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Abstract. This paper is devoted to the numerical study of di�raction by peri-

odic structures of plane waves under oblique incidence. For this situation Maxwell's

equations can be reduced to a system of two Helmholtz equations in R2 coupled via

quasiperiodic transmission conditions on the piecewise smooth interfaces between

di�erent materials. The numerical analysis is based on a strongly elliptic variational

formulation of the di�erential problem in a bounded periodic cell involving nonlo-

cal boundary operators. We obtain existence and uniqueness results for discrete

solutions and provide the corresponding error analysis.

1. Introduction

We consider a time{harmonic electromagnetic plane wave incident on a general periodic

structure in R3, which is assumed to be in�nitely wide and constant in one spatial direction,

say x3. The periodic structure separates two regions with constant dielectric coeÆcients. Inside

the structure, the dielectric coeÆcient is supposed to be a piecewise constant function. The

illuminating wave is given by

Ei = p ei�x1�i�x2+i
x3e�i!t ; Hi = s ei�x1�i�x2+i
x3e�i!t ; (1.1)

and will be di�racted by the structure. The far �eld pattern consists of a �nite number of

outgoing plane waves propagating in directions which lie on the surface of a cone. Therefore in

optics this problems is known as conical di�raction.

Recently the analytic properties of conical di�raction were studied in [4]. It was shown

that Maxwell's equations for conical di�raction can be reduced to a system of two{dimensional

equations which are closely connected with the classical TE and TM di�raction, where the

wave vector of the incident �eld is orthogonal to the x3{direction. Under certain assumptions

on the grating materials that have a reasonable physical interpretation and are satis�ed for any

relevant practical application the conical di�raction problem admits a strongly elliptic variational

formulation. This was used to prove general existence and uniqueness results and to study the

asymptotics and regularity near edges of the grating surface.

In the present paper we provide the numerical analysis for the �nite element solution of

conical di�raction problems. We give a variational formulation suitable for FE discretizations

and study their convergence. Due to nonlocal boundary conditions and in general complex{

valued material coeÆcients the resulting discrete system has a nonsymmetric matrix with fully

populated blocks. For the technologically important devices where the periodic structure is

incorporated into a multilayer stack, we describe how the domain of the FE discretization can

be reduced by incorporating the layer system into the nonlocal boundary operators. By using

generalized FE discretizations which are especially adapted to preserve the behavior of oscillating

solutions, we obtain eÆcient solution methods for conical di�raction.

For the numerical solution of these problems a few methods have been proposed, extending

the known engineering methods based on a system of �rst order di�erential equations (RCWA,

di�erential equation method) which are used for TE and TM problems (cf. [8]). In [9] an integral

equation method was proposed which solves the transmission problem described in Section 3.

To our knowledge, no rigorous results on the convergence of these numerical methods are known.
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2. Preliminaries

Suppose that the whole space is �lled with non-magnetic material with a permittivity

function ", which in Cartesian coordinates (x1; x2; x3) does not depend on x3, is periodic in x1,

and homogeneous above and below certain interfaces. In practice, the period d of optical gratings

under consideration is comparable with the wavelength � = 2�c=! of incoming plane optical

waves, where c denotes the speed of light. For notational convenience we will change the length

scale by a factor of 2�=d, so that the grating becomes 2�{periodic: "(x1 + 2�; x2) = "(x1; x2).

Note that this is equivalent to multiplying the frequency ! by d=2�.

The intersection of the upper grating surface with the (x1; x2){plane is denoted in the sequel

by �0, the intersection of the lower interface with the (x1; x2){plane will be denoted by �1. We

assume that the curves �0 and �1 are simple and 2�{periodic and that �0 > �1 pointwise, i.e.,

if (x1; y0) 2 �0, (x1; y1) 2 �1 then y0 > y1. The material in the region G
+ � R3 above the

grating surface �0�R has the constant dielectric coeÆcient " = "+, whereas the medium in G�

below �1 �R is homogeneous with " = "�. The medium in the region G0 between �0 �R and

�1 �R is inhomogeneous with " = "
0(x1; x2), and we assume that the function "0 is piecewise

constant with jumps at certain interfaces �j , j = 2; : : : ; `.

The grating is illuminated by a plane wave of the form (1.1) at oblique incidence. This

wave will be di�racted by the grating, and the total �elds satisfy the time{harmonic Maxwell

equations

rr�E = i!�H and rr�H = �i!"E ; (2.1)

where � is the permeability of the free space. Additionally the tangential components of the

�elds are continuous when crossing an interface ��R between two homogeneous media

n� (E(1)
�E(2)) = 0 and n� (H(1)

�H(2)) = 0 on ��R ; (2.2)

where n is the unit normal to the interface ��R. We look for vector �elds satisfying (2.1) and

(2.2) and possessing locally a �nite energy, that is

E ; H ; rr�E ; rr�H 2
�
L
2
loc(R

3)
�3
: (2.3)

The incident plane wave (Ei
;Hi) has to satisfy (2.1). Therefore the constant amplitude

vector pmust be perpendicular to the wave vector k = (�;��; 
), p�k = 0, further k�k = !
2
�"+

and s = (!�)�1k � p. The wave vector can be expressed in terms of the angles of incidence

�; � 2 (��=2; �=2) as

k = !(�"+)
1=2(sin � cos�;� cos � cos�; sin�) :

Since the grating is invariant with respect to any translation parallel to the x3{axis, in view

of (1.1) we assume the representation

E(x1; x2; x3) = (E1; E2; E3)(x1; x2) e
i
x3 ;

H(x1; x2; x3) = (H1;H2;H3)(x1; x2) e
i
x3 ;

with Ei;Hi : R
2 ! C. Then (2.1) leads to the relations

i!� (H1;H2;H3) = (@2E3 � i
E2; i
E1 � @1E3; @1E2 � @2E1) ;

�i!" (E1; E2; E3) = (@2H3 � i
H2; i
H1 � @1H3; @1H2 � @2H1) :
(2.4)
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Consequently, in the regions where " is constant one obtains

!
2
�"E3 = i
(@1E1 + @2E2)��E3 ; @1E1 + @2E2 = �i
E3 ;

!
2
�"H3 = i
(@1H1 + @2H2)��H3 ; @1H1 + @2H2 = �i
H3 :

(2.5)

For the following we introduce the piecewise constant function

k =
q
!2"� ; (2.6)

where the branch of the square root is chosen such that k > 0 for positive real arguments !2"�

and its branch-cut is (�1; 0). Note that k can be expressed by the optical index � = c (�")1=2 =

("="0)
1=2 of the corresponding material, here "0 denotes the permitivitty of free space. In the

new length scale used in the computations we have

k =
d

�
� :

By (2.5) the functions E3 and H3 satisfy therefore the Helmholtz equations with piecewise

constant wave numbers

(� + k
2
� 


2)E3 = (�+ k
2
� 


2)H3 = 0 :

Denoting k2
 := k
2 � 


2 one obtains after some algebraic manipulations from (2.4)

k
2

E1 = i (!�@2H3 + 
@1E3) ; k

2

H1 = i (�!"@2E3 + 
@1H3) ;

k
2

E2 = i (�!�@1H3 + 
@2E3) ; k

2

H2 = i (!"@1E3 + 
@2H3) :

(2.7)

These relations show that the transverse components (E1; E2), (H1;H2) can be computed from

the third components E3;H3 of the electric and the magnetic �eld if k2 6= 

2. Note that the

condition of locally �nite energy (2.3) is satis�ed only if E3 and H3 are H
1{regular.

We shall assume throughout the paper that the material parameters of the grating ful�ll

the following conditions

k
2 � 


2 6= 0 ;

k+ > 0 ; Re k� > 0 ; Im k� � 0 ;

Re k0(x1; x2) > 0 ; Im k0(x1; x2) � 0 :

(2.8)

Since n = (n1; n2; 0) one has at the interfaces

n�E =
�
n2E3;�n1E3; n1

@1H3 � i
H1

i!"
� n2

i
H2 � @2H3

i!"

�
e
i
x3 ;

n�H =
�
n2H3;�n1H3; n1

i
E1 � @1E3

i!�
� n2

@2E3 � i
E2

i!�

�
e
i
x3 :

Hence the continuity of the tangential components (2.2) leads to the conditions

E
(1)
3 = E

(2)
3 ; @nE

(1)
3 � i
(n1E

(1)
1 + n2E

(1)
2 ) = @nE

(2)
3 � i
(n1E

(2)
1 + n2E

(2)
2 ) ;

H
(1)
3 = H

(2)
3 ;

@nH
(1)
3 � i
(n1H

(1)
1 + n2H

(1)
2 )

i!"(1)
=
@nH

(2)
3 � i
(n1H

(2)
1 + n2H

(2)
2 )

i!"(2)
;

on �. From (2.7) we see that

n1E1 + n2E2 =
i

k2 � 
2
(
@nE3 + !�@tH3) ;
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n1H1 + n2H2 =
i

k2 � 
2
(
@nH3 � !"@tE3) ;

where @t = n1@2 � n2@1 denotes the corresponding tangential derivative. Therefore

@nE3 � i
(n1E1 + n2E2) =
k
2
@nE3 + 
!�@tH3

k2 � 
2
;

@nH3 � i
(n1H1 + n2H2) =
k
2
@nH3 � 
!" @tE3

k2 � 
2
;

which yields the transmission conditions at the interfaces �

[E3]� = 0;
h
k
2
@nE3 + 
!�@tH3

k2 � 
2

i
�
= 0 ;

[H3]� = 0;
h
k
2
@nH3 � 
!" @tE3

(k2 � 
2)!"

i
�
= 0 ;

where [�]� denotes the jump across �.

In order to give the same physical dimension to the unknowns we introduce the �eld

(B1; B2; B3) = Z (H1;H2;H3), with the positive constant Z =
p
�="+, and set q = Zs. Hence

the functions E3 and B3 satisfy in R2 the equations

(� + k
2
� 


2)E3 = (�+ k
2
� 


2)B3 = 0 (2.9)

together with the transmission conditions

[E3]� = 0;
h
k
2
@nE3 + k+
 @tB3

k2 � 
2

i
�
= 0 ;

[B3]� = 0;
h
k+@nB3 � 
 @tE3

k2 � 
2

i
�
= 0 :

(2.10)

The periodicity of ", together with the form of the incident wave, motivates to seek for

physical solutions E and H which are �{quasiperiodic in x1, i.e., we look for solutions of (2.9),

(2.10) satisfying

E3(x1 + 2�; x2) = e
2�i�

E3(x1; x2) ; B3(x1 + 2�; x2) = e
2�i�

B3(x1; x2):

For jx2j ! 1 we impose the usual radiation condition. The physics of the problem imposes that

the di�racted �elds remain bounded and that they should be representable as superpositions of

outgoing waves. Since the �{quasiperiodic functions E�3 ; B
�

3 are analytic above �0 resp. below

�1, they must take the form

E3 = p3 e
i(�x1��x2) +

1X
n=�1

a
+
n e

i(�nx1+�
+
n x2)

B3 = q3 e
i(�x1��x2) +

1X
n=�1

c
+
n e

i(�nx1+�
+
n x2)

9>>>>=>>>>; x2 > max�0;

E3 =

1X
n=�1

a
�

n e
i(�nx1��

�

n x2); B3 =
1X

n=�1

c
�

n e
i(�nx1��

�

n x2); x2 < min�1;

(2.11)

where

�n = �+ n ; �
�

n = �
�

n (�; 
) =
q
k2
�
� 
2 � �2n ;

and the square root is de�ned as in equation (2.6).
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The complex scalars a�n , b
�

n (the Rayleigh coeÆcients) are the main characteristics of

di�raction gratings. They indicate the eÆciency and the phase shift of the propagating modes,

i.e. the outgoing plane waves corresponding to ��n > 0. The eÆciencies represent the proportion

of energy radiated in each mode. De�ning the \energy" as the 
ux of the Pointing vector

through a normed rectangle parallel to the (x1; x3){plane, the ratio of the energies of a re
ected

or transmitted propagating mode and of the incident wave gives the eÆciency of this mode. For

gratings used in conical di�raction these eÆciencies can be computed from the formulas

e
+
n =

�
+
n

�

ja+n j
2 + jc+n j

2

p23 + q23

;

e
�

n =
(k2+ � 


2)k2
�

(k2
�
� 
2)k2+

�
�

n

�

ja�n j
2 + (k+=k�)

2jc�n j
2

p
2
3 + q

2
3

:

3. Variational formulation

The transmission problem (2.9 { 2.10) together with the radiation conditions (2.11) can be

transformed to a strongly elliptic variational formulation over a bounded domain. Introduce the

functions u = e
�i�x1 E3, v = e

�i�x1 B3, which are 2�{periodic in x1, and the operators

r� = r+ i (�; 0) ; �� = r� � r� = �+ 2i�@x1 � �
2
;

@t;� = n1@2 � n2@1 � i�n2 ; @n;� = n � r� :

Then (2.9 { 2.10) lead to the di�erential equations

(�� + k
2
� 


2)u = (�� + k
2
� 


2) v = 0 in 
 (3.1)

in regions where k is constant, and the transmission conditions

[u]� = 0;
h
k
2
@n;� u+ k+
 @t;�v

k2 � 
2

i
�
= 0 ;

[v]� = 0;
h
k+@n;�v � 
 @t;�u

k2 � 
2

i
�
= 0 :

(3.2)

Due to (2.11) solutions u; v 2 H1
loc have to satisfy the radiation conditions

u = p3 e
�i�x2 +

1X
n=�1

a
+
n e

i(nx1+�
+
n x2)

v = q3 e
�i�x2 +

1X
n=�1

c
+
n e

i(nx1+�
+
n x2)

9>>>>=>>>>; x2 > max�0;

u =
1X

n=�1

a
�

n e
i(nx1��

�

n x2); v =
1X

n=�1

c
�

n e
i(nx1��

�

n x2); x2 < min�1:

(3.3)

We introduce two straight lines �� = f(x1;�b); x1 2 [0; 2�]g, with b > 0 such that b > �0 and

�b < �1, and the bounded periodic cell 
 = (0; 2�) � (�b; b): Let us denote by Hs
p(
); s � 0,

the restriction to 
 of all functions in the Sobolev space Hs
loc(R

2) which are 2�{periodic in x1.
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Let 
j, j = 1; � � � ;m, be the subdomains of 
 in which the function k is constant. Mul-

tiplying the equations (3.1) in each subdomain 
j by the constant factors k2=(k2 � 

2) and

1=(k2 � 

2), respectively, we get from Green's formula the equations

mX
j=1

�Z

j

�
k
2

k2 � 
2
r� u r�'� k

2
u '

�
�

Z
@
j

k
2

k2 � 
2
@n;�u '

�
= 0 ;

mX
j=1

�Z

j

� 1

k2 � 
2
r�v r� � v  

�
�

Z
@
j

1

k2 � 
2
@n;�v  

�
= 0 ;

(3.4)

for all functions '; 2 H
1
p (
). Here the normal derivative on @
j corresponds to the outer

normal with respect to 
j .

Using the periodicity in x1 and the transmission conditions (3.2) at the interfaces � =

f@
j \ @
ig the equations (3.4) can be transformed to

Z



�
k
2

k2 � 
2
r� u r�'� k

2
u '

�
� k+


Z
�

�
1

k2 � 
2

�
�

@t;�v '

�
k
2
+

k2+ � 
2

Z
�+

@nu '�
k
2
�

k2
�
� 
2

Z
��

@nu ' = 0 ;

Z



� 1

k2 � 
2
r� v r� � v  

�
+




k+

Z
�

�
1

k2 � 
2

�
�

@t;�u 

�
1

k
2
+ � 
2

Z
�+

@nv  �
1

k
2
�
� 
2

Z
��

@nv  = 0 :

(3.5)

Note that integrals over the upper and lower boundaries �� of 
 contain the usual normal

derivatives since the arti�cial boundaries are parallel to the x1{axis. Let us explain the integrals

over the interface �. In view of the identityZ

j

r�f r
?

� g = �

Z
@
j

@t;�f g with r?

� := (@2f;�@1f)� i (0; �) (3.6)

for all f; g 2 H1
p (
), the tangential derivatives @t;�u and @t;�v are uniquely de�ned on �. Fur-

thermore, �xing the tangential direction on �, the jump
h
1=(k2 � 


2)
i
�
stands for the di�erence

\value on the left minus value on the right".

Following [3], [2] (see also section 4) one can show that the normal derivatives on �� satisfy

the nonlocal boundary conditions

@nuj�+ = �T
+
�
(uj�+)� 2i�p3e

�i�b
; @nuj�� = �T

�

�
(uj��) ;

@nvj�+ = �T+
�
(vj�+)� 2i�q3e

�i�b
; @nvj�� = �T��
(vj��) ;

(3.7)

where T��
 are periodic pseudodi�erential operators of order 1 acting on 2�-periodic functions

on R by the formula

(T��
f)(x) = �
X
n2Z

i�
�

n f̂ne
inx

; f̂n = (2�)�1
2�Z
0

f(x)e�inx dx : (3.8)
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Thus the conical di�raction problem admits the following weak formulationZ



�
k
2

k2 � 
2
r�u � r�'� k

2
u'

�
+

k
2
+

k2+ � 
2

Z
�+

(T+
�
u)'+

k
2
�

k2
�
� 
2

Z
��

(T��
u)'

+k+


Z
�

�
1

k2 � 
2

�
�

v @�;�' = �
2ip3�k

2
+

k2+ � 
2
e
�i�b

Z
�+

'

Z



� 1

k2 � 
2
r�v � r� � v  

�
+

1

k2+ � 
2

Z
�+

(T+
�
v) +

1

k2
�
� 
2

Z
��

(T��
v) 

�



k+

Z
�

�
1

k2 � 
2

�
�

u @�;� = �
2iq3�

k2+ � 
2
e
�i�b

Z
�+

 

(3.9)

for all '; 2 H
1
p(
). The left{hand side of the system (3.9) generates a sesquilinear form

B
�
(u; v); ('; )

�
, which is bounded on (H1

p (
))
2 � (H1

p (
))
2. In the following we describe the

main analytic results obtained in [4] for equations of the form

B
�
(u; v); ('; )

�
= (f; ')L2 + (g;  )L2 (3.10)

with (f; g) 2 ((H1
p (
))

2)0.

Theorem 1. Suppose that k satis�es (2.8).

1. If Im k > 0 in some subdomain 
j � 
, then for any ! > 0 equation (3.10) has at most one

solution (u; v) 2 (H1
p (
))

2.

2. If k =2 [0; 
], then B is strongly elliptic, i.e. there exists a complex number � and a compact

form q such that

Re �B
�
(u; v); (u; v)

�
� ck(u; v)k2(H1

p (
))
2 � q

�
(u; v); (u; v)

�
:

3. Let k =2 [0; 
], k2
�
=2 [0; �2 + 


2] and �x � 2 (0; �=2). Then there exists !0 > 0 such that, for

any incidence angles �; � with j�j; j�j � � and any frequency ! with 0 < ! � !0, (3.10) is

uniquely solvable.

4. If k2 > 

2 and k2

�
> �

2 + 

2, then for all but a countable set of frequencies !j, !j ! 1,

there exists a unique solution in (H1
p (
))

2.

5. Denote by R the set of Rayleigh frequencies

R =
n
(!; �; �) : 9n 2 Z s. th. k

2
�
� 


2 = (n+ �)2
o
:

If for (!0; �0; �0) =2 R the equation (3.10) is uniquely solvable, then in a neighborhood of this

point the unique solution depends analytically on !; �; �.

Remark. By Snell's law the condition k
2
> �

2 + 

2 is necessary that the incident wave will

be transmitted into the grating material. Hence, the assumptions have a reasonable physical

interpretation. They are satis�ed for any relevant application.

4. Finite element solution

Since the sesquilinear form B is strongly elliptic, it is natural to use a Galerkin method

for solving the direct di�raction problem. By standard theory one can easily show that FE
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discretizations of the weak formulations (3.9) are stable and provide quasioptimal convergence

orders.

In the following we describe some aspects connected with the nonlocal boundary terms and

its discretization. In modern di�ractive optics the grating structure is very often incorporated

into a stack of thin{�lm layers in order to combine and enhance the properties of these two types

of optical devices. In this case one can introduce new nonlocal boundary operators which model

the multilayer stack and the radiation conditions. Therefore one can reduce the integration

domain 
 used for the FE discretization to the inhomogeneous grating structure.

Before describing the construction of these boundary operators we �rst show that the

new variational form remains strongly elliptic. To do so we use integral representations for

2�{periodic solutions of the modi�ed Helmholtz equations with constant k

(�� + k
2
� 


2)' = 0 in some domain G (4.1)

with the property that (x1; x2) 2 G implies (x1 + 2�; x2) 2 G and jx2j < b. First we brie
y

recall some basic properties. The fundamental solution is given by the in�nite series

	(x) =
i

2�

X
n2Z

e
inx1+i�njx2j

�n
(4.2)

with �n =
p
k2 � 
2 � �2n. If one of the denominators �n in (4.2) is zero, then the corresponding

term in the series must be replaced by ie
inx1(C + jx2j), where C is an arbitrary constant.

By standard potential theory the periodic function ' solves (4.1) if and only if it admits the

representation

'(x) =
1

2

�
V @�'(x)�K'(x)

�
; x 2 G : (4.3)

Here V and K are the single and double layer potentials

V '(x) =

Z
@G

	(x� y)'(y) ds ; K'(x) =

Z
@G

@�y	(x� y)'(y) ds ;

and � denotes the exterior normal of @G. Taking in (4.3) the normal derivatives at @G one

derives the equation

2@�'j@G = K
0(@�'j@G) + @�'j@G +D('j@G) (4.4)

with the integral operators

K
0
'(x) = @�

Z
@G

	(x� y)'(y) ds ; D'(x) = �@�

Z
@G

@�y	(x� y)'(y) ds :

Let us consider the special case that G represents a layer parallel to the (x1; x3){plane. Then

@G consists of two lines, say x2 = t1 and x2 = t2, t1 < t2, and therefore the boundary integral

operators have a very simple form. In the following we set K 0

ij' = K
0('jtj )(x; ti), Dij' =

D('jtj )(x; ti), i; j = 1; 2. These operators are diagonal in the Fourier basis with K 0

ii = 0 and

Dii'(x1; ti) = �i
X
n2Z

�n'̂n(ti) e
inx1 ;

Dij'(x1; ti) = i

X
n2Z

�n'̂n(tj) e
i�nd e

inx1 ;

K
0

ij'(x1; ti) = �
X
n2Z

'̂n(tj) e
i�nd e

inx1 ;
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where d = t2 � t1 denotes the layer thickness. Therefore the boundary integral equations (4.4)

for solutions u; v can be transformed to

(I �K
0

12K
0

21)@�ujt1 = (I +K
0

21K
0

12)D11ujt1 + 2D12ujt2

(I �K
0

21K
0

12)@�ujt2 = 2D21ujt1 + (I +K
0

21K
0

12)D22ujt2

(4.5)

If we suppose that at the line fx2 = t2g the normal derivatives are given by the equation 
@nujt2

@nvjt2

!
=

 
auu auv

avu avv

! 
ujt2

vjt2

!
+

 
f2

g2

!
= A

 
ujt2

vjt2

!
+

 
f2

g2

!
(4.6)

where the elements of A are certain pseudodi�erential operators of �nite order, then we obtain

from (4.5) a linear system for ujt2 and vjt2 with the operator matrix 
auu �D22 � (auu +D22)K

0

21K
0

12 (I �K
0

21K
0

12)auv

(I �K
0

21K
0

12)avu avv �D22 � (avv +D22)K
0

21K
0

12

!
(4.7)

In the following we assume that this matrix is invertible. Putting the solution of this system

into the �rst equations of (4.5) we therefore obtain

@�ujt1 = D11ujt1 + (K 0

12K
0

21(I +K
0

21K
0

12)D11 + 2D12buu)ujt1 + 2D12buvvjt1 + f1

@�vjt1 = D11vjt1 + 2D12bvuujt1 + (K 0

12K
0

21(I +K
0

21K
0

12)D11 + 2D12bvv)vjt1 + g1

with certain functions f1 and g1. Thus we have proved

Lemma 2. If for x2 = t2 the normal derivatives and boundary values of solutions u and v to

(4.1) are connected by (4.6) and the operator (4.7) is invertible, then 
@nujt1

@nvjt1

!
= B

 
ujt1

vjt1

!
+

 
f1

g1

!
(4.8)

where the operator

B �

 
D11 0

0 D11

!

maps H
1=2
p �H

1=2
p into the set of functions with exponentially decaying Fourier coeÆcients.

Now we apply this result to a stack of N layers Lj = fx2 2 (tj�1; tj)g, 1 � j � N , with

Helmholtz coeÆcients kj , located above the grating structure. For x2 = b > tN we have the

boundary conditions

@nuj�+ = �T
+
�
(uj�+)� 2i�p3e

�i�b
;

@nvj�+ = �T+
�
(vj�+)� 2i�q3e

�i�b
;

(4.9)

Note that T+
�
' = D('j�+) for k = k+. The boundary conditions (3.7) obviously follow from

(4.4) applied in the outer domains fjx2j > bg to the sum of the incoming and di�racted �elds.

The change of signs is caused by the fact that � and the outer normal to �+ with respect to 


have opposite directions.
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The transmission conditions (3.2) for u and v at the 
at interfaces x2 = tj, 1 � j � N ,

generate an equation of the form (4.6). Thus if we choose a new arti�cial boundary e�+ =

f(x1;~b); x1 2 [0; 2�]; ~b 2 (t0; t1)g within the layer L1 we obtain nonlocal boundary conditions

 
@nuje�+
@nvje�+

!
=M

+
�


 
uje�+
vje�+

!
+ Æ0n

 
f1

f2

!
(4.10)

which have to be satis�ed by the solutions u; v of the conical di�raction problem (3.1 { 3.3).

Here Æ0n is the Kronecker symbol. Repeating an analogous procedure with a layer-stack below

the grating structure, we obtain a new arti�cial boundary e�� within the �rst layer below the

grating with Helmholtz coeÆcient k�1 and an analogous nonlocal boundary condition with an

operator M�

�
 . From Lemma 2 we obtain additionally

Lemma 3. The matrix operators M�

�
 are compact perturbations of the diagonal matrix oper-

ators

eT��
 :=
0@T (�1)

�
 0

0 T
(�1)
�


1A :

H
1=2
p (e��)
�

H
1=2
p (e��) �!

H
�1=2
p (e��)
�

H
�1=2
p (e��) ;

where the pseudodi�erential operators T
(�1)
�
 are de�ned as in (3.8) with k� replaced by k�1.

Thus we have derived a reduced periodic cell e
 with upper resp. lower boundaries e�� which

becomes the new integration domain. Let e� denote the set of all interfaces between di�erent

materials inside e
. Taking into account that � has the opposite direction of the outer normal

to e�+ (w.r.t. e
) we see that the problem (3.1 { 3.3) is transformed to the variational system

Z
e

�

k
2

k2 � 
2
r�u � r�'� k

2
u'

�
+ k+


Z
e�
�

1

k2 � 
2

�
e� v @�;�'

+
k
2
1

k21 � 
2

Z
e�+ ((M

+
�
)11u+ (M+

�
)12v)' +
k
2
�1

k2
�1 � 
2

Z
e�� ((M

�

�
)11u+ (M�

�
)12v)'

=
f1k

2
1

k21 � 
2

Z
e�+ '

Z
e

� 1

k2 � 
2
r�v � r� � v  

�
�




k+

Z
e�
�

1

k2 � 
2

�
e� u @�;� 

+
1

k21 � 
2

Z
e�+ ((M

+
�
)21u+ (M+

�
)22v) +
1

k2
�1 � 
2

Z
e�� ((M

�

�
)21u+ (M�

�
)22v) 

= �
f2

k21 � 
2

Z
e�+

 

(4.11)

for all '; 2 H1
p (
e
). Here k�1 are the Helmholtz coeÆcients of the layers directly above resp.

below the inhomogeneous structure and (M�

�
)ij denote the entries of the matrix operators

M
�

�
 . We denote this sesquilinear form by eB�(u; v); ('; )�. For the numerical solution we
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choose some �nite{dimensional subspace Sh of H1
p (
) and seek a solution (uh; vh) 2 (Sh)

2 of

the discrete equations

eB�(uh; vh); ('h;  h)� = f1k
2
1

k
2
1 � 
2

Z
e�+

'h +
f2

k
2
1 � 
2

Z
e�+

 h (4.12)

for all 'h;  h 2 Sh. Since the domain integrals and the line integrals over the interfaces in the

variational form eB can be exactly computed for piecewise polynomial functions, a consistency

error may occur only if the nonlocal boundary operatorsZ
e�� (M

�

�
)iju'dx =
1

2�

X
n2Z

(m�

ij)nûn'̂n (4.13)

are discretized. But for �nite elements whose traces on e�� are periodic splines with uniformly

distributed break points this can be done very eÆciently and accurately, so that this discretiza-

tion error can be neglected. We will show this in the next section.

Theorem 4. Suppose that k satis�es (2.8) and k =2 [0;
p
�2 + 
2]. Then for all but a sequence

of countable frequencies !j, j!j j ! 1, and all suÆciently small h, the Galerkin equations (4.12)

are uniquely solvable. If the exact solution satis�es (u; v) 2 (Hs
p(
))

2, 1 < s � 2, then the

di�erence between the �nite element solutions and the exact solution can be estimated by

ku� uhkH1(e
) + kv � vhkH1(e
)) � Ch
s�1(kuk

Hs(e
) + kvk
Hs(e
)) ;

(ku� uhkL2(e
) + kv � vhkL2(e
)) � Ch
2s�2(kuk

Hs(e
) + kvk
Hs(e
)) ;

where the constants depend on k but are independent of h and u.

Proof. Consider the same inhomogeneous grating structure but without multilayer stacks and

with material parameters k1 above the grating and k�1 for the substrate. Then Theorem 1 can

be applied. Note that the variational form corresponding to this problems di�ers by Lemma 3

from the sesquilinear form eB by a compact perturbation. Hence all conclusions of Theorem 1

are also valid for eB, and therefore by standard theory the assertion follows.

5. Implementation

Here we discuss the eÆcient and accurate computation of the nonlocal boundary terms

which model a system of say N horizontal layers fx2 2 (tj�1; tj)g, 1 � j � N , with Helmholtz

coeÆcients kj . The operators M�

�
 are diagonal in the Fourier basis. Therefore one should

use the Fourier series of the traces of the �nite elements on e��. Moreover, the solutions of

the equations (3.1) are analytic and 2�{periodic in x1, so that the application of Fourier series

techniques in the layer system is justi�ed. For t0 < x2 < tN the solution can be written in the

form

u(x1; x2) =
X
n2Z

�n(x2) e
inx1 ; v(x1; x2) =

X
n2Z

 n(x2) e
inx1 ; (5.1)

where the Fourier coeÆcients �n and  n solve the di�erential equation�
d
2

dx
2
2

+ (k2j � 

2
� (n+ �)2)

�
�n = 0 ; tj�1 < x2 < tj ; 1 � j � N: (5.2)
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Therefore

�n(x2) = a1�
+
j (x2) + a2�

�

j (x2) ;  n(x2) = a3�
+
j (x2) + a4�

�

j (x2)

with �
�

j = exp(�i
q
k2j � 
2 � (n+ �)2 x2) or constant and linear functions in the case k2j =



2 + (n+ �)2.

The transmission conditions (3.2) for u and v at the 
at interfaces x2 = tj, 1 � j � N � 1,

transform to conditions for the solutions of (5.2) at the inner points of the form

�n(t
�

j ) = �n(t
+
j ) ;  n(t

�

j ) =  n(t
+
j ) ;

k
2
j�

0

n � i
k
+(n+ �) n

k2j � 
2

���
t�
j

=
k
2
j+1�

0

n � i
k
+(n+ �) n

k2j+1 � 
2

���
t+
j

;

i
 (n+ �)�n + k
+
 
0

n

k2j � 
2

���
t�
j

=
i
 (n+ �)�n + k

+
 
0

n

k2j+1 � 
2

���
t+
j

;

(5.3)

where t�j means that the interface x2 = tj is approached from above resp. below. It can be easily

checked that (5.3) generates an one{to{one mapping between the coeÆcients ai, i = 1; : : : ; 4, of

the solutions corresponding to adjacent subintervals.

Let the multi{layer stack be located above the grating structure. Then for x2 = tN we

have (5.3) with kN+1 replaced by k+. Moreover, since for x2 > tN the radiation condition has

to be satis�ed we obtain from (3.7)

�
0

n(b) = i�
+
n �n(b)� 2i�p3Æ0ne

�i�b
;

 
0

n(b) = i�
+
n  

+
n (b)� 2i�q3Æ0ne

�i�b
:

Hence the system of di�erential equations (5.2) with the interior jump conditions (5.3) has a

solution depending on two parameters, which for x2 2 (tN ; b) is given by

�n(x2) = c1e
i�+n x2 + p3Æ0ne

�i�x2 ;

 n(x2) = c2e
i�+n x2 + q3Æ0ne

�i�x2 :

Now we choose the left boundary ~b 2 (t0; t1) and boundary conditions

�
0

n(b) = i�
+
n �n(b) ;  

0

n(b) = i�
+
n  n(b) ;

�n(~b) =  n(~b) = 0 :
(5.4)

Suppose that the problem (5.2 { 5.4) has only the trivial solution for any n 2 Z. Then there

exists a matrix M+
n such that at this left boundary 

�
0(~b)

 
0(~b)

!
=M

+
n

 
�(~b)

 (~b)

!
+ Æ0n

 
f1

f2

!

It is clear that the matrices fM+
n ; n 2 Zg form the operator M+

�
 . Note that the unique

solvability of the boundary value problem (5.2 { 5.4) corresponds to the invertibility of the

operator (4.7) mentioned in Lemma 2.

Hence, the scalars (m�

ij)n in (4.13) can be found from solving the di�erential equations (5.2).

But due to Lemma 2 the numbers (m�

ij)n and the di�erences (m�

ii )n+ i�
�1
n decay exponentially

as jnj ! 1. Therefore these equations have to be solved only for a relatively small number

of di�erent n. This can be done eÆciently by a recursive algorithm described in [7], which is

numerically stable for any number of layers, and there is no limit in layer thicknesses. Algorithms
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of this type are widely used in other numerical methods for analyzing layered structures (see [7]

and the references therein).

Thus for the practical computation of the integrals (4.13) we solve the di�erential equations

(5.2) by the above mentioned method as long as (m�

ii )n + i�
�1
n and (m�

ij)n are greater than a

certain tolerance. Hence for i 6= j one has to sum only a few terms, whereas the sums for

i = j involve a factor (m�

ii )n of the order O(jnj�1). However, these summations can also

be performed very eÆciently with an accuracy comparable with the computer precision. As

mentioned above, we discretize (4.11) with �nite elements with traces on e�� which are periodic

splines with uniformly distributed break points. Then we can use recurrence relations for the

Fourier coeÆcients of spline functions and convergence acceleration methods.

For example, choose a piecewise linear or bilinear �nite element discretization of (4.11).

Then its traces on e�� are spanned by the shifts of the hat functions. If e�� is divided into p

subintervals of equal length then in this basis the integral (4.13) corresponds to an p�p circulant

matrix with the eigenvalues

�0 = 2�(m�

ii )0 ; �q = 2�
�sin(�q=p)

�

�4 1X
r=�1

(m�

ii )rp+q

p(r + q=p)4
; q = 1; : : : ; p� 1 :

Since (m�

ii )n + i�
�1
n decay exponentially as jnj ! 1, it is advantageous to replace (m�

ii )rp+q by

�i�
�1
rp+q and to expand

�
�1
rp+q

p
=

s�
k�1

p

�2
�

�



p

�2
�

�
�

p
+
�
r +

q

p

��2

with respect to powers of jr+ q=pj. Then the corresponding sums can be obtained immediately

by using approximation formulas of the generalized Zeta function

�(x; s) =

1X
r=0

(r + x)�s :

To compute the eigenvalues �q, one has to correct the result with the few terms where the

sums j(m�

ii )rp+q+ i�
�1
rp+qj are larger than the �xed tolerance. Therefore the discretization of the

nonlocal boundary operators does not a�ect the error of the FE discretization of (4.11).

Due to Theorem 4 the FE discretization converges with quasioptimal order, but with a

constant depending on k. It is well known that for usual FE approximations of the Helmholtz

equation these constants can become very large. This pollution error is caused by the fact that

the discretization of the Helmholtz equation with wave number k results in an approximate

solution possessing a di�erent wave number kh. In [6] we have extended a generalized FEM of

minimal pollution, proposed in [1], to the case of piecewise uniform rectangular partitions and

bilinear �nite elements. Such partitions are well suited to treat binary and multilevel gratings,

which are fabricated using modern semiconductor technologies and whose cross sections have a

rectangular structure. A simple example is shown in Fig. 1.

For the case of arbitrary polygonal interfaces and therefore nonuniform triangulations, a

method with reduced pollution e�ect is presently not available.
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Figure 1. Grating within a thin{�lm multilayer stack

6. Numerical example

The method was used to analyze the di�raction properties of binary and multilayer gratings

of di�erent geometries and materials. As an example we report on a thin{�lm multilayer stack

incorporating a single grating in the center layer shown in Fig. 1. This optical transmission �lter

was introduced in [10]. It was shown that in the case of normal incidence this element is a highly

eÆcient (almost 100%) narrow{line transmission �lter close to the wavelength � = 500 nm with

low sidebands over a range of approximatively 60 nm. This is illustrated in Fig. 2, where the

eÆciency of the transmitted mode of order zero is shown for two di�erent resolutions.
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Figure 2. EÆciency of the zero transmitted mode under normal incidence

With the data taken from [10] we analyzed the dependence of the transmittance on small

perturbations of the direction of the incident wave. The period of the grating is d = 300 nm,

the odd homogeneous layers have a thickness of 53:2 nm with dielectric constant " = 2:352. The

even homogeneous layers parameters are " = 1:382 and a thickness of 90:6 nm. The grating in

the �fth layer consists of two material with " = 2:52 and " = 2:22, respectively, the height is
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53:1 nm. The dielectric constant for the cover region is 1:0 and that of the substrate is " = 1:522.
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Figure 3. EÆciency of the zero transmitted mode with for incidence �elds with wave vectors perpendicular to x3

(left) and to x1 (right)

Fig. 3 depicts the transmission eÆciency obtained for the peak wavelength � = 499:2324 nm

and the wave vectors

(sin �;� cos �; 0) and (0;� cos �; sin�)

for small � and �, respectively. We see that small perturbations of the incidence in the (x1; x2){

plane lead to rapid changes of the transmitted energy, whereas the energy is not so sensitive

with respect to perturbations in the (x2; x3){plane.
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