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Abstract

We study subdi�erential characterizations of the calmness property for multi-

functions representing convex constraint systems in a Banach space. Extend-

ing earlier work in �nite dimensions, we show that - in contrast to the stronger

Aubin property of a multifunction (or metric regularity of its inverse), calm-

ness can be ensured by corresponding weaker constraint quali�cations which

are based on boundaries of subdi�erentials and normal cones only rather than

on the full objects.

1 Introduction

Following [15] (p.399), a multifunction M : Y � X between metric spaces X; Y

is calm at some point (�y; �x) of its graph if there exist neighborhoods V;U of �y; �x,

respectively, and some L > 0 such that the corresponding distance functions satisfy

d(x;M(�y)) � Ld(y; �y) 8x 2M(y) \ U 8y 2 V: (1)

With U := X, calmness reduces to the upper Lipschitz property of multifunctions

introduced by Robinson [14]. Obviously, calmness is also weaker than the well-known

Aubin property of multifunctions

d(x;M(y0)) � Ld(y; y0) 8x 2 M(y) \ U 8y; y0 2 V: (2)

(in particular,M(y) = ; for y close to but di�erent from �y is possible under calmness

but violates the Aubin property). As a stability concept, calmness of multifunctions

is important for issues related with optimality conditions, stability of solutions to

parametric optimization problems or conditioning. For instance, in the context

of �nite dimensional optimization problems with Lipschitzian data (inequalities,

equations and objective function), calmness of the constraint mapping de�ned by

right-hand-side perturbations of inequalities and equations implies calmness of the

optimization problem in the sense of Clarke and, hence, ensures the existence of

(nondegenerate) Lagrange multipliers at local solutions (see [4], Prop. 6.4.4).

If M is a polyhedral multifunction, then it is automatically calm (see [14]). Apart

from this special class, certain conditions have to hold true in order to ensure calm-

ness, and it seems natural to characterize these conditions in terms of well-known

objects from nonsmooth analysis such as (co-) derivatives, (sub-) di�erentials or tan-

gent or normal cones. Similar characterizations have been successfully established

for the stronger Aubin property. In �nite dimensions, for instance, (2) is equivalent
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to each of the following two conditions due to Mordukhovich [10] and Aubin (see,

e.g. [1] and [5], Corollary 1.19 for su�ciency), respectively:

D�M(�y; �x)(0) = f0g (3)

9�; � > 0 : B(0; 1) � D�M
�1

(�x; �y)(B(0; �)) 8x; y 2 GphM \B((�x; �y); �) (4)

Here, D� and D� refer to Mordukhovich's coderivative and to the contingent deriva-

tive, respectively, while B refers to appropriate closed balls. As coderivatives relate

to normal cones whereas derivatives are associated with tangent cones, the �rst cri-

terion above is of dual nature and the second one is of primal nature. The question

arises if the criteria above can be modi�ed appropriately in order to characterize

the weaker calmness property (1) rather than (2). An answer was given in [6] for

dual characterizations of (1) in the special case of �nite dimensional multifunctions

of the type

M(y) := fx 2 Cjg(x) + y 2 Dg;
where C � R

p ; D � R
m are closed subsets and g : Rp ! R

m is locally Lipschitz.

This is the typical structure of constraint systems in nonlinear optimization or com-

plementarity problems. In this special case, Mordukhovich's criterion (3) for the

Aubin property takes the form

[
y�2ND(g(�x))nf0g

D�g(�x)(y�) \ (�NC(�x)) = ;;

where N refers to Mordukhovich's normal cone. It was shown in [6] that under mild

assumptions, calmness is implied by the weaker condition

[
y�2ND(g(�x))nf0g

D�g(�x)(y�) \ (�bdNC(�x)) = ;;

where 'bd' refers to the topological boundary. Hence, passing from Lipschitzian

stability to upper Lipschitzian stability, is re�ected in a transition from certain

geometric objects to their boundaries. This fact becomes most evident for the simple

case of one single inequality g(x)+y � 0 (i.e.,D = R�): if g (as a function) and C (as

a set) are regular in the sense of Clarke, then calmness ofM holds true at some point

(0; �x) with g(�x) = 0 provided that bd @g(�x) \ (�bdNC(�x)) = ;. Here, '@' refers to
either Mordukhovich's or Clarke's subdi�erential (which coincide due to regularity).

This last constraint quali�cation can be opposed again to the corresponding criterion

of the Aubin property which now takes the form @g(�x)\ (�NC(�x)) = ;. For absent
abstract constraints (C = R

p) the calmness condition reduces to 0 =2 bd @g(�x). In

particular, for convex g, a (nondegenerate) multiplier rule can be obtained under

this 'weak Slater condition' (as opposed to the classical Slater condition 0 =2 @g(�x)

which ensures the stronger Aubin property).

The aim of this paper is to study possible in�nite-dimensional extensions of the pre-

vious results. For the single inequality (plus abstract constraints) in a Banach space
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setting it turns out that, even for Clarke-regular data, the mentioned constraint

quali�cation bd @g(�x) \ (�bdNC(�x)) = ; no longer implies calmness. It does so,

however, for convex data, and in this case it can be even weakened again. This gives

an improvement even for the �nite-dimensional case. Therefore, the focus of the

paper is on convex constraint systems.

2 Notation

Throughout this paper, X will denote some Banach space and X� its dual being

endowed with the strong topology. In these spaces, B(�; �) and B�(�; �) are the

closed balls around � with radius �;whereas B0(�; �) refers to the corresponding

open ball in X. By iS we denote the indicator function of a closed set S � X

and by epif the epigraph of some function f : X ! R [ f1g. N(S; x); @f and

@1f refer to the normal cone to S at some x 2 S and to the usual and singular

subdi�erentials of f , respectively, all of them in the sense of convex analysis. In

contrast, @c represents Clarke's subdi�erential. 'bd ' and 'int' are the topological

boundary and interior. For a multifunction M : X � Y between Banach spaces,

GphM = f(x; y) 2 X � Y jy 2M(x)g
rangeM = fy 2 Y j9x 2 X; y 2M(x)g

M�1 : Y � X; M�1(y) = fx 2 Xjy 2M(x)g
denote its graph, its range and its inverse, respectively.

3 Convex constraint systems with a perturbed in-

equality

In this section, we consider constraint systems involving a �xed abstract constraint

set and an inequality which is subject to perturbations. More precisely, we are

interested in the calmness property (1) of the multifunction

M(y) := fx 2 C j f(x) � yg (y 2 R); (5)

where C is a closed, convex subset of some Banach space X and f is a convex,

lower semicontinuous function. First, we state an auxiliary result. Recall from [2],

that a set S � X is compactly epi-Lipschitzian at some x0 2 S if there exist a

norm-compact set K and a constant r > 0 such that

S \ B(x0; r) +B(0; tr) � S � tK 8t 2 (0; r):

Lemma 3.1 For C and f as introduced above, the sum rule

@(f + iC)(�x) � @f(�x) +N(C; �x)
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applies if the following constraint quali�cation is satis�ed:

@1f(�x) \ �N(C; �x) = f0g and

C or epi f is compactly epi-Lipschitzian at �x

�
(CQ�)

Proof. De�ne two closed and convex subsets of X � R by D1 = epi f and D2 =

C � R. The �rst part of (CQ�) implies that

N(D1; (�x; f(�x))) \ �N(D2; (�x; f(�x))) = f0g:

Along with the second part of (CQ�), this last relation is su�cient for the intersection

rule

N(D1 \D2; (�x; f(�x))) � N(D1; (�x; f(�x))) +N(D2; (�x; f(�x)))

(see [7], Cor. 4.5). Now, let x� 2 @(f + iC)(�x) be arbitrarily given, i.e., hx�; x� �xi �
f(x)� f(�x) for all x 2 C. Consequently,

h(x�;�1); (x; t)� (�x; f(�x)i � 0 8x 2 C 8t � f(x):

In other words, (x�;�1) 2 N(D1 \ D2; (�x; f(�x))), and the above intersection rule

ensures that (x�;�1) = (y�; r) + (z�; t) for certain (y�; r) 2 N(D1; (�x; f(�x))) and

(z�; t) 2 N(D2; (�x; f(�x))). By de�nition of D2 one gets t = 0 and z� 2 N(C; �x).

It results that r = �1, hence y� 2 @f(�x) by de�nition of D1. Summarizing, x� 2
@f(�x) +N(C; �x), as was to be shown.

Remark 3.2 The constraint quali�cation (CQ
�
) in Lemma 3.1 is always satis�ed if

the convex function f is continuous at �x or �x is an interior point of C. The second

part of (CQ
�
) holds true whenever X is �nite dimensional or the convex set C has

nonempty interior.

Theorem 3.3 With the setting introduced above, the multifunctionM in (5) is calm

at a point (0; �x) 2 GphM of its graph if one of the following conditions is satis�ed:

f(�x) < 0 (6)

bd @f(�x) \ �bdN(C; �x) 6= @f(�x) \ �N(C; �x) (7)

bd @f(�x) \ �bdN(C; �x) = ; and (CQ�) (8)

Proof. From (0; �x) 2 GphM it follows that �x 2 C and f(�x) � 0. In case of (6), it

follows that

0 2 int [f(�x);1) � int rangeM�1: (9)

Since M has closed and convex graph, this last relation implies metric regularity

of M�1 at (�x; 0) by the Robinson-Ursescu Theorem ([12],[16]). However, metric

regularity of M�1 at (�x; 0) is equivalent to M having the Aubin property at (0; �x)

(cf. [3],[11],[15]), which in turn implies calmness ofM at (0; �x). Hence, in the sequel
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we assume that f(�x) = 0. Suppose next that (7) is satis�ed. Then, since both @f(�x)

and �N(C; �x) are (strongly) closed in X�, it holds that

int @f(�x) \ �N(C; �x) 6= ; or @f(�x) \ �intN(C; �x) 6= ;: (10)

If the �rst condition of (10) holds true, then choose x� 2 int @f(�x) \ �N(C; �x).

Accordingly, there exists some � > 0 such that B�(x�;�) � @f(�x) . In other words:

hx� + �p�; x� �xi � f(x)� f(�x) = f(x) 8p� 2 B�(0; 1) 8x 2 X:

It follows that

hp�; x� �xi � ��1(f(x)� hx�; x� �xi) � ��1f(x) 8p� 2 B�(0; 1) 8x 2 C;

since x� 2 �N(C; �x). Consequently,

kx� �xk � ��1f(x) 8x 2 C and f(x) � 0 8x 2 C; (11)

so it follows the desired calmness property of M (with U := X and V := R in (1)):

d(x;M(0)) � kx� �xk � ��1y = ��1d(y; 0) 8y 2 R 8x 2M(y):

If the second condition of (10) holds true, then choose x� 2 @f(�x) \ �intN(C; �x).

Now, there is some � > 0 such that B�(x�;�) � �N(C; �x), hence

hx� � �p�; x� �xi � 0 or hp�; x� �xi � ��1hx�; x� �xi 8p� 2 B�(0; 1) 8x 2 C:

Due to x� 2 @f(�x), this yields kx � �xk � ��1hx�; x � �xi � ��1f(x) for all x 2 C.

In this way, we end up once more at relation (11) and, hence, at calmness of M at

(0; �x) as above.

Finally, assume that (8) holds true. If 0 2 int @f(�x), then - because of 0 2 @f(�x) \
�N(C; �x) - (7) is satis�ed and calmness ofM follows as shown before. Suppose that

0 2 bd @f(�x). In case that N(C; �x) = X�, calmness of M follows again from (7). In

the opposite case N(C; �x) 6= X� it always holds that 0 2 �bdN(C; �x) which gives

a contradiction to (8). It remains to check the case

0 =2 @f(�x): (12)

Then, two possibilities are left:

@f(�x) \ �N(C; �x) = ; or @f(�x) � �intN(C; �x): (13)

To verify this alternative, assume that none of the two conditions is satis�ed. Then,

there exist x�1; x
�
2 2 @f(�x) such that x�1 2 �N(C; �x) and x�2 =2 �intN(C; �x). The

convexity of @f(�x) and �N(C; �x) guarantees the existence of some x� (on the line

segment [x�1; x
�
2]), such that x� 2 @f(�x) \ �bdN(C; �x). By the cone property of

N(C; �x), one has that tx� 2 �bdN(C; �x) for all t > 0. Due to the closedness of

@f(�x), there must be some t� > 0 such that t�x� =2 @f(�x) (otherwise a contradiction
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with (12)). But then, since x� 2 @f(�x), there must exist some t̂ > 0 such that

t̂x� 2 bd @f(�x). At the same time, t̂x� 2 �bdN(C; �x), whence a contradiction to

(8), and (13) must hold true.

Now, the �rst case of (13) implies the existence of some x0 2 C such that f(x0) < 0

(Slater's condition). Indeed, negating Slater's condition means that �x is a minimum

of f over C or, equivalently, a free minimum of the lower semicontinuous function

f + iC . Consequently,

0 2 @(f + iC)(�x) � @f(�x) +N(C; �x);

where we applied Lemma 3.1. However, the obtained relation contradicts the �rst

case of (13). Hence, Slater's condition is satis�ed and one has (9) with �x replaced

by x0. Consequently, calmness of M at �x follows as in the lines below (9).

Concerning the second case of (13), assume �rst that @f(�x) = ;. Then, we are back
to the already considered �rst case of (13). Finally, if @f(�x) 6= ;, then the second

case of (13) along with (8) yields (7) and calmness of M at (0; �x) follows again.

For missing abstract constraints, a much simpler characterization of calmness can

be derived from Theorem 3.3:

Corollary 3.4 Let X be a Banach space and f : X ! R [ f1g a convex, lower

semicontinuous function. Then, the multifunction M(y) := f�1(�1; y] is calm at

a point (0; �x) with f(�x) � 0 if

f(�x) < 0 or 0 =2 bd @f(�x): (14)

Proof. The �rst condition of (14) coincides with (6), thus it su�ces to consider the

second condition of (14). Evidently, in the setting of (5), we have C = X, hence

N(C; �x) = bdN(C; �x) = f0g. Along with 0 =2 bd @f(�x), this provides

bd @f(�x) \ �bdN(C; �x) = ;;

hence (8) is satis�ed (note that (CQ�) is trivially satis�ed in the context of this

corollary, see Remark 3.2).

Note that in the setting of Corollary 3.4, we have the following implications

(7) =) 0 2 int @f(�x) =) (8) =) (14):

Hence, in contrast to the alternative of conditions (7) and (8) in Theorem 3.3, there

is no use of considering (7) in addition to (14) here . In the general setting of

Theorem 3.3, however, it is no longer true that (7) implies (8) as can be seen from

Example 3.6 below.

Remark 3.5 For �nite dimensional X, condition (8) - with the convex subdi�er-

ential replaced by Clarke one's - was shown in [6] to be su�cient for calmness of
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the multifunction M if f is locally Lipschitzian and both f and C are regular in the

sense of Clarke. Theorem 3.3 demonstrates that this condition can be weakened to

'(7) or (8)' in the convex case even if X is in�nite dimensional. More precisely,

one has the following structure of constraint quali�cations here (assuming that f is

continuous at �x 2 C and f(�x) = 0):

@f(�x) \ �N(C; �x) = ; =) (8) =) (7) or (8)

m
Slater's condition +

m
Aubin property of M at (0; �x) calmness of M at (0; �x)

(15)

We continue by some examples.

Example 3.6 All constraint quali�cations considered in Remark 3.5 are strictly

di�erent. Setting, for instance, f(x) = jxj; C = R; �x = 0, Slater's condition is

obviously violated (and also 0 2 @f(�x) \ �N(C; �x) 6= ;), whereas (8) holds true:

bd @f(�x) \ �bdN(C; �x) = f�1; 1g \ f0g = ;:

Indeed, M is calm at (0; �x) but fails to have the Aubin property there. Another

example is f(x) = f(x1; x2) = kxk; C = f(x1; x2) j x1 � 0g. Then,

bd @f(�x) \ �bdN(C; �x) = f(x1; x2) j x21 + x22 = 1; x1 � 0; x2 = 0g = f(1; 0)g;
@f(�x) \ �N(C; �x) = f(x1; x2) j x21 + x22 � 1; x1 � 0; x2 = 0g

= conv f(0; 0); (1; 0)g:

Hence, (8) is violated here, whereas (7) is satis�ed and thus, Theorem 3.3 ensures

calmness of M at (0; �x). Again, M fails to have the Aubin property.

The following example demonstrates that Theorem 3.3 provides just a su�cient but

not a necessary condition for the calmness of the multifunctionM considered there.

Example 3.7 Let X = C = R; �x = 0 and f(x) = maxfx; 0g. Then, (0; �x) 2
GphM , f(�x) = 0 and M(0) = R� . One has M(y) = ; for y < 0 and M(y) =

(�1; y] for y � 0, hence, d(x;M(0)) � d(y; 0) for all y 2 R and all x 2 M(y).

This means calmness of M at (0; �x). On the other hand, since @f(�x) = [0; 1], (14)

is violated, which implies violation of both (8) and (7).

Note that, in the last example, M was a polyhedral multifunction, hence it seems

that one cannot recover by Theorem 3.3 Robinson's result mentioned in the intro-

duction. However, this will be possible after some modi�cation following the ideas

of [8].

The next example requires some technical work. It illustrates the limitation of

Theorem 3.3 to convex data. In �nite dimensions, the condition 'f(�x) < 0 or 0 =2
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bd @cf(�x)' (i.e., (14) with the convex replaced by Clarke's subdi�erential) was found

in [6] to ensure calmness of multifunctions (5) without abstract constraints (i.e.,

C = X) as long as f is regular at �x in the sense of Clarke. This is no longer true in

in�nite dimensions unless the data are restricted to be convex as in Corollary 3.4.

Example 3.8 For k 2 N, let �k 2 (0; k�2) be the unique solution of � + k
p
� = 1.

De�ne the sequence of real functions

'k(�) :=

�
j� j(1� k

p
j� j) if � 2 [��k; �k]

� 2
k

if j� j � �k
:

Elementary analysis shows that each 'k is (globally) Lipschitz continuous with mod-

ulus 1 and regular at zero in the sense of Clarke (close to the origin, each 'k can be

represented as the maximum of two C1- functions). Furthermore,

'k � 0 ; 'k(�) = 0 () � = 0 and 'k(�k) = � 2
k

8k 2 N 8� 2 R: (16)

Now, let X = l1 and de�ne f : X ! R by f(x) :=
P1

k=1 'k(xk). Evidently, f(0) = 0

by (16). Since 'k(�) � � 2
k
� k�4 for all � 2 R and all k 2 N, f is well de�ned. For

arbitrary x; y 2 X, one has

jf(x)� f(y)j = j
1X
k=1

('k(xk)� 'k(yk))j �
1X
k=1

j'k(xk)� 'k(yk)j

�
1X
k=1

jxk � ykj = kx� yk1;

hence f is (globally) Lipschitz continuous with modulus 1.

Next, we calculate Clarke's directional derivative f 0(0; h) of f at zero in arbitrary

direction h 2 X. By de�nition (see [4]), one has

f 0(0; h) = lim sup
t#0;x!0

f(x + th)� f(x)

t
= lim

n!1

f(x(n) + t(n)h)� f(x(n))

t(n)

= lim
n!1

1X
k=1

'k(x
(n)

k
+ t(n)hk)� 'k(x

(n)

k
)

t(n)
; (17)

where x(n) ! 0 and t(n) # 0 are suitable sequences realizing the above limsup as a

limit. Now, we �x an arbitrary k0 2 N. Assume that there exist " > 0 and n0 2 N

such that

'k0(x
(n)

k0
+ t(n)hk0)� 'k0(x

(n)

k0
)

t(n)
� 'k0(t

(n)hk0)

t(n)
� " 8n � n0: (18)

In order to lead (18) to a contradiction, de�ne a sequence ~x(n) 2 X by

~x
(n)

k
:=

�
x
(n)

k
k 6= k0

0 k = k0
8k; n 2 N :

8



It follows, that ~x(n) ! 0 and, in view of (16),

f(~x(n) + t(n)h)� f(~x(n))

t(n)
=

1X
k=1;k 6=k0

'k(x
(n)

k
+ t(n)hk)� 'k(x

(n)

k
)

t(n)
+
'k0(t

(n)hk0)

t(n)

�
1X
k=1

'k(x
(n)

k
+ t(n)hk)� 'k(x

(n)

k
)

t(n)
+ "

=
f(x(n) + t(n)h)� f(x(n))

t(n)
+ ";

for n � n0 whence the contradiction with (17)

lim sup
t#0;x!0

f(x+ th)� f(x)

t
� f 0(0; h) + ":

Therefore, we may negate (18) in order to obtain a subsequence symbolized by the

index m(n) such that

lim inf
n!1

'k0(x
(m(n))

k0
+ t(m(n))hk0)� 'k0(x

(m(n))

k0
)

t(m(n))

� lim
n!1

'k0(t
(m(n))hk0)

t(m(n))
= d'k0(0; hk0) = '0

k0
(0; hk0)

� lim sup
n!1

'k0(x
(m(n))

k0
+ t(m(n))hk0)� 'k0(x

(m(n))

k0
)

t(m(n))
; (19)

where 'd'k0' refers to the usual directional derivative which, by the already stated

regularity of 'k0 in the sense of Clarke, exists and coincides with '0
k0
. From the

de�nition of 'k0 one calculates d'k0(0; hk0) = jhk0j. Since k0 was arbitrarily �xed,

(19) provides

lim
n!1

'k(x
(m(n))

k
+ t(m(n))hk)� 'k(x

(m(n))

k
)

t(m(n))
= jhkj 8k 2 N :

This �nally allows to interchange limit and summation in the last term of (17) (upon

passing to the subsequence m(n) there too):

f 0(0; h) =

1X
k=1

jhkj = khk1 8h 2 X:

Consequently, @cf(0) = B1, where @
c
denotes Clarke's subdi�erential and B1 is the

unit ball in X.

Next, we verify that f is regular at 0 in the sense of Clarke. To this aim, we calculate

its usual directional derivative at 0 in arbitrary direction h. Since for each sequence

t(n) # 0 it holds that

lim
n!1

'k(t
(n)~h)

t(n)
= d'k(0;

~h) = j~hj 8~h 2 R 8k 2 N ;

9



one may interchange limit and summation once more:

khk1 =
1X
k=1

lim
n!1

'k(t
(n)hk)

t(n)
= lim

n!1

1X
k=1

'k(t
(n)hk)

t(n)
= lim

n!1

f(t(n)h)� f(0)

t(n)
:

As t(n) # 0 was arbitrary, it follows that df(0; h) = khk1 = f 0(0; h), hence f is

regular in the sense of Clarke.

Finally, we consider the multivalued mapping M : R � X de�ned by M(t) := fx 2
X j f(x) � tg. This is exactly the setting of (5) with abstract constraints missing

(X = C). By de�nition of f and (16), one has

f(x) � 0 8x 2 X and f(x) = 0() x = 0:

Hence, M(0) = f0g. De�ne a sequence z(n) = (0; : : : ; 0; �n; 0; 0; : : :) 2 X, with �n at

position n. Then, again by (16),

d(z(n);M(0)) = kz(n)k1 = �n and f(z(n)) = 'n(�n) = � 2
n

8n 2 N :

Putting y(n) := f(z(n)), we have constructed sequences z(n); y(n) such that z(n) 2
M(y(n)); z(n) ! 0; y(n) ! 0 (because of �n 2 (0; n�2)). From here, we derive that

M fails to be calm at (0; 0):

d(z(n);M(0)) = ��1
n
f(z(n)) = ��1

n
d(f(z(n)); 0) � n2d(f(z(n)); 0)

(again by �n 2 (0; n�2)), which contradicts (1). On the other hand, we have seen

that @cf(0) = B1, hence 0 2 int @cf(0) and the constraint quali�cation 'f(�x) <

0 or 0 =2 bd @cf(�x)' - which was su�cient for calmness in the regular, �nite

dimensional and in the convex, in�nite dimensional case - is evidently satis�ed.

However, the same constraint quali�cation (to which the conditions (8) and (7)

reduce when C = X) does not imply calmness in the regular, in�nite dimensional

case, as was shown in this example.

The next result is an immediate application of Theorem 3.3 to the characterization

of calmness for non-structured multifunctions.

Corollary 3.9 Let X be a Banach space, Y a metric space, M : X � Y a multi-

function with closed values and (�x; 0) 2 GphM . Assume further that

1. The distance function d(0;M(�)) is convex and lower semicontinuous in a

neighborhood of �x.

2. 0 =2 bd @d(0;M(�))(�x).

Then, M�1
is calm at (0; �x) (or, equivalently, M is metrically regular at (�x; 0)).

10



Proof. Corollary 3.4 immediately provides calmness at (0; �x) of the multifunction

P : R � X de�ned by

P (t) := fx 2 X j d(0;M(x)) � tg
This means existence of some L > 0; " > 0 such that

d(x; P (0)) � Ljtj 8t 2 (�"; ") 8x 2 B0(�x; ") \ P (t):

Since P (0) = M�1(0) andM�1(y) � P (d(0; y)) for all y 2 Y , it follows the calmness

of M�1 at (0; �x):

d(x;M�1(0)) = d(x; P (0)) � Ld(0; y) 8y 2 B0(0; ") 8x 2 B0(�x; ") \M�1(y):

Note that condition 2. in the above corollary is far removed from being necessary

for calmness or even the stronger Aubin property.

Example 3.10 Consider M(x) := [x;1) at (0; 0) 2 GphM . Since d(0;M(x)) =

maxf0; xg, condition 1. of the last corollary is satis�ed whereas condition 2 is vio-

lated. On the other hand, the inverse multifunction M�1(y) = fxjx � yg is easily

seen to satisfy the Aubin property (2) and, hence, calmness at (0; 0).

4 Calmness of the intersection of two sets

In this section, we turn to the calmness property with respect to two sets. To

this aim, let C;D � X closed, convex subsets such that �x 2 C \ D. We want to

characterize calmness of the multivalued mapping Q : R � X de�ned by

Q(t) := fx 2 X j d(x; C) + d(x;D) � tg
at the point (0; �x) 2 GphQ.

Lemma 4.1 Q is calm at (0; �x) 2 GphQ provided that

intN(D; �x) \ �N(C; �x) 6= ;: (20)

Proof. Choose x� 2 intN(D; �x) \ �N(C; �x). From x� 2 intN(D; �x), it follows

similar to the proof of Theorem 3.3 the existence of some � > 0 such that

�kx� �xk+ hx�; x� �xi � 0 8x 2 D:

Hence, �x is a minimizer of the function hx�; �x � �i � �k � ��xk on the set D. Now,

using a well-known penalization argument, which appeals to the Lipschitz constant

of the function involved, it follows the existence of some " > 0 such that

hx�; �x� xi � �kx� �xk+ (kx�k+ �)d(x;D) � 0 8x 2 B(�x; ");

11



whence, by x� 2 �N(C; �x),

��kx� �xk+ (kx�k+ �)d(x;D) � 0 8x 2 B(�x; ") \ C:

In other words, �x is a local minimizer of the function ��k ���xk+ (kx�k+�)d(�; D)

on the set C. Now, upon repeating the same penalization argument, one arrives at

��kx� �xk+ (kx�k+ �)d(x;D) + (kx�k+ 2�)d(x; C) � 0 8x 2 B(�x; "0)

for some "0 > 0. This, however, is the desired calmness property

d(x;Q(0)) � kx� �xk � ��1(kx�k+ 2�)(d(x;D) + d(x; C)) � ��1(kx�k+ 2�)jtj
which holds true for all t 2 R and all x 2 B(�x; "0) \Q(t).

Next, we need an auxiliary result which is of independent interest.

Lemma 4.2 If one of the sets C or D is compactly epi-Lipschitzian in a neighbor-

hood of �x, then

N(D; �x) \ �N(C; �x) = f0g () 0 2 int (D � C \ B(�x; 1))

Proof. (=)) For symmetry reasons, one may take, e.g., D to be compactly epi-

Lipschitzian in a neighborhood of �x. Assume that

0 =2 int (D � C \B(�x; 1)) = int (D � C \B(�x; 1))

(the equality follows from [13], Lemma 1). Accordingly, there exists a sequence

bn ! 0 with

bn =2 D � C \ B(�x; 1)):

The separation theorem, provides a corresponding sequence x�
n
2 X� such that

kx�
n
k = 1 and

hx�
n
; bni � hx�

n
; d� �xi 8d 2 D; hx�

n
; bni � hx�

n
; �x� ci 8c 2 C \ B(�x; 1): (21)

The �rst relation of (21) yields that hx�
n
; �xi � inf

d2D
hx�

n
; di + kbnk. Now, Ekeland's

variational principle provides a sequence dn 2 D such that

kdn � �xk �
p
kbnk and hx�

n
; dni � hx�

n
; di+

p
kbnk kdn � dk 8d 2 D: (22)

The second relation of (22) entails that �x�
n
2 N(D; dn)+B

�(0;
p
kbnk), hence there

are sequences z�
n
2 N(D; dn) and b

�
n
with kb�

n
k �
p
kbnk such that z�

n
+ x�

n
+ b�

n
= 0.

In particular; kz�
n
k ! 1. Thus, the sequence z�

n
is bounded and, hence, there exists a

weak� convergent subnet z�
�
*w� z�. Now, since z�

�
2 N(D; d�), this last convergence

along with d� ! �x (see �rst relation of (22)) and the very de�nition of the normal

cone to convex sets yield that z� 2 N(D; �x). Now, the assumed property of D being

compactly epi-Lipschitzian in a neighborhood V�x of �x results in the inclusion

N(D; x) � fx� j kx�k � max
i=1;:::;k

hx�; hiig 8x 2 V�x \D

12



for certain hi 2 X (i = 1; : : : ; k). From d� ! �x, one derives that

max
i=1;:::;k

hz�
�
; hii � kz�

�
k:

Consequently, z� 6= 0. On the other hand, we also have that x�
�
= �z�

�
�b�

�
*w� �z�

which together with the second part of (21) provides

h�z�; �x� ci(w� hx�
�
; �x� ci � hx�

�
; b�i ! 0 8c 2 C \ B(�x; 1);

whence z� 2 �N(C; �x). Summarizing, there is some z� 6= 0 with z� 2 N(D; �x) \
�N(C; �x). This contradicts our assumption.

((=)

Choose an arbitrary x� 2 N(D; �x) \ �N(C; �x). Then,

hx�; d� �xi � 0 8d 2 D and hx�; �x� ci � 0 8c 2 C:

In other words, hx�; d � ci � 0 for all d 2 D and all c 2 C. However, since by

assumption 0 2 int (D � C), it results that x� = 0, as was to be shown.

Theorem 4.3 Let one of the sets C or D be compactly epi-Lipschitzian at �x. Then,

Q is calm at (0; �x) under the following condition:

bdN(D; �x) \ �bdN(C; �x) = f0g: (23)

Proof. In case that N(D; �x) \ �N(C; �x) = f0g, Lemma 4.2 ensures that 0 2
int (D�C). Since D�C equals the range of the multifunctionM : X � X de�ned

by

M(x) =

� �x +D x 2 C

; x =2 C
;

we have 0 2 int rangeM and the Robinson-Ursescu Theorem yields metric regularity

of M at the point (�x; 0) of its graph. This property means the existence of L; " > 0

such that

d(x;M�1(y)) � Ld(y;M(x)) 8x 2 B(�x; ") 8y 2 B(0; "):

With M�1(y) = C \ (D � y), and �xing y := 0, one arrives at

d(x; C \D) � Ld(x;D) 8x 2 B(�x; ") \ C; hence

d(x; C \D) � (L + 1) (d(x;D) + d(x; C)) 8x 2 B(�x; "):

This, of course, is calmness of the multifunction Q at (0; �x).

Otherwise (N(D; �x) \ �N(C; �x) 6= f0g), (23) implies that

intN(D; �x) \ �N(C; �x) 6= ; or N(D; �x) \ �intN(C; �x) 6= ;:

In both cases, Lemma 4.1 yields the desired result.
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5 The di�erentiable nonconvex case

In this section we brie�y return to the constraint system (5) with a convex closed

subset C � X as before but with a (strictly) di�erentiable function f . Theorem

3.3 has shown that, in the completely convex case (C and f), each of the constraint

quali�cations (8), (7) is su�cient for calmness of (5). On the other hand, we know

by Example 3.8 that none of the two conditions ensures calmness if f is just regular

in the sense of Clarke. Since, in that example, f was non-di�erentiable, the ques-

tion arises if a positive result can be expected in the smooth case. The answer is

a�rmative even for a �nite number of inequalities.

Theorem 5.1 Consider a multifunction M : Rm
� X de�ned by

M(y) := fx 2 C j f(x) � yg (y 2 R
m);

where C � X is convex and closed and f : X ! R
m

is strictly di�erentiable. Then,

the constraint quali�cation

conv frfi(�x)gi2I(�x) \ �bdN(C; �x) = ; (24)

implies calmness of M at (0; �x) 2 GphM . Here, fi denote the components of f and

I(x) = fi 2 f1; : : : ; mgjfi(x) = 0g refers to the set of active indices.

Proof. Assume �rst that conv frfi(�x)gi2I(�x) \ �N(C; �x) = ;. Then, the strict

di�erentiability assumption on f allows to apply Theorem 2.4. in [9] in order to

derive metric regularity of M�1 at (�x; 0) which is equivalent to the Aubin property

of M at (0; �x) and, hence, implies calmness of M at (0; �x). In the opposite case,

(24) guarantees the existence of some x� 2 conv frfi(�x)gi2I(�x) \ �intN(C; �x). Ac-

cordingly, there exist �i � 0 (i 2 I(�x)) with
P

i2I(�x) �i = 1 as well as " > 0 such

that

x� =
X
i2I(�x)

�irfi(�x) and "kx� �xk � hx�; x� �xi 8x 2 C:

Due to the di�erentiability assumption on f and to the �niteness of I(�x) there is

some � > 0 such that

fi(x)� fi(�x) � hrfi(�x); x� �xi � "

2
kx� �xk 8x 2 B(�x; �) 8i 2 I(�x):

Using that fi(�x) = 0 for i 2 I(�x) it holds for all x 2 C \ B(�x; �) that

max
i2I(�x)

fi(x) �
X
i2I(�x)

�ifi(x) �
X
i2I(�x)

�ihrfi(�x); x� �xi � "

2
kx� �xk � "

2
kx� �xk:

Measuring, without loss of generality, the distance in Rm with respect to the maxi-

mum norm, one has for all x 2M(y) \ B(�x; �) and all y 2 R
m :

d(x;M(0)) � kx� �xk � 2

"
max
i2I(�x)

fi(x) � 2

"
max

i=1;:::;m
jyij = 2

"
d(y; 0):
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This, however, is calmness of M at (0; �x).

The last result shows that the ideas of the completely convex case can be extended

to di�erentiable inequalities. With a single inequality which is di�erentiable and

convex, (24) reduces to (8) (without the need of the additional constraint quali�ca-

tion (CQ�)). One might ask about an alternative condition in the sense of (7) for

the di�erentiable case as well. However, the closedness of the normal cone immedi-

ately provides that the di�erentiable formulation of (7) implies (8), hence the two

conditions are not independent as in the convex (nonsmooth) setting. Finally, we

note that for �nite dimensional X, (24) can be weakened to the condition

bd conv frfi(�x)gi2I(�x) \ �bdN(C; �x) = ;:
(see [6], Th. 9). In ini�nite dimensions, the interior of the convex hull involved is

empty, hence this last relation is equivalent with (24).

6 Conclusion

The conditions for calmness formulated in this paper (in particular (7),(8), (14)

and (24)) can be interpreted as constraint quali�cations ensuring (nondegenerate)

multiplier rules in optimization problems where the corresponding multifunctions

�gure as constraint systems subject to perturbations. If, for instance, �x is a solution

of the convex optimization problem

minfg(x)jx 2 C; f(x) � 0g
with convex and continuous objective g, then the constraint quali�cation '(7) or (8)'

- which is much weaker than Slater's condition, see (15) - entails the existence of

some � 2 R+ such that 0 2 @g(�x) + �@f(�x) + N(C; �x). A similar statement holds

true for di�erentiable optimization problems with constraint sets as in Theorem 5.1

under condition (24). Finally, it is noted that also conditioning results in the sense

of linear growth of the objective locally around the solution set of an optimization

problem can be obtained from the same conditions in the respective settings. This

has an immediate impact on quantitative stability of solution sets.
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