
Weierstraÿ�Institut

für Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 � 8633

On a nonlocal phase separation model

Herbert Gajewski, Klaus Zacharias

submitted: 2nd May 2001

Weierstraÿ�Institut für Angewandte Analysis und Stochastik

Mohrenstr. 39,

D�10117 Berlin, Germany

E-mail: {gajewski,zacharias}@wias-berlin.de

Preprint No. 656

Berlin 2001

WIAS

2000 Mathematics Subject Classi�cation. 35K45, 35K57, 35B40, 80A22, 92C15, 92D25.

Key words and phrases. Cahn�Hilliard equation, initial boundary value problem, reaction�

di�usion equations, a priori estimates, Lyapunov function, equilibria, asymptotic behaviour, clas-

sical thermodynamics, phase changes, chemotaxis.



Edited by

Weierstraÿ�Institut für Angewandte Analysis und Stochastik (WIAS)

Mohrenstraÿe 39

D � 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint

E-Mail (Internet): preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/



Abstract

An alternative to the Cahn�Hilliard model of phase separation for two�

phase systems in a simpli�ed isothermal case is given. It introduces nonlocal

terms and allows reasonable bounds for the concentrations. Using the free en-

ergy as Lyapunov functional the asymptotic state of the system is investigated

and characterized by a variational principle.

1. Introduction

We consider a binary alloy with components A and B occupying a spatial domain


 . We denote by u and 1 � u the (scaled) local concentrations of A and B ,

respectively. Let (0; T ) denote a time interval, � the outer unit normal on the

(su�ciently smooth) boundary � = @
 , and Q = (0; T )� 
 , �T = (0; T )� � .

To describe phase separation in binary systems one uses usually the Cahn�Hilliard

equation. This equation is derived ([CH]) from a free energy functional of the form

FCH(u) =
Z



n
f(u) + � u (1� u) +

�

2

���ru���2odx: (1.1)

Here f is a convex function with the property that f(u) + �u(1� u) (for su�-

ciently large � ) forms a so�called double well potential. Adapting classical thermo-

dynamical relations one introduces a chemical potential v as gradient of the free

energy:

v = f 0(u) + � (1� 2u)� ��u: (1.2)

Now one postulates that �rv is the driving force for the mass �ux j , i.e.,

j = ��rv

with a suitable mobility � . Considering the mass balance one ends up with the

Cahn�Hilliard equation

@u

@t
�r � (� (f 0(u) + � (1� 2u)� ��u)) = 0 in Q; � � (�rv) = 0 on �T ; (1.3)

where the boundary condition guarantees mass conservation

Z


u(t; x)dx =

Z


u(0; x)dx:
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Inspecting Cahn�Hilliard's arguments ([CH]) establishing (1.1) as the free energy

of the binary system it seems to be reasonable and even more adequate ([GL1]) to

choose an alternative expression like

F (u) =
Z



n
f(u) + u

Z


K(jx� yj)(1� u(y)) dy

o
dx; (1.4)

where the kernel K of the integral term describes nonlocal interaction ([ChF]).

This expression may be written in a form more similar to (1.1):

F (u) =
Z



n
f(u) + �1u(1� u) +

1

2

Z


K(jx� yj)ju(x)� u(y)j2 dy

o
dx;

where

�1 = �1(x) =
Z


K(jx� yj)dy:

By a simple calculation we �nd from (1.4) the corresponding chemical potential v

as the gradient of F in the form

v = f 0(u) + w; w(x) =
Z


K(jx� yj)(1� 2 u(y)) dy: (1.5)

Replacing (1.2) by (1.5) one gets instead of (1.3) the equation

@u

@t
�r � (�r(f 0(u) + w)) = 0:

Assuming that f is strictly convex, the strictly monotone function f 0 has an

inverse function f 0�1 . With this function we obtain as alternative to (1.3) the

system

@

@t
(f 0�1(v � w))�r � (�rv) = 0 in Q; � � (�rv) = 0 on �T ; (1.6)

v = f 0(u) + w; w(x) =
Z


K(jx� yj)(1� 2 u(y)) dy: (1.7)

As a consequence of (1.7) the a priori estimate

u(x) 2 im (f 0 �1) (1.8)

holds automatically. In the standard case

f(u) = u logu+ (1� u) log(1� u)

we have

f 0(u) = log

�
u

1� u

�
and f 0�1(v � w) =

1

1 + exp(w � v)
:

The image of the Fermi function 1=(1 + exp(s)) is the interval [0; 1] , so that the

nonlocal model automatically satis�es the physical requirement 0 � u(x) � 1 . This
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property cannot be guaranteed for solutions of the original Cahn�Hilliard equation

since for fourth order equations no maximum principle is available ([AP]). Elliot

and Garcke ([EGa]) have proved this property for special mobilities but they have

no uniqueness result.

Moreover, by physical reasons it is desirable to admit mobilities � depending on

u and jrvj . A natural choice seems to be ([EGa],[Ga])

� =
a(jrvj)

f 00(u)
(1.9)

with a function a such that s 7! a(s)s is monotone. We shall show that the

operator (u; v) 7! �r � (�rv) with such a � is monotone in an appropriate sense

([Gaj]) and that (1.6), (1.7) has a unique solution provided 1=f 00 is concave. With

(1.9) the equation (1.6) can be rewritten as

@u

@t
�r � a

 
ru+

rw

f 00(u)

!
= 0 in Q;

� �

�
a

 
ru+

rw

f 00(u)

! �
= 0 on �T :

We are indebted to A. Bovier for the hint that similar equations with a nonlocal

term are studied in the papers ([GL1],[GL2]), starting from a stochastic background.

It seems worth mentioning that drift�di�usion equations of this form also model

transport processes in semiconductor ([GG]) and chemotaxis ([GZ]) theory.

In Section 2 we formulate the problem and the assumptions. In Section 3 we show

existence and uniqueness of solutions and state some regularity properties of the

solutions. In Section 4 we consider the asymptotic behaviour for time going to

in�nity and characterize the asymptotic state by a variational principle. Section 5

establishes a link with the theory of chemotaxis.

2. Formulation of the problem, assumptions

Let be 
 � IRn a bounded Lipschitzian domain with boundary � = @
 and

� the outer unit normal on � . Denote by Lp = Lp(
); H1;p = H1;p(
) for

1 � p � 1 the usual function spaces on 
 , H1 = H1;2(
) , k � k2 = k � k

the norm in L2 and by (� ; �) the pairing between H1 and its dual (H1)�

([A],[GGZ],[KJF]). For a time interval (0; T ) , T > 0 , and a Banach space X

we denote by Lp(0; T ;X) the usual spaces of Bochner integrable functions with

values in X . We set IR1
+ = (0;1) and , as already mentioned, Q = (0; T )� 
 ,

�T = (0; T )� � . �Generic� positive constants are denoted by C .

We consider the problem

v = f 0(u) + w; w(t; x) =
Z


K(jx� yj)(1� 2 u(t; y)) dy; (t; x) 2 Q; (2.1)
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@u

@t
�r � (�rv)) = 0 in Q; � � � rv = 0 on �T ; (2.2)

u(0; x) = u0(x); x 2 
: (2.3)

We assume:

(i) f(u) = u logu+ (1� u) log(1� u);

(ii) the kernel K 2 (IR1
+ 7! IR1) is such thatZ




Z



���K(jx� yj)
���dx dy = m0 <1; sup

x2


Z



���K(jx� yj)
���dy = m1 <1

and the potential operator P de�ned by

% 7! P% =
Z


(K(jx� yj)%(y)dy

satis�es

kP%k
H1;p

� rpk%k
Lp
; 1 � p � 1:

(iii) the mobility � has the form

� =
a(x; jrvj)

f 00(u)
;

where a 2 (
� IR1
+ 7! IR1

+) is measurable with respect to x for all s 2 IR1
+

and continuous with respect to s for a. a. x 2 
 and satis�es

(a(x; s1)s1 � a(x; s2)s2)(s1 � s2) � �0js1 � s2j
2; s1; s2 2 IR1

+;

ja(x; s1)s1 � a(x; s2)s2j � �1js1 � s2j; �0 > 0; �1 > 0:

(iv) u0 2 L
1(
); 0 � u0(x) � 1; x 2 
;Z



u0(x) dx = u�j
j; 0 < u� = const. < 1; j
j = meas (
):

We note some elementary properties of the function f :

f is strongly convex, more precisely,

f(u1) + f(u2)� 2f

�
u1 + u2

2

�
� (u1 � u2)

2; u1; u2 2 (0; 1); (2.4)

f 0(u) = log
u

1� u
; (f 0)�1(s) =

1

1 + exp(�s)
; im (f 0)�1 = [ 0; 1] (2.5)

and the function

1

f 00(u)
= u(1� u)
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is strongly concave because of

2

f 00
�
u1 + u2

2

� � 1

f 00(u1)
�

1

f 00(u2)
=

1

2
(u1 � u2)

2: (2.6)

Remark 2.1. For simplicity, we restrict ourselves in this paper to the function

mentioned in (i). Our results could be carried over to other strongly convex functions

f for which im (f 0)�1 = [ 0; 1] and 1=f 00 is a strongly concave function.

Remark 2.2. Examples for kernels K satisfying (ii) are Newton potentials ([LL]):

K(jxj) = �njxj
2�n; n 6= 2; K(jxj) = ��2 log jxj; n = 2; �n = const. > 0

and usual molli�ers like

K(jxj) =

8><
>:
C exp

 
�

h2

h2 � jxj2

!
if jxj < h;

0 if jxj � h;

where h > 0 characterizes the range of the interaction.

Remark 2.3. Mobilities of the form

� =
a

f 00(u)
;

seem to be natural and were considered e.g. in [EGa], [GL1], [GL2], where a = a(u) :

Using (2.5) the system (2.1)�(2.3) can be reformulated as

w(t; x) =
Z


K(jx� yj)(1� 2 u(t; y)) dy; (t; x) 2 Q; (2.7)

ut �r � (�rv)) = 0 in Q; � � � rv = 0 on �T ; (2.8)

u =
1

1 + exp(w � v)
; u(0; x) = u0(x); 0 � u0(x) � 1; x 2 
: (2.9)

De�nition 2.1.

A triple (u; v; w) is called a solution of (2.7)�(2.9) if u 2 C(0; T ;L1)\L2(0; T ;H1)

with ut 2 L
2(0; T ; (H1)�) and w 2 C(0; T ;H1;1) satisfy (2.7) and v = f 0(u)+w

satis�es

Z T

0

Z


�jrvj2dxdt <1

and

Z T

0

�
(ut; h) +

Z


�rv � rh dx

�
dt = 0; 8h 2 L2(0; T ;H1):
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Note that the last identity for h = 1 gives

Z


u(t; x)dx =

Z


u0(x)dx = u�j
j: (2.10)

3. Existence, uniqueness, regularity

First of all we want to prove a priori estimates. Here a key rôle plays the free energy

given by (1.4).

Lemma 3.1. Let (u; v; w) be a solution of (2.6)�(2.8). Then

d

dt
F (u(t)) � ��0

Z



jrvj2

f 00(u)
dx � 0; (3.1)

Z T

0

Z



jrvj2

f 00(u)
dx � C < 1; (3.2)

where C is a constant which not depends on T .

Proof. The estimate (3.1) follows from

d

dt
F (u(t)) = (ut; f

0(u) + w) = �

Z


� jrvj2 dx

= �

Z



a

f 00(u)
jrvj2dx � ��0

Z



jrvj2

f 00(u)
dx:

Using 0 � u(x) � 1; u logu � �1=e and the properties of the kernel K; we �nd

F (u(t)) =
Z



n
u logu+ (1� u) log(1� u) + u

Z


K(jx� yj)(1� u(y))dy

o
dx

� �

2j
j

e
�m0:

Hence (3.1) implies

Z T

0

Z



jrvj2

f 00(u)
dx � �

1

�0

Z T

0

d

dt
F (u(t)) dt =

1

�0

[F (u0)� F (u(t))]

�

1

�0

"
F (u0) +

2j
j

e
+m0

#
= C;

where C is independent of T .
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We de�ne by

(A(v; w); h) =
Z


�(v; w)rv � rhdx; 8h 2 H1;

�(v; w) =
a(jrvj)

f 00(u)
; u =

1

1 + exp(w � v)
;

an operator A 2 (D(A) 7! (H1)�); where

D(A) = f(v; w) :
Z


�(v; w)jrvj2 <1; w 2 H1

g:

The following monotonicity property of A is the main tool for proving uniqueness

results.

Lemma 3.2. Let

(vi; wi) 2 D(A); ui =
1

1 + exp(zi)
; zi = wi � vi; (i = 1; 2); um =

u1 + u2

2
:

Then

Æ = (A(v1; w1); f
0(u1)� f 0(um)) + (A(v2; w2); f

0(u2)� f 0(um))

� �

�1

4

�
r21ku1 � u2k

2 +
�1

8�0




r(w1 � w2)



2� :

Proof. Set f 0i = f 0(ui); f 00i = f 00(ui); �i = �(vi; wi); ai = a(jrvij); (i = 1; 2; m):

We have

Æ =
Z


f�1rv1 � r(f 01 � f 0m) + �2rv2 � r(f 02 � f 0m)gdx

=
Z



�
�1rv1 �

�
rz1 �

f 00m
2

 
rz1

f 001
+
rz2

f 002

!�

+�2rv2 �

�
rz2 �

f 00m
2

 
rz1

f 001
+
rz2

f 002

! ��
dx

=
Z



f 00m
2

� 
2

f 00m
�

1

f 001
�

1

f 002

! 
a1rv1 � rz1

f 001
+
a2rv2 � rz2

f 002

!

+
1

f 001 f
00
2

(a1rv1 � a2rv2) � r (z1 � z2)

�
dx:

Now, using the concavity of 1=f 00 (see (2.6)), the assumptions (i)�(iii) and

1=f 00(u) = u(1� u) , we get

Æ � �

Z



f 00m
2

�
�1

8
(u1 � u2)

2

�
jrw1j

2

f 001
+
jrw2j

2

f 002

�

7



+
�2
1

4�0f
00
1 f

00
2

jr(w1 � w2)j
2

�
dx

� �

�1

8

Z



�
(u1 � u2)

2(jrw1j
2 + jrw2j

2) +
�1

4�0

jr(w1 � w2)j
2

�
dx

� �

�1

4

�
r21ku1 � u2k

2 +
�1

8�0




r(w1 � w2)



2� :

This is our assertion.

Lemma 3.3. Let w 2 L1(0; T ;H1;1) be given. Then the problem

ut + A(v; w) = 0; u =
1

1 + exp(w � v)
; u(0) = u0; (3.3)

has a unique solution v = v(w) such that

Z T

0

Z


�(v; w)jrvj2dxdt <1: (3.4)

Proof. Existence.

We consider the regularized problem

ut + A"(v; w) = 0; u =
1

1 + exp(w � v)
; u(0) = u0; (3.5)

with

(A"(v; w); h) =
Z


�"(v; w)rv � rhdx; 8h 2 H1; �" = �+ " (" > 0):

By results of ([ALu]) there exists a solution v" 2 L2(0; T ;H1) with u"t 2

L2(0; T ; (H1)�) . We consider the functional

Fw(u) =
Z


f(u) dx+

Z T

0
(ut; w) ds:

We have

d

dt
Fw(u) = (ut; w) +

Z


f 0(u) ut dx = (ut; w + f 0(u))

and by arguments similar to those used in the proof of Lemma 3.1 we can show that

d

dt
Fw(u") =� ��0

Z



jrv"j
2

f 00(u")
dx � 0;

i.e., Fw is a Lyapunov functional for (3.5) � a functional decaying in time along a

solution u" . From

d

dt
Fw(u") = �

Z


�"jrv"j

2dx

8



follows by integration

Z T

0

Z


�"jrv"j

2dxdt = �

Z T

0

d

dt
Fw(u")dt = �

Z T

0
(u"t; f

0(u") + w)dt

= �

Z T

0

d

dt
f(u")dt�

Z T

0
(u"t; w)dt

= f(u(0))� f(u"(T ))�
Z T

0
(u"t; w)dt

� jf(u(0))j+
2j
j

e
+
Z T

0
ku"tk(H1)�kwkH1dt

� C + ku"tk
L2(0;T ;(H1)�)

kwk
L2(0;T ;H1)

:

On the other hand, we have

ku"tk
L2(0;T ;(H1)�)

= sup
h2L2(0;T ;H1)

��� Z T

0
(u"t; h)dt

���
khk

L2(0;T ;H1)

= sup
h2L2(0;T ;H1)

��� Z T

0

Z


�"rv" � rh dx dt

���
khk

L2(0;T ;H1)

�

 Z T

0

Z


�2
"jrv"j

2dx dt

!1=2

:

We take into account 0 � u" � 1 , choose 0 < " � 1 and get

�" = "+
a(jrv"j

f 00(u")
� "+ �1u"(1� u") � 1 +

�1

4
;

hence

ku"tk
L2(0;T ;(H1)�)

�

r
1 +

�1

4

 Z T

0

Z


�"jrv"j

2dx dt

!1=2

:

So the estimate above becomes

Z T

0

Z


�"jrv"j

2dxdt � C + kwk
L2(0;T ;H1)

r
1 +

�1

4

 Z T

0

Z


�"jrv"j

2dx dt

!1=2

:

By the usual argumentation we obtain

Z T

0

Z


�"jrv"j

2dxdt � C <1 and ku"tk
L2(0;T ;(H1)�)

� C <1 (0 < " � 1):

(3.6)
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On the other hand, the estimateZ


�"jrv"j

2dx � �0

Z



jrv"j
2

f 00(u")
dx = �0

Z



jf 00(u")ru" +rwj2

f 00(u")
dx

= �0

Z



 
f 00(u")jru"j

2 + 2ru" � rw +
jrwj2

f 00(u")

!
dx

� �0

Z


(jru2" � jrwj2) dx

implies

ku"k
L2(0;T ;H1)

� C <1:

This estimate and (3.6) imply ([L],[Si]) the compactness of the set (u"; 1 � " > 0)

in the space L2(Q) . Hence there is a sequence "j �! 0; (j �!1) such that

u"j �! u in L2(Q); u"j �*u in L2(0; T ;H1):

Now, taking into account that the operator A is of variational type ([L]), we can

take the limit j �!1 and show that v = f 0(u) + w is solution of (3.3).

Uniqueness.

Let vi; i = 1; 2; be solutions of (3.3) and ui = 1=(1 + exp(w � vi)) . De�ne

d(t) =
Z



�
f(u1) + f(u2)� 2 f

�
u1 + u2

2

��
dx:

Then Lemma 3.2 yields (with w1 = w2 )

d 0(t) =

�
u1t; f

0(u1)� f 0
�
u1 + u2

2

��
+

�
u2t; f

0(u2)� f 0
�
u1 + u2

2

��

= �

�
A(v1; w); f

0(u1)� f 0
�
u1 + u2

2

��
�

�
A(v2; w); f

0(u2)� f 0
�
u1 + u2

2

��

� �1r
2
1ku1 � u2k

2:

By the strong convexity of f (see (2.4)) we have

ku1(t)� u2(t)k
2
� d(t) =

Z t

0
d 0(s) ds � �1r

2
1

Z t

0
ku1(s)� u2(s)k

2ds:

The uniqueness assertion u1(t) = u2(t); t � 0; follows from Gronwall's lemma.

To prove existence and uniqueness of solutions for the problem (2.7)�(2.9) we de�ne

an operator B 2 (C([0; T ];L2) 7! C([0; T ];L2)) by

Bu =
1

1 + exp(w � v(w))
; (3.7)

where

w(t; x) =
Z


K(jx� yj)(1� 2 u(t; y)) dy (3.8)

and v(w) is given by Lemma 3.3.
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Lemma 3.4. The operator B satis�es the contraction condition

kBu1 � Bu2k� �
1

2




u1 � u2




�

(3.9)

with respect to the norm

kuk� = sup
t2[0;T ]

fe�� tku(t)kg; � =
�1

4
max

 
r21;

�1 r
2
2

�0

!
:

Proof. Let ui 2 L1(Q); i = 1; 2 . We calculate the corresponding wi 2

L1(0; T ;H1;1) from (3.8) and denote by vi the solutions of (3.3), respectively.

With the same arguments as in the uniqueness proof in Lemma 3.3 we get from

Lemma 3.2

kBu1(t)� Bu2(t)k
2
�

Z t

0

�1

4

�
r21kBu1(s)� Bu2(s)k

2 +
�1

8�0




r(w1 � w2)



2� ds:

Because of

kr(w1 � w2)k
2
�




2 Z


K(jx� yj)(u1 � u2) dy




2
H1
� 4r22ku1 � u2k

2

we get

kBu1(t)� Bu2(t)k
2
�

�1

4

Z t

0

�
r21kBu1(s)� Bu2(s)k

2e�2�s

+
�1r

2
2

2�0




u1(s)� u2(s)



2e�2�s�e2�sds

�

�1

4

�
r21kBu1 � Bu2k

2
� +

�1r
2
2

2�0




u1 � u2



2
�

� Z t

0
e2�sds

or

kBu1(t)� Bu2(t)k
2e�2�t �

�1

8�

�
r21




Bu1 � Bu2



2
�
+
�1r

2
2

2�0




u1 � u2



2
�

�
:

Taking the supremum over [0; T ] on the left hand side and choosing � > 0 so that

�1r
2
1

8�
�

1

2
;

�1r
2
2

16�0�
�

1

4

we get (3.9).

Theorem 3.5. The problem (2.7) � (2.9) has a unique solution (u; v; w) .

Proof. The operator B has a �xed point u 2 C([0; T ]; L2) by Banach's �xed

point theorem. Then, evidently, (u; v; w) with w given by (3.8) and v being the

corresponding solution of (3.3) is solution of of (2.7)�(2.9). On the other hand, for
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any solution (u; v; w) the �rst component u must be �xed point of B and hence

is unique.

Next we want to show a regularity result stating that under the additional assump-

tion

0 < u0(x) < 1; x 2 
; (3.10)

the function v belongs to L1(
) globally in time.

Theorem 3.6. Suppose (3.10). Then

v 2 L1(Q) \ L2(0; T ;H1) and 0 < u(t; x) < 1 for a.a. (t; x) 2 Q:

Proof. By assumption (ii) in Section 2

m1 = sup
x2


Z



���K(jx� yj)
���dy <1

and, consequently,

kwk
L1(Q)

� m1: (3.11)

We introduce

u = �(v � w) =
1

1 + exp(w � v)
;

and have

�0(v � w) = u(1� u) =
exp(w � v)

(1 + exp(w � v))2
=

1

f 00(u)
;

�00(v � w) =
(exp(w � v)� 1) exp(w � v)

(1 + exp(w � v))3
:

Because of (3.11) we have

�00(v � w) � 0 if v � w; (3.12)

�00(v � w) � 0 if v � w: (3.13)

Using (3.12) and testing (2.8) with

h =
'r+1

�0(v � w)
; r > 0; ' = [v � w]+ = max(0; v � w);

we get ([GSk]) with z = v � w after some calculation

1

(r + 2)

d

dt

Z
v�w

'r+2dx +
Z

v�w

arv � f(r + 1)'r
rz � �00(z) hrzg dx = 0: (3.14)

12



We expand the integrand of the second integral on the left hand side in the form

S = a(jvj)[rz +rw] � f(r + 1)'r
rz � �00(z) hrzg

= a(jvj)(r + 1)'r
fjrzj2 +rw � rzg � a(jvj)�00(z) hfjrzj2 +rw � rzg:

Because of �00(z) � 0 for v � w we can estimate

S � a(jvj)(r + 1)'r

�
jrzj2 �

1

2

�
jrwj2 + jrzj2

��

�a(jvj)�00(z) h

�
jrzj2 �

1

2

�
kjrwj2 +

1

k
jrzj2

��
:

From assumption (iii) in Section 2 we have a(jvj) � �0 , and with the choice

k = 1=2 we get

S �
�0

2
(r + 1)'r

jrzj2 �
1

2
a(jvj) (r + 1)'r

jrwj2 +
1

4
a(jvj)

�00(z)

�0(z)
'r+1

jrwj2:

Because of

�1 �
�00(z)

�0(z)
� 1

and ja(jvj)j � �1 (Section 2, (iii)) and assumption (ii) we obtain

S �
�0

2
(r + 1)'r

jrzj2 �
�1r

2
1

2
(r + 1)'r

�

�1r
2
1

4
'r+1:

Taking into account that

'r
jrz+j

2 =
4

(r + 2)2

����r
�
z
r+2
2

+

� ����
2

=
4 jr('

r+2
2 )j2

(r + 2)2
;

we �nally get from the identity (3.14) the estimate

1

(r + 2)

d

dt

Z
v�w

'r+2dx � �

2�0(r + 1)

(r + 2)2

Z


jr('

r+2
2 )j2dx

+
�1r

2
1

4

Z



n
2(r + 1)'r + 'r+1

o
dx:

By a technique due to N. Alikakos ([Al1], [Al2]) we conclude from this estimate that

k'k
L1(Q)

� C

for an appropriate constant C . With (3.11) this gives an upper bound for v :

v(x) � m1 + C for a.a x 2 
: (3.15)
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Analogously, from (3.13) with the test function

h =
 r+1

�0(v � w)
; r > 0;  = �[v � w]� = �min(0; v � w)

and (3.11) we get a lower bound for v :

v(x) � �(m1 + C) for a.a x 2 
: (3.16)

From (3.15), (3.16) follows the assertion.

4. Global behaviour

In this section we study the global behaviour of the solution of (2.1)�(2.3) for

T �! 1 . Our main tool is the fact (formulated in Lemma 3.1) that the free

energy F is a Lyapunov functional. Therefore we have

d

dt
F (u(t)) � ��0

Z


(u(1� u)jrvj2)(t) dx � 0; (4.1)

Z
1

0

Z



jrv(t)j2

f 00(u(t))
dx � C < 1: (4.2)

Theorem 4.1. Let (u; v; w) be a solution of (2.7) � (2.9). Then there exist a

sequence ftk; k = 1; 2; : : :g with tk �! 1 for k �! 1 and a tripel

(u�; v�; w�) such that uk = u(tk); vk = v(tk); wk = w(tk) satisfy

uk �! u� strongly in L2
and weakly in H1; (4.3)

wk �! w� strongly in H1; (4.4)

arctan
�
e�vk=2

�
�! arctan

�
e�v

�=2
�

strongly in H1; v� = const: (4.5)

Moreover, the following relations hold:

w�(x) =
Z


K(jx� yj)(1� 2 u�(y)) dy;

Z


u�dx = u�j
j; (4.6)

u� =
1

1 + exp(w� � v�)
; v� = const: (4.7)

Proof. By (4.2) there exists a sequence tj 2 [j; j + 1]; j = 1; 2; : : : , such that

uj = u(tj); vj = v(tj); wj = w(tj) satisfy

lim
j!1

Z



jrvjj
2

f 00(uj)
dx = 0: (4.8)

With

ru =
r(v � w)

f 00(u)
and

1

f 00(u)
= u(1� u) �

1

4
for 0 � u � 1
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and with assumption (ii) in Section 2 and (4.8) we get

Z


jrujj

2dx =
Z



 
jr(vj � wj)j

f 00(uj)

!2

dx � 2
Z



jrvjj
2 + jrwjj

2

(f 00(uj))2
dx

�

1

2

Z



jrvjj
2

f 00(uj)
dx+

1

8

Z


jrwjj

2dx � "+
r22j
j

2

8
= C:

Hence by the compactness of the embedding H1
� L2 there exists a subsequence

ftkg � ftjg such that (4.3) holds. Again by assumption (ii) in Section 2 the

convergence (4.4) and

kwkk
L1

� C

follows. This implies

Z



���r arctan
�
e�vk=2

� ���2dx =
1

4

Z



jrvkj
2 e�vk

(1 + e�vk)2
dx � C

Z



jrvkj
2

f 00(uk)
dx �! 0

and consequently (4.5). Finally, (4.3)�(4.5) together with (2.7), (2.9), (2.10) and

assumption (iv) (Section 2) give (4.6), (4.7).

In view of the regularity result in Theorem 3.6, we formulate:

Remark 4.1. From the �niteness of v� follows 0 < u� < 1 , even if the set

fx 2 
j u0(x) = 0 or u0(x) = 1g

has positive measure.

Remark 4.2. Lemma 3.1 and Theorem 4.1 imply, together with Lebesgue's domi-

nated convergence theorem,

lim
t!1

F (u(t)) = F (u�); u� =
1

1 + exp(w� � v�)
:

However, it is an open problem whether

u(t) �! u�; w(t) �! w� as t �!1

(and not only along a subsequenc ftkg ).

The system (4.6) can be considered as Euler � Lagrange equation of an appropriate

restricted minimum problem.

Proposition 4.2. Let (u�; v�; w�) be a solution of (4.6), (4.7). Then z� = w��v�

is minimizer of the minimum problem

G(z) = F

�
1

1 + ez

�
�! min (4.9)
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with the constraint Z



dx

1 + ez
= u�j
j;

where F is the free energy

F

�
1

1 + ez

�
=

Z



�
z

�
1�

1

1 + ez

�
� log(1 + ez)

+
1

1 + ez

Z


K(jx� yj)

�
1�

1

1 + ez(y)

�
dy

�
dx:

Proof. We have to show that the variational (Gâteaux �) derivative vanishes:

d

ds
G(z� + sh)

���
s=0

= 0 (4.10)

for all h 2 L1 satisfying

d

ds

Z



dx

1 + ez�+sh

����
s=0

=
Z



hez
�

(1 + ez�)2
dx = 0; (4.11)

which takes into account the constraint. We �nd

d

ds
G(z + sh)

���
s=0

=

Z



�
(hez + zhez)(1 + ez)� zhe2z

(1 + ez)2
�

hez

1 + ez

�

h(x)ez(x)

(1 + ez(x))2

Z


K(jx� yj)

ez(y)

(1 + ez(y))
dy

+
1

1 + ez(x)

Z


K(jx� yj)

h(y)ez(y)

(1 + ez(y))2
dy

�
dx

=

Z



�
hez

(1 + ez)2

�
z +

Z


K(jx� yj)

1� ez(y)

1 + ez(y)
dy
��
dx:

Setting z = z� = w� � v� , using (4.6), (4.7) and (4.11) we get (4.10).

From Theorem 4.1 and Proposition 4.2 we conclude:

Theorem 4.3. Let (u; v; w) be the solution to (2.7)�(2.7). Then there is a sequence

ftk; k = 1; 2; : : :g with tk �! 1 for k �! 1 such that zk = w(tk) � v(tk)

converges in H1
strongly to a minimizer of (4.9).

5. Newton kernel and chemotaxis

In this section we specify K in (2.1) as the Newton kernel

K(jxj) =
�

jxj
; � =

1

4�
; n = 3:
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It turns out that in this case the alternative Cahn � Hilliard system (2.1), (2.2) is

similar to the chemotaxis model of Keller � Segel ([KS]). Indeed, as a well�known

fact of potential theory the potential

w(x) = �
Z



(1� 2 u(y))

jx� yj
dy

satis�es Poisson's equation

��w = 1� 2 u:

After adjusting boundary values by the ansatz

w = w0 + !

with

��w0 = 1� 2 u� in 
; � � rw0 = � � rw on �;

we can determine ! as solution of the problem

��! = 2 (u� � u) in 
; � � r! = 0 on �;
Z


! dx = 0: (5.1)

Now we can rewrite (2.2) as

8><
>:
@u
@t

�r �

n
a (ru+ u (1� u)r(w0 + !))

o
= 0 in Q;

� � (ru+ u (1� u)rw0) = 0 on �T :
(5.2)

The system (5.1), (5.2) coincides substantially with models of chemotaxis ([GZ]).

In view of Section 4 equilibrium states of (5.1), (5.2) are solutions of the nonlinear

nonlocal boundary value problem

��! = 2

 
u� �

1

1 + 
 exp(! + w0)

!
in 
; � � r! = 0 on �; (5.3)

Z


! dx = 0;

Z



dx

1 + 
 exp(! + w0)
= u�j
j: (5.4)

The system (5.3), (5.4) can be understood as the Euler � Lagrange equation of the

minimum problem

E(!) =
Z



 
jr!j2

2
� 2u�! + 2 log

 
exp(! + w0)

1 + 
 exp(! + w0)

!!
dx �! min

under the constraints (5.4).
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