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0. INTRODUCTION

This is a review dealing with various related aspects of the Probability Theory of

Gibbs measures of disordered systems. The models for disordered systems that will be

considered here usually come from the statistical mechanics part of theoretical physics,

but the desire to really understand them is a source of interesting mathematics.

The contributions we present here range from the more concrete to the more abstract.

They are linked but can be loosely grouped in three parts. In Chapter 1 we give the proofs

of long-range order for speci�c continuous spin lattice models. In Chapter 2 we focus on

the conceptual novelties of the in�nite volume description of a system that are caused by
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the disorder and are not present in deterministic systems. We discuss two examples as an

illustration for that. In Chapter 3 we describe a more abstract contribution to Gibbsian

theory. We investigate a general class of measures naturally appearing in this context

and ask, whether and in what sense they can be interpreted as in�nite volume Gibbs

measures. For more details than we can provide here we refer the reader in particular to

the references marked with stars.

We start with a brief reminder of some background material to Gibbs measures and

their behavior at `low temperature' where there is the possibility for phase transitions.

Background: Gibbs measures of lattice spin models

To put the questions and results about disordered systems in perspective it is good

to recall the situation for lattice spin models without disorder. We start with the setup

of Gibbs measures in this context and mention some of the important results concerning

the low-temperature region of translation invariant systems. After that we come to

disordered lattice spin models. We mention some known facts about the random �eld

Ising model that will serve as a guiding example. We will refer to it in all of the three

following chapters from di�erent points of view. Readers who are familiar with these

facts may want to go directly to Chapter 1 where we start to describe our own results.

Basic de�nitions

Take the lattice Zd and consider the (so-called) spin variables � = (�x)x2Zd 2 
Z
d

0 .

The latter space is called con�guration space. We will consider only cases where the

space 
0 (the `local state space') is either �nite, or given by the integers, or the real

line, so that there is a natural topology and a corresponding �-algebra. For the product-

space one commonly uses the product topology and the product �-algebra. Consider

a collection of local functions � = (�A)A�Zd indexed by the subsets of the lattice Zd,

having the property that �A(�) depends on � only through its value �A � (�x)x2A. � is

called (interaction) potential and the choice of � de�nes the model under consideration.

One often encounters also the so-called formal Hamilton function (or energy function),

given by the expression

H(�) =
X
A�Zd

�A (�) (0.1)

This expression is meaningful only when restricted to a �nite volume ��Zd, of course.
The best known example of a lattice spin model is the usual nearest neighbor Ising model

where 
0 = f�1; 1g and the Hamilton function is H(�) = �P<x;y> J�x�y �
P

x h�x,

where the �rst sum runs over all pairs of nearest neighbors x and y on the lattice. Here
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J and h are two parameters having the meaning of a coupling constant and a magnetic

�eld. Now, given some �, one forms the `Gibbs measures in �nite volume' ��Zd with

boundary condition �
b.c. which are the probability measures on 
 obtained by putting

�
�b.c.

� (f) :=

P
��

f(���
b.c.

Zdn�
) exp

�
�PA\�6=;�A(���

b.c.

Zdn�
)
�

P
��

exp
�
�PA\� 6=;�A(���

b.c.

Zdn�
)
� (0.2)

for any bounded measurable observable f : 
 ! R. (Measurability is meant w.r.t the

product �-algebra.) The collection of the measures ��
b.c.

� is also called `local speci�cation'.

The �nite-volume summation is over �� 2 
�
0 . The symbol ���

b.c.

Zdn�
denotes the in�nite

volume con�guration in 
 that is given by �x for x 2 � and by �
b.c.

x for x 2 Z
dn�. For

the sum to make sense, one needs some summability assumption on � (see e.g. page

6 of [K99b*], or Chapter 3). If one is dealing with continuous variables the sums must

be replaced by integrals over a-priori measures. Now, most of the time in statistical

mechanics, the task is the following:

Given an interaction potential �, characterize the corresponding in�nite vol-

ume Gibbs measures �!

Here, the in�nite volume Gibbs measures � are those probability measures on 
 whose

�nite volume conditional expectations coincide with the above �nite-volume Gibbs mea-

sures given by (0.2), that is we have

�
�
��

���Zdn�� = exp
�
�PA\�6=;�A(���Zdn�)

�
P

~��
exp

�
�PA\�6=;�A(~���Zdn�)

� (0.3)

for any � and �-a.e. �. This equation for � is called DLR equation. (DLR= Dobrushin,

Lanford, Ruelle.)

Why do people care for in�nite volume Gibbs measures? Usually one is given the

potential � describing the interaction between the microscopic components of a system

(like a piece of a ferromagnetic material, say) from theoretical physics and one asks for

the resulting collective behavior in thermal equilibrium. Since one is dealing with a

very large number of those microscopic components it is natural to investigate the limit

� " Zd. While one might argue that it is physically more natural to stick with large but

�nite volumes, the notion of the in�nite system is usually seen as an idealization where

interesting properties one likes to study can be captured in a sharpened way. As we will

see in Chapter 2, the question of the in�nite volume limit has to be taken with more care

in the case of (some) disordered systems.

What makes the DLR equation (and the physical systems it is supposed to describe)

interesting is that one might encounter several solutions � for the same �. For this

to be the case � must describe a strong coupling between the spins in some sense. If

non-unicity of the solutions happens one says that � allows for di�erent phases. (The
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physically observable states of the system then correspond to the extreme elements of the

simplex of solutions � for a given �). A very clear probabilistic presentation of abstract

Gibbsian theory is found in [Geo88], a softer pedagogical introduction without proofs in

Chapter 2 of [EnFeSo93].

Translation-invariant systems at low temperature: Pirogov-Sinai theory

In the speci�c example of the nearest neighbor Ising model in d � 2 dimensions it is

well-known that for h = 0 and J suÆciently large (`low temperature') there exist di�erent

translation-invariant Gibbs measures �+ (and ��) which describe small perturbations of

the all-plus (respectively all-minus) spin-con�guration. That is, a typical con�guration

of �+ looks like an in�nite sea of plus spins with small and rare islands of minus-spins.

If J is suÆciently small there is a unique Gibbs measure.

A similar suitably generalized low-temperature picture holds true for more gener-

al translation-invariant systems, where the spin variables may take a �nite number of

values, the interaction has �nite range, but no symmetry of the interaction between

the di�erent spin-values is assumed. This is the content of the Pirogov-Sinai theory

([PS76a],[PS76b],[Si82],[Za84],[Za87],[Za98]). For a pedagogical description of the main

results see e.g. the big review paper [EnFeSo93] Chapter B.4. To think of one concrete

example where it applies take e.g. the Blume-Capel model, where �x 2 f�1; 0; 1g and

H(�) = �

�P
<x;y>(�x � �y)

2 �Px g�
2
x �

P
x h�x

�
, and � > 0 (the `inverse tempera-

ture') and g; h are parameters.

Here, depending on the values of the parameters, for large � the Hamiltonian admits

either one, two, or three extremal translation-invariant Gibbs measures �q, q 2 f�1; 0; 1g.
These translation-invariant phases are `q-like', i.e. �q [�x 6= q] � e

�const � , with exponen-

tial decay of correlations, i.e. j�q [�x�y]� �
q [�x]�

q [�y]j � e
�const �jx�yj. Furthermore,

the `lines of phase-coexistence' in the space of (g; h) where there are two extremal Gibbs

measures, [for �xed �] deform in an analytic way as a function of �. This is true for

(g; h) in a neighborhood of the origin.

For such results to hold in a general setup one needs that the interaction obey a `Peierls

condition'. The latter essentially demands that the energy di�erence of a perturbed

con�guration about the (candidate of a) ground state is at least as big as the volume

where the perturbation occurs times a suÆciently large constant. This so-called Peierls

constant then plays the role of an inverse temperature. E.g. in the Blume-Capel model

the candidates for ground-states are potentially all three uniform spin-con�gurations.

The regions on the lattice where changes in the spin-values relative to one of the `ground-

states' occur are termed (thick) Peierls contours. They play an important role as basic

objects in the theory in that they describe the basic `excitations' of the system. The proof

of these results of Pirogov-Sinai theory is technically not simple. It is based on cluster-

expansions (Taylor-expansions of logarithms of various types of `partition functions' with
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an unbounded number of variables), and the solution of certain �xed point equations.

In situations where the interaction is symmetric under permutation of the possible spin-

values (like the standard Ising model in zero magnetic �eld) the situation simpli�es

considerably. Contours and cluster expansions can be a useful tool for the study of

disordered models, too, and they also appear as important ingredients of our papers

[K99a*], [K98d*], [K00].

More results in this spirit have been obtained and are still further developed for mod-

els possessing translation-invariance (at least in all but one directions). We mention

here only: a general Pirogov-Sinai theory of interface states [HoZa97], �nite size correc-

tions [BoKo95], continuous spin systems [Za00], long-range interactions [BoZa01], the

treatment of small quantum perturbations [DaFeRo96] etc. A generalization of analyt-

icity results to the non-translation invariant situation, however still assuming uniform

Peierls-estimates, is in work by the author [K01b].

We should mention that there is an approach to the low-temperature behavior al-

ternative to expansion methods and Pirogov-Sinai theory, that is based on percolation

techniques and the use of stochastic comparison inequalities [HGM00].

Gibbs measures of disordered lattice spin models: Basic de�nitions

Having recalled some of the properties of systems containing no disorder we will now

come to disordered systems to which we will stick for the rest of the time. Now the

picture will be more complicated: We are giving up translation-invariance of the inter-

actions between the spins and make them random according to an external probability

distribution.

Again we denote by 
 = 
Z
d

0 the space of spin-con�gurations � = (�x)x2Zd, where

the single-spin space 
0 is as above. Similarly we denote by H = HZd0 the space the

disorder variables � = (�x)x2Zd take values in, where H0 is the real line, an interval or a

�nite set. Each copy of H0 carries a measure �(d�x) and H carries the product-measure

over the sites, P = �


Zd. We denote the corresponding expectation by E . The space of

joint con�gurations 
 � H = (
0 �H0)
Z
d

is called skew space. It is equipped with the

product topology.

We consider disordered models whose formal in�nite volume Hamiltonian can be writ-

ten in terms of disordered potentials (�A)A�Zd,

H
�(�) =

X
A�Zd

�A (�; �) (0.4)

where �A depends only on the spins and disorder variables in A. A lot of disordered

models can be cast into this form.

A famous example of this is the random �eld Ising model where 
0 = f�1; 1g, H0 =

f�1; 1g and the Hamilton function is H�(�) = �P<x;y> J�x�y �
P

x h�x�x, where,
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again, the �rst sum runs over all pairs of nearest neighbors x and y on the lattice.

The distribution of the `random �elds' is i.i.d. with symmetric distribution, say, e.g.

symmetric Bernoulli, i.e. P[�x = 1] = P[�x = �1] = 1
2
.

For �xed realization of the disorder variable � we denote by ��
b.c.

� [�] the corresponding

�nite volume Gibbs measures in ��Zd with boundary condition �
b.c.. They are the

probability measures on 
 that are given by the formula

�
�b.c.

� [�](f) :=

P
��

f(���
b.c.

Zdn�
) exp

�
�PA\�6=;�A(���

b.c.

Zdn�
; �)
�

P
��

exp
�
�PA\�6=;�A(���

b.c.

Zdn�
; �)
� (0.5)

for any bounded measurable observable f : 
! R.

Then the aim of the theory is usually

Given an interaction potential ��, �x a realization � that is typical for P and

characterize the corresponding in�nite volume Gibbs measures �[�]!

Characterize the large volume behavior of Gibbs measures ��
b.c.

� [�]!

This can be much more diÆcult than in the translation invariant case. First of all,

there are cases where arbitrarily small random perturbation may quantitatively change

the behavior of a system and lead to new phenomena. Even if this is not the case,

and disorder turns out to be `irrelevant' in the sense that it does not fundamentally

change the `character' of the Gibbs measures, the analysis can be much harder than in

the translation-invariant case. We will provide some concrete examples for this. Let us

mention that, in particular there is no analogue of Pirogov-Sinai theory for disordered

systems yet, although there is an outline of some ideas for such a project by Zahradnik.

In fact, this would be a wonderful project.

The random �eld Ising model

Let us brie
y discuss the concrete example of the random �eld Ising model (with

symmetric non-degenerate distribution.) For this model it was proved in [AiWe90] that

there is unicity of the Gibbs measure in 2-dimensions, at any �xed temperature, for P-a.e.

�. This is in contrast to the case of the model without disorder, which shows that the

introduction of arbitrarily weak random perturbations can destroy a phase transition. It

shows that randomness can potentially alter the behavior of the system in a fundamental

way, and cannot always be treated as a small perturbation. The method of [AiWe90]

is based on getting lower estimates on the 
uctuations w.r.t. the distribution of P of

certain extensive quantities that are related to free energies in �nite volume (logarithms

of partition functions). This method uses martingale techniques and is relatively soft

and not too technical. We remark that it was later applied by [BoK96] to show the non-

localization of interfaces in random environments in the framework of certain models for

interfaces without overhangs in space dimensions less than 3 = 2 + 1.
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In the three or more dimensional random �eld Ising model, for small disorder, and

small temperature, however, disorder does not destroy the ferromagnetic ordering. Here,

[BrKu88] showed in their famous paper that there exist distinguished Gibbs measures

�
+[�] (and �

�[�]) which, for typical magnetic �eld con�guration �, describe small per-

turbations around a plus-like (respectively a minus-like) in�nite-volume ground state. A

plus-like ground state looks like a sea of pluses with rare islands of minuses in those

regions of space where the realizations of the magnetic �elds happen to be mostly

oriented to favor the minus spins. The method they used, the so-called `renormaliza-

tion group', is a multiscale method that consists in a successive application of a cer-

tain coarse-graining/rescaling procedure. This is necessary because there is no simple

Peierls-condition for this model (say around the all-plus state.) The individual steps

are controlled by expansion methods and probabilistic estimates of the undesirable event

that regions of exceptionally large magnetic �elds occur. This has to be done for all

hierarchies occuring. This method is conceptually beautiful but technically hard to im-

plement. It was later also applied by [BoK94] to show the stability of certain interface

models in dimensions d + 1 � 4. (An analogous method was also used by [BrKu91] to

show the di�usive behavior of random walks in asymmetric random environments in more

than 2 dimensions.) We remark that the result of [BrKu88] was a nice example where

a question that was truly under debate among theoretical physicists could be settled by

mathematicians.

1. TWO DISORDERED MODELS OF CONTINUOUS SPINS

We will now come to the results of the �rst two papers. Besides lattice spin models

taking a �nite number of values, models of continuous spins have found a great interest.

The reasons for this is that they are often taken by physicists as an ad hoc `mesoscopic'

description of physical phenomena. That is, they are meant by physicists to incorporate

already an average over microscopic details of the physical world. (Taking this latter

sentence serious from a probabilistic point of view also leads to a very interesting direction

of research that we don't discuss here. Certain results of this sort can be obtained

for models with long-range interations, see e.g. [K00], see also [BoZa01], [BuMePr97],

[LMP98].)

The continuous spin random �eld model: ferromagnetic ordering in d � 3

(Results of [K99a*])

In the context of disordered systems the continuous spin version corresponding to the

random �eld model is an important model to study. Here the spin variables mx take
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values in R and the formal Hamiltonian for a spin-con�guration mZd 2 R
Z
d

in the in�nite

volume is given by

E (mZd) =
q

2

X
<x;y>

(mx �my)
2
+
X
x

V (mx)�
X
x

�xmx (1.1)

where the �rst summation extends over all pairs of nearest neighbors < x; y >. (The

�nite volume Gibbs measures are then obviously formed by taking the exponential of the

negative �nite volume restriction of (1.1) as the non-normalized Lebesgue-density.) The

potential V has a symmetric double-well structure. The most popular choice is that of

a polynomial of fourth order. For concreteness we will stick to it. We choose a scaling

where the potential has unity curvature in the minima �m� that is

V (mx) =

�
m

2
x � (m�)2

�2
8m�2

and investigate the Gibbs measures for q � 0 suÆciently small and q (m�)
2
suÆciently

large. The latter quantity gives the order of magnitude of the minimal energetic contri-

bution to the Hamiltonian (1.1) caused by neighboring spins in di�erent wells. Thus it

corresponds to a Peierls constant.

Here the (�x)x2Zd, are i.i.d. symmetrically distributed random variables that satisfy

the probabilistic bound P [�x � t] � e
�

t2

2�2 where the �2 � 0 governing the smallness of

the random variables has to be suÆciently small. Moreover we impose a �xed uniform

bound on j�xj, independent of �2. This is for technical reasons. In this context we

show that there is in fact a `ferromagnetic' phase transition, in dimensions d � 3, for

suÆciently small �2 (meaning small disorder), suÆciently large q(m�)2, and not too

big q(m�)
2

3 (controlling the `anharmonicity' of the minima, as it can be seen from the

proof). We prove the following: The [random] Gibbs-probability (w.r.t. to the �nite

volume-measure with plus-boundary conditions) of �nding the spin left to the positive

potential well is very small, uniformly in the volume, on a set of realizations of � of a size

[w.r.t P] of at least 1� e
�
const

�2 . The precise statement is found in Theorem 1 p.1272 of

[K99a*]. For more information and explanation we refer to the introduction of [K99a*].

Let us however mention the following: The particular form of the potential as a fourth

order polynomial is of no importance, as well as the requirement of uniform boundedness

on the random �elds and the restriction to nearest neighbor couplings in the Hamiltonian

(instead of �nite-range interactions) could be given up.

The novelty of the proof is the use of a stochastic mapping of the continuous spins to

their sign-�eld (independently over the sites). We choose it such that the probability that

a continuous spin mx is mapped to its sign is given by 1
2
(1+ tanh(am�jmxj)). (Here a is

a parameter close to one that needs to be tuned in a useful way.) The image measure of

a particular sign-con�guration then gives the approximate weights of �nding continuous

spins in the neighborhood of the potential wells indexed by these signs. Using a suitable

combination between high temperature and low temperature expansions it is shown that
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the resulting model has the form of an Ising model with exponentially decaying interac-

tions. (These expansions are related to those used by [Za00] in the translation-invariant

context where however, due to the lack of positivity, no probabilistic interpretation can

be given.) This can be seen as a `single-site-coarse-graining'-method. Next, having con-

structed the Ising-system, it can be cast into a contour model representation for which

the renormalization group of [BrKu88] can be used.

This mapping is really compatible with the in�nite volume limit in the sense that

the in�nite system under consideration is mapped to an in�nite volume Gibbs measure

of an Ising model (see Theorem 2 of [K99a*], p.1273). So, this stochastic map also

provides an interesting example of a `coarse-graining without pathologies'. This means

that the coarse-graining produces no `arti�cial' non-local dependencies in the conditional

expectations of the resulting measure. Let us remind the reader that this need not be the

case in general in the sense that there are many examples of `innocent transformations'

acting on `innocent' in�nite volume Gibbs measures that produce non-Gibbsian measures

as images.

These example mainly come from the coarse-graining transformations motivated by

the `renormalization group'. Maybe the simplest example of such a transformation is

taking marginals on a sublattice of the Gibbs distribution of an ordinary nearest neighbor

Ising model in the plus phase at low temperatures in zero magnetic �eld. In Chapter 3

we will come back to the question whether and to what extent certain natural measures

arising in the context of disordered systems can be interpreted as Gibbs measures, when

we discuss in more detail the papers [K99b*],[K01a*].

Stability for a continuous SOS-interface model in a randomly perturbed pe-

riodic potential in d+ 1 � 3 + 1 (Results of [K98d*])

The result of the second paper [K98d*] concerns the stability of a (so-called) contin-

uous interface model. In this model an interface without overhangs is modelled by a

continuous-valued height-con�guration (mx)x2Zd over the d-dimensional lattice that is

subjected to a weakly disordered random potential Vx(mx). The Hamiltonian reads

E (mZd) =
q

2

X
<x;y>

(mx �my)
2
+
X
x

Vx(mx) (1.2)

For this model the random single-site potential Vx(mx) is site-wise independent again,

and chosen so that it becomes periodic under the shift orthogonal to the base plain

in the limiting case of vanishing disorder. For technical reasons the particular choice

as a logarithm of an in�nite sum of Gaussian terms with random parameters is most

convenient (see page 2 of [K98d*]). For simplicity we restrict the analysis to this case,

although perturbations around this form could also be treated.
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In [K98d*] we prove that, for almost all realizations of the random potentials, the

model possesses Gibbs measures that describe localized interfaces in a �xed height, in

dimensions d+ 1 � 3 + 1, for a choice of parameters corresponding to low-temperatures

and small disorder. (See [K98d*] Theorem 1, page 3.)

For the proof we generalize the method of stochastic mapping from continuous vari-

ables to discrete variables that was used in [K99a*]. While we had to deal with a

double-well potential therein we must now take care of an in�nite number of wells. Thus

we must use a suitable Z-valued stochastic map (corresponding to the smoothed map to

the sign-�eld of [K99a*]). This allows to use the discrete renormalization group method

for the contour model representation of the image model that was developed in [BoK94].

It was used there to treat the contour model representation of a similar (slightly simpler

nearest neighbor) Z-valued model.

Given our special choice of the potential it turns out that the (relevant) continuous-

variable in�nite volume random Gibbs measures � can then be written in a nice represen-

tation as superpositions of massive Gaussian �elds in the in�nite volume (see Theorem

2 of [K98d*], page 5): Denoting by N [m; (1� q�)�1] the Gaussian �eld with covariance

matrix (1� q�)�1 and expected value m we have that

� =

Z
�(dh)N [m̂(h); (1� q�)�1] (1.3)

where the continuous in�nite volume con�guration m̂(h) is an (approximately) local

function on the discrete con�gurations h = (hx)x2Zd 2 Z
Z
d

. The measure �(dh) is a

Gibbs measure of the random (w.r.t. disorder variables) integer-valued model arising as

image under the stochastic transformation. In particular the formula applies to those

Gibbs measure � = �
k that describe a localized discrete interface at given height k,

carrying over the localization property to the continuous model. It is not diÆcult to

formally obtain the decomposition formula (1.8) given the particular de�nition of the

potential, but to prove in the in�nite volume, one needs certain localization properties

of the discrete model �(dh). (These hold in particular for the measures � = �
k.)

2. VOLUME DEPENDENCE AND METASTATES

Background

We now come to the second aspect of Gibbs measures for disordered systems that we

want to focus on. We start with some motivation. Having just described the continuous

spin version of it, let us come back again to the random �eld Ising model that was already
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described in the last part of Chapter 0. We look at it in three or more dimensions, in the

regime of `small disorder' and low temperatures, as an example of a disordered system

that shows distinguished phases. For this model it follows from the proof of [BrKu88]

that, for P-a.e. �, the �nite volume Gibbs measures with all +-boundary conditions

�
+
� [�] converge weakly (that is on local observables) to the in�nite volume plus-state

�
+[�] as � " Zd (say, along a sequence of nested cubes). In the same way we have that

�
�

� [�] converges to �
�[�]. This behavior is an example of a simple scenario that can

happen for the volume dependence of disordered systems (even though it might not be

simple to prove). Here the boundary condition preselects the particular in�nite volume

Gibbs measure. This situation is of course the standard situation for low-temperature

systems without disorder. For systems falling into the realm of Pirogov-Sinai theory the

situation can be analysed in great detail. Here, when there are di�erent q-like (q0-like)

in�nite volume Gibbs states �q (and �q
0

) for the same interaction potential, they can be

constructed as a weak limit of the �nite volume Gibbs measures �
q
� with the appropriate

all q-boundary condition. Moreover, the speed of the approach to the limit on given

observables can be controlled by cluster-expansions.

There are however natural cases of disordered systems where one is interested in

boundary conditions that do not preselect a particular in�nite volume Gibbs state.

Spinglasses

Let us deviate a little and talk about spin-glasses for a motivation of what follows. We

won't discuss any result for a real spin-glass model in any of our papers and the reader

who is not interested in them may directly go to `Metastates'.

A situation where the connection between boundary condition and in�nite volume

Gibbs state is complicated can be expected e.g. in the famous Edwards-Anderson spin-

glass. [This model has the Hamiltonian H
J(�) =

P
<x;y> Jx;y�x�y where �x 2 f�1; 1g

and the Jx;y are i.i.d. mean zero Gau� variables.] Unfortunately, little is rigorously

known about this model, none of the mentioned methods can be applied to it, and we

won't discuss it here. There is however agreement in the belief that there are multiple

phases at suÆciently high dimensions.

There are also more detailed conjectures about the Gibbs measures that are based on

the heuristic solution by Parisi (see [MePaVi87]) of the corresponding so-called mean-�eld

model, which is known as Sherrington-Kirkpatrick model. Generally, in the de�nition of

a mean-�eld model corresponding to a lattice model, the lattice Zd is replaced by the

complete graph with vertices f1; : : : ; ng. Nearest neighbor interactions are replaced by

`corresponding' interactions between all pairs of spins. For this to make sense in the

limit n " 1 of a large number of spins, one needs the strength of the interactions to scale

appropriately with n. In the case of the EA-spinglass this leads to the corresponding

de�nition

�n[J ] ((�i)i=1;:::;n) =
1

Norm:
exp

0
@ �

2
p
n

X
1�i;j�n

Ji;j�i�j

1
A (2.1)
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for the �nite volume Gibbs measures of the Sherrington-Kirkpatrick model, where �i = �1
are Ising spins and the Ji;j are i.i.d. standard Gau� variables. Now, the famous heuris-

tic solution of this SK-model by Parisi is however still far from being mathematically

justi�able (although generally accepted by physicists). Worse than that, not all of its

predictions can be unambiguously interpreted in terms of meaningful mathematical ob-

jects. Despite of this all it is taken as a basis in the physics literature to conjecture

that there are in�nitely many pure states at low temperatures, in suÆciently high di-

mensions also in the lattice model. However, this so-called `SK-picture' put forward

by Parisi and co-workers is not undisputed among physicists [BDM98] with numerical

simulations giving no clear evidence. There is still no mathematical understanding of

the low-temperature phase in the SK model. There has however been made remark-

able progress in particular in the mathematical analysis of simpler related mean-�eld

spinglass-type models (like the Hop�eld model and the so-called p-spin model) and also

progress for the SK model itself ([BoGa98a],[BoSz98],[Ta98],[Ta00a-d]).

Now, a di�erent approach was that of Newman and Stein ([NS96a,b], [NS98a], [Ne99])

whose aim was to rule out some of the conjectures for the lattice spin-glass with the use of

softer arguments by carefully examining the notion of the in�nite system. Newman and

Stein noted that a phenomenon they called `chaotic size dependence' is likely to occur.

By this it is meant that, for boundary conditions that are not specially chosen to pick a

pure phase, it is possible to have many di�erent limiting states along a subsequences of

volumes tending to Zd while the realization of the disorder variables is �xed. Examples

of such boundary conditions are all-plus, open, or periodic boundary conditions in the

EA model.

Metastates

To account for such situations in the general context of disordered systems and de�ne a

meaningful limiting object that describes the asymptotic large-volume behavior Newman

and Stein proposed the following: Look at a sequence of �nite volume Gibbs measures

��n [�] (for a given �xed boundary condition) in terms of their empirical average

�N (�) =
1

N

NX
n=1

Æ��n [�]
(2.2)

taken along the `trajectory' �n (say, a sequence of cubes). See, if it converges withN " 1!

This is in analogy to the construction of invariant measures for dynamical systems. Now

the role of the time is taken by the given sequence of volumes. They called the resulting

object empirical metastate. It will thus be a probability measure on the Gibbs measures

of the system that depends on the particular realization of the disorder variables �. The

interpretation is the following: The metastate gives the likelihood of �nding a disordered

system in a particular Gibbs measure when we choose a very large system.

There are general existence results about the convergence for P-a.e. � that follow

from compactness arguments but these are only for sparse enough subsequences of n's
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and N 's (see [Ne99]). These results hold, if one sticks to a local notion of convergence

for all measures appearing, where convergence of expectations of local functions has to

be checked.

Metastates in Disordered Mean-Field Models:

Random Field and Hop�eld Models (Results of [K97*] and [K98b*])

After Newman and Stein had proposed the metastate-formalism we gave the �rst

two rigorous examples of non-trivial metastates of disordered systems. These examples

are simple and well-known mean-�eld systems (see [K97*],[K98b*]). They showed in

particular that it is really necessary in general to take a subsequence of a given sequence

of volumes �n to get a.s. convergence for the empirical mean (2.2). This phenomenon is

in contrast to an earlier conjecture. Later, also metastates for more complicated (however

mean-�eld) models were constructed ([BoGa98b], [BEN99], [To99], [BoMa01].)

Our �rst example is the easier one of the two, and it is probably the easiest system

showing nontrivial behavior of the metastate. It is the Curie Weiss Random Field Ising

Model (CWRFIM) whose Gibbs measures in the �nite volume �n � f1; : : : ; ng are given
by

�n[�] ((�i)i=1;:::;n) =
1

Norm:
exp

0
@ �

2n

X
1�i;j�n

�i�j + �

X
1�i�n

�i�i

1
A (2.3)

Here �i = �1 are Ising spins and �i are taken as i.i.d. variables with P [�i = ��] = 1
2
.

Our second example will be the Hop�eld Model with �nite number M of patterns, to be

described below. The advantage of these mean �eld models is that they allow rigorously

to make sense out of an approximate extreme decomposition of the form

�n[�] �
X
m

p
m
n (�)�

m
1
[�] (2.4)

Here � is a generic notation for the quenched disorder variable, �m1[�] are the `extremal

in�nite volume Gibbs measures' describing the m' th phase, and p
m
n (�) are the random

weights whose large n-behavior contains the phenomenon of size dependence.

The phase diagram of the CWRFIM is well known. At low temperatures 1=� and

small � the model is ferromagnetic, i.e. there exist two `pure' phases, a ferromagnetic +

phase �+
1
[�] and a � phase ��

1
[�]. This is the same picture as for the lattice model in 3

or more dimensions, but it is much easier to obtain than in the lattice model.

In this situation we have Theorem 1 of [K97*] that gives the additional information

about the corresponding metastate. It says that the empirical metastate taken along the

sequence f1; : : : ; ng does not converge for a.e. realization. However it does converge in
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distribution. Looking at its expectation of a local function F on the states of the system

we have

lim
N"1

1

N

NX
n=1

F (�n[�]) =
law

n1F
�
�
+
1
[�]
�
+ (1� n1)F

�
�
�

1
[�]
�

(2.5)

where n1 is a `fresh' random variable, independent of � on the r.h.s., with arcsine-

distribution (that is P [n1 < x] = 2
�
arcsin

p
x). A simple heuristic explanation of this

result can be found in the introduction of [K97*], below the statement of Theorem 1. Let

us remark here that we expect the non-convergence of the empirical metastate for �xed

realization to occur also in the lattice random �eld Ising model in the phase transition

regime if we use a sequence of nested boxes (�n)n=1;2;::: containing j�nj � n
d spins (see

e.g. the explanation in [K98a].) On the other hand, if one takes as �n a deterministic

sequence of volumes that is suÆciently sparse, convergence of the l.h.s. of (2.5) takes

place to 1
2
F (�+

1
[�]) + 1

2
F (��

1
[�]) for P-a.e. �.

In our second example, the Hop�eld model with �nite number M of patterns, the

metastate structure is richer. We mention this example because it shows in particular

that it is possible that the metastate gives mass also to non-trivial mixtures of extremal

Gibbs measures (at least in a mean-�eld model). For this model the �nite volume Gibbs

measure is given by

�n[�] ((�i)i=1;:::;n) =
1

Norm:
exp

0
@ �

2n

X
1�i;j�n

X
1���M

�
�
i �

�
j �i�j

1
A (2.6)

The `disorder' enters through the so-called patterns �� = (�
�
i )i2N with i.i.d. bits with

P [�
�
i = �1] = 1

2
. It is well-known that the role of the plus and the minus state as extremal

Gibbs measures in the CWRFIM is now played by M symmetric mixtures of pairs of

extremal measures, the so-called Mattis states ��1[�]. (The measure with the index � has

typical spin-con�gurations that resemble the pattern with index � or its global spin-
ip.)

It turns out that, again, the empiricial metastate taken along the sequence f1; : : : ; ng
does not converge for a.e. realization, but it does converge in distribution. The limiting

expression looks more complicated than that of the CWRFIM. We have

lim
N"1

1

N

NX
n=1

F (�n[�]) =
law

Z 1

0

dt F

 
MX
�=1

p
�

�
Wtp
t

�
�
�
1
[�]

!
(2.7)

Here Wt is a `fresh' Brownian motion in a space of M �M -matrices, independent of �

on the r.h.s. The probability vector (p�( � ))�=1;:::;M is a known function on this matrix

space. Obviously, the t-integral just arises as a continuous version of the sum on the

l.h.s. If one takes as �n a deterministic sequence of volumes that is suÆciently sparse,

convergence for a.e. pattern � takes place to the expression E gF

�PM

�=1 p
� (g)��

1
[�]
�
.
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Here E g is the expectation of the variable g w.r.t. a Gaussian distribution in the matrix-

space. We note that in fact all mixtures of Mattis states appear with positive probability

density. This is in contrast to the situation in the CWRFIM where the metastate gives

mass only to the pure phases.

In the paper [K98b*] (which is a follow-up to [K97*]) we also proved re�nements of

those convergence results in the two above mean-�eld models. Therein we constructed

the limiting processes of the whole paths t 7! �[tN ][�] as N tends to in�nity, obtaining

an object that was termed `superstate' by [BoGa98b].

A random energy model for size dependence: recurrence vs. transience (Re-

sults of [K98c*])

For systems with in�nitely many pure Gibbs states new phenomena can be expected to

appear. In [K98c*] we de�ned a simple heuristic model to understand possible di�erent

scenarios in the behavior of such systems.

The model consists of a simple ansatz for the form of the weights appearing on the r.h.s.

of (2.4) in a hypothetical extreme decomposition for the large volume Gibbs measures of

a disordered system. To make this ansatz, we simply assume that in the volume labeled

by N the system is in a superposition of only the `�rst' MN states � = 1; : : : ;MN . The

function MN thus gives the maximal number of states that can be `seen' by a system of

size N . For us it will be just a parameter of our e�ective model.

The precise de�nition of the model is the following. For each N we de�ne a random

probability distribution qN � (q�N )�2N supported on f1; 2; : : : ;MNg � N by putting

q
�
N :=

e
�X�

NP
�=1;:::;MN

e
�X

�
N

(2.8)

for � = 1; : : : ;MN . Here � > 0 is a constant, and (X�
N )�2N;N2N are Gaussian random

walks in the index N , with standard normal increments, independent over the index

� (labelling the state). We ask: How does this random probability distribution on

the integers behave for large N , for typical realizations? Here we focus on the large

N -behavior of the paths (qN )N2N in the space of probability distributions on N. We

also investigate a slightly more complicated version of the model where the family of

independent random walks is replaced by branching random walks.

This model can be seen as a generalization of Derrida's random energy model. As a

motivation, let us mention that it should describe an approximation for the true weight-

s appearing in the approximate extreme decomposition of a certain modi�cation of a

Hop�eld model with external magnetic �eld, and in that of a model for interfaces in a

random environment in a particular geometry.

The model given by (2.8) can be analysed in detail. First of all, the weights are

concentrated on their maximum over �, with large probability. This is true for reasonable
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choices of the parameters, see [K98c*] Theorem 1, page 64. More interestingly, it turns

out that there is a transition between recurrence and transience, depending on the growth

of the function MN (see [K98c*] Theorem 2, page 65). `Transience' means here: the

weights q�N of all states � converge to zero with the volume label N tending to in�nity

(for almost every realization of the random walks X�
N ). The interpretation of this is that

the system takes any given state only for a �nite number of volumes. `Recurrence' means

here: existence of subsequences of volumes NK such that the weight q�NK
converges to one

when K is tending to in�nity, for all states �. This means, the system returns to every

possible state an in�nite number of times. As we prove in [K98c*], the `critical regime'

for the growth (where the behavior switches) turns out to be MN � (logN)
p
(with

critical point p = 1). In this regime we compute the almost sure large N asymptotics

of the relative weights for �nding a particular state (see [K98c*] Theorem 2', page 66).

We also compute the set of a.s. cluster points of the corresponding occupation times

(corresponding to the empirical metastate, see [K98c*] Theorem 3, page 67).

3. THE GIBBSIAN NATURE OF THE JOINT MEASURES

In Chapter 1 we have already investigated the question whether a given measure

could be interpreted as a Gibbs measure in the in�nite volume. The measure under

consideration was the image of the continuous-spin random �eld measure under the

stochastic map to Ising spins. The answer was: yes, and the interaction potential could be

explicitly constructed. Such a result has to be seen in the context of the long discussion in

the mathematical statistical mechanics community about the appearance of non-Gibbsian

measures.

Let us recall that Gibbs measures of an in�nite volume lattice spin system are char-

acterized by the fact that their conditional expectations can be written in terms of an

absolutely summable potential. [This is to be understood in the sense of formula (0.3).

It must be tested for all �nite volumes � outside of which the conditioning takes place.]

When we ask for Gibbsianness we are thus faced with the task

Given a measure � on a lattice system, �nd a corresponding interaction po-

tential �!

By an old result of Kozlov the existence of a potential is equivalent to the continuity of

the conditional expectations �
�
��

���Zdn�� as a function of the conditioning �Zdn� (w.r.t.

the product topology.) The possibility that simple transformations can produce non-

Gibbsian measures from Gibbsian ones was �rst observed in the context of the so-called

renormalization group transformations (the �rst examples were discovered by [GrPe79]).

Being faced with the possibility that the transformed system could not be described in

terms of a regular interaction potential seemed to be frightening. In fact, in theoretical
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physics the existence of a `renormalized Hamiltonian' was always taken for granted, and

taken as a starting point for numerous approximation schemes. For a clear presentation

of various mechanism leading to non-Gibbsian measures, see [EnFeSo93]. For a discussion

of the relevance of this phenomenon see also the more recent [En99],[Fe98].

Joint measures in product space

In the next two papers we investigated the Gibbsian nature of a large class of measures

that appear in the context of disordered lattice spin systems. We consider a disordered

lattice spin model �tting into the setup of Chapter 0. That is, spin-variables as well as

disorder variables take values in corresponding �nite sets. The range of the interaction

is �nite. As before, we denote the Gibbs measures in �nite volume � by ��[�](d�).

The spin lattice-variable is � = (�x)x2Zd and � = (�x)x2Zd is a lattice random variable

with product distribution P (describing the disorder of the model.) It is good to think

here again of the random �eld Ising model as a concrete example. Our aim is then to

look at the joint measures in the in�nite volume that are given by the possible limits of

lim� P(d�)��[�](d�) as � tends to Zd. Here we assume that we have �xed a particular

boundary condition. It is suppressed in the notation. These measures are then probability

measures K(d�) on the space of joint spin con�gurations � = (�; �) = (�x; �x)x2Zd. We

ask

Can these joint measures be interpreted as (generalized) Gibbs measures on

the product space of spin-variable and disorder variable ?

Despite the analogy with the problem of renormalization group pathologies there was

no systematic mathematical investigation of the problem so far. Our present general

investigation was motivated by the special recent example of the Ising ferromagnet with

site dilution. For this example [EMSS00] discovered that the corresponding joint measure

at low temperature, low dilution is not a Gibbs measure in the product space. To ask

for Gibbsianness more generally is then a natural mathematical question. It is also of

some physical relevance. In fact, the formal interpretation of the joint measures as Gibbs

measure is known in the physics literature as the starting point of the so-called Morita

approach to the description of disordered systems ([Ku96], [Mo64], [EKM00]).

(Non-) Gibbsianness and phase transitions in random lattice spin models

(Results of [K99b*])

Now, on the `negative side', it turns out as a consequence of [K99b*] that for many

systems in a low-temperature region the ordinary Gibbs property fails. The ordinary

Gibbs property demands that the conditional expectations can be written in terms of

an absolutely summable potential. [Recall: A potential (UA(�))A�Zd is called absolutely
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summable, i�
P

A3x sup� jUA(�)j <1 for all lattice sites x.] In the paper [K99b*] we give

criteria that explain the link between phase transitions of the disordered system for �xed

realizations, and Gibbs property in product space: Loosely speaking, a discontinuity in

the quenched Gibbs expectation �[�] can destroy the Gibbs property in product space,

if it can be observed for the spin-observables that are conjugate to the local disorder

variables. This is best understood in the example of the random �eld Ising model where

the corresponding observable is just the magnetization.

For the random �eld Ising model we show more precisely the following: In every

dimension, the so-called almost sure Gibbs property for the joint system holds precisely

in the single-phase region of the phase diagram. The almost sure Gibbs property for the

joint system does not hold in the multi-phase region of the phase diagram.

Here, a measure K(d�) is called almost Gibbs, i� the set of discontinuity points of

its conditional expectations K(��
�� � ) has zero measure w.r.t. the measure K itself. So,

the notion of `almost Gibbsianness' is one natural possibility of a relaxation of the usual

Gibbs property, where one demands that the set of discontinuities is empty. It was

proposed in the context of RG-pathologies, for a discussion see [MRM99].

Hence, the example of the Ising ferromagnet in a weak random magnetic �eld, at low

temperature, in 3 or more dimensions gives a `strong pathology' since these condition

imply the existence of ferromagnetic order. This kind of `strong pathology' does not hold

for the example of [EMSS00], by the way, where there is still almost Gibbsianness.

Weakly Gibbsian representations for joint measures of quenched lattice spin

models (Results of [K01a*])

A di�erent generalization of the classic Gibbs property is the so-called weak Gibbs

property. It goes back to Dobrushin. Here one asks only for the existence of a poten-

tial (UA(�))A�Zd that converges K-almost everywhere. [That is, the sums
P

A3x jUA(�)j
need to be �nite only for K-a.e. � and not necessarily for all �.] Intuitively speaking,

one allows for potentials with a `con�guration-dependent range of interaction'. Now, on

the `positive' side we prove that there is always a potential (depending on both spin and

disorder variables) for the joint measure that converges absolutely on a set of full measure

w.r.t. the joint measure (`weak Gibbsianness'). This is somewhat surprising. The proof

is soft and exploits the speci�c structure of the joint measures whose marginals on the �

are product measures. It uses a generalization of Kozlov's construction and a martingale

argument. However, if one is interested in more speci�c properties of the potential one

likes to construct, more assumptions are needed. We also provide general conditions giv-

ing the convergence of vacuum potentials, conditions for the decay of the joint potential

in terms of the decay of the disorder average over certain quenched correlations, and

�nally discuss some applications to models with random couplings.
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