli·)) D1<-i-l)(z)I (i + lzl4
) dz). 
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The integrals on the right-hand side are finite according to ( 4.12). Thus, 
llw(V, W)ll1 is indeed a o(llWllL2 ). D 

Theorem 6.1. Let be H = Hv the Schrodinger operator (2.3) with the potential V, 
Eo = t:o(V) the corresponding Fermi-level ( 5.1) and f a distribution function with 
( 4.10),( 4.11). There is the following representation of the electron-density operator 

(n(V), W) =lo W(x)n(V)(x)dx =tr (!(Hv - Eo(V))W), VV, WE L2(!1). (6.7) 

Proof. We calculate the trace of the operator f(H - t:0 )W with respect to the 
eigenfunctions { ~z};:1 of the Schrodinger operator H and use its spectral decom-
position H = :E~1 t:z (·, ~l)£2 ~l· As His self-adjoint and f is real-valued for real 
arguments the operator f(H - t:o) is self-adjoint. Thus, 

00 00 

tr(f(H - Eo)W) = L (f(H - Eo)W~i, ~l)L2 = L (W~i, f(H - t:o)~z)L2 
l=l l=l 

= ~ ( W,P1 , ~ J( E; - Eo) (,Pi, ,P;)L' ,P;) L2 = ~ (W,P1,J( €1 - €0),P1)L' 

=~lo W(x)f(E1-Eo)l..P1(x)l 2dx =lo W(x) ~ f(E1-Eo)l,P1(x)l 2dx = (n(V), W) 

for all W E L 2(0). D 

Theorem 6.2. Let be Hv the Schrodinger operator (2.3) with the potential V and 
t:0 (V) the corresponding Fermi-level (5.1). The functional 4> E (L2(0) ---+ R) 

4>(V) = fiD t:o(V) +tr (F(Hv - €o(V))), VE L2 (0) (6.8) 

is Frechet differentiable for every VE L2(f2) and the. derivative 4>'(V) E (L2(f2))• = 
L2(0) is the electron density 4>'(V) = n(V). 

Proof. Since the trace is a continuous linear functional on 8 1 one obtains by means 
of Lemma 6.1 (take j = 1 and U = 1) 

(¢'(V), W) = fiD(€~(V), W) +tr (F'(V)[W]) 

=tr (2~i j1<-2l(z) (R2(z)WR(z) + R(z)WR2(z)) dz) VW E L2(!1). 

N.B. according to (5.5) and (5.1) the trace of the second term in (6.5) is just 
- nD(€a(V), W). In the same way as in the proof of Theorem 4.4 one can show 

tr (2~i frJHl(z) (R2(z)WR(z) + R(z)WR2 (z)) dz)= tr(!(Hv - Eo(V))IV) 

for all W E L 2(0). Now the assertion follows with Theorem 6.1. D 
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6.3. Frechet differentiability. 

Theorem 6.3. The electron-density operator (6.3) is Frechet differentiable for 
every V E L2 (f2) and the derivative n'(V) E B(L2(f2)) is given by 

(n'(V)[W], U) =tr c~i fr F(z) (R2(z)WR(z) + R(z)WR2 (z)) dz) 

_tr(!' (Hv - t:0(V)) W) tr(!' (Hv - Eo(V)) U) VU W L2(n) (6.9) 
tr(!' (Hv - Eo(V))) ' E ' 

where Hv is the Schrodinger operator (2.3) with the potential V, Eo(V) the corre-
sponding Fermi-level (5.1) and R and r are as in Lemma 6.1. 

Proof. The assertion follows from Theorem 6.1 and Lemma 6.1 where we take j = 0 
and get 

(n'(V)[W], U) =tr (F'(V)[W]) VU, WE L2 (f2), 
with F(V) = Uf(Hv - Eo(V)). D 

Remark 6.1. If the directions U and W coincide (6.9) can be written in a more 
condensed form, viz. 

(n'(V)[W], W) =tr(~ f f(z)(W R(z))2 dz) - (tr(!' (Hv - Eo(V)) W))
2 

2n lr tr(!' (Hv - Eo(V))) 
for all WE L2(f2). Indeed there is 

WR2(z)WR(z) + WR(z)WR2(z) = - d~ (WR(z))2 

and observing the decay properties ( 4.12) of F one can integrate by parts 

I d 2 I 2 - Jr F(z) dz (W R(z)) dz= Jr f(z)(W R(z)) dz. 

N.B. we cannot use this formula for the monotonicity-proof, as NIER [11] did, since 
we do not have the nuclearity of the operators (WR(z)) 2 for arbitrary potentials 
V from L2 (f2). 
6.4. Bounded Lipschitz-continuity. 

Lemma 6.2. The Frechet-derivative n' E (L2 (f2) --> B(L2)) of the electron-
density operator (6.3) with respect to the potential V is bounded on M 

lln'(V)ll :::; Ln(M) \IVE M (6.10) 

for every M > 0, M being the M-ball in L2(f2). 
Proof. Let be V E M, H = Hv the Schrodinger operator (2.3) with the poten-
tial V, Eo = Eo ( V} the corresponding Fermi-level ( 5 .1), R = R( z) = ( z - H + Eo t 1, 
K = Kp,o(p) the set ( 4.1) with p = aM - EoM, aM and EoM being the lower bound 
(2.4) of the spectrum and the upper bound (5.14) of the Fermi level, respectively. 
We calculate 

lln'(V)ll = sup (n'(V)[W], U) 
U,WEL2 

llUllL2 =llWllL2 =l 
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by means of Theorem 6.3 and get with (5.5) and Theorem 5.2 

(n'(V)[W], U) :S 2~ t IF(z)l !IUR2(z)WR(z) + UR(z)WR2(zt dz 

+ Leo(M)llWllL2 llf'(H - Eo)Ull 1 VU, WE L 2(n). 

As for the second term on the right-hand side we may observe via Corollary 4.3 

We estimate the nuclear norms in the preceding formulas by means of Holder's 
inequality, Proposition 3.2 and Proposition 3.3 and get for all U, WE L2 (n) 

The integral on the right-hand side is finite according to ( 4.12). D 

From Lemma 6.2 immediately follows 

Theorem 6.4. The electron-density operator (6.3) is bounded Lipschitzian, i.e. 
for each M > 0 there is a Ln ( M) such that 

6.5. Monotonicity. 

Theorem 6.5. The negative electron-density operator (6.3) is monotone: 

(n(V2) - n(Vi), Vi - V2) ~ 0 VVi, V2 E L2(n). 

Proof. We will show that 

(n'(V)[W], W) ~ 0 vv, w E L2(n). 

-(6.11) 

(6.12) 

(6.13) 

This implies the monotonicity of the operator -n (cf. [3], ch. III, Lemma 1.1). 
According to Theorem 6.3 there is for all WE L2(11) with Rand r as in Lemma 6.1 

Let us calculate the trace of R(W R)2 with respect to the eigenfunctions { 1/JI}~1 of 
the Schrodinger operator Hv: 

00 00 

tr ( R(W R)2) = L: (w RW R21/;1, 1/J1) L2 = L: ( R2(z )1/;1, W R(z)W 1/J1) L2 
l=l l=l 

= f: (R(z)W1/;1, W1/;~)L2 = f: (R(z)1/;j,1/;1c)L2 (W1/;1,1/;j)~2 (1/;1c, W'l/J1)L2 
l=l (z - El+ Eo) j,k,l=l (z - E1 + Eo) 

= f: (W,P1,,Pk)L2(,Pk,W,P1)L2 = f: l(W,P1,,Pk)L2l2 
. 

k,l=l (z - E1 + Eo)2(z - E1c + Eo) k,l=l (z - Ez + Eo) 2(z - E1c + Eo) 
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By means of Lemma 4.1 and Corollary 4.1 one can evaluate the contour integral 

Fkz = 1 f F(z) 
' 7ri Jr (z - Ez + Ea)2(z - Ek+ Ea) 

{ 
f' (Et - Ea) if Ez = Ek 

( ei _
2
e1c )2 ( F (Ek - Ea) - F ( Ez - Ea) - f (Et - Ea)( Ek - Et)) if Ez #- Ek 

which is always negative as the distribution function is strictly decreasing. Thus, 

tr(!' (Hv - Ea(V))) (n'(V)[W], W) 

= ~ f f' (Ek - Ea) f' ( Ez - Ea)( (W-1/Jk, 1/Jk)p - (W ,Pz, .Pt)L' )2 
k,l=l 

+tr(!' (Hv - Ea(V))) (.~, Fkl l(W,P1, 1/lk)p 12) . 
lc;#L 

This expression is always nonnegative and vanishes iff W is a constant a.e. in n. 
As tr(!' (Hv - Ea(V))) is strictly negative this implies (6.13). D 

Corollary 6.1. The restriction of the negative electron-density operator (6.3) on 
the space HJ(n) is strictly monotone: 

(n(V2) - n(Vi), Vi - V2) > O VVi #- V2 E HJ(n). (6.14) 

7. EXISTENCE, UNIQUENESS AND REGULARITY 

Theorem 7.1. For every nD E L2(n) the Schrodinger-Poisson operator (1.6) is a 
strongly monotone 

(A(V2) - A(Vi), V2 - Vi) > llV2 - Vill~1 VVi, V2 E HJ(n) (7.1) 
0 

and bounded Lipschitz-continuous 

llA(V2) - A(Vi)llH-1 ::; (1 + C Ln(M)) llV2 - VillHJ 
\IV; E HJ(n) with llVo + V;llL2 ::; M, j = 1, 2 (7.2) 

potential operator. Its inverse A-1 E (H-1(n) ~ HJ(n)) is a strictly monotone and 
Lipschitz-continuous 

llA-1(n2) -A-1(n1)llHJ < lln2 - nillH-1 \lni,n2 E H-1(n) (7.3) 
potential operator. - In (7.2) Ln(M) is the constant from (6.11) and c is the 
product of the embedding constants C£2,_H-1 and cH1,_L2. 

0 

Proof. The Schrodinger-Poisson operator (1.6) is the difference 

A(V) = JV - n(Vo + V) 
of the duality mapping (1.10) and the electron-density operator (6.3). The duality 
mapping J is strongly monotone and Lipschitz-continuous with both constants 1. 
Hence (7.1) and (7.2) follow from Corollary 6.1 and Theorem 6.4, respectively. The 
duality mapping is also a potential operator and soc is n and thus A according 
to Theorem 6.2. Now a well known theorem (cf. [3] ch. III, Th. 4.9) provides the 
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existence, potentiality and strict monotonicity of A-1 . Direct calculation shows the 
Lipschitz-continuity of A-1 (cf. [3] ch. III, Cor. 2.3) . D 

According to Theorem 7.1 the Schrodinger-Poisson equation (1.5) has exactly 
one solution VE HJ(n) for every right-hand side from n-1 (n). As we assume 
nD E L2(f!) we can get better regularity of the solution V = 1-1 ( n(Vo + V) - nD ). 

Theorem 7.2. For every nD E L2(f!) the solution of the Schrodinger-Poisson 
equation (1.5) belongs to the space H 2(f!) n HJ(n). 

The proof follows from assumption (1.14). By embedding H 2 (f!) '--+ L00 (f!) one 
obtains · 

Corollary 7.1. For every nD E L2{f!) the solution of the Schrodinger-Poisson 
equation (1.5) belongs to the space L00 (f!). 

8. ITERATION SCHEME 

Let be Vi E HJ an arbitrary starting point and a> 0 any positive real number. We 
define the iteration sequence {Vz}~1 c HJ(n) by 

Vz+1 = (1-tz)Vz + tzJ-1 (n(Vo + Vz)-nD) l = 1,2, ... ' 

tz =min {1, 
2 

} µz = µ (llVzllHJ + llJVz - n(Vo + Vz) + nDllH~1) (8.1) a+ µz 
whereµ is an increasing function with 

llA(U)-A(V)llH-1 ~ µ (max{llUllH5, llVllH5}) llU - VllH5, VU, VE H~. 
(7.2) provides such a function µ. According to [3] ch. III, Th. 4.2, Rem. 4.12 we 
have · 

Theorem 8.1. The sequence (8.1) converges strongly in HJ(n) towards the solu-
tion V of the Schrodinger-Poisson equation (1.5). . 

Remark 8.1. The dynamical step size in (8.1) can be replaced by a constant tz = t 
and any smaller positive value can be used just as well (cf. [3] ch. III, Rem. 4.11 ). -
Theorem 8.1 implies that the sequence {Vz}~1 is bounded in L2 . So in the following 
we can choose a finite M such that 

llVo + VzllL2 ~ M, l = 1, 2, .... (8.2) 
Thus we have uniform constants for all members of the iteration sequence and the 
solution. 
Ultimately we are interested in uniform convergence of the sequence (8.1). By 
means of assumption (1.14) we may notice 

Lemma 8.1. For every starting point Vi E H 2(f!) n HJ(n) the iteration sequence 
(8.1) belongs t? the spaces HJ(n), H 2(f!) and L00 (f!). 

Theorem 8.2. Let be Vi E H 2(f!) n HJ(f!). Then the iteration sequence (8.1) con-
verges weakly in H 2 (f!) towards the solution V of the Schrodinger-Poisson equa-
tion (1.5). · 
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Proof. In §6.4 we have proved that the electron-density operator is bounded Lip-
schitzian. Hence the HJ-convergence Vi --+ V of the iteration sequence (8.1) implies 

n(Vz) --+ n(V) in L 2(!1). 
As J-1 E B(L2 ,H2 ) (cf. assumption (1.14)) we have 

J-1 (n(Vz))--+ J-1(n(V)) in H 2(!1), 
i.e. the sequence {J-1 (n(Vz))};:1 is bounded in H 2 : 

11J-1 (n(Vz))llH2 ~ K, l = 1, 2, .... 

Now from the definition (8.1) of the iteration sequence we may deduce 
l-1 

llVz+illH2 < (1 - t)llVzllH2 + tK ~ (1 - t)'llVillH~ + tK L(l - tt 
v=O 

(N.B. 0 < t < 1). 

Thus we have got that the iteration sequence (8.1) is bounded in the space H 2 (!1). 
As H 2(!l) is reflexive {Vz}l~1 is also weakly compact. Now the assertion follows 
from the already established HJ-convergence of the whole sequence {Vz}l~1 . D 

Corollary 8.1. Let be Vi E H 2 (!1) n HJ(!t). Then the iteration sequence (8.1) con-
verges strongly towards the solution V of the Schrodinger-Poisson equation (1.5) 
in every space to which H 2(!l) n HJ(!t) has a compact embedding, especially in 
L 00 (!l). 

Let be H1 == -ti+ Vo+ Vi the Schrodinger operator (2.3) corresponding to the po-
tential Vo+ Vz which the iteration sequence (8.1) provides and a (Hz) the spectrum 
of H1. There is (cf. [9] ch. V, Th. 4.10) 

dist (a (Hz+1), a (Hz)) ~ llH1+i - Hzll = llVz+i - VzllLoo, 
dist (a (Hv), a (Hz)) ~ llHv - Hzll = llV - VzllLoo, 

V being the solution of the Schrodinger-Poisson equation (1.5) and Hv the corre-
sponding Schrodinger operator (2.3). 
The Schrodinger operators (2.3) are operators with compact resolvent (cf. Pro-
position 3.1 ). Hence, their spectrum consists entirely of isolated eigenvalues with 
finite multiplicity. Thus, for each A E a(Hv ), V being again the solution of the 
Schrodinger-Poisson equation (1.5), there is an index l(A), such that 

disol. ==dist (A, a(Hv) \{A})> 2 llVz - VllLoo, Vl ~· l(.A). 
Let be m the multiplicity of A E a(Hv ). Then for each l ~ l(A), Hz has exactly m 
repeated eigenvalues in the interval (A - ¥,A + ¥) and at most m repeated 
eigenvalues in the interval (A - llV -VzllLoo ,A+ llV - VzllLoo) (cf. [9) V.4.3 and 
take there T = Hv, S =Hz, a= llV - VzllLoo' b = 0). 
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A Note on the Discretization of a Stationary Schrodinger-Poi~son 
System (by G. Albinus) 

Abstract: Recently it has been observed that the stationary Schrodinger-Poisson system 
is a variational problem with a strongly monotone potential operator. In this note a 
way of discretization is described such that the discretized problem is also a variational 
problem with a boundedly Lipschitz continuous strongly monotone potential operator. 
These properties guarantee the unique solvability of the discrete problem as well as the 
convergence of the iteration method of the steepest gradient. 

Key words: stationary Schrodinger-Poisson system, discretization of the Schrodinger-
Poisson system, monotone potential operators, iterative methods 
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1. INTRODUCTION 

The atom is a 'classical' example of a quantum mechanical system of some electrons 
which may be described by a stationary Schrodinger-Poisson system. The atom is 
considered as a system which consists of a fixed nucleus and a number of electrons 
around the nucleus. If the interaction of the electrons among another is neglected 
the single electrons 'see' the nucleus as an Hamilton operator Ho in a Hilbert 
space, let us say L2(R3

). The Hamilton operator is positive definite and has real 
eigenvalues e1 ~ e2 ~ •.• and eigenstates 'l/;1, l = 1, 2, .... If the Pauli principle 
is regarded in a rudimentary way the nucleus of a stable atom with K protons 
binds K electrons in the K lowest states. A better description may be expected if 
the electrostatic interaction of the electrons is also considered. Roughly speaking 
the stationary Schrodinger-Poisson system for the stable atom with K electrons 
consists in an eigenvalue problem 

(Ho + V)'l/;1 = e1'¢1 (l = 1, 2,. .. , K) 

for a Schrodinger operator with an unknown potential V which is defined by the 
sought eigenfunctions, 

V(x) = 4: j'D..P1(Y)l2lx ~YI. 
Advances in the semiconductor technology are another source of interest in sta-
tionary Schrodinger-Poisson systems. In this case one may consider a rather small 
(part of an) electronic device which consists of a semiconductor material with a 
fixed positive doping profile such that the equilibrium of the system of the crystal 
electrons in the conductive band should be described by quantum mechanics and 
statistics. The lattice together with the exterior electrostatic conditions are repre-
sented by an undisturbed Hamilton operator H0 which operates on the states of 
single crystal electrons. Let us regard again the electrostatic interaction of elec-
trons. Thus we ask for the eigen-yalues e1 and the eigenfunctions 'l/Jz of an Hamilton 
operator H = H0 +Vin L2(f2), the unknown potential V of which is determined 
by the eigenvalues and eigenfunctions in the following way. 
With an energy distribution function f and with the fixed density D ~ 0 of the 
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doping profile the Fermi level cp D is defined by the condition 

Jn=Lf(Ez-cpn), 
l 

which turns out to be just the supposed charge neutrality of the system. Now the 
electron density N is defined by 

N v ( x) = L f ( Ez - cp D) 17/Jz ( x) I 2 • 
l 

If the electron charge is -1 and if Ho does not contain the electrostatic interaction. 
between the electrons and the doping profile, then the potential V of the electrons 
due to the electric charge is the solution of a boundary value problem for the 
Poisson equation 

-\7 · (E\7V) = Nv - D 

under homogeneous boundary conditions. F. Nier [11] has observed that this nonli-
near problem is a variational problem with a strongly monotone potential operator. 
H.-C. Kaiser and J. Rehberg (cf. this preprint) have shown that this operator is 
also boundedly Lipschitz continuous in L2(fl). 
In this note, answering a question of H. Gajewski, we. will show that the nice 
structure of the nonlinear problem can be preserved under discretization. If one 
is going to discretize the stationary Schrodinger-Poisson system, one should take 
regard to the fact that the wave functions 7/J, the potentials V and the electron 
densities N are all described by functions on a domain n, but nevertheless they 
are rather different objects. Their different characters should be reflected by any 
discretization procedure. Without specifying neither the discretization procedure in 
detail nor the boundary conditions we formulate a discrete stationary Schrodinger-
Poisson problem and define a property (cf. (2.1) below) which guarantees that 
the discretized problem is also a variational problem with a boundedly Lipschitz 
continuous strongly monotone potential operator. These properties guarantee the 
discrete stationary Schrodinger-Poisson problem to be uniqely solvable and the 
convergence of the method of steepest gradient applied to the problem. 

2. A DISCRETE STATIONARY SCHRODINGER-POISSON SYSTEM 

Let M > 1 be a fixed natural number corresponding to the number of knots of a 
grid for the domain n. As in the continuous case the equilibrium state of an electron 
system with a self-consistent potential is described by some statistics applied to the 
eigenvalues and eigenstates of the Hamiltonian H =Ho+ V for a single electron. In 
our discrete case the space CM with its usual scalar product is the Hilbert space. 
Thus the Hamiltonian is a M x M Hermite matrix H. The matrix consists of a 
fixed Hermite part H 0 and a Hermite part V due to the electrostatic potential of 
the electric charge of the whole system. This charge consists of a given positive 
charge density 0 -/= D E RM, D; ~ 0, and the unknown electron density N. The 
electrostatic potential V of the electric charge is self-consistently determined by a 
discrete analogon of the Poisson equation under homogeneous boundary conditions, 

AV=N-D, 
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where A is a real symmetric positive definite matrix. The Hamiltonian of the total 
system is 

M 
H = H(V) = Ho + L VjHj = Ho + V 

j=l 

with fixed Hermite matrices H 0 , H1 , ••. ,HM. The operator V is the discretization 
of the multiplication operator 'lj; ~ V 'lj; in L 2(i1). In general, a discretization will 
not provide Hermite matrices H 1 , ... ,HM, but we admit here only such discretizati-
ons which provide positive semidefinite Hermite matrices H 1, ... ,HM. We assume, 
moreover, that 

M 

L Hi = unit matrix I. 
i=l 

(2.1) 

This assumption looks quite natural. In a first step the eigenvalue problem in L2(i1) 
may be discretized in such a way that the matrix formulation becomes 

M M 

(Ho+ L V;Hi)'lj; =EL Hk'l/J, 
i=l k=l 

where the Hi are symmetric positive semidefinite matrices, but their sum J is 
positive definite. Diagonalizing the scalar product ( ¢>, J'lj;) by the transformation 

'lj; ~ Jl/2'lj;, iI ~ J-1/2 iIJ-1/~ 

provides the property (2.1). . 
Let ei, .... , eXt- be the eigenvalues of the operator H = H(V) with an arbitrary 
V ·E RM and let ( 'l/;f, ... , 'lj;f.t) be a corresponding frame of orthonormal eigenvectors. 
For the statistics we need a real function f like exp(-t) or 1/(1 + exp(t)) as an 
energy distribution function. We consider a smooth.nonnegative function f on the 
real line with the properties 

(1) f'(t)_ < 0 < f(t), 
(2) limt-++ocJ(t) = 0, 
(3) O < d := E:;1 Di< M supt f(t). 

Because of the last property of f the following definition of the Fermi level cp n of 
the electron system makes sense. 

Definition 2.1. The real-valued function 'PD on RM which is implicitely defined 
by 

I: J[er - cpn(V)] := d 
l 

is called the Fermi level (with respect to J) of the quantum system with the 
Hamilton operator H = H(V) = H0 + E:;1 V;Hj =Ho+ V and with the doping 
profile D. Following [11] the function defined on RM by 

M M J. 00 

F(V) := cpn(V) L f[e~ - cpn(V)] - L f. 
m=l l=l £r -cpD(V) 

is called the energy function for the system. 
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Theorem 2.1. The Fermi level and the energy function F are smooth functions 
on RM. The gradient'\! F of F has the components 

M 
OjF(V) - L f[e;: - 'PD(V)](~~' Hpp~) -. Ni(V) 

m=l 

(j=l, ... ,M). 

Proof. Let U E RM be an arbitrary fixed vector. According to the theory of self-
adjoint perturbations initiated by theorems of F. Rellich there is a complex open 
neighbourhood GM C GM of U on which there are analytic functions Ai, ... , AM 
(some of them may be identical) and analytic frames ('I11', ... , WM) in GM such that 

(WEGM,m=l, ... ,M) 

and 
('Ilz(V), Wm(V)) = Dzm (V E GM n RM' 1 ~ l, m ~ M) 

(cf. [14] chap. XII, problem 17). Thus the sets 

{A1(V), ... , AM(V)} = {ei, ... , e~} 

are the same. It follows from the implicite function theorem applied to ~(V, Y) = 
Em f [Am (V)- Y] that the Fermi level cp D is smooth on GM n RM. Then the function 
F is evidently smooth there. Straightforward differentiation provides 

'\! _ Em f :n '\!Am 
'PD - Ez f{ (2.2) 

and 

'\! F = '\lcpD L fm + L fz'\l[Az - 'PD] = L fm '\!Am (2.3) 
m l m 

where fm = f[Am(V) - cpn(V)] = f[eL - 'PD(V)]. The identity 

OjAm(U) = (~m> Hj~m) (~m = Wm(U)) (2.4) 

is obtained by differentiating the identity 

and by setting V = U. The identity 

L f[e~ - cpn(U)](~~' Hi~~)= L f[Af - cpn(U)](~z, Hi~l) 
m l 

is proved elementarily regarding that there are unitary matrices cv such that 
7/Jf =Em G1~ 'Ilm(V) with G1~ = 0 if er f:. Am(V). We have seen that 'PD and the 
function Fare smooth on a neighbourhood of an arbitrary point U ERM, i.e. they 
are smooth functions. D 

We have assumed that the matrices H; are positive sef11ide:finite. Therefore the vec-
tor N(V) = '\! F(V) can be interpreted as a density. The property (2.1) guarantees 
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that the definition of the Fermi level is equivalent to the charge neutrality of the 
system, indeed · 

j j m m j m 

m 

The equality Nj(V) = :Emf ml'lfi;;:il 2 holds if and only if the operator V is just the 
diagonal matrix V * corresponding to the vector V. 

Definition 2.2. The discrete stationary Schrodinger-Poisson problem is 
to find a potential VE RM which satisfies the vector equation AV= N(V) - D. 

Let us use the notation as in the proof of the preceding theorem, but let us assume, 
furthermore, that the eigenvalues Am = Am(U) are simple. We differentiate the 
identities 

with respect to V; and set V = U. As the result we get 

(2.5) 

Similarly one gets 

(m= l, ... ,M) 

for the real part of the scalar products. In the following we use the summation 
convention with respect to the indices a and apply the differential operator Xa.8a. = 
X\J with respect to V. Thus 

m 

L J:n [X\J(Am - cpn)] X\J Am + L fzX\l (X\J Az) =: S + T. 
m l 

Substituting \Jcpn in S by (2.2) and abbreviating X\J Am=: Wm we get 

I.e. 

SLR= LL J!J:n(wl - Wzwm) =LL J!J:n(wz - wm)2 ~ 0 
k l m l m<l 

or S ~ 0, since :Ek ffc < 0. 
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The summand T can be estimated by means of (2.4). Applying 

xv (XVAm) = XV('11m(V),X'11m(V)) = 
(XV'11m(V) , X\llm(V)) + ('11m(V) , X XVWm(V)) = 

= 2~( X'11m(V), XV'11m(V)) = 2~( 2:'1f;z('1f;z,X'11m(V)), XV\llm(V)) = 
l 

2~{Xa('lj;m,XWm(V))('lj;m,8a'11m(V)) + L Xa(X'11m(V),'1j;z)('lj;t,8aWm(V))} 
li:m 

= 2~ L (X'lj;m,'lj;l)('lj;z,X'lj;m) = 2 L Wml 
li:m Am - Az li:m Am - At 

with Wmz = I( 'lj;z, X'lj;m)l 2 = Wzm, we get 

T 2 ~ + ~ Wmz ~ ~ fm - fz 
= L..J J m L..J A - A = 2 L..J L..J A - A Wmz :=::; 0' m li:m m l m l<m m l 

since f decreases. 
In the case that the eigenvalues of H(U) are simple, we have seen that 

The result does not really depend upon the simplicity of the eigenvalues, but the 
proof given just before makes use of the identities (2.5) the right-hand side of which 
may be an indefinite expression in the case of multiple eigenvalues. In the general 
case another proof works. It is based on Dunford's integral calculus for operators. 

3. APPLICATION OF DUNFORD'S INTEGRAL CALCULUS 

From now on we assume that the function - ft"° f is the restriction onto the real 
line R C C of a complex analytic function h on an open neighbourhood G C C 
of R. Then f is the restriction onto R of the derivative h' of h. In this case the 
Fermi level and the energy function Fare restrictions onto RM of complex analytic 
functions cln and F, respectively, defined on a complex open neighbourhood GM C 
CM of RM c CM. Let Koo c RM be an arbitrary bounded set (in the proofs 
of local statements K 00 = {U} with an arbitrary U E RM). A properly chosen 
neighbourhood GM C GM of K 00 can be covered by a finite number J of open sets 
Gu C CM as in the proof of Theorem 2.1. If A~ and W~ have the same meaning 
as in the proof of that theorem, then the closures 

Ki = cl{N (V) : 1 < m < M V E Gi n RM} O m - - ' M 

and 
K£ =cl{.:\ - cpn(V) : A E K~, v E Gun RM} 

are compact sets· in R. Let r C G be a path which is the boundary of an open 
simply connected neighbourhood of GK C C of K = U{=1 Ki such that Cauchy's 
integral formula is applicable. Then for any analytic function g on GK, which is 
continuous on GK= GK u r there is an matrix-valued function 
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The values g[H(V)] do not depend on the special contour r which encloses the 
spectrum of H(V). The function depends smoothly on V E GM n RM. Indeed, 
since 

g[H(V + tX)] - g[H(V)] == g(H + tX) - g(H) 

== jg())[() - H - tXt1 - () - Ht1
] dr) 

== j g(A) (CA - H - tXt1tX() - H)-1
] drA , 

the identities 

XVg[H(V)] ==jg())[() - Ht1X() - Ht1
] dr\ (3.1) 

(XV X) 2g[H(V)] == 2 jg()) { () - Ht1 [X(A - Ht1J2
} dr) (3.2) 

hold. 
The trace of a matrix A is Tr(A) == Ef!1 ( ez, Aez) for any orthonormal basis 
(e1 , ... , eM) in CM. Choosing,in particular, ez == Wz(V) (I== 1, ... , M) for the matrix 

M 

g[H(V)] == I: g[Am(V)]'Wm(V) ® 'Wm(V)* 
m=l 

with a real VE GM n RM we get 
M 

Tr{g[H(V)]} - I: g[Am(V)]. (3.3) 
m=l 

This identity provides a connection between the formulas of the preceding section 
and the formulas which will be derived below. 
Thus the Fermi level and the energy function can he redefined by 

d = Tr { h'[H(V) - 'PD(V)] } , (3.4) 

F(V) == 'PD(V) Tr {h'[H(V) - <pD(V)]} + Tr {h[H(V) - 'PD(V)]}. (3.5) 

Furthermore, we get 

XV Tr{g(H(V)]} == Tr {XV {g[H(V)]}} 

- j g())Tr[() - Ht1X() - Ht1
] dr) == j g())Tr[(A - Ht2X] dr) 

= Tr [j g(A)(A - Ht2 dr.A x] = Tr[g'(H)X]. 

with regard to (3.1) and the idendity Tr(AB) = Tr(BA), i.e. the identity 

XVTr{g(H(V)]} ==Tr {XV{g(H(V)]}} =Tr {g'[H(V)] X} (3.6) 

holds. 
If a family of analytic functions g(., Y) on GK depends smoothly on a real parameter 
Y, then the matrix family g[H(V), Y] depends smoothly on Y, too. In our case 

g(A, Y) == Yh'() - Y) + h() - Y) and Y == 'PD(V) . 
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We mention the identity 

8yTr[h(H - Y)] = -Tr[h'(H - Y)]. (3.7) 
Regarding the definition of the Fermi level and the listed formulas we get 

X\7 F(V) = [X\7cpn(V)]Tr{h'[H(V)-cpn(V)]} +Tr {X\7{h[H(V) - cpn(V)]}} 

= Tr{h'[H(V)-cpn(V)] X} = LXi Tr{h'[H(V)-cpn(V)] Hi} = :l:X;N;(V). 
j 

4. THE VARIATIONAL FORMULATION OF THE NONLINEAR VECTOR EQUATION 

Theorem 4.1. The matrix d2 F(V) of the partial second-order derivatives is nega-
tive semidefinite for any V E RM. 

Proof. Using the last identity of the preceding section we start with 

(X\7) 2F(V) = Tr{XV{h'[H(V) - cpn(V)]} X}. 

Applying (3.6) and (3. 7) we get 

(X\7)2 F(V) = Tr { h" [H(V) - cpn(V)] X2 - [X\7cpn(V)] h" [H(V) - cpn(V)] X}. 

Instead of rewriting (2.2) by means of (2.4) the expression X\7cpn(V) is obtained 
by differentiating (3.4). 

0 = Tr { X\7 { h'[H(V) - cpn(V)]}} 
= Tr { h"[H(V) - cpn(V)] X - [X\7cpn(V)] h"[H(V) - cpn(V)] } . 

According to the assumptions concerning f the trace 

Tr {h"[H(V) - cpn(V)]} < 0 

does not vanish. Thus 

and thus 

Tr{ h" [H(V) - cpn(V)] X } 
X\7cpn(V) = Tr{h"[H(V) - cpn(V)]} ( 4.1) 

(X\7)2 F(V) T { h" [H(V) - (V)] x2 } - (Tr{ h" [H(V) - cp n(V)] X } )2 
- r <pn Tr{h"[H(V)-cpn(V)]} . 

The operator h" [H(V) - cpn(V)] is a diagonal matrix B = B* with respect 
to the orthonormal basis ('111 (V), ... , WM(V)). Their diagonal elements are Bi = 
f'[Ai(V) - cpn(V)] ~ 0. The symmetric operators X are Hermite matrices Y with 
respect to this basis. Thus the inequality 

Tr{h"[H(V) - cpn(V)]} (X\7)2 F(V) = Tr(B) Tr(YBY) - [Tr(BY)]2 

= LLBiBk(Ykk-Yii)2 + LLBiBkL,:IYkzl 2 > 0 
k j<k j k l# 

is checked quite elementary, i.e. 

( X\7)2 F(V) ~ 0 
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for any real X, VE RM, because Tr{h"[H(V) - cpn(V)]} = Lj Bi< 0. In other 
words, the set F := {(V, Y) E RM x R : Y ~ F(V)} is convex. D · 

As an easy consequence of theorems 2.1 and 4.1 we get the variational formulation 
of the discrete stationary Schrodinger-Poisson problem together with its unique 
solvability. 

Theorem 4.2. A vector U E RM is a solution of the nonlinear problem AV = 
N(V)- D if and only if the vector U minimizes the strictly convex functional 

1 
G(V) := 2°(V, AV)+ (D, V) - F(V) . 

5. A REMARK ON THE CHOICE OF M 

For a given Schrodinger-Poisson equation the influence of eigenstates with higher 
and higher energy levels of the associated eigenvalue problem becomes smaller and 
smaller. If the problem is to be solved, only a finite number L of lowest eigenstates 
can be regarded at all. These eigenstates can be calculated only approximately 
on a finite grid of M ;::: L knots, and M > L is reasonable to be expected. This 
reflection suggested, on the other hand, a modification of the discrete stationary 
Schrodinger- Poisson problem. 
Let us assume that there are an integer L between 1 and M and a function AL on 
RM such that 

(1) d < L supt f(t), 
(2) for any VE RM the set 

I~:= {m: 1 ~ m ~ M, E~ ~ AL(V)} 

consists of exactly L indices. 
Then we define a Fermi level cp~ and an energy function pL by 

d L f [ €~ - cpi)(V)] 
mEI~ 

and 

respectively. The analogues of theorems 2.1, 4.1, and 4.2 hold for cp~ and FL, too. 
Indeed, let U E GM C RM, A1 , •.. ,AM, '111 , .•. ,WM have the same meaning as in 
the proof of theorem 2.1. Let denote 

Jt := {l: 1 ~ l ~ M, Ai(U) ·~ AL(U)} 

and C Jb the complement of Jb in {1, ... , M}. Then there is a complex open neigh-
bourhood of U, without any restriction of generality GM ·itself, such that 

. maxAz(V) < min Am(V) (VE GM n RM). 
leJf;. mECJf;. 

The existence of such a 'gap' in the spectrum of the 'qiscrete' electron is the 
consequence of and the reason for the assumption made above. Unfortunately, we 
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do not know, how restrictive the assumption is. The smoothness of the Fermi level 
cpf) in GM n' RM follows again from the implicite function theorem· applied to the 
function 

<h(V, Y) = L J[A~(V) - Y]. 
mEJf; 

Dunford's integral calculus claims some more attention than above, as the operators 

gL[H(V)] = jg(.-\)[.-\ - H(v)r1 drt 

are defined with a closed curve r~ which encloses only the poles Az(V), l E Jb, of 
[ ,\ - H(V)J-1 , but not Am(V), m E C Jb. 
The Fermi levels were defined by 

l:Jf := Lf[Az(V)-cp~(V)] = d = Lfl + L fm 2 Lfz, 
JL u CJf; 

where fz denotes J[A1(V) - cpn(V)]. Therefore there is at least one n E Jb such 
that f~ 2 fn· Since f is a monotonously decreasing function, the inequality 

cp~(V) 2 <pn(V) 

holds. Thus we have JP 2 fz for all l E Jb and 

l:(ff - fz) = L f m 
JL u 

Furthermore, we get FL 2 F because of 

CJf; 

> d[ip~(V)- <pn(V)] - E t-:n f 
JL Ai-r,pD 
u 

(5.1) 

(5.2) 

2 [cp1(V) - cpn(V)] (d - L f,L) 0. 
Jf; 

The function T/L attains positive values ~ d. As the following theorem shows, 
integers L < M are of interest for which TJL(V) < < d. 

Theorem 5.1. Let a denote the 'ellipticity constant' of the matrix A. Then the 
estimate 

alV - VLloo < min [ IN(V) - NL(V)l1 , IN(VL) - NL(VL)l1 } 

< 2 min [TJL(V), TJL(VL)] 

holds for the difference of the vectors V and VL whi~h minimize the functions G 
or GL(V) := HV, AV)+ (D, V) - FL(V), respectively. 
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Proof. The difference of the identities 

(W, AV) - (W, N(V) - D) 
(W, AVL) = (W, NL(VL) - D) 

for W = V - VL gives 

alV - VLI~ ~ (V - vL' A(V - VL)) = (V - VL' N(V) - NL(VL)) 
= (v - vL, NL(v) - NL(VL)) + (v - vL, N(V) - NL(v)) 

~ (V - vL, N(V) - NL(V)) ~ IV - VLloo IN(V) - NL(V)l1, 

since the operator NL is monotone. An analogous estimate with the factor 
IN(VL) - NL(VL)l1 on the right-hand side is obtained, because N is also mo-
notone. Furthermore, 

IN(V) - NL(V)l1 = L INj(V) - Nf (V)I 
j 

M 

= LI L fm(Wm(V), HjWm(V)) - L J,L(wz(V), HjWz(V))I 
j m=l 

j CJf; j Jf; 

D 
The theorem gives some rough hints of the proper choice of M. The number M 
should be large enough for a given problem, if there is an L ~ M/2 for which 
17L(VL) < < d. 
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