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Abstract

In this paper a shell model of generalized Naghdi type is studied which

requires only low regularity conditions. It is shown that the corresponding

system of linear variational equations (representing a boundary value problem

for a linear system of six partial di�erential equations on the shell) admits

a unique solution. The main step in the proof is to show the coercivity of

the corresponding bilinear form which is equivalent to a Korn inequality in

curvilinear coordinates. In this paper, a direct approximation argument is

used for the proof of coercivity.

1 Introduction

In this work, we propose a model of a thin shell which may be viewed as a direct

generalization of the classical Naghdi model or of the Reissner�Mindlin linear plate

model. We underline that our work enters the class of hierarchical models, and we

quote the treatise of Ciarlet [3], [4] for a detailed presentation of the subject.

In our study, we are motivated by several aims. First, we relax the regularity assump-

tions which are generally used in the literature on shells and curved rods, namely

the three times di�erentiability of the middle surface or of the line of centroids.

Our assumption requires just piecewise C2 - surfaces and it may be compared with

the recent works of Geymonat and Sanchez-Palencia [6], Blouza [1], Le Dret and

Blouza [5], Ignat, Sprekels and Tiba [7], although the methods are very di�erent.

In Remark 2.1, we point out that even slightly less regularity is enough for our

present approach to work.

Another scope of this paper is to provide a simpli�ed proof for the existence and

uniqueness theorem for the shell equation. Consequently, we have minimized, as

much as possible, the use of elements from di�erential geometry and even from

mechanics, and this explains the title of our work. In this sense, we have made the

simplifying assumption that the middle surface of the shell is given by the graph of

a function, which still allows for a large class of applications. We also point out that

the main reason behind this hypothesis is our intention to study, in a subsequent

work, shape optimization questions associated to our model. Taking into account the

complexity and the novelty of the problem and of the approach, such a simpli�cation

seems reasonable.

In Section 2, we perform a detailed description of our partially clamped shell model,

and we state the main result. Section 3 provides the rather lengthy existence proof,

organized as a sequence of lemmas.
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Finally, we mention that in the case of arches it was shown in Sprekels and Tiba [10],

and Ignat, Sprekels and Tiba [8], that Lipschitz regularity su�ces for the existence

results; besides, a complete optimization theory was developed.

2 The model

Let ! � IR2 be an open bounded connected set, not necessarily simply connected,

with Lipschitz boundary @! . For " > 0 , we de�ne 
 := !� ] � "; "[� IR3 ,

satisfying the same assumptions as ! . We denote by (x1; x2) 2 ! ; x3 2 ]�"; "[ ; �x =

(x1; x2; x3) 2 
 , the independent variables.

Let p : ! ! IR denote a piecewise C2(�!) -mapping whose graph represents the

middle surface S of the shell. We consider the geometric transformation F : 
 !

IR3 ,

F (�x) := ��(x1; x2) + x3 �n(x1; x2) ; (2.1)

with �� = (�1; �2; �3) = (x1; x2; p(x1; x2)) , and with �n = (n1; n2; n3) denoting the

normal vector to S in the point ��(x1; x2) . Notice that the vectors
@��
@x1

= (1; 0; p1) ;

@��
@x2

= (0; 1; p2) , where p1 :=
@p
@x1

and p2 :=
@p
@x2

, are always linearly independent;

consequently,

�n =

@��

@x1
^

@��

@x2����� @��@x1 ^
@��

@x2

�����
IR3

=

 
�

p1p
1 + p21 + p22

; �
p2p

1 + p21 + p22
;

1p
1 + p21 + p22

!
: (2.2)

Here �^� is the exterior product in IR3 , while j � jIRK and h � ; � iIRK denote norm

and scalar product,respectively, in the Euclidian space IRK . In addition, standard

notations for vectors, matrices, and so on, will be used throughout the text.

Assume that @! is divided in two nonoverlapping open parts 
0 ; 
1 . We introduce

the notations �0 := 
0� ]� "; "[ , �1 := @
 n �0 , as well as


̂ := F (
) ; �̂0 := F (�0) ; �̂1 := F (�1) : (2.3)

Under our subsequent assumptions (see (2.15)), F is a homeomorphism, and 
̂

is an open connected bounded set in IR3 representing the shell and having the

Lipschitz boundary @
̂ := �̂0 [ �̂1 . For 
̂ , we introduce the Hilbert space

V (
̂) =
n
v̂ 2 H1(
̂)3 ; v̂j�̂0 = 0

o
; (2.4)
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and the linear elasticity system in the weak formulation,Z

̂

h
� êpp(û) êqq(v̂) + 2� êij(û) êij(v̂)

i
dx̂

=

Z

̂

f̂i v̂i dx̂ +

Z
�̂1

ĥi v̂i d�̂ ; 8 v̂ 2 V (
̂) : (2.5)

Here, � � 0 ; � > 0 are the Lamé constants of the material, f̂i 2 L2(
̂) are the

body forces, ĥi 2 L2(�̂1) are the surface tractions, and the summation convention

is used. The components of the linearized strain or change of metric tensor are given

by

êij(v̂) =
1

2

� @v̂i
@x̂j

+
@v̂j

@x̂i

�
; i; j = 1; 3 : (2.6)

Our main geometric assumption is that the displacement û 2 V (
̂) has the form

û(x̂) = �u(x1; x2) + x3 �r(x1; x2) ; x̂ 2 
̂ ; (2.7)

with �x = (x1; x2; x3) = F�1(x̂) , and where �u = (u1; u2; u3) and �r = (r1; r2; r3)

belong to the space

V (!) := f�v = (v1; v2; v3) 2 H1(!)3 ; �vj
0 = 0g : (2.8)

This means that we are looking for solutions in the in�nite dimensional subspace

~V (
̂) := fû 2 V (
̂) ; û is of the form (2.7) g : (2.9)

Note that ~V (
̂) can through the relation (2.7) be identi�ed with the product space

V (!)2 := V (!)� V (!) . Therefore, instead of working in the space ~V (
̂) , we can

always work in V (!)2 . We will do this repeatedly later in this paper.

From the geometrical point of view, it should be clear that �u represents the dis-

placement of the middle surface S of the shell, while �r is the modi�cation of the

points along the normal �n(x1; x2) which are assumed to remain on a line. Note also

that the form (2.7) allows for both dilation and contraction of the elastic material,

and that it constitutes a generalization of the standard assumptions associated with

the so-called Naghdi model (cf. Ciarlet [4], Blouza [1]).

Let us now collect some properties of the transformation F . The Jacobian J := DF

of F is given by

J(�x) =

2
666664

1 + x3
@n1
@x1

x3
@n1
@x2

n1

x3
@n2
@x1

1+x3
@n2
@x2

n2

p1 + x3
@n3
@x1

p2 + x3
@n3
@x2

n3

3
777775 : (2.10)
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We recall the relations

n1 = �n3 p1 ; n2 = �n3 p2 ; (2.11)

@�n

@x1
(x1; x2) =

@n1

@x1

@��

@x1
+

@n2

@x1

@��

@x2
; (2.12)

@�n

@x2
(x1; x2) =

@n1

@x2

@��

@x1
+

@n2

@x2

@��

@x2
; (2.13)

which are easy consequences of (2.2) and of j�njIR3 = 1 which implies that
D
�n ; @�n

@xi

E
IR3

= 0 . Hence, @�n
@xi

is orthogonal to �n and generated by @��
@x1

and
@��

@x2
; i = 1; 2 .

Notice that (2.12), (2.13) are special cases of the equations of movement of the local

frame on the surface S , see Cartan [2]. The coe�cients @ni
@x�

, i = 1; 3 , � = 1; 2 ,

may be interpreted as various curvatures of S .

Using (2.10)�(2.13), one can easily check that

det J(�x) =

�
1 + x3

�
@n1

@x1
+

@n2

@x2

�
+ x23

�
@n1

@x1

@n2

@x2
�

@n1

@x2

@n2

@x1

��

�

q
1 + p21 + p22 : (2.14)

Since p 2 W 2;1(!) , it follows from (2.14) that if " > 0 is assumed to be �small�,

then

det J(�x) � c > 0 8 �x 2 
 : (2.15)

This justi�es the de�nition (2.3) of the shell 
̂ via the geometric transformation F

from (2.1). From now on, we will always assume that 0 < " < 1 is small enough to

guarantee the validity of (2.15).

In the next section, the inverse of J and the Jacobian of F�1 will be needed. We

denote them by

J(�x)�1 = (hij(�x))i;j=1;3 ; D F�1(x̂) = (dij(x̂))i;j=1;3 : (2.16)

Their calculation is tedious (but straightforward), and we just list some elements of

J(�x)�1 � det J(�x) (with obvious notations):

~h11 = n3

�
1 + x3

@n2

@x2

�
� n2

�
p2 + x3

@n3

@x2

�
; (2.17)

~h21 = n2

�
p1 + x3

@n3

@x1

�
� n3 x3

@n2

@x1
; (2.18)
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~h31 = x3
@n2

@x1

�
p2 + x3

@n3

@x2

�
�

�
1 + x3

@n2

@x2

� �
p1 + x3

@n3

@x1

�
; (2.19)

~h32 = x3
@n1

@x2

�
p1 + x3

@n3

@x1

�
�

�
1 + x3

@n1

@x1

� �
p2 + x3

@n3

@x2

�
: (2.20)

We introduce the vectorial mapping �w : 
 ! IR3 by

�w(�x) = �u(x1; x2) + x3 �r(x1; x2) ; �x 2 
 ; (2.21)

so that

û(x̂) = �w(F�1(x̂)) ; x̂ 2 
̂ : (2.22)

The Jacobian of �w is

D �w(�x) =

2
666664

@u1
@x1

+ x3
@r1
@x1

@u1
@x2

+ x3
@r1
@x2

r1

@u2
@x1

+ x3
@r2
@x1

@u2
@x2

+ x3
@r2
@x2

r2

@u3
@x1

+ x3
@r3
@x1

@u3
@x2

+ x3
@r3
@x2

r3

3
777775 : (2.23)

We infer that, for �x = F�1(x̂) ,

D û(x̂) = D �w
�
F�1(x̂)

�
DF�1(x̂) = D �w(�x) � (dij(x̂))i;j=1;3

= D �w
�
F�1(x̂)

�
J
�
F�1(x̂)

�
�1

= D �w(�x) J(�x)�1

= D �w(�x) � (hij(�x))i;j=1;3 : (2.24)

Consequently, we have (again �x = F�1(x̂))

@ûi

@x̂j
(x̂) =

D� @ui
@x1

+ x3
@ri

@x1
;
@ui

@x2
+ x3

@ri

@x2
; ri

�
; (d1j(x̂)); d2j(x̂); d3j(x̂))

E
IR3

: (2.25)

To arrive at our �nal model, we now restrict the set of admissible test functions

v̂ 2 V (
̂) . In accordance with the expected special form (2.7) of the displacement,

we consider test functions v̂ 2 ~V (
̂) ,

v̂(x̂) = ��(x1; x2) + x3 ��(x1; x2) ; x̂ 2 
̂ ; (2.26)

where �x = F�1(x̂) and �� = (�1; �2; �3) ; �� = (�1; �2; �3) 2 V (!) . As û; v̂ 2

V (
̂) , we can insert û; v̂ in (2.5) in order to obtain the bilinear form governing our
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generalized Naghdi model,

B(û; v̂) = �

Z

̂

n 3X
i=1

h� @ui
@x1

+ x3
@ri

@x1

�
d1i +

� @ui
@x2

+ x3
@ri

@x2

�
d2i + rid3i

io

�

n 3X
j=1

h�@�j
@x1

+ x3
@�j

@x1

�
d1j +

�@�j
@x2

+ x3
@�j

@x2

�
d2j + �jd3j

io
dx̂

+2�

Z

̂

3X
i=1

h� @ui
@x1

+ x3
@ri

@x1

�
d1i +

� @ui
@x2

+ x3
@ri

@x2

�
d2i + rid3i

i

�

h�@�i
@x1

+ x3
@�i

@x1

�
d1i +

�@�i
@x2

+ x3
@�i

@x2

�
d2i + �id3i

i
dx̂

+�

Z

̂

nh�@u1
@x1

+ x3
@r1

@x1

�
d12 +

�@u1
@x2

+ x3
@r1

@x2

�
d22 + r1d32

+
�@u2
@x1

+ x3
@r2

@x1

�
d11 +

�@u2
@x2

+ x3
@r2

@x2

�
d21 + r2d31

i
�

h�@�1
@x1

+ x3
@�1

@x1

�
d12 +

�@�1
@x2

+ x3
@�1

@x2

�
d22 + �1d32

+
�@�2
@x1

+ x3
@�2

@x1

�
d11 +

�@�2
@x2

+ x3
@�2

@x2

�
d21 + �2d31

i
+
h�@u1
@x1

+ x3
@r1

@x1

�
d13 +

�@u1
@x2

+ x3
@r1

@x2

�
d23 + r1d33

+
�@u3
@x1

+ x3
@r3

@x1

�
d11 +

�@u3
@x2

+ x3
@r3

@x2

�
d21 + r3d31

i
�

h�@�1
@x1

+ x3
@�1

@x1

�
d13 +

�@�1
@x2

+ x3
@�1

@x2

�
d23 + �1d33

+
�@�3
@x1

+ x3
@�3

@x1

�
d11 +

�@�3
@x2

+ x3
@�3

@x2

�
d21 + �3d31

i
+
h�@u2
@x1

+ x3
@r2

@x2

�
d13 +

�@u2
@x2

+ x3
@r2

@x2

�
d23 + r2d33

+
�@u3
@x1

+ x3
@r3

@x2

�
d12 +

�@u3
@x2

+ x3
@r3

@x2

�
d22 + r3d32

i
�

h�@�2
@x1

+ x3
@�2

@x1

�
d13 +

�@�2
@x2

+ x3
@�2

@x2

�
d23 + �2d33

+
�@�3
@x1

+ x3
@�3

@x1

�
d12 +

�@�3
@x2

+ x3
@�3

@x2

�
d22 + �3d32

io
dx̂ : (2.27)

The generalized Naghdi model of a partially clamped shell is now �nally obtained
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by (2.7), (2.26), (2.27), and by the variational equation

B(û; v̂) =

Z

̂

f̂i v̂i dx̂ +

Z
�̂1

ĥi v̂i d�̂ 8 v̂ 2 ~V (
̂) : (2.28)

We underline that (2.28) is a projection of the general elasticity system (2.5) from

V (
̂) onto the in�nite dimensional subspace ~V (
̂) . This process is reminiscent

to the �nite element approximation method where the projection subspaces are

however only �nite dimensional. We also note that with the bilinear form B acting

on ~V (
̂) � ~V (
̂) we can associate a bilinear form B acting on V (!)2 � V (!)2

through the identity

B((�u; �r); (��; ��)) = B(û; v̂) : (2.29)

In what follows, we will mainly work with the bilinear form B even if B is actually

meant. From this no confusion will arise.

After a standard change of variables, using also (2.22), we can rewrite the bilinear

forms B and B , respectively, as

B(û; v̂) = B((�u; �r); (��; ��))

= �

Z



n 3X
i=1

h� @ui
@x1

+ x3
@ri

@x1

�
h1i +

� @ui
@x2

+ x3
@ri

@x2

�
h2i + rih3i

io

�

n 3X
j=1

h�@�j
@x1

+ x3
@�j

@x1

�
h1j +

�@�j
@x2

+ x3
@�j

@x2

�
h2j + �jh3j

io
jdet J(�x)j d�x

+2�

Z



3X
i=1

h� @ui
@x1

+ x3
@ri

@x1

�
h1i +

� @ui
@x2

+ x3
@ri

@x2

�
h2i + rih3i

i

�

h�@�i
@x1

+ x3
@�i

@x1

�
h1i +

�@�i
@x2

+ x3
@�i

@x2

�
h2i + �ih3i

i
jdetJ(�x)j d�x

+�

Z



nh�@u1
@x1

+ x3
@r1

@x1

�
h12 +

�@u1
@x2

+ x3
@r1

@x2

�
h22 + r1h32

+
�@u2
@x1

+ x3
@r2

@x1

�
h11 +

�@u2
@x2

+ x3
@r2

@x2

�
h21 + r2h31

i
�

h�@�1
@x1

+ x3
@�1

@x1

�
h12 +

�@�1
@x2

+ x3
@�1

@x2

�
h22 + �1h32

+
�@�2
@x1

+ x3
@�2

@x1

�
h11 +

�@�2
@x2

+ x3
@�2

@x2

�
h21 + �2h31

i
+
h�@u1
@x1

+ x3
@r1

@x1

�
h13 +

�@u1
@x2

+ x3
@r1

@x2

�
h23 + r1h33
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+
�@u3
@x1

+ x3
@r3

@x1

�
h11 +

�@u3
@x2

+ x3
@r3

@x2

�
h21 + r3h31

i
�

h�@�1
@x1

+ x3
@�1

@x1

�
h13 +

�@�1
@x2

+ x3
@�1

@x2

�
h23 + �1h33

+
�@�3
@x1

+ x3
@�3

@x1

�
h11 +

�@�3
@x2

+ x3
@�3

@x2

�
h21 + �3h31

i
+
h�@u2
@x1

+ x3
@r2

@x1

�
h13 +

�@u2
@x2

+ x3
@r2

@x2

�
h23 + r2h33

+
��@u3

@x1
+ x3

@r3

@x1

�
h12 +

�@u3
@x2

+ x3
@r3

@x2

�
h22 + r3h32

i
�

h�@�3
@x1

+ x3
@�3

@x1

�
h12 +

�@�3
@x2

+ x3
@�3

@x2

�
h22 + �3h32

+
�@�2
@x1

+ x3
@�2

@x1

�
h13 +

�@�2
@x2

+ x3
@�2

@x2

�
h23 + �2h33

io
jdet J(�x)j d�x :

(2.30)

Remark 2.1 It is here that the piecewise C2(�!) - regularity of p(�; �) is in fact

used. However, this assumption may be slightly relaxed using more re�ned change

of variables theorems (see, for instance, Rudin [9], p. 153).

By performing a similar change of variables in the right-hand side of (2.28), the

generalized Naghdi model can be expressed directly on the domain 
 . The compu-

tations are rather tedious and, for the sake of brevity, we do not give them in detail,

here. The reader may get a hint in this direction from the arguments developed in

the next section.

We close the second part by stating the main result of this paper:

Theorem 2.1 If " > 0 is su�ciently small, then the generalized Naghdi model

(2.28) has a unique solution of the form û(x̂) = �u(x1; x2)+ x3 �r(x1; x2) with (�u; �r) 2

V (!)2 and �x = F�1(x̂) .

This result will be a consequence of the Lax-Milgram lemma applied to the bilinear

form (2.30). To this end, we have to show its coercivity.

3 Proof of coercivity

In what follows, we shall �x � = 0; � = 1
2 , without loss of generality. The classical

Korn's inequality with boundary conditions (cf. Ciarlet [3]) yields that

B(û; û) �

Z

̂

3X
i;j=1

jêij(û)j
2 dx̂ � c(
̂; �̂0) kûk

2

H1(
̂)
8 û 2 V (
̂) : (3.1)

8



Since ûj�̂0 = 0 , we may replace kûkH1(
̂) by the equivalent norm

jûj2
H1(
̂)

:=

3X
i;j=1

Z

̂

���@ûi
@x̂j

���2 dx̂ : (3.2)

Lemma 3.1 If û has the form (2.7), then

jûj2
H1(
̂)

=

Z



3X
i;j=1

h� @ui
@x1

+ x3
@ri

@x1

�
h1j(�x) +

� @ui
@x2

+ x3
@ri

@x2

�
h2j(�x)

+ ri(�x)h3j(�x)
i2
jdet J(�x)j d�x : (3.3)

Proof. This is the consequence of (3.2) and of the change of variables in the integral,

similar to that performed in (2.27), (2.28). 2

Our aim is to obtain an estimate directly involving the norms of �u; �r 2 V (!) .

While Korn's inequality estimates the symmetrized gradients �eij in terms of the

H1(
̂) - norm, our task is more complicated owing to the presence of the nonconstant

coe�cients hij appearing in (3.3). In the literature, such inequalities are called

Korn's inequalities in curvilinear coordinates, see Ciarlet [4]. Here we indicate a

direct approach based on a special approximation of the coe�cients hij .

To this end, recall (2.2) and the fact that
D
�n; @�n

@xi

E
IR3

= 0 for i = 1; 2 . Hence, we

can conclude by a direct calculation that

J(�x) =

2
6664

1 0 n1

0 1 n2

p1 p2 n3

3
7775

2
66664

1 + x3
@n1
@x1

x3
@n1
@x2

0

x3
@n2
@x1

1 + x3
@n2
@x2

0

0 0 1

3
77775 : (3.4)

Apparently, the �rst matrix does not depend on x3 , while the second matrix is

a perturbation of the identity matrix for small values of jx3j . By virtue of the

relations (2.9), we also have

2
6664

1 0 n1

0 1 n2

p1 p2 n3

3
7775
�1

= 1q
1 + p21 + p22

2
6664
n3 � n2p2 n1p2 �n1

n2p1 n3 � n1p1 �n2

�p1 �p2 1

3
7775 (3.5)

We now approximate the coe�cients hij , i; j = 1; 3 by the elements of the matrix

H = (h0ij)i;j=1;3 which is de�ned by the right-hand side of equation (3.5). From

9



(2.2) and (3.5), we obtain

H =
1q

1 + p21 + p22

2
666666664

1 + p22q
1 + p21 + p22

�p1p2q
1 + p21 + p22

p1q
1 + p21 + p22

�p1p2q
1 + p21 + p22

1 + p21q
1 + p21 + p22

p2q
1 + p21 + p22

�p1 �p2 1

3
777777775
: (3.6)

Obviously, detH =
p

1 + p21 + p22 , and therefore the quadratic form

K(�u; �r) :=

Z



3X
i;j=1

h�@ui
@xi

+ x3
@ri

@x1

�
h0ij +

� @ui
@x2

+ x3
@ri

@x2

�
h02j + rih

0
3j

i2

�

q
1 + p21 + p22 d�x ; (3.7)

where (�u; �r) 2 V (!)2 , constitutes an approximation to the one given in (3.3). It

thus makes sense to study this form instead of (3.3) �rst.

Taking into account that all the functions appearing in (3.7) are independent of x3 ,

we can perform the integration with respect to x3 to obtain

K(�u; �r) = 2 "

Z
!

3X
i;j=1

� @ui
@x1

h01j +
@ui

@x2
h02j + rih

0
3j

�2q
1 + p21 + p22 dx1 dx2

+
2"3

3

Z
!

3X
i;j=1

� @ri
@x1

h01j +
@ri

@x2
h02j

�2q
1 + p21 + p22 dx1 dx2 : (3.8)

Lemma 3.2 The quadratic form K de�nes a norm on V (!)2 through the identity

k(�u; �r)k :=
p
K(�u; �r) , for (�u; �r) 2 V (!)2 .

Proof. Due to the quadratic structure of K, we only need to show that K(�u; �r) = 0

implies that (�u; �r) = (0; 0) almost everywhere in ! .

We just prove that �r = 0; the argument for �u is similar. We have

@ri

@x1
h01j +

@ri

@x2
h02j = 0 ; i; j = 1; 3 ; a.e. in ! : (3.9)

Let i be �xed. Multiplying (3.9) by �p1 for j = 3 , and adding the result to

relation (3.9) for j = 1 , we obtain from (3.6) that @ri
@x1

= 0 a. e. in ! . Likewise,

multiplication of (3.9) by �p2 for j = 3 , and addition to relation (3.9) for j = 2 ,

yield that @ri
@x2

= 0 a. e. in ! . Since rij
o = 0 , we conclude that ri = 0 a. e. in

! . 2
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Lemma 3.3 There is some ĉ > 0 such that

Z
!

3X
i;j=1

� @vi
@x1

h01j +
@vi

@x2
h02j

�2
dx1 dx2 � ĉ j�vj2H1(!)3 ; 8 �v 2 V (!) ; (3.10)

where

j�vj2H1(!)3 :=

3X
i=1

Z
!

jrvij
2 dx1 dx2 : (3.11)

Proof. Notice at �rst that, owing to the zero boundary conditions on 
0 , the norm

j � jH1(!)3 is equivalent on V (!) to the usual norm of H1(!)3 .

We consider the linear space

W :=

�
�v 2 L2(!)3 ;

@vi

@x1
h01j +

@vi

@x2
h02j 2 L2(!) ; i; j = 1; 3 ; �vj
0 = 0

�
:(3.12)

Arguing as in the proof of Lemma 3.2, we can infer that

k�vkW :=

0
@Z

!

3X
i;j=1

� @vi
@x1

h01j +
@vi

@x2
h02j

�2
dx1 dx2

1
A

1=2

(3.13)

de�nes a norm on W . Clearly, we have V (!) � W , and for any �v 2 V (!) it holds

k�vkW � M j�vjH1(!)3 ; (3.14)

with some �xed M > 0 . We now show that also W � V (!) , i.e. that W = V (!) .

To this end, suppose that �v 2 W , and let

fij :=
@vi

@x1
h01j +

@vi

@x2
h02j ; i; j = 1; 3 : (3.15)

Then fij 2 L2(!) ; i; j = 1; 3 : Now let i be �xed. As in the proof of Lemma 3.2,

we multiply (3.15) by �p1 for j = 3 and add the result to (3.15) for j = 1 , to

�nd that

@vi

@x1
=

�p1 fi3 + fi1p
1 + p21 + p22

2 L2(!) : (3.16)

Similarly, we prove that also @vi
@x2

2 L2(!) . In conclusion, vi 2 H1(!) (which also

makes the boundary condition �vj
0 = 0 meaningful), and thus �v 2 V (!) .

We now consider the identity mapping I acting between the Banach space (V (!) ,

j � jH1(!)3) and the normed space (W; k � kW ) . Clearly, I is linear and injective, and

11



we have just shown its surjectivity. Besides, (3.14) implies that I is continuous.

Therefore, if (W; k � kW ) is also complete, i.e. a Banach space, then it follows from

the open mapping theorem that also the inverse I�1 is continuous which then proves

(3.10).

To prove the completeness, take any k � kW - Cauchy sequence f�vng � W . Then,

for i; j = 1; 3 ,

q
n;m
ij :=

�
@vni
@x1

�
@vmi
@x1

�
h01j +

�
@vni
@x2

�
@vmi
@x2

�
h02j ! 0 ; n;m!1 ;(3.17)

in L2(!) . Using the same argument as in the derivation of (3.15), we have, for

i = 1; 3 ,

@(vni � vmi )

@x1
=

�p1 q
n;m
i3 + q

n;m
i1p

1 + p21 + p22
; (3.18)

which converges to 0 in L2(!) as n;m!1 . Arguing similarly for
@(vni �v

m
i )

@x2
, we

conclude that f�vng is a Cauchy sequence in (V (!); j � jH1(!)3) , hence convergent

to some �v 2 V (!) . By (3.14), k�vn � �vkW ! 0 , which concludes the proof of the

assertion. 2

Lemma 3.4 K is coercive on V (!)2 equipped with the usual H1
0 (!)

6
- norm.

Proof Let (�u; �r) 2 V (!) . Using Young's inequality and Lemma 3.3, we have with

some Ĉ > 0 ,

K(�u; �r) � "

Z
!

3X
i;j=1

�@ui
@xi

h01j +
@ui

@x2
h02j

�2q
1 + p21 + p22 dx1 dx2

� Ĉ "

Z
!

3X
i;j=1

r2i (h
0
3j)

2

q
1 + p21 + p22 dx1 dx2

+
2 "3

3

Z
!

3X
i;j=1

� @ri
@xi

h01j +
@ri

@x2
h02j

�2q
1 + p21 + p22 dx1 dx2

� ĉ "

Z
!

3X
i=1

n��� @ui
@x1

���2 + ��� @ui
@x2

���2o dx1 dx2
+

2 ĉ "3

3

Z
!

3X
i=1

n��� @ri
@x1

���2 + ��� @ri
@x2

���2o dx1 dx2
� Ĉ "

Z
!

3X
i;j=1

r2i (h
0
3j)

2

q
1 + p21 + p22 dx1 dx2 : (3.19)
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Now assume that K is not coercive in the H1
0 (!)

6 - norm. Then there exists a

sequence f(�un; �rn)g � V (!)2 satisfying

3X
i=1

Z
!

����@un1
@x1

���2 + ���@un1
@x2

���2 + � � �+

���@rn3
@x1

���2 + ���@rn3
@x2

���2� dx1 dx2 = 1 8n 2 IN ;(3.20)

such that

K(�un; �rn)! 0 for n!1 : (3.21)

In view of (3.20), we can assume without loss of generality that �un ! �u and �rn ! �r

weakly in V (!) and, by compact imbedding, strongly in L2(!)3 . The weak lower

semicontinuity of the quadratic form yields that

lim
n!1

K(�un; �rn) � K(�u; �r) � 0 ; (3.22)

and we can infer from (3.22), (3.21) and Lemma 3.2 that ui = 0 ; ri = 0 , a. e. in

! , i = 1; 3 .

However, from (3.19) and (3.20), and since 0 < " < 1 , we can infer that

K(�un; �rn) �
2 ĉ "3

3

Z
!

3X
i=1

n���@uni
@x1

���2 + ���@uni
@x2

���2 + ���@rni
@x1

���2 + ���@rni
@x2

���2o dx1 dx2
� Ĉ "

Z
!

3X
i;j=1

(rn3j)
2 (h03j)

2

q
1 + p21 + p22 dx1 dx2

=
2 ĉ "3

3
� Ĉ "

Z
!

3X
i;j=1

(rni )
2 (h03j)

2

q
1 + p21 + p22 dx1dx2 : (3.23)

The strong convergence of �rn in L2(!)3 allows to pass to the limit as n ! 1 in

(3.23), whence we arrive at a contradiction. This concludes the proof of the lemma.

2

Remark 3.1 The coercivity constants of K have the form from (3.19), with the

last term (containing the ri ; i = 1; 3) just neglected.

Proof. of Theorem 2.1 We use the form (2.30) of B(û; v̂) and (3.1) , (3.3). We

estimate the expression

A :=

Z



h�@u1
@x1

+ x3
@r1

@x1

�
h11 +

�@u1
@x2

+ x3
@r1

@x2

�
h21 + r1h31

i2
jdet J(�x)j d�x

�

Z



h�@u1
@x1

+ x3
@r1

@x1

�
h011 +

�@u1
@x2

+ x3
@r1

@x2

�
h021 + r1h

0
31

i2q
1 + p21 + p22 d�x :
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From the way we will prove an advantageous estimate for A it will become clear

that similar estimates can be obtained for all the other terms occurring in B(û; û) ,

and therefore we will be able to employ Lemma 3.4 to get the desired coercivity

conclusion for B(û; û) . Now let

M :=
�@u1
@x1

+ x3
@r1

@x1

�
h11 +

�@u1
@x2

+ x3
@r1

@x2

�
h21 + r1h31 ;

~M :=
�@u1
@x1

+ x3
@r1

@x1

�
~h11 +

�@u1
@x2

+ x3
@r1

@x2

�
~h21 + r1~h31 ;

M0 :=
�@u1
@x1

+ x3
@r1

@x1

�
h011 +

�@u1
@x2

+ x3
@r1

@x2

�
h021 + r1h

0
31 : (3.24)

Then

A =

Z



M2
j detJ(�x)j d�x �

Z



M2
0

q
1 + p21 + p22 d�x

=

0
@Z




M2
j detJ(�x)j d�x �

Z



~M2p
1 + p21 + p22

d�x

1
A

+

0
@Z




~M2p
1 + p21 + p22

d�x�

Z



M2
0

q
1 + p21 + p22 d�x

1
A

=: A1 + A2 ; (3.25)

with obvious meaning of A1 ; A2 . We have, by (2.17) - (2.20),

~h11q
1 + p21 + p22

� h011 =
x3

1 + p21 + p22

�@n2
@x2

+ p2
@n3

@x2

�
;

~h21q
1 + p21 + p22

� h021 =
� x3

1 + p21 + p22

�@n2
@x1

+ p2
@n3

@x1

�
;

~h31q
1 + p21 + p22

� h031 =
x3p

1 + p21 + p22

�
@n2

@x1

�
p2 + x3

@n3

@x2

�

�
@n2

@x2

�
p1 + x3

@n3

@x1

�
�

@n3

@x1

�
:

(3.26)
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Using (3.24) and (3.26), we �nd that

A2 =

Z



��@u1
@x1

+ x3
@r1

@x1

��@n2
@x2

+ p2
@n3

@x2

�
�

�@u1
@x2

+ x3
@r1

@x2

��
p2
@n3

@x1
+
@n2

@x1

�

+ r1

q
1 + p21 + p22

�
@n2

@x1

�
p2 + x3

@n3

@x2

�
�
@n2

@x2

�
p1 + x3

@n3

@x1

�
�
@n3

@x1

��

�
x3

1 + p21 + p22

�
~M + M0

q
1 + p21 + p22

�
d�x : (3.27)

From this expression, and from the de�nitions of ~M ; M0 , it is clear that A2 is of

the form

A2 =

Z



h
x3X(x1; x2) + x23 Y (x1; x2) + x33 Z(x1; x2)

i
d�x ; (3.28)

where X ; Y ; Z are quadratic polynomials of the variables @u1
@x1

, @u1
@x2

, @r1
@x1

, @r1
@x2

,

and r1 , whose coe�cients all belong to L1(!) since p 2 W 2;1(!) . The terms with

odd powers of x3 vanish after integration with respect to x3 , and thus we only have

to examine the expression

L :=

Z



x23 Y (x1; x2) d�x =
2 "3

3

Z
!

Y (x1; x2) dx1 dx2 : (3.29)

It is clear that Y (x1; x2) is formed from the summation of terms that appear when

terms in A2 without the factor x3 are multiplied by terms having the factor x3 .

From the de�nition of ~M and M0 , and from inspecting (3.27), we �nd that

L =
2 "3

3

Z
!

(
r21 y

(1)(x1; x2) +

2X
i;j=1

@u1

@xi

@r1

@xj
y
(2)
ij (x1; x2)

+

2X
i=1

r1

�
@u1

@xi
y
(3)
i (x1; x2) +

@r1

@xi
y
(4)
i (x1; x2)

�)
dx1 dx2 ;

(3.30)

where all the coe�cient functions y(1) , y
(2)

ij , y
(3)

i , and y
(4)

i , respectively, are known

to be bounded in L1(!) , since p 2 W 2;1(!) . We thus can estimate, using Young's
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inequality and the fact that 0 < " < 1 ,

jLj �
2 Ĉ1 "

3

3

Z
!

(
r21 +

2X
i;j=1

����@u1@xi

����
����@r1@xj

����
+

2X
i=1

jr1j

�����@u1@xi

���� +
����@r1@xi

����
�)

dx1 dx2

� Ĉ2 "
2

3X
i=1

juij
2
H1(!) + Ĉ2 "

4

3X
i=1

jrij
2
H1(!) + Ĉ2 "

2

3X
i=1

jrij
2
L2(!) ;

(3.31)

with constants Ĉ1 > 0 ; Ĉ2 > 0 that only depend on the L1(!)�norms of the

functions y(1) , y
(2)

ij , y
(3)

i , and y
(4)

i .

By comparing this inequality with (3.19) and Remark 3.1, we see that L is dom-

inated by K(�u; �r) , provided that " > 0 is su�ciently small in comparison with the

(a priori known) constant Ĉ2 .

It remains to estimate A1 . Note that, owing to (3.24), and in view of (2.17) to

(2.20), we have ~M = M � det J(�x) , and hence it follows from (2.14), (2.15) that

A1 =

Z



~M2

 
1

det J(�x)
�

1p
1 + p21 + p22

!
d�x

= �

Z



~M2 x3

@n1

@x1
+
@n2

@x2
+ x3

�
@n1

@x1

@n2

@x2
�
@n1

@x2

@n2

@x1

�
det J(�x)

d�x :

(3.32)

Next, we perform a Taylor expansion of the function '(x3) := 1=detJ(x1; x2; x3)

around x3 = 0 . We easily �nd that

1

det J(x1; x2; x3)
=

1 � x3

�
@n1
@x1

(x1; x2) +
@n2
@x2

(x1; x2)
�

+ x23 �(x1; x2; x3)p
1 + p21(x1; x2) + p22(x1; x2)

(3.33)

with some function � 2 L1(
) whose L1(
) - norm is bounded from above by a

constant that only depends on kpkW 2;1(!) .

We now can argue as follows: the �rst two terms in (3.33) can be combined with the

remaining ones occurring in A1 , and we can explicitly integrate and estimate them

as in the case of L . Again, they are dominated by K(�u; �r) provided that " > 0 is

small enough. The remaining term from (3.33), which depends in a complicated way

on x1 ; x2 ; x3 , is of order x
2
3 , and direct estimates can be performed in combination

with the other factors in A1 to see that it is also dominated by K(�u; �r) .
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We are now in the position to conclude the proof of the assertion: indeed, from the

method of estimation used above for A it is apparent that similar computations

and estimates can be carried out for all the other terms occurring in B(û; û) . Since

these estimations are straightforward (while quite lengthy), we do not present them

in detail, here. It turns out that all the occurring di�erences are dominated by

K(�u; �r) provided that " > 0 is su�ciently small. Consequently, B(û; û) inherits

the coercivity of K . This ends the proof of the theorem. 2

Remark 3.2 Theorem 2.1 and its proof remain valid if the shell 
̂ is of noncon-

stant thickness, as long as the thickness remains bounded from below by " > 0 .

Adequate regularity assumptions on @
̂ have to be imposed.

Remark 3.3 It is obvious from the proof of Theorem 2.1 that the coercivity con-

stant of the bilinear form B is of the order "3 , and " must be small for its validity.

This explains the well-known instability appearing in numerical computations for

shells.
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