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Abstract. Bingham models are frequently used for describing the �ow of

pastes. Usually, Bingham material parameters have to be determined in a

rather cumbersome and time consuming manner. In this paper we develop

a parameter estimation method for the automatic numerical determination

of certain model parameters. The result is a tool for the simultaneous de-

termination of all model parameters by using data from a single experiment

sweep. Additionally, a method is presented to compute optimal shapes of

corresponding measurement devices which lead to a high reliability of the re-

sulting parameter estimation.

1 Introduction

Pastes are used, e.g. in the production of bricks from clay or bodies of catalytic

converters from ceramic pastes. Usually they are extruded, where the quality of

the extrusion product depends on the velocity distribution of the �ow within the

extrusion device. Recently, substantial progress has been achieved in the devel-

opment of numerical simulation techniques for paste extrusion based on Bingham

models [11]. However, in practice these numerical techniques can only be used, if

certain parameters of the underlying �ow model are known. These parameter val-

ues cannot be accessed by direct measurements, but are determined up to now in a

process involving a rather high empirical e�ort and using analytical approximation

approaches.

Therefore, we have developed parameter estimation techniques in a joint e�ort to-

gether with our industrial partner, Braun GmbH (Friedrichshafen), who already uses

the numerical simulation techniques from [11] in the design of extrusion machines.

Outlets for these extrusion machines are the main products of our industrial part-

ner. The aim is the development of a model based measurement technique, which

allows the simultaneous determination of all model parameters from one experiment

and which is fast enough for online-usage. Since analytical approaches are not suf-

�cient, a numerical parameter identi�cation method is developed and implemented

as software based on the ug toolbox [1].

However, as will be clari�ed later on, the statistical reliability of this approach is

rather low for existing measurement devices. Therefore, methods of optimal exper-

imental design are used to improve this reliability by geometry variations.

Optimal experimental design is a well known technique in many practical applica-

tions for linear system models. A good introduction can be found, e.g., in [13].

However, there are only few publications on optimal experimental design for nonlin-

ear models and especially for models including di�erential equations. Most recent

investigations are in the �eld of parameter identi�cation and optimal control for

ordinary di�erential equations and di�erential algebraic equations [9, 8, 5, 2]. In

the second part of the paper we deal with an optimum experimental design problem

in the form of a shape optimization problem for a highly nonlinear elliptic partial

di�erential equations (PDE).
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The paper is organized in the following way: In section 2 we describe the basic

�ow model used for the Bingham �ow description. Section 3 explaines the basic

parameter identi�cation formulation used in order to get values for the Bingham

material parameters from measurements of normal �ow stresses. In order to be

able to solve the Bingham model equations, they have to be dicretized, which is

described in section 4. Based on the discretization and the parameter identi�cation

formulation, an algorithm for the solution of a resulting �nite dimensional least-

squares problem is given in section 5. This algorithm is based on inexact RSQP

methods. Section 6 presents the basic de�nitions for the formulation of the optimal

experimental design problems. In section 7 we investigate a speci�c experiment

with real measurement data and show how necessary improvements to the current

measurement technology are. Optimized devices are presented in section 8.

2 Bingham Fluids

The non-Newtonian �ow of ceramic pastes can be described by the following PDE

system from continuum mechanics for the case of incompressible �uids and low Mach

number velocities (s. [6]): the continuity equation

divu = 0; (2.1)

and the momentum equation

�

@u

@t

= divT+ f ; (2.2)

where � is the (constant) density of the paste, u is the velocity �eld of the �ow, f

is a vector of the body forces and T is the stress tensor. According to the angular

momentum conservation law, T is symmetric. It is usually assumed that it depends

only on the pressure and the strain tensor

D = 1

2

�ru+ (ru)T � :
In general form this dependence can be written as follows:

T = �pI +T
E(D); (2.3)

where p is the pressure and TE the extra stress tensor describing the viscous forces

in the �uid. The special choice of the extra stress tensor speci�es the mathematical

model of the ceramic pastes.

For the materials we are interested in, the following form of the extra stress tensor

is used (s. [10, 11]):

T
E(D) = 2�(D)D = 2

�
�B + �F (2IID)

�

1

2

�
D: (2.4)

(Here IID is the second invariant of D, IID = 1

2
(TrD2 � (TrD)2).) But this form is

assumed to be true if and only if

jIITE j > �

2

F : (2.5)
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Otherwise, i. e. if the inner stresses are small enough, the material is rigid and does

not �ow so that

D = 0 for jIITE j � �

2

F : (2.6)

Material whose �ow is described by equations (2.1 � 2.2) with the stress tensor (2.3 �

2.4), under the condition (2.5), and (2.6) is called a Bingham �uid. The parameters

�B and �F are said to be Bingham viscosity and yield stress respectively.

We shall consider only �ow of ceramic pastes and assume that condition (2.5) is

true respectively. Besides we shall consider only stationary �ow, so that the time

derivative in (2.2) is zero. The gravitation, being the only body force, does not play

any essential role in our situation as well, because it is negligible in comparison with

the viscous forces. Thus, further we omit also f . This simpli�cation leads to the

following system describing our situation:

divu = 0;

�div (2�(D) �D) +rp = 0:
(2.7)

In this work, we consider only a two-dimensional model.

We would encounter di�culties when trying to get an approximate solution of system

(2.7). The matter is that the extra stress tensor tends to in�nity as the term IID

tends to zero. In reality this is not the case for the restriction (2.5) "switching" to

the other equation, but omitting this condition we always come to such a situation.

To avoid it, system (2.7) should be regularized. This means that we involve a small

parameter Æ in the generalized viscosity function � so that

�(D) = �B + �F (Æ + 2IID)
�

1

2 : (2.8)

In this way we get an approximation of the system (2.7) at which � is bounded.

The solution of the regularized system deviates from the unregularized Bingham

solution. An exploration of the regularization error in a model problem is carried

out in [11]. There, it is shown that this error tends to zero like O(
p
Æ).

Remark: As for incompressible �uids TrD = 0, IID = 1

2
TrD2. Thus (2.8) attains

the form

�(D) = �B + �F (Æ + TrD2)�
1

2 : (2.9)

The stress tensor (2.3) attains the form

T = �pI + 2�(D)D: (2.10)

In addition to these equations, the model of the ceramic pastes requires special

boundary conditions. The reason for this is a phenomenon called wall sliding. Mi-

croscopically we have a two-phase �ow on the boundary yielding a lubrication e�ect.

Macroscopically this is described by sliding, resulting in a Navier-Type boundary

condition that has in 2D the form

n
T
Tt = kuT t+ �G;

u
T
n = 0:

(2.11)

where t and n are the unit normal and unit tangent vectors to the boundary re-

spectively. Here we assume that the tangential stress and the tangential velocity are
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Figure 1: Scheme of the measurement device

codirected on the boundary. These condition include two additional scalar parame-

ters: a wall sliding factor k and a sliding limit �G.

Thus for the mathematical description of the �ows of the ceramic pastes we have the

system of PDEs (2.7) with the boundary conditions (2.11) on walls. (Besides in�ow

and out�ow boundary conditions can be imposed on some parts of boundary). The

whole model involves four parameters: �B, �F , k and �G. The aim of the parameter

estimation procedure described here is to �nd these values by using experimental

data obtained by the device described in the next section. The nonlinearity of

the PDE system together with its boundary conditions poses quite a challenge to

the numerical treatment of the resulting parameter identi�cation problem. It is

necessary to note as well that the pressure p is de�ned by this system only up to

a constant. Methods for the discretization of this system and numerical solution of

the resulting nonlinear discrete equations are considered in detail in [11, 10].

3 Parameter Identi�cation Technique

The parameters are estimated by using data obtained from a device whose scheme

is shown on Fig. 1. This is a conical channel with rigid walls. The paste is pressed

through this channel with constant velocity in the direction of the large arrow.

During this process we measure the normal stress at seven �xed points on the upper

wall (further refered to as measurement points). The values of the normal stress, as

well as the in�ow velocity of the paste, are then used for the parameter identi�cation.

For the experiments we used the device with the following sizes: H = 30mm,

h = 10mm, L = 244mm, so � = 2:35o. The in�ow velocity was about 80 mm

s
(s.

the experimental data below). Fig. 2 shows a photo of the device.

To model the �ow of the paste inside the device we consider the interior (the polygon)

as a region 
 on which we impose the PDE system (2.7) with the generalized viscosity

function (2.9). On the part �0 � @
 of the boundary corresponding to the rigid

walls we assume boundary conditions (2.11). On the in�ow boundary �in we impose

Dirichlet boundary conditions for the velocity specifying the constant in�ow velocity

v0 along the whole segment. On the out�ow boundary �out we impose zero vertical
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Figure 2: Photo of the measurement device

velocity as boundary condition and require

Z
�out

p ds = const. For every set q =

(�B; �F ; k; �G)
T of four parameters this system de�nes the velocity �eld u and the

pressure �eld p. Further we write all the partial di�erential equations comprising

the system (2.7) and the boundary conditions in the form

c(u; p; q) = 0: (3.1)

Denote the measurement points by P1; P2; : : : ; PK (in our case K = 7), in the order

from the out�ow. For every Pi we have a measured value �̂i of the normal stress.

In the same time, for every given set q of the parameters we can get the �elds u

and p from equation (3.1) and compute the normal stress �P (u; p; q) at every point

P 2 �0:

�P (u; p; q) = n
T
P TP (u; p; q)nP ;

where nP and TP (u; p; q) respectively are the unit normal vector to the bound-

ary and the stress tensor (2.3) at the point P . The �correct� parameters are then

determined as the solution of the nonlinear constrained optimization problem

f(u; p; q) =

KX
i=2

1

�
2
i

�
(�Pi(u; p; q)� �P1(u; p; q))� (�̂i � �̂1)

�2
! min

s: t: c(u; p; q) = 0;

(3.2)

where �i = 0:08(�̂i + �̂1) are the standard deviations for the di�erence evaulations,

if all measurements are assumed to be independently normally distributed with ex-

pectation �̂i and standard deviation 0:08�̂i. Although the model de�nes the normal

stress only up to a constant, the di�erences of the stresses are de�ned exactly and

should approximate the di�erences of the measured normal stresses. The numerical

solution is carried out in a direct approach, i.e. by discretization of the model and

the objective functional. This leads to a �nite dimensional nonlinearly constrained

optimization problem of a very large size that requires the application of structure

exploiting methods to reduce the computation time.
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4 Discretization of the Model

We descretize the PDE system (2.7) by the �nite volume method from [11]. The

application of this method to Bingham equations is similar to the case of a simple

Stokes equation and inherits the similar problems. The implementation is based on

ug-modules described for Navier-Stockes equations in [14].

We discretize the velocity and pressure �elds on quadrilateral elements using a col-

located scheme. Such discretizations require stabilization (cf. [3]). For the stabi-

lization the idea described in [15] is used. This technique introduces a new term

into the continuity equation, yielding:

�
2divrp+ divu = 0

with a scalar stabilization parameter 
. The in�uence of this stabilization term to

the discretization of the Bingham model is discussed in [11]. The stabilization from

[15] does not require any additional stabilization parameters.

Discretizing the out�ow boundary conditions we use so called natural boundary

conditions of our �nite-volume scheme, namely

Z
�out

p ds = const. That determines

the pressure completely. The constant is given by the stabilization.

Further we shall denote the whole discretized system by

ch(u; p; q) = 0: (4.1)

Here u and p are respectively two- and one-dimensional grid functions de�ned on

the same index sets. We underline that this is a nonlinear system for all variables.

Further it will be also convenient to denote a set (u; p) by the single letter x. So we

shall write ch(x; q) instead of ch(u; p; q).

Since we aim at fast solution techniques we employ multigrid methods for the so-

lution of (4.1). However, the direct application of multigrid methods (with an ILU

smoother) to the linearized system from a Newton approach fails. Therefore we

rewrite the discretized system (4.1) in the form

A(x; q)x = f ; (4.2)

where A is a sparse matrix. Based on this form we can easily apply a �xed-point

method with inner linear multi-grid solvers.

The grid levels were obtained by uniform re�nement of a coarser grid containing

less then hundred quadrilaterals. The matrices on each grid level were constructed

by discretization of the PDE system. In Fig. 3 we show an example of numerical

results obtained by this discretization.

For the discretization of the whole system the strain tensor D and the generalized

viscosity function were also de�ned using �nite dimensional grid functions u. This

allows to discretize the normal stress functions �Pi. We denote the discrete variants

by �h;i respectively. This completes the discretization of the whole optimization
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Figure 3: Results of the numerical simulation of a �ow in the measurement device.

The upper picture shows the horizontal velocity, the lower one � the pressure

problem which now reads

fh(x; q) =

KX
i=2

1

�
2
i

�
(�h;i(x; q)� �h;1(x; q))� (�̂i � �̂1)

�2
! min

s: t: ch(x; q) = 0:

(4.3)

This is a nonlinearly constrained �nite dimensional optimization problem.

5 The Parameter Estimation Procedure

Here we consider the optimization problem (4.3) in the abstract form, omitting the

subscript h:
f(x; q)! min;

s: t: c(x; q) = 0;
(5.1)

with f : Rn�m ! R and c : Rn�m ! R
n and the Jacobian, J =

@c

@x

, which is

assumed to be nonsingular. In our case the number of parameters is 4. However, n,

the dimension of the grid functions, can be very large.

For the solution of the problem (5.1) we use a reduced SQP method. A detailed

discussion of this approach can be found in [16, 17]. Here we sketch only the idea.

Reduced SQP methods are related to projected Lagrangian methods (cf. [4]) and

are most advantagous in the case that the number of degrees of freedom (here the

parameters) is small compared to the number of state variables. The constraints are

linearized by a Taylor expansion up to �rst order terms, so that all steps (�x;�q)

lie in the tangent space of c of the current approximation (x; q):

c(x; q) + J(x; q)�x+
@c

@q

(x; q)�q = 0:

Then the problem is projected to this tangent space and approximated by a quadratic

problem with the projected Hessian of the Lagrangian

L(x; q; �) = f(x; q)� �

T
c(x; q): (5.2)

In this formulation the algorithm reads:
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Algorithm 1: The RSQP method.
(0) Set k := 0; start at some initial guess x0, q0.

(1) Compute the adjoint variables from the linear system

J
T (xk; qk)�k+1 := rxf(xk; qk);

compute the reduced gradient


k := rqf(xk; qk)�
�
@c

@q

(xk; qk)

�T

�k+1;

determine some approximation Bk of the projected Hessian

of the Lagrangian.

(2) solve Bk�qk = �
k.
(3) compute step on x from the linear system

J(xk; qk)�xk := �@c
@q

(xk; qk)�qk + c(xk; qk).

(4) Set xk+1 := xk +�xk, qk+1 := qk +�qk.

(5) k := k + 1; go to (1) until convergence.

The computationally expensive operation of evaluation of the projected Hessian is

avoided by using update formulas: at the �rst iteration some initial approximation,

for example

B0 = �I (5.3)

with a positive scalar �, is taken. Then every next approximation is computed from

the previous one by a formula

Bk+1 = Bk +Update(Bk; sk; vk): (5.4)

There exist di�erent update strategies (s. [4, 16]), for instance the BFGS update

formula reads:

Update(B; s; v) =
vv

T

v
T
s

� (Bs)(Bs)T

s
T
Bs

: (5.5)

For the arguments of this update one can take vectors

sk := qk � qk�1; vk := 
k � 
k�1: (5.6)

It can be proven that under mild conditions the reduced SQP method described by

Algorithm 1 with the BFGS update formula (5.4 � 5.6) shows 2-step superlinear

local convergence (s. [16]).

In the Algorithm 1, it is necessary to invert the Jacobian J of the constraints. As

we mentioned in the previous section, this approach is not recommendable. The

following consideration allows to replace J with the �xed point iteration matrix A.

To this end we incorporate the reduced SQP algorithm within the previously men-

tioned �xed point iteration instead of a Newton iteration�in the spririt of inexact

reduced SQP methods as considered in [17]. Carrying out the �xed point iteration

instead one obtains an algorithm that does not involve inversion of J or JT . Nev-

ertheless the Jacobian is still used for computation of the correct adjoint variables

and the correct state increments in the sense of defect correcting iterations:
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Algorithm 2: The RSQP method with an approximate Jacobian.
(0) Set k := 0; start at some initial guess x0, q0.

(1) Compute the increment of the adjoint variables from the linear system

A
T (xk; qk)��k := rxf(xk; qk)� J

T (xk; qk)�k;

compute the reduced gradient


k := rqf(xk; qk)�
�
@c

@q

(xk; qk)

�T

(�k +��k);

determine some approximation Bk of the projected Hessian

of the Lagrangian.

(2) solve Bk�qk = �
k.
(3) compute step on x form the linear system

A(xk; qk)�xk := �@c
@q

(xk; qk)�qk + c(xk; qk).

(4) Set xk+1 := xk +�xk, qk+1 := qk +�qk and �k+1 = �k +��k.

(5) k := k + 1; go to (1) until convergence.

A step of this method can be also interpreted as an approximate Newton step for

the necessary conditions of extremum for the problem (5.1) since the updates of the

variables are computed according to a linear system0
BBBB@

0 0 A
T

0 Bk

�
@c

@q

�T

A

@c

@q

0

1
CCCCA

0
@ �x

�q

��

1
A =

0
@ rxL
rqL

�c

1
A
: (5.7)

Some notes on the convergence properties of the reduced SQP methods can be found

in [17]. The positive de�niteness of the approximations Bk should be preserved. The

BGFS update formula (5.4 � 5.5) yields a positive de�nite Bk+1 for a positive de�nite

Bk if and only if vTk sk > 0 (s. [4]). In the RSQP method started with an arbitrary

initial guess this property can be violated that can lead to inde�nite approximations

of the Hessian. As a remedy we used the Powell modi�cation of the BGFS update

formula [12].

The next important issue is that these methods converge only locally and starting

with an arbitrary initial approximation Algorithm 2 always requires some damping

in step 4. The damping factor is usually chosen by a line search. It is required that

the damping parameter supplies su�cient descent of a merit function that involves

the constraint as well as the value of the objective function. This is done to provide

also the approximate feasibility of the guess. We used the merit function

 (x; q) = f(x; q) +
X
i

�ijci(x; q)j; (5.8)

where �i > 0 are estimated upper bounds for the absolute values of the adjoint vari-

ables (j�ij) at the optimal solution. This merit function supplied good convergence

properties up to practical precision.

For the computations we implemented Algorithm 2 with the Powell modi�cation of

the BGFS update formula. The initial approximation to the Hessian was B0 = I.

For the initial guess of the parameters we took some reasonable values. As the
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initial guess for x we took an approximate solution of the constraint for the initial

parameters obtained by the �xed point iteration. For the solution of the large

sparse linear systems with the matrices A and AT we applied the above mentioned

multigrid method with ILU smoothing. This provided an approximate feasibility

in the �rst iteration. The initial values of the adjoint variables were merely �0 = 0.

6 Con�dence Intervals of the Computed Parame-

ters

We estimate the precision of the represented measurement technique by comput-

ing the con�dence intervals for the obtained parameters according to the linearized

model. To this end we assume that the errors of the measurements at the mea-

surement points are statistically independent and meet the normal distribution. Let

� : Rn�R4 ! R
6 be a function that assignes the theoretical relative normal stresses

to a given guess x and a given set of parameters:

�(x; q) = (�2(x; q)� �1(x; q); : : : ; �7(x; q)� �1(x; q))
T
:

As the velocity and pressure �elds corresponding to the parameters q satisfy the

equation c(x; q) = 0, the full di�erential of the function assigning the normal stresses

at the measurement points to the parameters is a matrix

S(q) =

�
@�

@x

@�

@q

�0@ �J�1 @c
@q

I

1
A

(all the functions should be evaluated at (x; q), with c(x; q) = 0). Now the covari-

ances corresponding to the parameters q are the diagonal enties of the matrix

Cov(q) =
h
(S(q))

T
D
�2
S(q)

i
�1

=

2
664
0
@ �J�1 @c

@q

I

1
A

T

0
BB@

�
@�

@x

�T

�
@�

@q

�T

1
CCAD

�2

�
@�

@x

@�

@q

�0@ �J�1 @c
@q

I

1
A
3
775
�1

;

(6.1)

where D = diag f0:08(�̂i�1 + �̂1)g for the precision of the measurements 8%. Then

for every parameter p (p can be �B, �F , k or �G) the 95%-con�dence interval is

p� 3:182
p
(Cov(q))pp.

As we shall see, the con�dence intervals of the parameters measured using the simple

device shown on Fig. 1 are too large and inacceptable for industrial purposes. This

disadvantage can be corrected by the shape optimization of the device.

7 Experiment

Here we show results of one of the experiments. For this experiment we used the

device with the following sizes: H = 30mm, h = 10mm, L = 244mm, � � 2:35o

10



Table 1: Measured normal stresses
Measurement point P1 P2 P3 P4 P5 P6 P7

Normal stresses (bar) 2:66 5:2 7:45 9:3 11:2 12:4 13:5

-
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�i � �1; bar

1 2 3 4 5 6 7 i

e

e

e

e

e

e

e

r

r

r

r

r

r

r

Figure 4: The di�erences of the normal stresses. Empty circles denote the relative

measured stresses (�̂i � �̂1), and the black circles show the stresses �h;i(x; q) �
�h;1(x; q) computed for the �nal guess (x; q) of the optimization procedure. The

di�erence �h;1(x; q)� �̂1 is 13:75

(s. Fig. 1). The paste was pressed through the device at the average in�ow velocity

v0 = 80 mm

s
. The measured normal stresses on the upper wall are listed in Table 1.

The measurement points are numbered here from the outlet. The precision of the

measurements is �8%.

Because of the comparatively low measurement precision the normal stresses ob-

tained from the model do not coincide with the measured ones. The measured

stresses do not correspond to real material parameters, so the minimum value of the

objective function that can be expected is not equal to 0.

The optimization procedure was started with the initial parameters

�B = 0:0005 bar � s; �F = 3 bar; k = 0:5 bar�s

m
; �G = 0:15 bar

on a grid with 969 nodes (896 quadrilaterals) on the �nest level. For the regular-

ization constant Æ we have chosen a value 0:01. The computed stresses after the

parameter estimation are compared with the measurements in Fig. 4.

Table 3 represents also the 95% con�dence intervals computed for the standard

deviation of 0.05 bar of the measured normal stresses. Computation of the covariance

matrix requires inverting the Jacobian J that proved to be a very ill conditioned

matrix.

As one can see the precision of the method is very poor for all parameters. This

happens because in this device, the dependence of the simulated relative normal

stresses at the measurement points on the parameters is very weak. This fact can

be easily seen from numerical experiments: quite di�erent sets of the parameters
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Figure 5: Scheme of the measurement device shape at the shape optimization

yield quite similar di�erences of the normal stresses. As a remedy one can propose

to change the shape of the device. We discuss this question in the next section.

8 Optimization of the shape of the device

One can try to improve the con�dence intervals by variing the shape of the device.

We consider measurement devices with piecewise planar boundaries (Fig. 5). There

are 7 pieces and the measurement points are located at the centers of the segments.

The horizontal projections of the pieces always have equal length, but the heights

hi are varied. We look for a device that for a given set q of parameters, provides the

smallest (in some sence) con�dence intervals for all the parameters. As the criterion

for the minimization we choose the value

�(Cov) =
1

4
TrCov

(A-optimal design).

Here we need the following assumption. As the model determines the normal stresses

up to a constant only, the real absolute values of these stresses are unknown, and it

is impossible to determine absolute values of relative errors. So we assume that the

measurements at all the measurement points are carried out with the same standard

deviation � = 0:05 bar. Then we can compute the relative covariations according

the formula (6.1) with D = 2I (because the standard deviation of the di�erencies is

then 2�), the con�dence intervals being �3:182�
p
(Cov(q))pp

We also impose some restriction on the shape of the device. First, it is reasonable

to consider only devices with h0 � h1 � � � � � h7. Then, the practice shows that the

heights hi should be restricted above and below to avoid extremally large or small

values. So the complete optimization problem is: for a given set q of the parameters,

�nd h0, . . . , h7 such that

�(Cov(q)) = 1

4
TrCov(q)! min

s: t: h0 � � � � � h7;

h0 � hmin; h7 � hmax:
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Note that the objective functional of this problem requires computation of x such

that c(x; q) = 0, i. e. simulation of the �ow of the paste in the device. As the

variables hi are included in the problem implicitely (they determine the shape of the

domain), it is hardly possible to di�erentiate the objective functional with respect

to them. This implies application of a numerical optimization procedure that does

not use the gradients. We applied a direct search method for nonlinear optimization

[7], which resulted in hi-values as listed in Table 2.

Table 2: The values of hi for the optimized device.
i 0 1 2 3 4 5 6 7

hi, mm 59:7 31:8 31:8 25:8 22:7 4:9 3:0 3:0

At the computations, the length of the device was assumed to be L = 240mm. The

optimization procedure was started with a simple quadrilateral shape (like that on

the Fig. 1) of the followigh size: h0 = 30mm, h7 = 6mm. The in�ow velocity

was 80 mm

s
as before. The optimization was carried out for the parameter set from

Table 2. For the maximal possible value of the height hi we have chosen the doubled

initial value of h0, i. e. hmax = 60mm. Analogously, the minimal possible value was

hmin = 3mm � the halved initial value of h7.

Figure 6: Simulation of �ows in the optimized device (7 segments). The upper

picture shows the horizontal velocity, the lower one � the pressure.
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Figure 7: Simulation of �ows in the optimized device (15 segments). The upper

picture shows the horizontal velocity, the lower one � the pressure.

The shape of the device after the optimization is described by the heights hi in the

Table 2. Results of a simulation of the �ows in this device are shown on Fig. 6. Table

3 shows the relative covariances and the con�dence intervals for the optimized case

in comparison with those for the simple shape described in the previous chapters.

The geometry of the measurement device is described here as a piecewise linear func-

tion with a prede�ned sequence of heights. This can be considered an approximation

of the �true� optimal solution taken from an in�nite function space. Of course, the

existence of such a function space solution cannot be guaranteed theoretically for

this highly complex shape optimization problem. In order to reassure our solution

somewhat in this sense we recompute the shape optimization with 15 segments in-

stead of the 7 segments before. The resulting Fig. 7 is very similar to Fig. 6,

and also the resulting con�dence intervals are almost identical, thus providing more

con�dence in our optimal shape.

9 Conclusions

In this project, we have developed a parameter estimation technique based on mea-

suring the stresses in a �ow, and comparing them with the simulated ones. As it was

shown, this method works only with the special construction of the measurement

device, else it demonstrates a very poor precision. This construction was obtained

by means of the shape optimization.

14



Table 3: The parameters and the con�dence intervals
The simple shape The optimized shape

Parameter Rel. covariance Conf. interval Rel. covariance Conf. interval

�B = 0:302 bar � s 27298:8 �26:287 9:13 � 10�4 �0:0048
�F = 3:03 bar 58651:2 �38:531 0:107 �0:052
k = 0:497

bar � s
m

84305:5 �46:195 0:188 �0:069
�G = 0:180 bar 86:3207 �1:478 0:259 �0:081
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