Weierstra3—Institut
fiir Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Preprint ISSN 0946 — 8633

On a nonlocal phase separation model

Herbert Gajewski, Klaus Zacharias

submitted: 2nd May 2001

Weierstraffi—Institut fiir Angewandte Analysis und Stochastik
Mobhrenstr. 39,

D-10117 Berlin, Germany

E-mail: {gajewski,zacharias}@wias-berlin.de

Preprint No. 656
Berlin 2001

2000 Mathematics Subject Classification. 35K45, 35K57, 35B40, 80A22, 92C15, 92D25.

Key words and phrases. Cahn—Hilliard equation, initial boundary value problem, reaction—
diffusion equations, a priori estimates, Lyapunov function, equilibria, asymptotic behaviour, clas-
sical thermodynamics, phase changes, chemotaxis.



Edited by

Weierstra—Institut fiir Angewandte Analysis und Stochastik (WIAS)
Mohrenstrafle 39

D — 10117 Berlin

Germany

Fax: + 49 30 2044975

E-Mail (X.400): c=de;a=d400-gw;p=WIAS-BERLIN;s=preprint
E-Mail (Internet): preprint@wias-berlin.de

World Wide Web:  http://www.wias-berlin.de/



Abstract

An alternative to the Cahn—Hilliard model of phase separation for two—
phase systems in a simplified isothermal case is given. It introduces nonlocal
terms and allows reasonable bounds for the concentrations. Using the free en-
ergy as Lyapunov functional the asymptotic state of the system is investigated
and characterized by a variational principle.

1. Introduction

We consider a binary alloy with components A and B occupying a spatial domain
2. We denote by w and 1—wu the (scaled) local concentrations of A and B,
respectively. Let (0,7) denote a time interval, v the outer unit normal on the
(sufficiently smooth) boundary T'=0Q , and Q = (0,T7) x Q, T'v = (0,7) x T .
To describe phase separation in binary systems one uses usually the Cahn—Hilliard
equation. This equation is derived (|[CH]) from a free energy functional of the form

FCH(u):/Q{f(u)+m(1—u)+g\vuf}dx. (1.1)

Here f is a convex function with the property that f(u)+ ku(l —u) (for suffi-
ciently large & ) forms a so—called double well potential. Adapting classical thermo-
dynamical relations one introduces a chemical potential v as gradient of the free

energy:
v=f"(u)+ k(1 —2u) — A\Au. (1.2)

Now one postulates that —Vwv is the driving force for the mass flux j, i.e.,
J=-uVu

with a suitable mobility u . Considering the mass balance one ends up with the
Cahn—-Hilliard equation

(?9_::_v'(M(f’(u)JF’i(l—?u)—)\Au)):0 in @, v-(uVv)=0 on Ir, (1.3)

where the boundary condition guarantees mass conservation

/Qu(t, x)dmz/ﬂu(o,x)dx.



Inspecting Cahn—Hilliard’s arguments ([CH]) establishing (1.1) as the free energy
of the binary system it seems to be reasonable and even more adequate ([GL1]) to
choose an alternative expression like

)= [ {6 +u [ Kz~ g)(1 - u(y)) dy}da, (14)

where the kernel /C of the integral term describes nonlocal interaction ([ChF]).
This expression may be written in a form more similar to (1.1):

F(u) :/Q{f(u)—l—ﬁlu(l—u)—l—%/QIC(|x—y|)|u(:L')—u(y)|2dy}d:1:,

m=m(@) = [ K~ yl)dy.

By a simple calculation we find from (1.4) the corresponding chemical potential v
as the gradient of F' in the form

v=f)+w, w@) = [ Ko -yl - 2u) dy. (1.5)

Replacing (1.2) by (1.5) one gets instead of (1.3) the equation

ou

5~V (pV(f(w) +w)) =0.

Assuming that f is strictly convex, the strictly monotone function f’ has an
inverse function f'~' . With this function we obtain as alternative to (1.3) the

system

0

a(f”l(v —w))—=V-(uVv)=0 in Q, v-(uVv)=0 on I'r, (1.6)
v=[f"(u) +w, w(z)= /Q’C(lx -~y - 2u(y)) dy. (1.7)

As a consequence of (1.7) the a priori estimate
u(z) € im (f'71) (1.8)

holds automatically. In the standard case
f(u) =ulogu + (1 —u)log(l —u)

we have

f'(w) = log 1

- 1+ exp(w —v)’

U

) and  f'7'(v—w)

1—u

The image of the Fermi function 1/(1+ exp(s)) is the interval [0, 1], so that the
nonlocal model automatically satisfies the physical requirement 0 < u(z) < 1. This
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property cannot be guaranteed for solutions of the original Cahn—Hilliard equation
since for fourth order equations no maximum principle is available ([AP]). Elliot
and Garcke ([EGa]) have proved this property for special mobilities but they have
no uniqueness result.

Moreover, by physical reasons it is desirable to admit mobilities p depending on
v and |Vw|. A natural choice seems to be (|[EGal,|Gal)
L alle)
f"(u)
with a function a such that s — a(s)s is monotone. We shall show that the
operator (u,v)+— —V - (uVv) with such a g is monotone in an appropriate sense

(|Gaj]) and that (1.6), (1.7) has a unique solution provided 1/f” is concave. With
(1.9) the equation (1.6) can be rewritten as

@—v-a(vw VZ) — 0 inQ,

(1.9)

= 0 on FT.

We are indebted to A. Bovier for the hint that similar equations with a nonlocal
term are studied in the papers (|GL1],[GL2]), starting from a stochastic background.
It seems worth mentioning that drift—diffusion equations of this form also model
transport processes in semiconductor (|[GG|) and chemotaxis ([GZ]) theory.

In Section 2 we formulate the problem and the assumptions. In Section 3 we show
existence and uniqueness of solutions and state some regularity properties of the
solutions. In Section 4 we consider the asymptotic behaviour for time going to
infinity and characterize the asymptotic state by a variational principle. Section 5
establishes a link with the theory of chemotaxis.

2. Formulation of the problem, assumptions

Let be ©Q C R"™ a bounded Lipschitzian domain with boundary I' = 92 and
v the outer unit normal on T' . Denote by LP = LP(Q), H*? = H"(Q) for
1 < p < oo the usual function spaces on Q , H!' = HY2(Q), || |l = || - ||

the norm in L? and by (-,-) the pairing between H' and its dual (H')*

([A],|GGZ],[KJF]). For a time interval (0,7), T > 0, and a Banach space X

we denote by LP(0,7;X) the usual spaces of Bochner integrable functions with
values in X . We set ]Rﬁr = (0,00) and , as already mentioned, @ = (0,7) x Q,
I'r = (0,T) x I' . "Generic” positive constants are denoted by C .

We consider the problem
v=f+w, wita) = [ Kle-yhl-2uty)dy, (to)eq (21
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%—V-(MW))ZO in Q, pv-Vv=0 on I'p, (22)
u(0,z) = up(z), =z €. (2.3)

We assume:

(i)  f(u) =ulogu+ (1 —u)log(l —u),
(ii) the kernel K € (RL — R") is such that

/SZL‘IC(|$—y|)‘dxdy:mo<oo, sup/Q‘IC(|:z:—y|)‘dy:ml<oo

zeQ

and the potential operator P defined by

e Po= [ (K(le —yDe(y)dy

satisfies
1Pall .., <mpllell,,, 1<p< oo
(iii) the mobility x has the form
B a(z, |Vo|)

fll(u) ’

where a € (2 x RL — R.) is measurable with respect to z for all s € R}
and continuous with respect to s for a. a. = €  and satisfies

(a(z, 81)81 — a(z, 55)s2)(s51 — 82) > awlsi — 52/, 1,8 € RL,
la(z, s1)s1 — a(z, s2)s2| < ai|s1 — 2|, ag >0, oy >0.
(iv) wo € L*®(Q), 0<uy(z) <1, =ze€q,
/Quo(x) dz = ua|Q, 0<u,=const. <1, |Q= meas ().

We note some elementary properties of the function f :

f is strongly convex, more precisely,

fur) + fug) —2f (ul—;—u2> > (uy —u2)?,  uy,ug € (0,1), (2.4)
f'(u) = log 1 ﬁ " (f) s = l—i—eX;p(—s)’ im (f)~t =[0,1] (2.5)
and the function
1
frwy



is strongly concave because of

2 11 :1 o
f(‘u—;u) Filay)  Flag) 2\ ) (2.6)

Remark 2.1. For simplicity, we restrict ourselves in this paper to the function
mentioned in (i). Our results could be carried over to other strongly convex functions
f for which im (f')™* =1[0,1] and 1/f" is a strongly concave function.

Remark 2.2. Examples for kernels K satisfying (ii) are Newton potentials ([LL]):
K(lz]) = knlz>™, n#2; K(z|) = —k2log|z|, n=2; k,= const. >0
and usual mollifiers like
h2
0 if |z| > h,
where h > 0 characterizes the range of the interaction.

Remark 2.3. Mobilities of the form

_a
K= fll(u)’
seem to be natural and were considered e.g. in [EGa|, [GL1], [GL2|, where a = a(u) .

Using (2.5) the system (2.1)—(2.3) can be reformulated as

wit,o) = [ Ko -y -2ut,y)dy, (L) €Q, (2.7

u— V- (uVo)=0 in @, prv-Vv=0 on I'r, (2.8)
u— 1
1+ exp(w —v)

, u(0,z) =up(z), 0<uy(z)<1l =ze€. (2.9)

Definition 2.1.

A triple (u,v,w) is called a solution of (2.7)—(2.9) if u € C(0,T; L>°)NL?(0,T; H')
with u; € L2(0,T;(H')*) and w € C(0,T; H>*) satisfy (2.7) and v = f'(u) +w
satisfies

T
/ / p|Voldzdt < oo
0 Jo

and

T
/ {(ut,h)+/qu-Vhdx}dt:0, Vh € L2(0,T; HY).
0 Q



Note that the last identity for h =1 gives

/Qu(t,x)dx — /Quo(x)dx — u, |, (2.10)

3. Existence, uniqueness, regularity

First of all we want to prove a priori estimates. Here a key role plays the free energy
given by (1.4).

Lemma 3.1. Let (u,v,w) be a solution of (2.6)—(2.8). Then

SR < e [ 0 ar <, (1)
T |Vol?
/0 /Qf"(u) dz < C < oo, (3.2)

where C' s a constant which not depends on T' .

Proof. The estimate (3.1) follows from

SP@®) = (uo S/ +u) =~ [ u|Vo ds

[Vol?

a
— _/Q f"(u)|Vv|2d:1: < _ao/s;f”(u) dz

Using 0 <u(z) <1, wulogu > —1/e and the properties of the kernel K, we find

F(u(t)) = L{ulogu—k(l—u)log(l—u)+u/ﬂl€(|x—y|)(1—u(y))dy}dx

2|0

— —— — my.
e

Hence (3.1) implies

//|VU| < 1 T%F(u(t))dt:i[F(uo)—F(u(t))]

fll ay Jo
< —[F( )+—+ ]:C,

where C is independent of T . O



We define by
(A(v,w),h) = /u(v,w)Vv-Vhd:L', Vh € H,
Q

_oa(ve) !
plv,w) = £ (w) ’ 1+exp(w—v),

an operator A € (D(A) — (H')*), where
D(A) = {(v,w) : /Qu(v,w)|Vv|2 < oo, we H'Y}.

The following monotonicity property of A is the main tool for proving uniqueness
results.

Lemma 3.2. Let

1 _U1+’U,2

=———, Zi=w—v, (1=12), up= :
T+ exp(a)’ zi =w; —v;, (i )y, u

(vi,wi) € D(A), U; 9

Then

0 = (A(v,wn), f'(w1) = f'(um)) + (A(ve, w2), f'(uz) — f'(um))

> — % (rgoHul —ug|® + E;%OHV(wl — wz)H2> :

Proof. Set fi = f'(ui), ['=["(w), pi=p(vi,ws), a; =a(|Vui]), (i=1,2,m).
We have

6 = [{mVor- V(L = f) + Vv V(f = fr)}de

" (Vz Vz
= L{N1V1}1 . |:VZl — f7m < ”1 + "2> :|
1 2

" (Vz, Vz
2V, - [Vz2 - %" ( o ;)]}d:ﬂ

f'r,){z 2 1 1 (1,1V’U1 . V21 (J,QV’UQ . VZQ
M) s

1
+ —— (a1Vvr — aaVup) - V (21 — ZQ)}d:E.

1J2

Now, using the concavity of 1/f” (see (2.6)), the assumptions (i)—(iii) and
1/f"(u) = u(l —u), we get

n 2 2
s > —/ f—m{ﬂ(m—uz)ﬂww1| + Vs }
Q

2 18 2 7
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2
S —w)?
+4Olof{,fé’ |V(w1 w2)| }d.’l?
> =% [ (- w2 (VP + [T0l) + o [V (ws — wn)? o
- 8 Ja 4y

> —% (rgoHul —uo|)® + E;%()Hv(wl — wg)H2> :

This is our assertion. O

Lemma 3.3. Let w € L>(0,T; H">®) be given. Then the problem

1
Ut + (U,U)) y U 1—|—€Xp(ﬂ) —U), u( ) Uo, ( )
has a unique solution v = v(w) such that
T
/ /u(v,w)|Vv|2d:L'dt < 00. (3.4)
0 Jo
Proof. Existence.
We consider the regularized problem
1
us + Ae(v, w) = 0, u(0) = uy, (3.5)

U= :
1+ exp(w — v)
with

(Ae(v,w), h) = /Qus(v,w)Vv -Vhdz, Vhe H', p.=p+e (¢>0).

By results of ([ALu]) there exists a solution wv, € L?(0,T;H') with wu., €
L*(0,T; (H"')*) . We consider the functional

Fy(u) :/Qf(u) d:c—l—/OT(ut,w) ds.

We have
d ! !
= Fu(w) = () + [ /() uda = (w0 + [(w)
and by arguments similar to those used in the proof of Lemma 3.1 we can show that
d Vo |?
Z Fu(u) =< —ao [ dz < 0,
gy o) =< 00 | iy 4 S

i.e., F, is a Lyapunov functional for (3.5) — a functional decaying in time along a
solution u. . From

d

_Fw s:_/ € 52
7 Fw(ue) | b Vel "dz

8



follows by integration

ATLME|VUE|2dxdt S OT%Fw(us)dt: —/OT(uEt,f'(uE)—l—w)dt
= —/ —f Ue) dt—AT(uEt,w)dt
= 7(0)) ~ FwelT)) [ (e, )i

200| (T
O+ =2+ [ el e

IN

IN

C + [luc

L2(0,T;(HL)*) w|| L2(0,T;HL) "

On the other hand, we have

T
[ (s my

||u5t|| = Sup || ||
L2(0,T;HL)

L2(07T;(H1)*) hELz(O,T;Hl)

T
\/0 LNEVvE-Vhd:z:dt‘

= sup

hELz(O,T,Hl) || || L2(0,T;H1)

- 1/2
< (/ /u?|Vve|2dxdt) :
0 Jo

We take into account 0 < wu, <1, choose 0 <e <1 and get

a(|Vue|
f”(ue)

1/2
||uet||L2(0T(H1) Xy = \/1 + — </ / ,U,E|V'UE| dl‘ dt) .

So the estimate above becomes

T 2 o1 T 2
A LNE|VUE| dedt < C + ||w||L2(0,T;H1) 1+Z /0 Lu5|VvE| dz dt

By the usual argumentation we obtain

< et au(l —u.) < 1—|—ﬂ,

e = €+
a 1

hence

1/2

<C<oo (0<e<l).
(3.6)

T
/ / pe| Vo Pdzdt < C < oo and  ||ue|
o Jo

L2(0,T5(HY*) —



On the other hand, the estimate

|Vvs|2 / |f"(ue)Vu, + Vwl|?

fll fll uE dx

/ pe| Ve |*dz >
Q

Vw|?
= O[()/S; (f"(u5)|Vu5|2 +2Vu, - Vw + },,(ul)) dz

v

o / (Va2 — |Vw|?) dz
Q
implies

C < 0.

|| ||L2(0TH1) —

This estimate and (3.6) imply ([L],[Si]) the compactness of the set (u., 1 > ¢ > 0)
in the space L?(Q) . Hence there is a sequence &; — 0, (j — 00) such that

u, —u in L*(Q), wu, —u in L*(0,T;H").

Now, taking into account that the operator A is of variational type ([L]), we can
take the limit j — oo and show that v = f'(u) + w 1is solution of (3.3).

Uniqueness.
Let v;, i = 1,2, be solutions of (3.3) and u; = 1/(1 + exp(w — v;)) . Define

d(t) :/Q{f(ul)—l_f(UZ) _2f(ur;w>}dx-

Then Lemma 3.2 yields (with w; = ws )

d'(t) = (uu,f’(ul)—f’ (m;m))*(“?t’f'(“?)_f' (mﬂtz))

2

’U,1+U2

=~ (Aon s =7 (2572)) - (A6 £ - £ (257))

< alrgo“ul — u2||2.

By the strong convexity of f (see (2.4)) we have

t t
lus(®) = w1 < d(©) = [ d'(s)ds < arrZ, [ flur(s) = wa(s) [ ds.
The uniqueness assertion wu;(t) = us(t), t > 0, follows from Gronwall’s lemma. O

To prove existence and uniqueness of solutions for the problem (2.7)—(2.9) we define
an operator B € (C([0,T); L?) — C([0,T]; L?)) by
1

Bu = 1+ exp(w — v(w))’ (37)

where
wit,2) = [ Kllz — y)(1 - 2u(t,)) dy (35)
and v(w) is given by Lemma 3.3.
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Lemma 3.4. The operator B satisfies the contraction condition

1Bus — Buslls < s — s (3.9)

A

with respect to the norm

2
il = sup G @), A= & max (12, 222,
t€[0,T]

Qo

’

Proof. Let wu; € L*(Q), i = 1,2 . We calculate the corresponding w; €
L>(0,T; H>*®) from (3.8) and denote by wv; the solutions of (3.3), respectively.
With the same arguments as in the uniqueness proof in Lemma 3.3 we get from
Lemma 3.2

2 t al 2 2 al 2
1Bus(t) ~ Bus(t)| < [ (roo||Bu1(s) — Bus(s) [P + ||V (wr — wy)| ) ds.
0 4 8oy
Because of

2
19w —wo)|? < 2 [ Kllo = yl)w - ua) dy |, < 4r8ur - us?

we get
1Bus(t) — Bua(t)[|* < % ( 2ol Bui(s) — Bua(s)||*e~**
—I—O;:OZ Hm — uz(s)“ze*ZAs)eZAsds
< o2 — Bl + 2 fuy — waf?) [ e
or
|Buy(t) — Bus(t)[]Pe M < — ( ooHBul Bqu + O;Z; Hul — qu )

Taking the supremum over [0,7] on the left hand side and choosing A > 0 so that

T2,

8\

<

L\JI»—A
ot
(@)
Q
(=)
>~
>~ =

we get (3.9). D
Theorem 3.5. The problem (2.7) - (2.9) has a unique solution (u,v,w) .

Proof. The operator B has a fixed point uw € C([0,7],L?) by Banach’s fixed
point theorem. Then, evidently, (u,v,w) with w given by (3.8) and v being the
corresponding solution of (3.3) is solution of of (2.7)—(2.9). On the other hand, for

11



any solution (u,v,w) the first component u must be fixed point of B and hence
is unique. O

Next we want to show a regularity result stating that under the additional assump-
tion
0<up(z) <l ze€q, (3.10)

the function v belongs to L*(€2) globally in time.

Theorem 3.6. Suppose (3.10). Then

ve L®(Q)NL*0,T;HY) and 0<u(t,z) <1 fora.a. (tz)€Q.
Proof. By assumption (ii) in Section 2
my = sup/ ‘IC(|:L' - y|)‘dy < 00
zeQ JQ

and, consequently,

0[]0 oy < M- (3.11)
We introduce
1
u=o(v—w)= )
1+ exp(w — v)
and have
exp(w — v) 1

7w =l = w0 P

(exp(w — v) — 1) exp(w — v)
(1+exp(w—v))*  °

o' (v—w)=

Because of (3.11) we have
o' (v—w)<0 if v>w, (3.12)

o' (v—w)>0 if v<w. (3.13)
Using (3.12) and testing (2.8) with

g07“—}-1
h= ey 170 ¢ ul = max(0u—w)

we get ([GSk]) with z = v — w after some calculation

1 d
) = >/ O 2 d + / aVv-{(r+1)¢"Vz — ¢"(z) hVz}dz = 0. (3.14)

v>w

12



We expand the integrand of the second integral on the left hand side in the form
S = a(u)[Vz+Vuw]-{(r+1)¢"Vz—0"(2) hVz}
= a(lv])(r +1) " {|Vz* + Vw - Vz} — a(|v|)d”(2) h{|Vz]* + Vw - Vz}.

Because of ¢”(2) <0 for v > w we can estimate

S > a(|v|)(r+1)s0"{|vz|2_%(|V“’|2+|VZ|2)}

—a(|o])o"(2) h{|Vz|2 _ % (k|Vw|2 + %|Vz|2) }

From assumption (iii) in Section 2 we have a(|v|) > ap , and with the choice
k=1/2 we get

% 1 1
$ 2 2+ 1)@ |92 = S a(lel) (¢ + 1) ¢ [V + 4 allo) T2 o7 [Vul

Because of

<1

and |a(|v])| < a1 (Section 2, (iii)) and assumption (ii) we obtain

2

2
S 2 D(r+1) ¢ Vel = 252 (r 4+ 1)y - L=

Taking into account that

r42

2 4|V
(r+2)2 °

4

rv 2:
§0| Z+| (T—|—2)2

r42
\Y <z+2 )

we finally get from the identity (3.14) the estimate

1 d 20(r + 1) r+2
et r+2d < _07/ > 2d
(r—|—2)dt§/g0 = (r+2)2 QW(QD )['dz
+a1rg°/ {20r + 1)¢" + "' }da
A "+ :

4
By a technique due to N. Alikakos ([Al1], [Al2]) we conclude from this estimate that

ol <C

for an appropriate constant C' . With (3.11) this gives an upper bound for v :

v(z) <my+C foraa z €. (3.15)

13



Analogously, from (3.13) with the test function
¢r+1

h:m, r>0, ¢¥=—[v—w)-=—min(0,v —w)

and (3.11) we get a lower bound for v :
v(z) > —(m;+C) foraa z€Q. (3.16)

From (3.15), (3.16) follows the assertion. D

4. Global behaviour

In this section we study the global behaviour of the solution of (2.1)—(2.3) for
T — oo . Our main tool is the fact (formulated in Lemma 3.1) that the free
energy F' is a Lyapunov functional. Therefore we have

jtF( (t)) < —ao/Q(u(l—u)|Vv|2)(t) dz < 0, (4.1)
/ / LCYU dz < C < oo, (4.2)

Theorem 4.1. Let (u,v,w) be a solution of (2.7) — (2.9). Then there exist a
sequence {tx, k = 1,2,...} with t, — oo  for k — oo and a tripel
(u*, v*, w*) such that uy = u(ly), vy = v(tx), wp = w(tx) satisfy

ur —> u*  strongly in L?> and weakly in H', (4.3)
wy, — w*  strongly in H', (4.4)
arctan (e’“’“/z) — arctan (e’“*/Z) strongly in  H', v* = const. (4.5)

Moreover, the following relations hold:

w'(@) = [ Kz —y)(1-2u' () dy, [ w'de=uala, (4.6)

1
1 +exp(w* —v*)’

*

v* = const. (4.7)

Proof. By (4.2) there exists a sequence ¢; € [5,7+ 1], j =1,2,..., such that
u; = u(t;), v; = v(t;), w; = w(t;) satisfy

lim / Vo2 |2 (4.8)
j—o0 f” - '
With
V(v —w) 1 1
Vu o) and o) u(l—u) < 1 for 0<u<1



and with assumption (ii) in Section 2 and (4.8) we get

_/SZ|Vuj|2dx:[z<|V(;/{(;jl)uj)|) du <2/ |VUJJ|M?'|;U)J| da

3l
8

V2
< —
— 2Ja f"(uy)
Hence by the compactness of the embedding H! C L? there exists a subsequence

{tr} < {t;} such that (4.3) holds. Again by assumption (ii) in Section 2 the
convergence (4.4) and

= C.

dz + - /|Vw]|d:v< e 2L

[well .. <C
follows. This implies
Vg2 Vo |?
/‘Varctan( ”’“/2 / | vl C’/ | d d —0
T4 (14 e—vx) [ (ug)
and consequently (4.5). Finally, (4.3)—(4.5) together with (2.7), (2.9), (2.10) and
assumption (iv) (Section 2) give (4.6), (4.7). D

In view of the regularity result in Theorem 3.6, we formulate:

Remark 4.1. From the finiteness of v* follows 0 < u* < 1, even if the set
{z € Qup(z) =0 or wup(z) =1}
has positive measure.

Remark 4.2. Lemma 3.1 and Theorem 4.1 imply, together with Lebesgue’s domi-
nated convergence theorem,

lim F(u(t)) = F(u*), u*=

t—o00

However, it is an open problem whether
u(t) —u*, w(t) —w* ast— o0

(and not only along a subsequenc {tx} ).

The system (4.6) can be considered as Euler — Lagrange equation of an appropriate
restricted minimum problem.

Proposition 4.2. Let (u*,v*,w*) be a solution of (4.6), (4.7). Then z* = w*—v*
is minimaizer of the minimum problem

9(z) = F (1 i ez) — min (4.9)
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with the constraint

d
[ = ualel,
ol+e?

where F' s the free energy

1 1
P(rke) = (- rie) -mnes
(1+ez) Q ? 1+e* og(1 +¢7)
1 1
1+ e /QIC(|x B y|) (1 B 1+ ez(y)> dy}da:.

Proof. We have to show that the variational (Gateaux —) derivative vanishes:

_I_

4 (o + sh)

=0 4.10
ds 5=0 ( )
for all h € L*> satisfying
d dx he*"
= ) —— = ——dzr=0 4.11
ds [z 14 e="+sh g ./Q (1+e*")? =0 (4.11)

which takes into account the constraint. We find

_ / {(hez + zhe®)(1 + €*) — zhe®  he?
e (1+e7)? 1+ e?

d
75 G(z + sh)

s=0

e*(¥)

h(z)e*®)
M@ [ k(e — y)————d
it s Jo 02 = WD iy

e*(v)
b Kl = o) Py o

14+ ez(z) 1+ ez(y))

he* 1—e*®
- /sz {(1 + e#)? (z - /QIC(|:L' ) 1+ e* dy)}d:z:.

Setting z = z* = w* — v* , using (4.6), (4.7) and (4.11) we get (4.10). D
From Theorem 4.1 and Proposition 4.2 we conclude:
Theorem 4.3. Let (u,v,w) be the solution to (2.7)—(2.7). Then there is a sequence

{ty, k =1,2,...} with tx — oo for k — oo such that z;, = w(ty) — v(tx)
converges in H' strongly to a minimizer of (4.9).

5. Newton kernel and chemotaxis

In this section we specify K in (2.1) as the Newton kernel

K 1

Kllal) = 5 w=

Bk n = 3.
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It turns out that in this case the alternative Cahn — Hilliard system (2.1), (2.2) is
similar to the chemotaxis model of Keller — Segel ([KS|). Indeed, as a well-known
fact of potential theory the potential

lz — y|

satisfies Poisson’s equation

—Aw=1-2u.
After adjusting boundary values by the ansatz

w=wy+w
with
—Awy=1—-2u, inQ, v-Vwy=v-Vw on /T,
we can determine w as solution of the problem
—Aw=2(us—u) inQ, v-Vw=0 onTl, /dex:(). (5.1)

Now we can rewrite (2.2) as

%—%—V-{a(Vu—I—u(l—u)V(wg—l—w))}:0 in @,
v-(Vu+u(l—u)Vwy) =0 on I'r.

(5.2)

The system (5.1), (5.2) coincides substantially with models of chemotaxis (|[GZ]).

In view of Section 4 equilibrium states of (5.1), (5.2) are solutions of the nonlinear
nonlocal boundary value problem

1
—Aw=2u, — inQ, v-Vw=0 onT, (5.3)
1+ yexp(w + wp)
d
/wd:z:zo, / v — u,|9. (5.4)
Q o1+ yexp(w+ wy)

The system (5.3), (5.4) can be understood as the Euler — Lagrange equation of the
minimum problem

2
E(w) = / Vol 2u,w + 2log exp(w + w) dx — min
) 2 1+ yexp(w + wp)

under the constraints (5.4).
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